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Abstract

Autism spectrum disorder (ASD) affects ~ 2% of children in the United States. The etiology of ASD likely involves environ-

mental factors triggering physiological abnormalities in genetically sensitive individuals. One of these major physiological 

abnormalities is mitochondrial dysfunction, which may affect a significant subset of children with ASD. Here we systemati-

cally review the literature on human studies of mitochondrial dysfunction related to ASD. Clinical aspects of mitochondrial 

dysfunction in ASD include unusual neurodevelopmental regression, especially if triggered by an inflammatory event, 

gastrointestinal symptoms, seizures, motor delays, fatigue and lethargy. Traditional biomarkers of mitochondrial disease 

are widely reported to be abnormal in ASD, but appear non-specific. Newer biomarkers include buccal cell enzymology, 

biomarkers of fatty acid metabolism, non-mitochondrial enzyme function, apoptosis markers and mitochondrial antibodies. 

Many genetic abnormalities are associated with mitochondrial dysfunction in ASD, including chromosomal abnormalities, 

mitochondrial DNA mutations and large-scale deletions, and mutations in both mitochondrial and non-mitochondrial nuclear 

genes. Mitochondrial dysfunction has been described in immune and buccal cells, fibroblasts, muscle and gastrointestinal 

tissue and the brains of individuals with ASD. Several environmental factors, including toxicants, microbiome metabolites 

and an oxidized microenvironment are shown to modulate mitochondrial function in ASD tissues. Investigations of treatments 

for mitochondrial dysfunction in ASD are promising but preliminary. The etiology of mitochondrial dysfunction and how to 

define it in ASD is currently unclear. However, preliminary evidence suggests that the mitochondria may be a fruitful target 

for treatment and prevention of ASD. Further research is needed to better understand the role of mitochondrial dysfunction 

in the pathophysiology of ASD.

Key points 

Clinical aspects of mitochondrial dysfunction in autism 

spectrum disorder (ASD) include unusual neurodevelop-

mental regression, especially if triggered by an inflam-

matory event, gastrointestinal symptoms, seizures, motor 

delays, fatigue and lethargy.

Many genetic abnormalities have been associated with 

mitochondrial dysfunction in ASD, including chromo-

somal abnormalities, mitochondrial DNA mutation and 

large-scale deletions, and mutations in both mitochon-

drial and non-mitochondrial nuclear genes.

Several environmental factors, including toxicants, 

microbiome metabolites and an oxidized microenviron-

ment have been shown to modulate mitochondrial func-

tion in ASD tissues.
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1 Introduction

Autism spectrum disorder (ASD) affects ~ 2% of chil-

dren in the United States. The cause(s) of ASD are still 

unknown, but evidence for a simple genetic defect is lack-

ing [1]. The etiology of ASD likely involves environmental 

factors that affect cell signaling, metabolic, immune and 

epigenetic processes in genetically sensitive individuals 

[1, 2]. Of note, ASD is associated with physiological dis-

turbances including abnormal redox and mitochondrial 

metabolism. In fact, between 5% and 80% of children with 

ASD demonstrate evidence of mitochondrial dysfunction, 

with many demonstrating novel types of mitochondrial 

dysfunction rather than classic mitochondrial disease 

(MD) [3–5]. This is in comparison to the general popula-

tion where MD is believed to affect less than 0.1% of the 

population [6]. A systematic review of the literature on 

mitochondrial dysfunction in individuals with ASD was 

published in 2012 [3] based on the recognition of early 

reports of mitochondrial dysfunction in ASD [7–14], but 

an update to this systematic review has not been published 

in over 5 years, during which time both genetic and meta-

bolic laboratory testing have advanced significantly and 

new techniques for measuring mitochondrial function have 

become accessible.

2  Methods

2.1  Search Strategy

A prospective protocol for this systematic review was 

developed a priori, and the search terms and selection 

criteria were chosen to capture all pertinent publications. 

A computer-aided search of PUBMED, Google Scholar, 

CINAHL, EmBase, Scopus and ERIC databases from 

inception through February 2018 was conducted to iden-

tify pertinent publications using the search terms ‘autism’, 

‘autistic’, ‘Asperger’, ‘ASD’, ‘pervasive’, and ‘pervasive 

developmental disorder’ in all combinations with the 

terms ‘mitochondria’ OR ‘mitochondrial’ OR ‘lactic’ 

OR ‘lactate’ OR ‘pyruvate’ OR ‘pyruvic’ OR ‘ammonia’ 

OR ‘creatine kinase’ OR ‘oxidative phosphorylation’ OR 

‘phosphorylation’ OR ‘carnitine’ OR ‘acyl-carnitine’ OR 

‘fatty acid oxidation’ OR ‘alanine’ OR ‘respiratory chain’ 

OR ‘electron transport chain’ OR ‘ATP’ OR ‘adenosine.’ 

The references cited in identified publications were also 

searched to locate additional studies.

2.2  Study Selection

One reviewer (DAR) screened the titles and abstracts of 

all potentially relevant publications. Studies were initially 

included if they (1) involved individuals with ASD and (2) 

reported at least one finding that could indicate mitochon-

drial dysfunction. Abstracts or posters from conference 

proceedings were included if published in a peer-reviewed 

journal. After screening all records, 293 publications met 

inclusion criteria; two reviewers (DAR, REF) then inde-

pendently reviewed these articles (Fig. 1). Articles were 

excluded if they: 

1. Did not involve humans or human cells (e.g., animal 

models).

2. Did not present new or unique data (such as review arti-

cles or letters to the editor).

3. Presented duplicate data.

4. Reported biochemical markers related to a non-mito-

chondrial disorder or cellular mechanism.

5. Reported markers related to a known side effect of a 

medication (for example, elevated ammonia from valp-

roic acid or rhabdomyolysis from olanzapine).

Overall, 220 studies were selected for this review. Other 

studies that support the discussion of MD in ASD are also 

referenced.

3  Summary of the Literature

3.1  Clinical Aspects

Only a limited number of studies have examined the 

clinical characteristics of children with ASD and MD. 

Weissman et al. [15] was one of the first compilations of 

clinical symptoms of children with ASD diagnosed with 

MD (ASD/MD). In their case series of 25 patients, they 

noted a high rate of non-neurological medical problems, 

including gastrointestinal (GI) dysfunction and prenatal or 

perinatal complications, constitutional symptoms such as 

excessive fatigability and exercise intolerance, early gross 

motor delay and unusual patterns of regression, including 

multiple regression and regression after 3 years of age.

Rossignol and Frye [3] reviewed the clinical character-

istics of all the reported cases of children with ASD/MD 

and compared these to the clinical characteristics of the 

general ASD population (ASD/NoMD) as well as chil-

dren with MD but not ASD (MD/NoASD). As compared 

to ASD/NoMD children, ASD/MD children had a higher 

rate of neurodevelopmental regression, seizures, gross 



573Mitochondrial Dysfunction in Autism

motor delay and GI abnormalities. As compared to MD/

NoASD, ASD/MD children demonstrated higher rates of 

fatigue and lethargy, ataxia, GI abnormalities and normal 

brain imaging and were less likely to have abnormal light 

microscopy. ASD/MD children were more likely to have 

elevated lactate than both MD/NoASD and ASD/NoMD 

groups.

Frye and Rossignol [16] pointed out that many of the 

clinical symptoms outlined in the Morava criteria [17], 

which set forth clinical diagnostic criteria for MD, overlap 

with characteristics of children with ASD, including devel-

opmental delays, seizures, neurodevelopmental regression, 

GI and endocrine abnormalities, familial recurrence and 

neuropathies.

In the evaluation of the etiology of a person with ASD, 

the presence of regression especially with recurrent epi-

sodes and multiple organ dysfunctions should prompt an 

extended evaluation for MD [18, 19]. Indeed, Shoffner 

et al. [20] demonstrated that most patients diagnosed by 

his center with ASD/MD experienced neurodevelopmental 

regression resulting in the development of ASD following 

an inflammatory event associated with a fever within the 

preceding 2 weeks.

Several case series have noted the association between 

mitochondrial dysfunction in ASD and epilepsy [15, 20]. 

Indeed, one of the first descriptions of the overlap of mito-

chondrial dysfunction and ASD was the HEADD syn-

drome, characterized by hypotonia, epilepsy, autism, and 

developmental delay [21]. These authors noted electron 

transport chain (ETC) complex deficiencies in subunits 

encoded by mitochondrial DNA (mtDNA) and that several 

patients demonstrated large-scale mtDNA deletions. Inter-

estingly, these authors noted a high rate of ETC Complex 

III (C3) deficiency, which has been echoed in other case 

reports of children with ASD/MD and epilepsy [22, 23]. 

Another interesting case report linked mitochondrial dys-

function with ASD in a patient with Dravet syndrome, sug-

gesting that even clearly genetically based epilepsy with 

ASD could have a mitochondrial component [24].

Fig. 1  Flowchart of systematic 

review and study selection. ASD 

autism spectrum disorder

Records identi�ied through 

database searching 

(n = 923) 

Records excluded 

(n = 288) 

Reason: 

71   ASD but not mitochondrial dysfunction  

220 Not ASD 

Records after 383 duplicates removed 

(n = 581) 

Additional records identi�ied through 

other sources 

(n = 41) 

Records screened 

(n = 581) 

Studies included in qualitative synthesis (n = 220): 

� ASD and mitochondrial dysfunction: 156 studies 

� ASD and genetics related to mitochondrial dysfunction: 64 studies 

 

Full-text articles excluded 

(n = 73) 

Reason: 

74    Review articles/letters, no new data 

14    Animal Models 

Full-text articles 

assessed for eligibility 

(n = 293) 
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Lastly, one report suggests that children with ASD and 

classic MD are more likely to also have intellectual disabili-

ties, suggesting early identification and treatment may be 

particularly useful for these children [25].

3.2  Biomarkers of Mitochondrial Disorders

3.2.1  Traditional Biomarkers of Mitochondrial Dysfunction

There are several biomarkers which are commonly used to 

identify individuals with MD, including lactate, pyruvate, 

alanine and creatine kinase. However, none of these bio-

markers are very specific. In the 2012 meta-analysis of bio-

markers in MD by Rossignol and Frye, several traditional 

biomarkers were elevated in many children with ASD. Using 

normal reference ranges, studies have demonstrated that 

ASD was associated with elevations in lactate, pyruvate, 

lactate-to-pyruvate ratio, alanine, creatine kinase, ammo-

nia and aspartate aminotransferase (AST) and depression in 

carnitine [3]. Separate studies verified mean elevations in 

lactate and pyruvate as well as depressions in carnitine and 

ubiquinone in individuals with ASD as a group compared to 

contemporaneous controls [3]. Lactate, pyruvate, carnitine, 

creatine kinase, AST and alanine aminotransferase (ALT) all 

demonstrated significantly more variation in the ASD group 

as compared to contemporaneous controls.

Interestingly, elevation in lactate was the first indicator 

that children with ASD may have a mitochondrial disor-

der. First reported in 1985 before MD was well described in 

medicine, Dr Mary Coleman suggested that children with 

ASD might have a disorder of carbohydrate metabolism 

[26]. Since the meta-analysis in 2012, lactate continues to 

be reported as a potential biomarker for abnormal mitochon-

drial metabolism in children with ASD [27–30]. Despite 

these consistent elevations in lactate, it is important to con-

sider that many factors can falsely elevate lactate, such as 

excessive muscle movement, which can occur if the child is 

struggling or because the tourniquet is left on too long. Thus, 

the search for alternative and more reliable biomarkers of 

mitochondrial dysfunction are being pursued for diagnosing 

MD in general as well as identifying children with ASD that 

might have mitochondrial dysfunction.

Other traditional biomarkers that have continued to be 

reported as abnormal in ASD include pyruvate [28], lactate-

to-pyruvate ratio [31], creatine kinase [28, 30, 32], AST [27, 

30], ALT [27] and ubiquinone [28, 33]. Other studies have 

reported abnormal urine citric acid cycle metabolites which 

are also biomarkers of mitochondrial dysfunction [34, 35].

Aside from elevations in alanine, some clinicians use the 

ratio of alanine to lysine as pioneered by Richard Kelley 

[36], and others have found abnormalities in other amino 

acids possibly related to mitochondrial metabolism [37]. In a 

study of 25 high-functioning males with ASD, plasma levels 

of arginine were elevated while 5-oxoproline was reduced 

[38]. A study of 60 families found elevations in plasma glu-

tamate and aspartate [39]. Another study reported reduced 

plasma cysteine, tyrosine, serine, α-aminoadipic acid, car-

nosine and β-alanine and increased levels of glutamic acid, 

hydroxyproline, phosphoserine and β-amino-isobutyric acid 

[40]. Another study has reported elevation in γ-aminobutyric 

acid and glutamic acid in individuals with ASD [41]. 

Although plasma taurine was reported to be elevated in one 

study [38], another study suggested that this elevation was 

also found in matched related controls [39] and an another 

study found no differences in taurine as compared to sib-

ling and parent controls [42]. The variability across studies 

in amino acid metabolites could be due to several factors. 

Indeed, the metabolism and transport of certain amino acids 

has been suggested to be abnormal in children with ASD. 

For example, increased transport of alanine and decreased 

transport of tyrosine across the cell membrane was found in 

fibroblast culture from 11 children with ASD [43], a genetic 

disorder of branched chain amino acid metabolism has been 

described in children with ASD [44], and abnormalities in 

transport of amino acids across the blood–brain barrier has 

also been implicated in ASD [45]. However, dietary intake 

and whether or not the sample was post-prandial or fasting 

have probably the most influence on plasma levels of amino 

acids.

3.2.2  Buccal Swab

Biochemical measurements of mitochondrial function can 

be difficult to obtain. Direct measurement of mitochondrial 

function by enzymology typically requires invasive biopsy, 

requiring anesthesia, which has risks, especially in indi-

viduals with MD. Biopsy also limits the ability to repeat 

the test over time to follow disease status. Goldenthal et al. 

[46] developed and validated the non-invasive buccal swab 

technique, showing that buccal tissue enzyme measurements 

correspond to measurements from muscle biopsy in indi-

viduals with MD. The buccal swab technique has been used 

to measure mitochondrial function in individuals with MD 

[46–48], genetic syndromes [48–50] and ASD [50–54].

Five studies have used the buccal swab technique in indi-

viduals with ASD. Four of these studies have examined cit-

rate synthase (CS) as well as ETC Complex I (C1) and ETC 

Complex IV (C4) activity normalized to CS [51, 53, 54], 

while one study also measured ETC Complex II (C2) and 

C2 + C3 activity [49]. Goldenthal et al. [51] noted several 

unique characteristics of mitochondrial function in children 

with ASD who were not taking mitochondrial supplements 

for at least 2 weeks. First, C1 demonstrated a significantly 

higher variation in ASD participants as compared to a con-

trol population, with 12% and 7% of children with ASD 

demonstrating C1 activity lower and higher, respectively, 
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than the control range. There were also a significant number 

of individuals with ASD who demonstrated abnormal C4 

activity, with 28% and 3% demonstrating C4 activity lower 

and higher, respectively, than the control range. The authors 

note that individuals with ASD and seizures more often had 

a deficit in C4 activity. Lastly, Goldenthal et al. [51] reported 

that 65% of the individuals with ASD demonstrated a C1-to-

C4 ratio outside of the control reference range and that indi-

viduals with more severe ASD were more likely to have a 

higher C1-to-C4 ratio.

In another large study, children with ASD who were not 

taking any supplements or medications that could interfere 

with mitochondrial function at the time of testing were 

examined using the buccal swab technique [53]. Variation 

in CS, C1 and C4 activity was greater in the ASD group as 

compared to the control range. Significant elevations in CS, 

C1 and C4 outside of the reference range were found in 22%, 

11% and 8% of children with ASD, respectively, which were 

significantly more than what would be expected by chance. 

Significant depression in CS, C1 and C4 activity below the 

reference range was found in 3%, 28% and 3% of children 

with ASD, respectively, which was significant only for C1. 

The C1-to-C4 ratio was above and below the control refer-

ence ranges in 7% and 17% of children with ASD, respec-

tively. Overall 62% of children with ASD were found to have 

some abnormality in mitochondrial enzyme activity. Most 

interestingly, this study examined the relationship between 

mitochondrial enzyme activity and measures of cognitive 

development and behavior. Specifically, childhood devel-

opment, as measured by the Vineland Adaptive Behavior 

Scale (VABS), was related to both C1 and C4 activity. C4 

activity demonstrates an inverted U-shaped relationship to 

VABS subscales such that both high and low C4 activity 

was related to poorer scores on the VABS. In contrast, C1 

activity was linearly related to the VABS such that lower C1 

activity was related to lower VABS scores and higher C1 

activity was related to higher VABS scores. CS activity was 

found to be related to Social Responsiveness Scale scores.

The largest study measuring mitochondrial enzymatic 

activity using the buccal swab technique in children with 

ASD concentrated on whether there was a significant effect 

of various treatments for mitochondrial disorders on enzy-

matic function and introduced new biomarkers of mito-

chondrial function [54]. Overall, the study demonstrated 

that supplementation with folate, cobalamin, fatty acids and 

antioxidants influenced mitochondrial enzymatic activity as 

measurable with the buccal swab technique. Secondly, the 

study looked at the change in the linear relationship between 

the three enzymes measured with the buccal swab technique. 

Folate supplementation resulted in a more positive relation-

ship between CS and C1 activity and C1 and C4 activity. 

Cobalamin supplementation resulted in a more positive 

correspondence between CS and C1 activity. The authors 

suggested that the more positive correlations between 

enzyme activities indicated increased ETC coupling.

A small pilot study of 11 children with ASD has shown 

a correspondence between change in ETC activity, as meas-

ured by the buccal swab technique, as a consequence of 

treatment with a mitochondrial cocktail, and improvement 

in behavior [55].

The last study using the buccal swab examined a 

genetic syndrome known as Phelan-McDermid syndrome 

(del22q13) that has a high comorbidity of ASD [49]. One 

interesting aspect of this study was the subset of children 

with C1 abnormalities. Those with higher than normal C1 

activity demonstrated a developmental course more consist-

ent with ASD, while those with below normal C1 activity 

demonstrated a developmental course more consistent with 

children with MD, suggesting that the subset of children 

with ASD were unique in demonstrating overactive C1 activ-

ity. Additional studies utilizing the buccal swab analysis in 

individuals with ASD would be helpful in expanding the 

work in this area.

3.2.3  Biomarkers of Abnormal Fatty Acid Metabolism

Several authors have reported biomarkers representing 

abnormalities in fatty acid metabolism in individuals with 

ASD [4, 56]. Clark-Taylor and Clark-Taylor [56] were the 

first to report fatty acid metabolism abnormalities associated 

with ASD. They reported a case of a child with elevations 

in unsaturated fatty acid metabolites C14:1 and C14:2 along 

with abnormalities in citric acid cycle, ammonia and choles-

terol metabolism. The authors suggested that these abnor-

malities were the result of a defect in long-chain acyl-CoA 

dehydrogenase despite the fact that there is no convincing 

evidence for a deficiency in this enzyme in humans. ASD 

patients from Saudi Arabia were found to have elevations in 

saturated fatty acids and depressions in polyunsaturated fatty 

acids as compared to age-matched controls [57]. In another 

study, children with ASD from Egypt were found to have 

lower plasma levels of polyunsaturated fatty acids, except 

linoleic acid, as compared to healthy controls [58]. In a small 

study from Canada, all children with ASD were found to 

have elevations in polyunsaturated long-chain fatty acids 

and/or saturated very long-chain fatty acids as compared 

to age-matched controls [59]. The frontal cortex of patients 

with 15q11.2-q13 duplication and ASD was found to have 

lipofuscin deposits as compared to age-matched controls, 

potentially as a product of increased lipid peroxidation [60].

Frye [4] reported the results of metabolic work-ups of 133 

consecutive patients evaluated in a medically based ASD 

clinic using a standardized metabolic screening algorithm 

which included screening for fatty acid oxidation defects 

[61, 62]. Abnormalities found in fatty acid oxidation were 

unique: short-chain and long-chain acyl-carnitines were 
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elevated, but medium-chain acyl-carnitines were normal. 

Further review of 213 patients with ASD who underwent 

a metabolic evaluation in a medically based ASD clinic 

[5] found that 17% showed consistent elevations in short 

and long acyl-carnitines (CESLAC), with C4OH, C14 and 

C16:1 being statistically significantly elevated above the 

upper limit of normal. Overall there was no clear, consistent 

genetic abnormality, and the individuals with these abnor-

malities had a particularly high rate of neurodevelopmental 

regression. Muscle biopsies showed a partial defect in C1 

and C1 + C3. Glutathione (GSH) metabolism abnormalities 

were also found. Interestingly, this same pattern of acyl-car-

nitine and GSH abnormalities was independently reported 

in the rodent propionic acid (PPA) model of ASD [63–65]. 

Theoretically, PPA may be overproduced by the overrepre-

sented species of Clostridia found in the GI tract of some 

children with ASD [66–68] and could result in mitochon-

drial dysfunction. This finding could also explain the asso-

ciation between ASD and children with propionic acidemia, 

an inborn error of metabolism [69]. However, other studies 

have suggested that children with ASD and fatty acid abnor-

malities demonstrate a decrease in PPA in their blood [57].

Abnormalities in fatty acid metabolism may help account 

for the relative deficiency in carnitine associated with ASD 

[58, 70], and the fact that mutations in the trimethyllysine 

hydroxylase epsilon (TMLHE) gene, the first enzyme in car-

nitine biosynthesis, is a risk factor for ASD [71]. In addition, 

children with ASD in general [72–74] and those with the 

TMLHE mutations specifically [75] benefit from supple-

mentation with L-carnitine. Clearly, further research will 

be needed to better understand the significance of these fatty 

acid abnormalities in ASD and whether they are truly linked 

to disruptions in the enteric microbiome.

3.2.4  Other Novel Biomarkers

Researchers from King Saud University in Saudi Arabia 

have been particularly active in the identification and dis-

covery of novel biomarkers of mitochondrial dysfunction 

and have used receiver operating characteristic (ROC) analy-

sis to identify combinations of biomarkers which may be 

diagnostic of children with ASD and mitochondrial dysfunc-

tion [28, 76, 77]. Novel biomarkers found to be potentially 

useful include lactate dehydrogenase [28], lactate oxidase, 

pyruvate kinase and hexokinase [78],  Na+/K+ ATPase [76, 

79], caspase 3 [77] and caspase 7 [28]. Although promising, 

many of these studies have limited samples sizes and use 

different combinations of biomarkers from study to study, 

making these studies interesting but preliminary. Selecting 

the most promising biomarkers and investigating them on 

a large sample of ASD subjects and appropriate typically 

developing and developmentally delayed controls will be 

necessary to validate this approach.

Anti-mitochondrial antibodies are a recently described 

biomarker. In one study of 54 children with ASD from Saudi 

Arabia, antibodies to the mitochondrial M2 subtype anti-

gen were found in 52% of children with ASD (percentage 

positive in controls not reported), and titers of this antibody 

were higher in children with ASD, particularly those with 

more severe ASD, as compared to age- and gender-matched 

control participants [80]. In an independent study, antibod-

ies against type 2 mitochondrial antigen were found to be 

increased in children with ASD from Greece as compared to 

typically developing controls [81]. In these samples, mtDNA 

was found to be increased in the serum from the children 

with ASD as compared to controls. The authors suggested 

that increased levels of the peptide neurotensin, which was 

found to be increased in children with ASD in other stud-

ies, induces the release of mtDNA, which then acts as an 

immune trigger.

Other potential biomarkers include growth differentiation 

factor 15 (GDF15) and fibroblast growth factor 21 (FGF21), 

which are newer mitochondrial biomarkers that possess a 

high specificity for MD [82]. They have yet to be studied in 

ASD patients.

3.3  Genetic Aspects of Mitochondrial Disorders 
in Autism Spectrum Disorder (ASD)

Although it has been estimated that the genetic etiology 

of ASD may account for up to 40% of cases [83, 84] and 

whole exome sequencing (WES) and chromosomal microar-

ray analysis (CMA) studies have reported yields up to 30% 

[85] and 26% [86], respectively, separate clinical studies 

have failed to confirm this high rate of genetic disorders 

in children with ASD. For example, a study from Canada 

found that 9.3% and 8.4% of children with ASD received 

a molecular diagnosis using WES and CMA, respectively, 

resulting in only 15.8% of children with ASD receiving a 

molecular diagnosis [84].

The moderate rate of a molecular diagnosis is at odds 

with the high heritability rate associated with ASD; for 

example, there is a 70–90% concordance rate for monozy-

gotic twins and up to 10% for dizygotic twins and a 25-fold 

increased prevalence of ASD in siblings of ASD children 

[87]. Thus, it is likely that the etiology of ASD is multifac-

torial and influenced by a complex interplay between the 

inherited genome and environmental effects, some of which 

may be related to the maternal environment [88, 89]. Epige-

netic interactions which modulate the expression of nuclear 

[90] and mitochondrial [91] genes can be influenced by envi-

ronmental factors and may also play a crucial role in ASD. 

These interactions must surely modulate mitochondrial 

function, influencing neurodevelopment. Indeed, alterations 

in multiple bioenergetic and metabolic genes required for 

mitochondrial function may lead to abnormalities in cerebral 
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activity, resulting in cognitive and behavioral abnormalities 

characteristic of ASD [92].

Mitochondrial genes can be affected by copy number 

variations (CNVs) or regions of homozygosity (ROH). 

Chromosomal regions affected by CNVs can contain genes 

associated with mitochondrial function and neurodevelop-

mental disorders. For instance, a 7q31.1 deletion/duplication 

disrupts the IMMP2L gene encoding an inner mitochondrial 

membrane protease-like protein required for processing of 

cytochromes inside mitochondria and is implicated in ASD 

[93]. The IMMP2L–DOCK4 gene region on chromosome 7 

plays a role in ASD susceptibility [94], and IMMP2L dele-

tions have been demonstrated to have an association with 

ASD [95]. However, deleterious point mutations in IMMP2L 

were not identified in a significant number of ASD patients 

in other studies [96]. Mitochondrial dysfunction was also 

demonstrated in ASD patients with other CNVs, including 

15q11-q13 duplication [22, 60], 5q14.3 deletion [48], 22q13 

duplication or Phelan–McDermid syndrome [49, 97] as well 

as chromosomal disorders such as Down syndrome [98] 

and X- and Y-chromosome loci rearrangements [99]. An 

interesting example is Phelan-McDermid syndrome, which 

is typically caused by a microdeletion in the 22q13 region. 

Although much research has concentrated on SHANK3, 

which is important for synaptic function, six mitochondrial 

genes are also present in this region and may account for 

symptoms associated with mitochondrial dysfunction [49].

ROH are regions that are identical in homologous regions 

of paired chromosomes. Small ROH reflect our common 

human inheritance; larger and more numerous ROH can 

occur because of chromosomal segments shared between 

consanguineous family members. ROH can include genes 

associated with mitochondrial function as well as cerebral 

synapses and neurotransmitters that are associated with ASD 

[100].

Primary mitochondrial disease (PMD) involves a genetic 

defect that results in an impairment of mitochondrial oxi-

dative phosphorylation [101]. PMD is estimated to affect 

5% of children with ASD [3], based upon three large stud-

ies [102–104]. Mutations in mtDNA are the most common 

genetic mutations associated with ASD/MD [3]. Numerous 

mtDNA point mutations [105, 106] and deletions [107] show 

association with ASD; large-scale mtDNA deletions have 

been associated with epilepsy [21]. Examples of mtDNA 

genes reported include MT-ATP6 [85, 108, 109], MT-ND5 

[108], MT-CYB [110], MT-TK [111] and MT-TL1 [112], 

and MT-CO1 and MT-CO2 [113]. Mutations in mtDNA 

such as m.3260A > G that causes mitochondrial encephalo-

myopathy, lactic acidosis and stroke-like episodes (MELAS) 

have been associated with ASD [104, 112], as has primary 

Leber hereditary optic neuropathy mtDNA mutations [104]. 

ASD can be an early presentation of another MELAS muta-

tion (m.3243A > G) [114], sometimes with a prominent 

manifestation of mtDNA depletion syndrome [115]. Kent 

et al. [116] found m.3243A > G to be a rare cause of isolated 

ASD. mtDNA lineages or haplogroups significantly contrib-

ute to overall ASD risk in some studies [117, 118], while 

other studies have not confirmed a major role for mtDNA 

variation in ASD susceptibility [119, 120]. Increased 

mtDNA copy number in leukocytes from children with ASD 

has been reported in six studies [121–126], while increased 

mtDNA damage and deletions in leukocytes from children 

with ASD have been reported in four studies [121, 122, 

126, 127]. Interestingly, Wong et al. also found an increase 

in microdeletions of p53, which is a regulator of mtDNA 

integrity [126], leading others to suggest that changes in 

mtDNA may be an epiphenomenon of genetic abnormalities 

in nuclear DNA (nDNA) mutations [128].

nDNA gene mutations can also cause PMD. Mutations 

in NDUFA5 [129, 130], NDUFS4 [108], POLG [104] and 

SCO2 [104] have also been found to be associated with 

ASD. SNPs in the SLC25A12 gene have been reported 

by multiple authors to be strongly associated with ASD 

[131–143]. Mutations in SLC6A8, resulting in X-linked cre-

atine transporter disorder including features of ASD, have 

been reported [144]. Heterozygous mutations in adjoining 

components in a multimeric complex or metabolic pathway 

may combine to lead to impairment through synergistic het-

erozygosity. This is well-described, but not yet for the mito-

chondrial–ASD relationship. Since these types of relation-

ships are complex, bioinformatics platforms used to interpret 

WES data may not be able to detect these complex genetic 

interactions. In addition, novel variants of unknown signifi-

cance can be difficult to interpret, and in some situations, a 

mutation may cause gain of function, and act in a dominant 

manner. A recently developed method called transmission 

and de novo association (TADA) analysis considers both 

transmitted and de novo mutations together in the same sta-

tistical model by weighting more detrimental mutations such 

as de novo loss-of-function mutation more heavily than an 

inherited loss-of-function mutation [145].

Genetic abnormalities have not been reported in most 

ASD/MD cases [3]. In addition, the number of children with 

ASD who have abnormal nutritional and mitochondrial bio-

markers greatly outweighs the number who can be diagnosed 

with a PMD. This raises the possibility that many children 

with ASD may have secondary mitochondrial dysfunction 

(SMD). There are examples of SMD related to hereditary 

defects in non-mitochondrial diseases. For example, a pair 

of siblings with ASD-associated gene mutations in WDR45 

and DEPDC5 were found to have evidence of mitochon-

drial dysfunction [50]. In another interesting case series of 

children with Dravet syndrome and SCN1A mutations, two 

cases were found to manifest mitochondrial dysfunction, and 

one of the cases had ASD [24]. In another case, lymphoblas-

toid cell lines (LCLs) derived from a child with ASD and 
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a mutation in RPL10 were found to have changes in redox-

sensitive components of energy metabolism [146]. Interest-

ingly, candidate genes implicated in ASD have been found 

to be enriched in modules related to mitochondrial function 

[147]. These cases demonstrate the importance of advanced 

genetic testing combined with metabolic/mitochondrial eval-

uation in the workup of children with ASD [71].

Mutations in non-mitochondrial genes or environmental 

factors may be acting via epigenetic mechanisms in ASD 

[101, 148]. Down-regulation of genes of mitochondrial oxi-

dative phosphorylation and varying gene expression related 

to myelination, inflammation and purinergic signaling have 

been previously identified in ASD patients [149]. Others 

have found upregulation of ribosomal, spliceosomal, and 

mitochondrial pathways and the down-regulation of neurore-

ceptor-ligand, immune response and calcium signaling path-

ways in gene expression profiles of ASD patients [150]. One 

meta-analysis of over 1000 microarray samples across 12 

independent studies demonstrated that genes highly ranked 

with consistent changes in expression in the brain suggested 

modulation of mitochondrial function [151]. However, one 

study examining expression of the C1 75-kDa subunit in 

blood did not find consistent changes in children with ASD 

[152].

Other studies have examined the expression of genes in 

brain tissue in ASD. Depressed expression in ETC genes 

in the occipital and cerebellar areas and ETC and non-ETC 

genes in the cingulate, thalamus and frontal areas [153] 

has been reported. In addition, changes in genes that con-

trol mitochondrial dynamics have been noted in the tem-

poral lobe in ASD [154]. Still others have demonstrated 

brain region-specific expression alterations in mitochon-

drial nDNA genes such as CMYA3, MTX2, SLC25A27, 

DNAJC19, DNM1L, LRPPRC, SLC25A12, SLC25A14, 

SLC25A24 and TOMM20 in ASD patients [131, 132].

3.4  Cellular Models of Mitochondrial Dysfunction 
in ASD

3.4.1  Evaluating Cellular Bioenergetics Using the Seahorse 

Bioscience XF96 Analyzer

One of the major advances in measuring mitochondrial 

function is the recently introduced Seahorse 96 XF Ana-

lyzer (Agilent Technologies, Santa Clara, CA, USA) that 

measures oxygen consumption rate (OCR) in real time in 

a 96-well plate in a broad range of intact living cell types 

[155, 156]. The assays performed on the Seahorse aid in 

the elucidation of mitochondrial enzyme defects, including 

oxidative phosphorylation [157], glycolytic [158] and fatty 

acid oxidation [159] pathway abnormalities. In our experi-

ments, we use the 96 wells to run samples in quadruplicate, 

include matched groups on the same plate such as tissue 

from children with ASD, typically developing siblings and 

unrelated controls, as well as test several specific manipula-

tions of the tissue samples.

Each well contains four reagent ports which allow for 

the sequential injection of compounds. A schematic show-

ing the measurement sequence of the mitochondrial assay 

is depicted in Fig. 2. ATP-linked respiration (ALR) repre-

sents ATP production and is determined by injecting the 

complex V inhibitor oligomycin. The remaining OCR rep-

resents proton-leak respiration (PLR) and non-mitochon-

drial respiration. Maximal respiratory capacity (MRC) 

is determined by injecting carbonyl cyanide-p-trifluo-

romethoxyphenyl-hydrazon (FCCP). A decrease in MRC 

is consistent with a deficit in mitochondrial biogenesis, 

mtDNA damage and/or ETC inhibition. Reserve capac-

ity (RC) determines the threshold at which bioenergetic 

dysfunction occurs. Specifically, when RC is zero or nega-

tive the cell cannot satisfy a bioenergetic demand [160]. 

Fig. 2  The Seahorse assay measures mitochondrial function by moni-

toring the change in the oxygen consumption rate (OCR) as various 

reagents are injected into the sample of living tissue. Three measures 

of OCRs are obtained over an 18-min period to determine mitochon-

drial activity. Reagents are added to determine several parameters of 

mitochondrial activity. Basal respiration is initially determined as the 

difference between baseline OCR and non-mitochondrial OCR. Oli-

gomycin, which is a complex V inhibitor, is added to determine the 

portion of basal respiration that is ATP-linked respiration and proton-

leak respiration. Carbonyl cyanide-p-trifluoromethoxyphenyl-hydra-

zon (FCCP), a protonophore, is added to collapse the inner membrane 

gradient, driving the mitochondria to respire at its maximal rate. This 

determines maximal respiratory capacity. Antimycin A and rotenone, 

which are inhibitors of complex III and I, are added to stop mito-

chondrial respiration to determine the non-mitochondrial respiration. 

Reserve capacity is calculated as the difference between basal respira-

tion and maximal respiratory capacity
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In addition, the extracellular acidification rate (ECAR), a 

reflection of lactate production, is also measured. From 

ECAR, glycolytic rate and glycolytic reserve are cal-

culated. In addition, to obtain a measure of the relative 

utilization of oxidative versus glycolytic pathways, two 

measures are calculated. The oxidative to glycolytic ratio 

is calculated as basal OCR divided by basal ECAR, and 

the maximal oxidative capacity to glycolytic ratio is calcu-

lated as the MRC divided by the maximal glycolytic rate.

3.4.2  Primary Immune Cells

To date there are only a few published reports of aberrant 

mitochondrial function in peripheral blood cells from indi-

viduals with ASD [50, 121, 122, 161]. Giulivi et al. found 

decreased activity of C1, C2 and C4 in 80%, 60% and 30%, 

respectively, of lymphocytes derived from ten ASD subjects, 

as compared to ten control children [121]. The same group 

subsequently reported a significantly lower OCR as well as 

decreased C1 and C2 activity in granulocytes from the same 

cohort of children with ASD as compared to controls [122]. 

Both lymphocytes and granulocytes from the children with 

ASD exhibited significantly higher mitochondrial production 

of  H2O2 as compared to controls [121, 122].

Our group has used primary cells to look at mitochon-

drial function in individual patients. In a recent case report, 

Drs Rose and Frye examined mitochondrial function in 

peripheral blood mononuclear cells (PBMCs) using the 

Seahorse analyzer in two siblings with ASD, each with a 

novel mutation in a different gene [50]. Our group com-

pared these findings to mitochondrial function measured in 

typically developing children. PBMCs from the sibling who 

carried a mutation in the WDR45 gene exhibited increased 

mitochondrial respiration linked to ATP production, while 

PBMCs from the sibling who carried a DEPDC5 gene muta-

tion exhibited increased PLR and a reduction in respiration 

linked to ATP production. Importantly, increased mito-

chondrial respiration in PBMCs from the affected sibling 

with the WDR45 mutation reflected significant elevations 

in several ETC complexes measured in contemporaneous 

muscle and skin biopsies, while decreased mitochondrial 

respiration in PBMCs from the sibling with the DEPDC5 

mutation reflected decreased C4 activity as measured by the 

buccal swab technique.

In addition to these functional studies, several groups 

have reported surrogate markers of mitochondrial dys-

function in peripheral blood cells from children with 

ASD. Pecorelli et al. demonstrated ultrastructural changes, 

including densely packed and irregularly arranged cristae, 

in PBMC mitochondria from children with ASD [161]. Sev-

eral groups have reported increased mtDNA abnormalities 

in peripheral blood cells in ASD [121–127].

3.4.3  Lymphoblastoid Cell Lines

LCLs are the major cellular model of mitochondrial dys-

function in ASD. LCLs are B cells transformed by the 

Epstein-Barr virus. They are created in a cell culture labo-

ratory from fresh blood samples or obtained from numerous 

biorepositories. LCLs exhibit expression of genes in a wide 

range of metabolic pathways that is specific to the individual 

from whom the cells were derived [162].

In 2009, James et al. first reported abnormal mitochon-

drial function in LCLs derived from children with ASD 

[163]. Specifically, exposure to a nitric oxide donor induced 

a greater mitochondrial membrane potential reduction in 

ASD LCLs as compared to control LCLs, demonstrating a 

hypersensitivity to nitrosative stress in the ASD LCL mito-

chondria. ASD LCLs also demonstrated increased free radi-

cal production and more oxidized cellular and mitochondrial 

GSH pools, consistent with redox abnormalities reported 

in children with ASD [164–167] and elevations in reactive 

nitrogen species in mitochondria from individuals with ASD 

[168].

A series of studies by Drs Rose and Frye using the ASD 

LCL model has demonstrated abnormal mitochondrial bio-

energetics in a subgroup of LCLs from children with ASD as 

compared to LCLs from unaffected siblings as well as unaf-

fected unrelated children and adults [169–171]. The abnor-

mal ASD LCL subgroup exhibits increased OCR associated 

with all Seahorse parameters, including ALR, PLR, MRC 

and RC [160, 172]. The LCLs derived from children with 

autistic disorder (AD) are classified into two groups: those 

with normal mitochondrial function (AD-N) and those with 

atypical mitochondrial function (AD-A) [170, 171, 173]. 

The AD-A LCLs have respiratory rates approximately twice 

that of control and AD-N LCLs [170, 171, 173]. These meta-

bolic groupings are consistent and reproducible [169–171, 

174–176]. We recently demonstrated that this alteration in 

respiration is associated with more severe repetitive behav-

iors [171]. We believe that this increase in respiratory rate 

may be a protective adaptation designed to resist environ-

mental stressors, perhaps because of previous exposure to 

environmental toxicants [170, 176].

Several other groups have also described mitochondrial 

dysfunction in the ASD LCL model. A metabolic profil-

ing study of 87 ASD LCLs revealed abnormal tryptophan 

metabolism in ASD as compared to control LCLs [177]. 

Tryptophan metabolism is one of several pathways lead-

ing to the production of nicotinamide adenine dinucleotide 

(NAD), a critical energy carrier for the ETC. Bu et al. [178] 

demonstrated severe mitochondrial dysfunction in LCLs 

derived from ten Chinese Han male children with ASD. 

Specifically, compared to LCLs from unrelated, unaffected 

control children, ASD LCLs exhibited decreased mitochon-

drial membrane potential and decreased activities of C1 
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and C3, as well as increased intracellular and mitochondrial 

reactive oxygen species (ROS) generation and increased 

mitochondrial-mediated apoptosis. In addition, the ASD 

LCLs were found to have significantly reduced expression of 

peroxisome proliferator-activated receptor γ coactivator 1-α 

(PGC-1α), a major regulator of mitochondrial function, and 

sirtuin-1 (SIRT1), a metabolic sensor; PGC-1α overexpres-

sion improved all mitochondrial abnormalities. In another 

cohort of LCLs established from Chinese Han individuals 

with ASD, Zhang et al. [179] examined ETC activities and 

reported decreased activity of C1 in two out of five ASD 

LCLs harboring mutations in the AMPD1 gene, which codes 

for adenosine monophosphate (AMP) deaminase.

3.5  Mitochondrial Dysfunction in the Brain in ASD

Since the brain has a high metabolic demand and is espe-

cially dependent on mitochondrial function, abnormalities in 

mitochondria function would be expected to cause brain dys-

function. Studies provide support for mitochondrial dysfunc-

tion in the brain of individuals with ASD. Magnetic reso-

nance spectroscopy (MRS) using both 31P and 1H techniques 

have examined energy metabolites in the brain of individuals 

with ASD. 31P-MRS has reported abnormal energy metab-

olites in frontal cortex [180, 181]. Some 1H-MRS studies 

have found a reduction in N-acetylaspartate (NAA) in the 

global white and gray matter and the parietal, anterior cin-

gulate and cerebellum [182] associated with ASD, while 

others have not been able to detect differences in NAA [183]. 

Another study in adults with Asperger syndrome has shown 

an increase in NAA and choline in the prefrontal cortex, 

with concentrations of these metabolites correlating with 

obsessive behavior and social function, respectively [184]. 

An interesting meta-analysis using meta-regression suggests 

that these discrepancies may be due to an age-related decline 

in brain NAA specific to those with ASD [185].

Studies using 1H-MRS have found an increase in lactate 

in the cingulate gyrus, subcortical gray matter nuclei, corpus 

callosum, superior temporal gyrus, and pre- and post-central 

gyri, with this abnormality being more common in adults 

with ASD [186], while others have not found any increase in 

lactate in individuals with ASD [187]. MRS studies on lac-

tate in the brain are not without controversy. Some have sug-

gested that the fact that lactate was found more often found 

in adults with ASD may reflect the notion that lactate was 

associated with comorbidities such as anxiety rather than 

related to the true etiology of ASD [188]. The original 

authors did not agree and suggested that perhaps worsening 

of mitochondrial function with age or ascertainment bias in 

the recruitment of adults with ASD might be a more likely 

explanations [189]. Others have pointed out that early MRS 

techniques may not be powerful enough to determine lactate 

abnormalities, especially because such early techniques are 

not uncommonly negative even in individuals with known 

MD, thus potentially explaining the negative findings; the 

lack of contemporaneous controls with MD make the inter-

pretation of negative findings even more problematic [190]. 

The authors of the original study pointed out that their use 

of propofol anesthesia could increase the sensitivity of their 

study by provoking mitochondrial dysfunction in the patients 

with an underlying MD [191].

ETC function has also been directly measured in post-

mortem brain tissue from individuals with ASD. ETC func-

tion has been reported to be depressed in frontal [192], 

temporal [154, 192] and cerebellar [192] areas from ASD-

derived brain tissue. Other studies noted decreases in the 

activity of non-ETC mitochondrial enzymes (aconitase, 

pyruvate dehydrogenase) in frontal [193], temporal [173] 

and cerebellar [173] tissue derived from children with ASD.

3.6  Mitochondrial Dysfunction 
in the Gastrointestinal Tract in ASD

GI symptoms are prominent in ASD and in patients with 

MD, separately, and multiple GI disorders are known to 

be caused by MD [194]. Thus, Rose et al. [195] examined 

mitochondrial function in rectal and cecum biopsies from 

ten children with ASD and compared them to ten children 

with Crohn’s disease and ten neurotypical children with 

non-specific GI complaints using a single-blind, case–con-

trol design. Except for C2, the protein quantity of all ETC 

complexes was found to be higher in the cecum as com-

pared to the rectum in ASD samples when compared to other 

groups. For both rectal and cecum biopsies, ASD samples 

demonstrated higher C1 activity, but not C4 or CS activity, 

compared to other groups. The authors suggested that this 

represented a unique pathophysiology of the GI symptoms 

in children with ASD and proposed that because most abnor-

malities were localized to the cecum, there may be a role for 

imbalances in the microbiome in children with ASD that 

drives mitochondrial dysfunction in the GI tract. Another 

explanation is that mitochondrial dysfunction could influ-

ence the microbiome.

3.7  Evidence of Environmental In�uences 
of Mitochondrial Function in ASD

Despite decades of research focused on the genetic basis 

of ASD, the minority of ASD cases can be attributed to 

single-gene or chromosome defects [196]. The majority of 

ASD cases likely result from a complex interplay of poly-

genetic and environmental factors [88, 89]. Mitochondrial 

dysfunction is one of the most compelling mechanisms 

of gene–environment interactions, as mitochondria are 

influenced directly by exogenous environmental stressors, 

and secondarily through intrinsic factors such as ROS, 
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inflammatory mediators and local metabolic modulators 

such as the enteric microbiome. The effect of intrinsic and 

extrinsic environmental factors on mitochondrial function 

in ASD has been examined by exposing LCLs to various 

agents.

3.7.1  Intrinsic Microenvironmental Stressors

3.7.1.1 The Mitochondrial Oxidative Stress Test (MOST) Two 

major metabolic abnormalities associated with ASD are 

mitochondrial dysfunction and oxidative stress. The inter-

connection between these two metabolic abnormalities is 

well known: oxidative stress causes mitochondrial dysfunc-

tion and dysfunctional mitochondria produce ROS. ROS is 

also a byproduct of normal mitochondrial function. Addi-

tionally, both intrinsic and extrinsic stressors can cause det-

rimental effects by increasing ROS and/or reducing mito-

chondrial function.

The interaction between mitochondrial function and oxi-

dative stress is especially pertinent to the pathophysiology 

of ASD. In children with ASD, the reduced form of GSH, 

the major intracellular antioxidant responsible for maintain-

ing redox homeostasis and reducing ROS in the cytosol and 

mitochondria, is usually deficient [163, 166, 167, 173]. Our 

laboratory has shown that, in ASD, oxidized glutathione 

disulfide (GSSG) is elevated and proteins and DNA show 

oxidative damage in PBMCs [164] and post-mortem brain 

samples [173]. Other groups have verified GSH abnor-

malities in post-mortem brain samples [197, 198] and have 

shown oxidative damage to mtDNA [127] and lipids [199] in 

individuals with ASD. Epigenetic changes related to redox 

abnormalities [200, 201] have been found in individuals 

with ASD, including in studies in our laboratory [201]. In 

addition, several studies have suggested that oxidative stress 

biomarkers may be diagnostic for individuals with ASD [28, 

31, 76, 202], and one study has demonstrated that ASD/

MD children have a different profile of redox metabolism 

abnormalities as compared to ASD/NoMD children [203].

Thus, to better understand the interplay between these 

two major metabolic abnormalities, we developed a method 

to systematically manipulate ROS during mitochondrial 

function testing. We call this the Mitochondrial Oxidative 

Stress Test (MOST). Excessive ROS can lead to a depletion 

of mitochondrial RC and can activate mechanisms designed 

to protect the mitochondria from oxidative damage. Hill 

et al. [172] showed that acute increases in ROS deplete RC 

and that cell viability is reduced once RC is exhausted. A 

decrease in RC is linked to aging [204], heart disease [205], 

and neurodegenerative disorders [206, 207].

Thus, because ROS is systemically increased in vitro we 

concentrated on the changes in RC. To increase oxidative 

stress in vitro we utilized 1,4-naphthoquinone (DMNQ), an 

agent that generates intracellular superoxide and hydrogen 

peroxide similar to that generated by nicotinamide adenine 

dinucleotide phosphate oxidase in vivo and does not directly 

deplete thiols [160]. To determine the change in mitochon-

drial response with increasing ROS, cells are exposed to one 

of several DMNQ concentrations (5, 10, 12.5 and 15 μM) for 

1 h before the Seahorse assay. The standard mitochondrial 

stress test is completed and the change in RC with increasing 

concentrations of DMNQ is measured. This change meas-

ures the rate of loss of RC with increased physiological 

Fig. 3  The Mitochondrial Oxidative Stress Test (MOST) Seahorse 

assay results for lymphoblastoid cell lines (LCLs) derived from chil-

dren with autism spectrum disorder (ASD) or age-matched controls. 

LCLs are exposed to one of three concentrations of an agent that 

increases oxidative stress known as 1,4-naphthoquinone (DMNQ) or 

not exposed to DMNQ (i.e., DMNQ 0). Reagents for the Seahorse 

assay are added at time points A, B and C as previously outlined in 

Fig. 2. Notice the higher overall respiratory rate of the ASD LCLs as 

compared to the control LCLs and the greater change in these values 

as DMNQ concentration is increased. OCR oxygen consumption rate



582 S. Rose et al.

stress. Cells that have a greater loss of RC at lower DMNQ 

concentrations are considered to have mitochondria that are 

more vulnerable to physiological stress.

The effect of the MOST on the mitochondrial assay can 

be seen in Fig. 3. One of the significant findings from the 

MOST was found for the subset of LCLs found to have an 

apparent increased mitochondrial capacity to produce ATP, 

called AD-A LCLs in Sect. 3.4.3. The AD-A LCL subgroup 

exhibits an atypical mitochondrial response to increased 

DMNQ, with a precipitous decline in RC as ROS increases 

[169, 170]. In Fig. 3, we see that the AD-A LCLs have a high 

basal respiratory rate as well as a higher MRC as compared 

to the control LCLs. However, the LCLs exposed to higher 

concentrations of DMNQ demonstrated a smaller difference 

between the basal respiratory rate and the MRC such that 

at the highest DMNQ concentration, the MRC is below the 

basal respiratory rate, indicating a negative RC, which is 

consistent with mitochondrial exhaustion and collapse of 

cellular physiology.

3.7.1.2 Oxidative Stress and  Mitochondrial Dysfunction 

Correspond in the ASD Brain Some studies have implicated 

an association between mitochondrial dysfunction and 

oxidative stress in the brain tissue of children with ASD. 

Mitochondrial function was found to be decreased in the 

temporal lobe (BA 21) of individuals with ASD, associated 

with an increase in oxidative DNA damage and a decrease 

in superoxide dismutase 2 activity [154]. In another study, 

increased oxidative stress and decreased ETC activity was 

found in the cerebellum, frontal cortex and temporal cor-

tex of children with ASD [192]. One study found increased 

oxidative damage to mitochondrial proteins along with 

increased C4 activity in the superior temporal gyrus (BA 

41/42 or 22) of individuals with ASD [208]. Lastly, another 

study found that aconitase activity was negatively correlated 

with the GSH redox ratio in the cerebellum and the temporal 

lobe (BA 22) of individuals with ASD [173].

3.7.2  Extrinsic Environmental Factors

Ethylmercury is an environmental toxin known to deplete 

GSH and induce oxidative stress and mitochondrial dys-

function. Using our LCL model, we demonstrated that 

acute exposure to ethylmercury induces a greater reduc-

tion in ALR, MRC and RC in the AD-A subgroup of LCLs 

as compared to control LCLs [174]. Pretreatment of the 

ethylmercury-sensitive subgroup with N-acetyl-cysteine 

to increase GSH normalized baseline respiratory param-

eters and blunted the exaggerated ethylmercury-induced 

RC depletion [174]. Similarly, Sharpe et al. [209] reported 

that a subset of ASD LCLs and their unaffected siblings 

exhibited mitochondrial hypersensitivity to ethylmercury 

using a surrogate assay of mitochondrial function known as 

2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-

5-carboxanilide (XTT) reduction.

Trichloroethylene (TCE) is an environmental toxicant 

and common environmental pollutant that has been linked 

to neurobehavioral and immune abnormalities as well as to 

Parkinson’s disease and ASD [210–213]. Using our LCL 

model, we exposed ASD and control LCLs to trichloroacet-

aldehyde hydrate (TCAH), an in vivo TCE metabolite, either 

alone or followed by an acute exposure to DMNQ, an ROS 

generator [176]. TCAH exposure by itself in control and 

ASD LCLs resulted in a similar decline in mitochondrial 

respiration. However, for the AD-A subset of ASD LCLs as 

well as control LCLs, acute ROS exposure following TCAH 

exposure attenuated the decline in mitochondrial respira-

tion, indicating that mitochondrial protective pathways may 

have been activated by acute ROS, and that these protective 

pathways had been primed for activation in an AD-A subset 

of LCLs by TCAH.

Bisphenol A (BPA) is a common chemical used to make 

plastics. Human exposure to BPA is considered widespread. 

Kaur et al. [214] exposed LCLs from ASD and unaffected 

sibling pairs to BPA. BPA induced ROS and decreased mito-

chondrial membrane potential in both ASD and unaffected 

sibling LCLs. When unaffected twin and non-twin siblings 

were analyzed separately, BPA-induced ROS production was 

greater in ASD and unaffected twin siblings as compared 

to non-twin siblings. BPA exposure upregulated mtDNA 

copy number in LCLs from unaffected twin siblings as com-

pared to non-twin siblings. mtDNA in ASD LCLs was not 

examined.

3.7.3  The Enteric Microbiome Environment in ASD

ASD is also associated with environmental factors such 

as enteric microbiome-derived metabolites that may alter 

mitochondrial function by mechanisms other than oxidative 

stress [215]. Alterations in the gut microbiome have been 

associated with ASD [194, 216], and a major mechanism by 

which enteric bacteria influence host physiology is through 

the production of short-chain fatty acids. Clostridia spp., a 

major short-chain fatty acid producer, repeatedly has been 

found to be overrepresented in the ASD GI tract [217, 218]. 

Our ASD LCL model has been instrumental in gaining a 

better understanding of the impact of short-chain fatty acids 

on mitochondrial function in ASD.

PPA is a ubiquitous short-chain fatty acid which is a 

major fermentation product of the enteric microbiome. PPA 

is particularly interesting because it is a natural component 

of normal intermediary metabolism, being the end product 

of odd-chain fatty acid oxidation. PPA induces ASD-like 

behaviors in rodents [63, 219] and causes abnormalities in 

metabolic, immune and neurophysiological systems [63, 

219]; PPA also regulates genes in human cell lines [220]. 
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As mentioned above, similar redox and fatty acid metabolic 

abnormalities are found in both children with ASD and the 

PPA induced rodent model of ASD [5]. Thus, PPA is an 

interesting molecule as it is directly involved in metabolism 

as an intermediate and can modulate gene expression.

Exposing control and ASD LCLs to various concentra-

tions of PPA for 24–48 h revealed dose and exposure time-

dependent effects on mitochondrial function. ASD LCLs 

demonstrated an enhancement of mitochondrial function 

with PPA exposure as indicated by an increase in RC as 

compared to control LCLs [175]. However, ROS expo-

sure negated the positive PPA effect on RC in ASD LCLs. 

Indeed, in the context of increased ROS, instead of enhanc-

ing RC in ASD LCLs, PPA resulted in a greater decrease in 

RC in ASD LCLs as compared to control LCLs exposed to 

PPA and ROS. Thus, it appeared that the effect of PPA on 

mitochondrial function was context dependent as its ability 

to facilitate or demean mitochondrial function was depend-

ent on the redox microenvironment.

Butyrate is another short-chain fatty acid primarily 

produced by the enteric microbiome which can be a fuel 

source and modulate gene expression. Exposure of LCLs to 

butyrate for 24–48 h had differential effects on mitochon-

drial function in control and ASD LCLs [221]. Butyrate 

increased respiration in the AD-A LCLs, while decreasing 

mitochondrial respiration in control LCLs. When ROS was 

increased in vitro, butyrate prevented a diminutive effect of 

ROS on mitochondrial respiration in all LCLs. At the high-

est concentration investigated (1 mM), butyrate increased 

the expression of genes involved in mitochondrial fission 

(DRP1, FIS1), mitophagy (PINK1, LC3, PTEN), oxida-

tive stress (UCP2, NRF2, SOD2), energy metabolism, such 

as mammalian target of rapamycin (mTOR), AMPK and 

SIRT3, as well as genes known to be involved in response to 

physiological stress, such as PGC1α. These findings suggest 

that butyrate has a protective effect on the mitochondria.

3.8  Treatments of Mitochondrial Dysfunction 
in ASD

There is only one study published to date that examined 

the behavioral effects of a customized mitochondrial sup-

plement in ASD children with mitochondrial dysfunction. 

Legido et al. [55] in an open-label study treated 11 chil-

dren with ASD and abnormal C1 and/or C4 activity with a 

mitochondrial cocktail containing carnitine, coenzyme Q10 

and α-lipoic acid. Three months of treatment reduced the 

C1-to-C4 ratio as well as improved several behavior scales, 

including lethargy and inappropriate speech subscales of the 

Aberrant Behavior Checklist. Three months after withdrawal 

of the treatment, the lethargy and inappropriate speech sub-

scales significantly worsened.

As previously mentioned, in a relatively large study, we 

have examined whether various treatments for mitochon-

drial disorders influenced enzymatic activity in children 

with ASD using the buccal swab technique [54]. Overall, 

the study demonstrated that folate, cobalamin, fatty acids 

and antioxidant supplementation increased mitochondrial 

enzymatic activity and folate and cobalamin influenced that 

relationship between enzyme activity, suggesting increased 

ETC coupling.

As we have previously reviewed, although most studies 

have not selected individuals with ASD and mitochondrial 

dysfunction for treatment with supplements that target the 

mitochondria, several studies have demonstrated that mito-

chondrial supplements may be helpful in children with 

ASD [73]. For example, carnitine deficiency appears to be 

common in children with ASD [58, 70]. Two double-blind, 

placebo-controlled studies demonstrated improvement in 

ASD symptoms with carnitine supplementation [74], with 

some improvements directly related to the change in blood 

carnitine levels [72]. In another study, reduced NAD and 

ribose appeared to improve metabolic biomarkers in chil-

dren with ASD and symptoms of mitochondrial dysfunction 

[222]. Two studies have reported behavioral improvements 

in children with ASD using ubiquinol [223] and coenzyme 

Q10 [224].

4  Discussion

4.1  De�ning Mitochondrial Dysfunction in ASD

Major criteria that define classic MD (i.e., PMD) include 

unequivocal genetic mutations, severe depressions 

(i.e., < 30%) of ETC function or syndromic presentation 

[16]. However, repeated studies have suggested that genetic 

defects are found only in a minority of children with ASD, 

including a minority of children with ASD/MD [3], and 

many case reports and series have described only moder-

ate, rather than severe, deficiencies in ETC activity [5, 225]. 

In classic MD, the mitochondria are thought to be severely 

dysfunctional, with significant depression in mitochondrial 

respiration. Criteria such as the modified Walker’s crite-

ria reflect this notion and are commonly used to diagnose 

MD. Many genetic and non-genetic disorders that can cause 

SMD may respond to treatments that target the mitochondria 

[101].

Perhaps more striking is the fact that ETC activity in 

muscle [225, 226], skin [5], buccal epithelium [51, 52, 

227] and brain [208] has been documented to be signifi-

cantly increased, rather than decreased, in some individuals 

with ASD. This is consistent with our in vitro data showing 

elevated mitochondrial respiration in LCLs derived from 

children with ASD [169–171, 174–176, 228]. We recently 
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demonstrated that this alteration in respiration is associated 

with more severe repetitive behaviors [171]. We believe 

that this increase in respiratory rate may be an adaptation 

designed to resist chronic exposure to toxicants associated 

with ASD, perhaps because of previous exposure to envi-

ronmental toxicants [170, 176]. We have also demonstrated 

that this increased respiratory rate results in an increased 

susceptibility of the mitochondrial to acute in vitro increases 

in ROS [169, 170], and we have reported that this subset of 

ASD LCLs respond differently to environmental exposures 

associated with ASD [174–176, 221]. Further research will 

be needed to better understand this unique alteration in mito-

chondrial physiology.

Thus, the current data points to possible non-genetic 

defects or changes causing abnormal mitochondrial func-

tion as well as unique types of mitochondrial dysfunction in 

individuals with ASD [5, 226]. As mitochondrial dysfunc-

tion in ASD appears to be qualitatively and quantitatively 

different from what occurs in classic MD, it is important to 

consider how to define mitochondrial dysfunction in ASD. 

We have suggested that other criteria, such as the Morava 

criteria, which is clinically based, may be more appropriate 

for diagnosing MD in children with ASD [16]. However, it 

is clear we need a better definition on what degree of mito-

chondrial dysfunction is abnormal in ASD and how it is 

linked to symptomology. We have demonstrated that changes 

in ETC activity are associated with changes in behavior and 

development on a continuum [53] and that treating mito-

chondrial abnormalities in children with ASD has positive 

benefits for ASD-related behaviors [55]. In addition, we have 

demonstrated that certain common supplements positively 

modulate mitochondrial activity in children with ASD [54]. 

Nevertheless, it is not clear how to define these variations 

in mitochondrial function as clearly abnormal or how to 

decide which children will most likely respond to treatment 

for mitochondrial dysfunction. Clearly, further research is 

needed in this potentially fruitful area.

4.2  Possible Links to Clinical Aspects of ASD

There are several clinical aspects of ASD that may be associ-

ated with abnormalities in mitochondrial function, including 

abnormalities in immune function, cerebral folate deficiency, 

autonomic abnormalities and prenatal brain abnormalities.

Autoimmune diseases are diagnosed significantly more 

often among children with ASD than among controls [229] 

and among their family members [230]. In addition, some 

children with ASD also have been documented to have 

immunoglobulin deficiency [231]. Several studies have 

shown that immune cells in children with ASD demon-

strate mitochondrial dysfunction [3, 121, 169, 228, 232], 

and recent studies have documented that proper mitochon-

drial function is essential for immune regulation [233] and 

mitochondrial dysfunction is associated with immunodefi-

ciencies [234]. Thus, it is very possible that mitochondrial 

dysfunction could lead to the immune abnormalities seen 

in ASD. Alternatively, autoimmunity causes inflammatory 

responses that result in catabolism and high rates of ATP 

consumption from the release of proinflammatory cytokines 

[235]. Thus, it is very possible that an initial autoimmune 

process can drive mitochondrial dysfunction. Indeed, mito-

chondrial dysfunction may ensue during an inflammatory 

process. This could result in developmental regression from 

typically development to an ASD phenotype, as reported 

by Shoffner et al. [20]. Inflammation can affect epigenet-

ics that involve both nDNA and mtDNA. This represents 

yet another mechanism by which the immune system may 

adversely affect the mitochondria. Finally, the effect of anti-

mitochondrial antibodies reported to be associated with ASD 

[80, 81] on mitochondrial function is yet to be explored in 

detail. This may provide an interesting connection between 

the immune system and the mitochondria.

About 15 years ago, Ramaekers and Blau described a 

case series of children with normal neurodevelopment dur-

ing early infancy followed by neurodevelopmental regres-

sion. These children had low concentrations of folate in 

their cerebrospinal fluid, but normal concentrations in their 

blood [236]. This newly described neurodevelopmental dis-

order was named cerebral folate deficiency (CFD) syndrome 

to signify deficiency of folate specific to the brain. Early 

reports found that some children with CFD also had ASD 

[237], with further studies suggesting that CFD was linked 

to children with low-functioning ASD who also had neuro-

logical abnormalities [238]. Recent studies have suggested 

that CFD is found in about a quarter of children with ASD 

[239]. CFD is caused by dysfunction of the folate receptor α, 

the major transport mechanism for folate transport into the 

brain, which can be caused by folate receptor α autoantibod-

ies and/or mitochondrial dysfunction. Cases of ASD with 

mitochondrial dysfunction have been reported in CFD [240]. 

Thus, the connection between mitochondrial dysfunction, 

CFD and ASD may be very important and has the potential 

to be one of the major pathophysiological mechanisms that 

drives cognitive and behavioral abnormalities. Most signifi-

cant is the fact that CFD is treatable and potentially revers-

ible with leucovorin calcium. Given the recent studies that 

have demonstrated that leucovorin calcium is beneficial to 

behavior and language in children with ASD [241, 242], as 

well as the fact that folates appear to positively modulate 

mitochondrial function [54, 243], this should be considered 

a very promising area of therapeutics in ASD.

Other abnormalities that may be connected to mitochon-

drial dysfunction are prenatal abnormalities and autonomic 

dysfunction. Patients with ASD have demonstrated abnor-

malities of brain growth and development including hypo-

plasia of the corpus callosum, cerebellar hypoplasia, failures 
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of synaptic development including dendritic sprouting and 

axonal branching, among others. These abnormalities may 

reflect impaired mitochondrial function, energetics of the 

microtubule system, and cell motility in the development of 

the nervous system. Weissman et al. reported prenatal abnor-

malities in their case series of children with ASD/MD [15]. 

Dysautonomia, such as excessive dilatation of the pupils and 

tachycardia, are commonly seen in children with ASD [244]. 

Autonomic dysfunction has been associated with mitochon-

drial problems [245] and has been reported in a child with 

ASD and mitochondrial myopathy [246]. Some have pointed 

to a potential connection between nitric oxide, mitochondrial 

dysfunction and dysautonomia in ASD [247]. Thus, further 

studies are needed to investigate the potential connection 

between these clinical entities and mitochondrial function 

in ASD.

4.3  Studying Environmental Agents A�ecting 
Mitochondrial Function

As has been demonstrated by several groups, including ours, 

LCLs derived from individuals with ASD are the primary 

cellular model to study mitochondrial dysfunction in ASD 

[3, 121, 169, 228, 232]. Furthermore, LCLs from individu-

als with ASD paired with LCLs from unaffected twin and 

non-twin siblings make an excellent model to examine the 

mitochondrial effects of environmental factors associated 

with ASD and whether or not these factors can induce mito-

chondrial adaptations that result in vulnerabilities leading 

to dysfunction [174–176, 221, 248]. Given the importance 

of the mitochondria in environmental exposures and the fact 

that environmental exposures most likely have a consider-

able influence in the etiology of ASD, further research into 

the connection between environmental factors and mito-

chondrial dysfunction in ASD is clearly needed.

4.4  Novel Markers for Measuring Mitochondrial 
Function in ASD

One exciting recent development is the introduction of 

new biomarkers that may be quite helpful in identifying 

mitochondrial dysfunction. The buccal swab technique 

non-invasively measures mitochondrial enzymatic activity 

and calculates the relative activity of enzymes, by using a 

ratio or examining the linear relationship between enzyme 

activities. Other techniques such as using respirometry or 

enzymology on primary immune cells are other promising 

techniques for identifying mitochondrial dysfunction in indi-

viduals with ASD. Furthermore, novel blood-based markers 

have been investigated and can discriminate children with 

ASD from healthy controls [28, 76–79]. Abnormalities in 

mitochondrial function also appear to include alterations 

in fatty acid metabolism, including a unique pattern of 

acyl-carnitine elevation linked to a partial C1 deficiency that 

may have a connection to modulatory influences from the 

microbiome [5]. Clearly, these biomarkers remain a promis-

ing area, but results are still preliminary. Further develop-

ment of these and other techniques are needed to help better 

identify and define individuals with ASD and mitochondrial 

abnormalities.

5  Conclusions

Mitochondrial dysfunction appears to be closely associated 

with at least a subset of patients with ASD. The etiology 

of mitochondrial dysfunction as well as how to define it in 

individuals with ASD is not clear at this time. Preliminary 

studies suggest that the mitochondria may be a fruitful target 

for treatment and prevention of ASD, but further research to 

better understand the role of the mitochondria in the patho-

physiology of ASD is needed.
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