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Abstract
The clinical features, molecular characteristics, and immune responses of COVID-19 patients with
persistent SARS-CoV-2 infection are not yet well described. In this study, we investigated the differences
in clinical parameters, laboratory indexes, plasma cytokines, and peripheral blood mononuclear cell
responses, which were assessed using single-cell RNA-sequencing in patients with non-critical COVID-19
with long durations (LDs) and short durations (SDs) of viral shedding. Our results revealed that clinical
parameters and laboratory indexes, such as c-reactive protein (CRP) and D-dimer, were comparable
between SDs and LDs. Most in�ammatory cytokines/chemokines, such as IL-2, IL2R, TNFα/β, IL1β, and
CCL5 were present at low levels in LDs. Our single-cell RNA-sequencing revealed a recon�guration of the
peripheral immune cell phenotype in LDs, including decreases in natural killer (NK) cells and CD14+

monocytes and an increase in regulatory T cells (Tregs). Furthermore, most cell subsets in LDs
consistently exhibited reduced expression of ribosomal protein (RP) genes, indicating dysfunctions in
cytokine/chemokine synthesis, folding, modi�cation, and assembly. Accordingly, the negative correlation
between the RP levels and viral shedding duration was validated in an independent cohort of bulk-RNA-
sequencing data from 103 non-critical patients, which may help guide clinical management and resource
allocation. Moreover, peripheral T and NK cells and memory B cells in LDs likely failed to activate, which
contributed to the persistence of viral shedding.

Introduction
There are more than 27,417,497 con�rmed cases of the coronavirus disease (COVID-19) global pandemic
and it has caused over 894,241 deaths as of September 9, 2020 (data from WHO at
 https://www.who.int/emergencies/diseases/novel-coronavirus-2019). This has had a profound impact
on the global culture and economy1. Disease manifestation is highly heterogeneous, ranging from
asymptomatic infection to severe disease leading to death2. Moreover, the duration of viral shedding has
been reported to vary dramatically, ranging from 6-63 days, with a median duration of 20 days from
disease onset3-5. Longer durations (LDs) of viral shedding cause additional challenges in controlling the
pandemic owing to increased risk of spread, the consumption of additional hospital resources, and
greater economic costs. Moreover, we only have a limited understanding of the clinical and molecular
characteristics of COVID-19 with long-term SARS-CoV-2 shedding. Thus, here, we delineated and
compared the clinical features and molecular characteristics of patients exhibiting long-term and short-
term viral shedding by integrating serological surveys and single-cell RNA-sequencing (scRNA-seq).

Results
Demographic characteristics

The duration of virus shedding was de�ned as the interval from illness onset until successive negative
detection of SARS-CoV-2 RNA, consistent with other studies of COVID-196,7. As of April 30, 2020, a total of
12 non-critical COVID-19 in-patients exhibited LDs of viral shedding durations (viral shedding duration45

https://www.who.int/emergencies/diseases/novel-coronavirus-2019
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days). Given that the median SARS-CoV-2 viral shedding duration is approximately 3 weeks8, we also
examined 38 age- and gender-matched non-critical COVID-19 in-patients whose viral shedding durations
were less than 21 days (short durations, SDs), for comparison (Supplemental Table 1). All the patients
were identi�ed as laboratory-con�rmed SARS-CoV-2 infected patients at Tongji Hospital, Wuhan, China.
The median viral shedding duration was 57 days (range: 45–100 days) and 16 days (range: 3–21 days)
in LDs and SDs, respectively (log-rank P0.0001) (Supplemental Table 1) . The basic demographic
information of these patients and the clinical parameters are detailed in Supplemental Table 1. Notably,
there were no signi�cant differences in comorbidities, complete blood counts (white blood counts,
lymphocyte counts, neutrophil counts, platelet counts, and hemoglobin), blood biochemistry
(alanine/aspartate aminotransferase and lactate dehydrogenase), and coagulation function
(prothrombin, activated partial thromboplastin time, and D-dimer) between LDs and SDs. Moreover,
in�ammatory markers, such as procalcitonin (PCT), erythrocyte sedimentation rate (ESR), and C-reactive
protein (CRP), which have been well reported as high-risk factors of the development of severe COVID-199-

11, were comparable in LDs and SDs. Therefore, there is a need for further investigations to identify new
biomarkers for viral shedding duration and the underlying mechanism of persistent viral shedding.

 

Cytokines in SDs, LDs, and healthy donors (HDs)

Cytokines are central to the pathophysiology of COVID-19 and a “cytokine storm” has been described as a
feature of COVID-19 severity, which is associated with adverse outcomes12,13. To further elucidate the
immune response associated with the viral shedding duration, we checked the serum
cytokine/chemokine levels in SDs, LDs, and 22 HDs. Intriguingly, from among the 48
cytokines/chemokines detected, 21 in�ammatory cytokines/chemokines had the lowest levels in LDs
when compared to SDs or HDs (Fig.1c). Of these, platelet-derived growth factor (PDGF-BB) (P =
0.000065), C-C motif ligand 5 (CCL5) (P = 0.00011), and macrophage migration inhibitory factor (MIF) (P
= 0.00015) showed the most signi�cant changes (Fig.1c and Extended Data Fig.1). Additionally, IL-1β, IL-
2, IL-2R, IL-9, IL-18, TNF-α, and TNF-β, the upregulation of which contributed to lung injury, multiorgan
failure, and ultimately death14-16, were present at lower levels in LDs (Fig.1c). Collectively, LDs of viral
shedding were associated with a weaker in�ammatory response characterized by low circulating
concentrations of cytokines and chemokines.

 

Differences in cell compositions detected using single-cell transcriptomes of human peripheral blood
mononuclear cells (PBMCs)

To characterize the immunological features of LDs and SDs compared to HDs, we performed 10X
Genomics scRNA-seq to study the transcriptomic pro�les of PBMCs from HDs (n = 3) and from patients
exhibiting LDs (n = 5) and SDs (n = 4) of viral shedding (Supplementary Table 2).The demographics,
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clinical features, and laboratory �ndings of these patients are listed in Supplementary Table 2. After the
uni�ed single-cell analysis pipeline (see Methods), in total, 124,606 cells across all subjects, with an
average of 10,384 cells per sample, were integrated into an unbatched and comparable dataset
(Supplementary Table 2). In accordance with previous reports17, we did not detect SARS-CoV-2 RNA
expression in the PBMCs of these patients (Extended Data Fig.2).

Using unsupervised clustering of uniform manifold approximation and projection (UMAP), we identi�ed
20 cell populations based on the expression of canonical cell-type gene markers (Fig.2a-b, Extended Data
Fig.3). To reveal the differences in cell composition across LDs and SDs and to compare them with that
of HDs, we investigated the relative proportions of immune cells among the three groups (Fig.2c-d). While
there were limited differences between SDs and HDs, signi�cant differences were observed between LDs
and HDs. Compared to that in the HDs, the proportion of natural killer (NK) cells and CD14+ monocytes
were signi�cantly decreased in LDs (Fig.2d). The massive decreases in NK cells and CD14+ monocytes in
LDs were in accordance with the observed decrease in in�ammatory cytokines in LDs. Notably,
in�ammatory monocytes, induced by T cells, have been reported to incite the cytokine storm in COVID-
1918. In contrast, regulatory T cells (Tregs) were particularly elevated in LDs (Fig.2d). Given the
importance of Tregs in secreting immunosuppressive cytokines and inhibiting the activation of both
innate and adaptive immune cells11,19,20, elevated levels of Tregs could be one cause of the suppressed
immune response observed in LDs. Taken together, these results demonstrated that the decreased NK
cells and CD14+ monocytes, as well as increased Tregs in LDs may prevent the immune system from
overreacting but contribute to the persistence of the virus.

 

Transcriptional signatures associated with LDs

Next, we performed hierarchical clustering based on relative gene expression changes with respect to the
HDs to evaluate the molecular difference of each cell type in LDs and SDs. Unexpectedly, all cell types
among the PBMCs clustered together according to the disease groups rather than by cell-types, with the
exception of hematopoietic stem cells (HSCs), plasma B cells, and megakaryocytes (Extended Data
Fig.4). This indicates that the molecular features of PBMCs in LDs and SDs are markedly different,
regardless of the cell type. Therefore, we sought to identify variations in the relevant biological functions
in individual cell types through differentially expressed gene (DEG) and Gene Oncology (GO) analyses.
Most importantly, we found that protein targeting to the membrane, endoplasmic reticulum (ER) related
pathways, translation related pathways, and ribosome small subunit assembly pathway was consistently
downregulated in all cell types in LDs, with the exception of gamma delta (γδ) T cells, mucosal
associated invariant T (MAIT) cells, and megakaryocytes (Fig.3a). In agreement with the GO results, we
found that many genes encoding ribosomal proteins and the protein synthesis related proteins were
speci�cally downregulated in LDs (Fig.3b-c). Interestingly, RPL41, RPS29, RPL36A, RPS27, RPS21, RPS10,
RPL38, RPL39, and RPS28 localize to the ER and participate in protein synthesis, folding, and assembly,
as detailed in the information provided on https://www.proteinatlas.org/. TMA721, TAF1022, and PTOV123
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were also speci�cally downregulated in LDs. These genes have previously been reported to be associated
with ribosomes, and their overexpression promotes global protein synthesis. Given that antibodies24 and
cytokines25 are synthesized, folded, modi�ed, and assembled by the rough ER and attached ribosomes,
these �ndings suggest that immune cells of LDs tend to have reduced cytokine synthesis, folding, and
assembly functions, which is consistent with the lower levels of in�ammatory cytokines observed in LDs
(Fig.1c). CEBPB and MAP3K8, which are in involved in the production of pro-in�ammatory cytokines, and
ZFP3626 and PDE4D27, which are involved in IL-2 production, were selectively reduced in LDs (Fig.3b).
Additionally, genes involved in T cell activation (PCBP1, ARPC2), migration (FMNL1), cytotoxic function
(GNLY, SRM), transcription factors (LYN), and downstream signal transduction (COTL1) were all reduced
in LDs (Fig.3b-c). Given that cytokines are produced by several immune cells, including adaptive T cells
28, the reduced cytokine levels in LDs are at least partially explained by these �ndings. Meanwhile,
IFITM2, an interferon (IFN)-stimulated gene (ISG), vital for viral clearance29, was downregulated in LDs
and may contribute to the longer viral persistence in LDs (Fig.3b-c).

Extended viral shedding time leads to higher transmission probability and requires stricter infection
control, the use of additional hospital resources, and result in more economic costs. Therefore, there is
increased interest in early patient strati�cation to identify those who are more likely to recover rapidly in
order to make hospital resources available for those at higher risk30. We assessed whether the RP levels
could be used for strati�cation of the viral shedding duration by integrating bulk-RNA-seq data from the
103 independent non-critical COVID-19 patients whose viral shedding durations were available.
Remarkably, we found that lower expression of RPs was associated with longer viral shedding durations,
including the following RPs identi�ed in our scRNA-seq data: RPL38, RPL41, and RPS10 (Fig.3d-e). In
summary, lower RP levels were associated with persistent viral shedding, and speci�c RPs could be
applied as indicators of longer viral shedding.

 

Molecular features of T and NK cells in LDs and SDs

We next performed sub-clustering analysis on T and NK lymphocytes considering their crucial anti-viral
effects31,32. UMAP embedding of T and NK cells from all the samples identi�ed substantial differences in
the cellular phenotypes of CD4+ T, CD8+ T, NKT, and NK cells (Fig.4a-b). Although the proportion of T cells
was comparable between LDs and SDs (Fig.2d), the correlation matrix revealed that the molecular
features differed between the two groups (Fig.4c), such as memory CD8+ T cells and NK cells.

For example, in memory CD8+ T cells, DEGs involved in T-cell activation (CD74, SELENOK, FYN, CCL5, and
RNF125), positive regulation of cytokine production (IRF1, SELENTOK, and HMGB2), proin�ammatory
mediators of secretion, and interferon-γ (IFN-γ) pathways (IRF1, HLA-DPB1, HLA-DPA1, HLA-DRB1, CCL5,
and CCL4) were speci�cally downregulated in LDs, while they were upregulated in SDs compared to HDs
(Fig.4d-e). In addition, in NK cells, DEGs associated with the positive regulation of T-cell activation
pathways (ZFP36L2, SELENOK, SLA2, ZBTB1, MAP3K8, IRF1, CEBPB, RUNX3, and PIK3R1) were
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profoundly enriched in SDs but not in LDs (Fig.4f-g), suggesting consistent immune cell dysfunction in
LDs that might be associated with the mild secretion of proin�ammatory cytokines and contribute to viral
persistence.

            Next, we reconstructed T cell antigen receptor (TCR) sequences from the TCR sequencing data.
Brie�y, more than 70% of the cells in all the subsets had matched TCR information, with the exception of
the γδT and NKT subsets (Fig.4h). Compared to HDs, clonal expansion was obvious in patients with
COVID-19, especially in those with SDs of viral shedding (Fig.4i). Meanwhile, the proportion of large
clonal expansions (clonal size30), primarily in cytotoxic cells, was higher in SDs (Fig.4i), indicating that
SDs have more e�cient clonal expansion of effector T cells than LDs to promote viral clearance.

To explore the preferential V and J combinations in SDs and LDs, we �rst analyzed and listed the V and J
combinations most frequently observed in the TCRs in all samples (Fig.4j). Among these combinations,
relatively frequent pairings of the TCR in HDs were TRBV29::TRVJ2-7 and TRAV29/DV5::TRAJ20, while
TRAV29/DV5::TRAJ49 and TRBV9::TRBJ1-3 were frequent in LD patients, and TRAV12-3::TRAJ54 and
TRAV1-2::TRAJ49 were frequent in SD patients (Fig.4j). The selective usage of V(D)J genes suggests that
different immunodominant epitopes may drive the molecular composition of T-cell responses and may be
associated with LD and SD infection.

 

Features of B cell subsets in LDs

Some T cells and cytokines prime B cells for maturation, which go on to become plasma cells and
produce pathogen neutralizing antibodies33. We subclustered B cells into three subsets according to the
expression and distribution of canonical B-cell markers (Extended data Fig.5a-b). Compared with HDs,
plasma B cells were not signi�cantly increased in SDs, which may be due to sampling during the
convalescent period34 (Extended Data Fig.5a, Fig.2d). In LDs, despite viral persistence, the proportion of
plasma cells was also extremely low, which may indicate that LDs fail to produce su�cient neutralizing
antibodies (Extended Data Fig.5a, Fig.2d). Previous studies5,35 have suggested that antibodies produced
by plasma cells in response to SARS-CoV-2 during initial exposure disappeared within a few weeks, but
memory B cells persisted for much longer. Therefore, we compared the expression pro�les of memory B
cells in the three groups. Interestingly, the pathways involved in T-cell differentiation (CD83, ZFP36L2, and
GPR183) and cell growth and activation (CD83, ZFP36L2, GPR183, and PELI1) were selectively enriched
in SDs but not LDs, indicating that B and T cells in LDs failed to synergize in order to clear the virus
(Extended Data Fig.4d-e). Moreover, HMGB2 and PDE4B, which positively regulate the production of
cytokines such as IL-2, and the pathways involved in leukocyte chemotaxis (LYN, DUSP1, and RAC1) were
exclusively enriched in SDs (Extended data Fig. 4c-d).

 

Discussion
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COVID-19 patients with LDs of viral shedding require more stringent infection control measures, the
utilization of additional hospital resources, and increased economic expenditures, along with posing a
higher risk of transmission. In this study, we found that clinical indexes, including contemporaneous CRP,
D-dimers, IL-6, IL-8, and ESR (Fig.1b, Extended Data Fig.1) failed to distinguish the patients with LDs of
viral shedding. Furthermore, although persistently positive for SARS-CoV-2 RNA, patients with LDs of viral
shedding appeared to exhibit a hypo-in�ammatory response, as evidenced by lower cytokine levels
(Fig.1c). Such patients may not experience a cytokine storm and tend to exhibit mild symptoms36.
Moreover, the pathways and genes associated with the ER and ribosome dysregulation may contribute to
the persistent viral shedding, declined secretion of in�ammatory cytokines, and mild symptoms in LDs.
Moreover, the RP levels were further validated to be negatively correlated with the duration of viral
shedding in an independent cohort of non-critical COVID-19 patients. From a practical perspective, it
should be noted that RP levels were better able to identify LDs than the commonly used clinical
parameters such as D-dimer, CRP, and ESR. Therefore, it may be reasonable to introduce RP pro�ling into
routine clinical tests to aid in the early risk-based strati�cation of patients, which could provide a major
bene�t when healthcare systems are overwhelmed.

Recently, Matthias et al. reported that nonstructural protein 1 (Nsp1) from SARS-CoV-2 e�ciently
interferes with the cellular translation machinery (40S ribosome subunit), inhibits all cellular antiviral
defense mechanisms, including the interferon response and other proin�ammatory cytokines, and then
facilitates e�cient viral replication and immune evasion37. Indeed, we observed massively decreased RP
expression in LDs in our study; however, whether the reduced levels of RPs in LDs were the cause or the
consequence of viral persistence requires further investigation.

We used single-cell transcriptomics to characterize and visualize the peripheral immune responses in
patients with long-term COVID-19 compared to the responses in those with short-term COVID-19 and in
healthy donors. We observed marked changes in the immune cell composition, phenotype, and
immunological features in LDs. Thus, this work provides new insights into the pathophysiology of COVID-
19 and a resource for understanding peripheral immune heterogeneity in patients with LDs of viral
shedding.

Lastly, there are a few limitations of our study. For example, our sample size is small, and the timing of
the clinical presentation of the patients varied, which may in�uence their transcriptional landscapes.
Additionally, only peripheral blood was evaluated as it was challenging to obtain immune cells from the
bronchoalveolar lavage �uid owing to biosafety concerns during the COVID-19 outbreak when this study
was performed. Therefore, future studies with longitudinal samples from lesion sites, such as the lung,
and with more patients can provide a more systematic overview and more comprehensive conclusions.
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Methods
Patient information and data source

This study was reviewed and approved by the Institutional Review Board of Tongji Hospital, Tongji
Medical College, Huazhong University of Science and Technology (TJ-IRB20200405). All the enrolled
patients signed an informed consent form, and all the blood samples were collected using the rest of the
standard diagnostic tests, with no burden to the patients. A waiver of informed consent was obtained to
query the patient electronic health records.

As April 30, 2020, whole blood samples from 103 COVID-19 patients diagnosed for SARS-CoV-2 viral
infection status by PCR were enrolled for bulk RNA-seq. Serum from 50 patients and 22 healthy donors as
controls were for the multiplex cytokine panel measurements. And PBMCs isolated from 12 patients and
3 healthy donors as controls were performed 10X scRNA-seq. Routine laboratory measurements and
blood counts were obtained as part of standard medical care.

 

Cytokine measurements

The levels of serum cytokines were determined by Bio-Plex Pro Human Cytokines 48-Plex Screening
assay (Bio-Rad Life Sciences, Hercules, CA, USA) using a Luminex FlEXMAP 3D system (Luminex, Austin,
TX, USA) according to the manufacturer’s protocols. The 48-Plex Screening panel: Basic FGF, CTACK,
eotaxin, G-CSF, GM-CSF, GRO-α, HGF, ICAM-1, IFN-α2, IFN-γ, IL-1α, IL-1ra, IL-2, IL-2Rα, IL-3, IL-4, IL-5, IL-6, IL-
7, IL-8, IL-9, IL-10, IL-12, IL-13, IL-15, IL-16, IL-17A, IL-18, IP-10, LIF, MCP-1, MCP-3, M-CSF, MIF, MIG, MIP-1α,
MIP-1β, β-NGF, PDGF-BB, RANTES, SCF, SCGF-β, SDF-1α, TNF-α, TNF-β, TRAIL, VCAM-1, VEGF-A. Data
were analyzed using Bio-Plex Manager 6.2 software (Bio-Rad Life Sciences, Hercules, CA, USA).
Undetected values were inputted with a random value between 0 and the limit of detection 1 to avoid an
arti�cial reduction in the standard deviation.

 

scRNA library construction sequencing by 10X genomics

For both patients with COVID-19 and healthy controls, blood was collected into heparin tubes (Becton,
Dickinson and Co.) and PBMCs were isolated by density gradient centrifugation using Ficoll-Paque Plus
medium (GE Healthcare) and washed with Ca/Mg-free PBS. Blood was processed within 4 h of collection
for all samples, and within 1 h for most. PBMC cells were examined by microscope after 0.4% Trypan
blue coloring. When the viability of cells was higher than 80%, the experiment of library construction was
performed using the ChromiumTM Controller and ChromiumTM Single Cell 5’ Reagent Version 2 Kit (10x
Genomics, Pleasanton, CA). Brie�y, single cells, reagents and Gel Beads containing barcoded
oligonucleotides were encapsulated into nanoliter-sized GEMs (Gel Bead in emulsion) using the GemCode
Technology. Lysis and barcoded reverse transcription of polyadenylated mRNA from single cells were
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performed inside each GEM. Post RT-GEMs were cleaned up and cDNA were ampli�ed. cDNA was
fragmented and fragments end were repaired, as well A-tailing was added to the 5’ end. The adaptors
were ligated to fragments which were double sided SPRI selected. Another double sided SPRI selecting
was carried out after sample index PCR. The �nal library was quality and quantitated in two methods:
check the distribution of the fragments size using the Agilent 2100 bioanalyzer, and quantify the library
using real-time quantitative PCR (QPCR) (TaqMan Probe). The �nal products were sequenced using the
Illumina Hiseq 4000 or Xten platform (BGIShenzhen, China).

 

TCR V(D)J sequencing

Full-length TCR V(D)J segments were enriched from ampli�ed cDNA from 5′ libraries via PCR
ampli�cation using a Chromium Single-Cell V(D)J Enrichment kit according to the manufacturer’s
protocol (10X Genomics).

 

Detection of SARS-CoV-2 transcripts

Mock sample with SARS-CoV-2 transcripts was generated by add 200 SARS-CoV-2 paired reads to the
health control. SARS-CoV-2 transcripts were identi�ed from sequencing data using Viral-Track and Cell
Ranger (version 3.0.1, 10x Genomics) with a modi�ed reference contain SARS-CoV-2 genome
(NC_045512.2).

 

Single cell RNA-seq data processing

The sequencing data of patients were processed using Cell Ranger against the GRCh38 human reference
genome. Quality of cells were then assessed based on the UMI counts per cell, genes expressed per cell
and the proportion of mitochondrial gene counts using Seurat (version 3.1.5). Cells that had UMIs
between 500 and 30,000, more than 200 genes expressed and fewer than 15% of UMIs from
mitochondrial genes were considered high quality and retained for further analysis. We next identi�ed
and removed the doublets following previous described method (Pijuan-Sala et al., 2019). After removing
the doublets, a total of 124,606 cells were retained for downstream analysis.

To remove batch effect, the function “NormalizeData” and “FindVariableFeatures” in Seurat was
performed respectively for each sample. After that, the normalized data were integrated using
“FindIntegrationAnchors” and “IntegrateData” function with parameter set to “nfeatures=300, dims=1:30”.
Then, the integrated dataset was scaled and PCA conducted with features exclude ribosomal protein and
mitochondria protein and the cells were clustered using “FindNeighbors” and “FindClusters” function with
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parameter set to “k.param = 10, resolution = 1”. Finally, the cells were visualized by UMAP using the top
30 principal components.

 

Cell types annotation

The markers of each clusters identi�ed by the “FindAllMarker” function, as well as some canonical
markers, were visualized using violin plot and feature plot, the expression of them were used to classify
and annotate the clusters. HSC cells and clusters expression more than 2 canonical cell-type markers
were excluded and 122,865 cells were retained for further analysis.

 

Identi�cation of differential expressed genes (DEGs) analysis and GO enrichment

DEGs were performed using “FindMarkers” function with MAST algorithm in Seurat based on a
Bonferroni-adjusted p<0.05 and a log2 fold change > 0.25. For GO enrichment, DEGs identi�ed were
conducted using function enrichGO in ClusterPro�er with parameter set to “OrgDb = org.Hs.eg.db, ont =
’BP’, pAdjustMethod = ’BH’ ”.

 

Hierarchical clustering of gene expression changes among disease groups at cell type resolution

Hierarchical clustering of gene expression changes was conducted following previous described
method38. Brie�y, the UMI count of each gene were normalized by the total UMI count in each cell type
and multiplied by 100,000. The gene expression of each disease groups was divided by the values in the
healthy donors and the highly variable genes in terms of the top 3000 standard deviation followed by
log2-transformation. Hierarchical clustering was conducted based on the Pearson correlation coe�cient
(PCC) of the highly variable genes.

 

Hierarchical clustering of ribosomal genes in whole blood RNA-seq

RNA-seq data of 103 patients divided into three groups separated by 21 days and 45 days were aligned to
the reference genome using hisat2 and the gene expression level (FPKM) was calculated by RSEM. The
expression of ribosomal genes was log2 transformed followed by z-transformation, which was used for
hierarchical clustering.

 

Analysis of T cells, NK cells and B cells
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T and NK cells were extracted from PBMCs and the cells were principal component analysis and
visualized as described above. B cells in PBMCs were also extracted and processed using the procedure
used for T cells.

 

Hierarchical clustering of DEGs

DEGs of COVID-19 groups compared to HD were selected and the expression of them in individuals are
calculated by the function “Average Expression” in Seurat followed by z-transformation. Then the scaled
expression was used for hierarchical clustering.

 

TCR V(D)J analysis

The sequencing data were performed using Cell Ranger V(D)J pipeline with GRCh38 as reference. The
TCR matrix containing barcode information and clonotype frequency was obtained, the cells with at least
one productive TRA and one productive TRB were retained for further analysis. Each unique TRA(s)-
TRB(s) pair was de�ned as a clonotype.

 

Boxplot

All of the boxplots in this paper were performed using “ggboxplot()” function in ggpubr R package. Each
point represents for one sample. The horizontal line with each box represents the median, and the top and
bottom of each box indicate the 25th and 75th percentile.

 

Statistical analysis

Wilcoxon rank-sum test were performed using R (version 3.6.1) in this study. * p<0.05, **p<0.01,
***p<0.001.

Figures



Page 17/22

Figure 1

Virological, clinical and cytokines/chemokines characteristics in LDs and SDs. a, The Kaplan-Meier
method was used to estimate the positive rate of viral RNA, and the two-sided log-rank test was applied to
evaluate the signi�cance difference of the duration of viral shedding in the LDs (n=12) and SDs (n=38). b,
The C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) values obtained from clinical
records of LDs and SDs. The box plots show the median (middle line) and the �rst and third quartiles
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(boxes), whereas the whiskers show 1.5× the IQR above and below the box. Wilcoxon rank-sum test was
performed, and the signi�cant p values cutoff was set at 0.05. c, Samples from LDs and SDs were
collected during hospitalization, and assays were performed to measure the concentrations of 48
cytokines/chemokines. The box plots show the median (middle line) and the �rst and third quartiles
(boxes), whereas the whiskers show 1.5× the IQR above and below the box. Wilcoxon rank-sum test are
performed, and the signi�cant p values cutoff was set at 0.05. *p<0.05, **p<0.01, ***p<0.001.

Figure 2
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Differences in cell compositions by Single-cell transcriptomes of PBMCs. a, UMAP plot of 122,865 single
cells colored by cell types identi�ed from HDs (n=3), SDs (n=4), LDs (n=5). b, Proportion of each cell type
at single sample level. c, Expression distribution of selected canonical markers showed by violin plots in
the 20 clusters. d, Box plots of proportion of each cell cluster in each group. Samples were shown in
different colors. Horizontal lines represent median values, with a maximum of 1.5 × interquartile range.
Wilcoxon rank-sum tests were conducted between each group. *p < 0.05.

Figure 3
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Transcriptional signatures associated with long viral shedding duration. a, Enriched GO pathways of
down-regulated genes between LDs and HDs at cell type resolution. Pathways enriched by ribosomal
genes are labeled in red. The color intensity indicates the enrichment p-values and the point size indicates
the ratio of gene enrich in each pathway. b, Expression level of selected genes across 12 samples. The
color intensity indicates the relative expression level. c, Expression of selected genes among groups at
cell type resolution. The color intensity indicates the relative expression level and the point size indicates
the ratio of cells with each gene expressed. The color bar under the dot plot indicates the group. d,
Expression level of ribosomal genes in whole blood bulk-RNA across 103 COVID-19 patients. The color
intensity indicates the relative expression level, the color bar under the heatmap indicates the disease
group and the scatter indicates the duration time of COVID-19. e, Relationship between expression levels
of selected ribosomal genes and duration time of COVID-19 among 103 COVID-19 patients. Boxplot of
expression levels of selected genes in three groups among 103 COVID-19 patients. Horizontal lines
represent median values, with a maximum of 1.5 × interquartile range. Difference between three groups
were performed by wilcoxon rank-sum tests. *p<0.05, **p<0.01, ***p<0.001.
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Figure 4

Molecular features of T and NK cells in LDs and SDs. a, UMAP projection of T and NK cells. Each dot
corresponds to a single cell, colored by cell type. b, UMAP plot of canonical markers in 11 cell clusters.
Data are colored according to log scaled expression levels. c, Hierarchical clustering using the Pearson
correlation coe�cient (PCC) of a normalized transcriptome between disease groups in T and NK cells.
The color intensity indicates the PCC and the color bars above the heatmap indicate the cell type and
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disease group. d, Enriched go pathways of COVID-19 groups in memory CD8+ T cells (top 2 columns:
DEGs between LDs and SDs, bottom 4 columns: DEGs for SDs and LDs compared to HDs. Pathway
enriched by SDs up-regulated genes are labeled in red. The color intensity indicates the enrichment p-
values and the point size indicates the ratio of gene enrich in each pathway. e, Hierarchical clustering of
expression of DEGs in memory CD8+ T cells at sample level. The color intensity indicates the relative
expression of each gene. f, Enriched GO pathways of COVID-19 groups in NK cells (top 2 columns: DEGs
between LDs and SDs, bottom 4 columns: DEGs for SDs and LDs compared to HDs. Pathways enriched
by SDs up-regulated genes are labeled in red. The color intensity indicates the enrichment p-values and
the point size indicates the ratio of gene enrich in each pathway. g, Hierarchical clustering of expression
of DEGs in NK cells at sample level. The color intensity indicates the relative expression of each gene. h-i,
The clonal status percentage of T cells and that at each cell type resolution in three groups. j, The
percentage of selected clonal types in three groups.
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