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RESEARCH Open Access

Clinical and molecular characterization of
virus-positive and virus-negative Merkel cell
carcinoma
Gabriel J. Starrett1, Manisha Thakuria2,3, Tianqi Chen4, Christina Marcelus5, Jingwei Cheng5,6, Jason Nomburg5,

Aaron R. Thorner7, Michael K. Slevin7, Winslow Powers7, Robert T. Burns7, Caitlin Perry8, Adriano Piris2,

Frank C. Kuo9, Guilherme Rabinowits3,5,10, Anita Giobbie-Hurder4, Laura E. MacConaill7,9 and James A. DeCaprio3,5,6*

Abstract

Background: Merkel cell carcinoma (MCC) is a highly aggressive neuroendocrine carcinoma of the skin caused by

either the integration of Merkel cell polyomavirus (MCPyV) and expression of viral T antigens or by ultraviolet-

induced damage to the tumor genome from excessive sunlight exposure. An increasing number of deep

sequencing studies of MCC have identified significant differences between the number and types of point

mutations, copy number alterations, and structural variants between virus-positive and virus-negative tumors.

However, it has been challenging to reliably distinguish between virus positive and UV damaged MCC.

Methods: In this study, we assembled a cohort of 71 MCC patients and performed deep sequencing with OncoPanel,

a clinically implemented, next-generation sequencing assay targeting over 400 cancer-associated genes. To improve

the accuracy and sensitivity for virus detection compared to traditional PCR and IHC methods, we developed a hybrid

capture baitset against the entire MCPyV genome and software to detect integration sites and structure.

Results: Sequencing from this approach revealed distinct integration junctions in the tumor genome and generated

assemblies that strongly support a model of microhomology-initiated hybrid, virus-host, circular DNA intermediate that

promotes focal amplification of host and viral DNA. Using the clear delineation between virus-positive and virus-

negative tumors from this method, we identified recurrent somatic alterations common across MCC and alterations

specific to each class of tumor, associated with differences in overall survival. Finally, comparing the molecular and

clinical data from these patients revealed a surprising association of immunosuppression with virus-negative MCC and

significantly shortened overall survival.

Conclusions: These results demonstrate the value of high-confidence virus detection for identifying molecular

mechanisms of UV and viral oncogenesis in MCC. Furthermore, integrating these data with clinical data revealed

features that could impact patient outcome and improve our understanding of MCC risk factors.
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Background
Merkel cell carcinoma (MCC) is a highly aggressive neu-

roendocrine carcinoma of the skin. Risk factors for devel-

oping MCC include advanced age, light skin color with

excessive sunlight exposure, and a variety of immunocom-

promised conditions [1]. In 2008, Merkel cell polyomavi-

rus (MCPyV) was first detected by Southern blot in some

but not all MCC tumors with integration of viral DNA oc-

curring at several different chromosomal sites. Import-

antly, an identical clonal integration pattern was detected

in one primary tumor and corresponding metastatic

lymph node [2]. This important insight implied that inte-

gration of the viral DNA was an early if not initiating

event in virus-positive MCC oncogenesis. MCPyV infects

most people, typically at an early age, and results in an

asymptomatic and lifelong infection indicated by the per-

sistent presence of antibodies to the viral coat protein VP1

[3, 4]. Although MCPyV DNA can be readily detected on

the skin, the cell types where the virus replicates in vivo

have not been determined [5].

Since the original discovery of MCPyV, it has become in-

creasingly clear that virus-positive MCC has a different eti-

ology than virus-negative, UV-associated, MCC [1]. Virus-

positive MCC expresses the viral oncogenes large T anti-

gen (LT) and small T antigen (ST) and the tumor genome

usually contains very few mutations in cellular oncogenes

and tumor suppressor genes. In contrast, studies using

whole exome or targeted hybrid capture sequencing have

revealed that virus-negative MCC has an exceptionally high

somatic mutation load predominated by UV-mediated mu-

tations with frequent mutations in RB1, TP53, NOTCH1,

and FAT1 [6, 7]. Whole genome sequencing (WGS) of

MCC confirmed virus-positive MCC exhibits a globally

lower, non-UV-mediated, mutation burden as well as few

somatic copy number amplifications, deletions, and rear-

rangements compared to virus-negative MCC, while pro-

viding new insights into the structure and mechanism of

virus integration [8].

Accurate detection of the presence of MCPyV and dis-

tinguishing between virus-positive and virus-negative

MCC is important for insight into the oncogenesis, cell-

of-origin, and therapeutic options. Currently, there is no

routine clinical effort to distinguish between virus-

positive MCC and virus-negative MCC. Several recent

studies have suggested differences between virus-positive

MCC and virus-negative MCC in presentation, age, and

response to immunotherapy [9–15]. However, current

techniques for determining viral status have yielded ei-

ther inaccurate or ambiguous results. Although WGS

provides much more genetic information on the tumor

and viral genome compared to targeted approaches, it

remains impractical for clinical evaluation of MCC.

The most common methods for detection of MCPyV

in MCC include PCR amplification of MCPyV DNA

from DNA isolated from MCC tumors or immunohisto-

chemistry (IHC) staining for MCPyV LT using monoclo-

nal antibodies CM2B4 and Ab3 [16, 17]. However, both

PCR and IHC have been shown to be unreliable in dis-

tinguishing between virus-positive from virus-negative

MCC. For example, a recent study of 282 cases of MCC

evaluated virus positivity by IHC with monoclonal anti-

bodies CM2B4 and Ab3 or by PCR with a previously val-

idated primer set [18]. Notably, there was concordance

for all three assays in only 167 of 282 (59.2%) cases with

an additional 62 cases positive for two of the three tests.

The remaining 53 (18.8%) were positive for one test or

none. This study assigned the MCC to be virus-positive

if two or three tests were positive, implying that detec-

tion of viral DNA by PCR alone was not sufficient for a

tumor to be called virus-positive MCC. Furthermore, be-

cause of the sensitivity of PCR in detecting DNA, a

lower limit of 0.01 copy of MCPyV DNA per tumor cell

was called virus-positive MCC. Tumors containing <

0.01 viral copies/cell were called virus-negative. A differ-

ent study using RNA-ISH to detect mRNA specific for

MCPyV LT and ST found this method to be as sensitive

as qPCR when using two primer sets and the viral copy

number was set to > 0.004/cell [19]. The AMERCK test

detects circulating antibodies against the MCPyV ST

[20]. The sensitivity of this test is low for detection of

virus-positive MCC but, when positive, can be used as a

biomarker for disease status [20].

The high somatic mutation burden in virus-negative

MCC is predicted to yield more tumor neoantigens than

melanomas or non-small cell lung cancers (median of 173,

65, and 111 neoantigens/sample, respectively) [21] [22].

As observed for other tumor types, the high neoantigen

burden in virus-negative MCC corresponds to a higher

degree of tumor infiltrating lymphocytes in some tumors,

but these tumors also express PD-L1 rendering these lym-

phocytes ineffective [7]. Despite the numerous observed

differences in mutation rate and number of predicted

neoantigens, both virus-positive MCC and virus-negative

MCC tumors have shown high response rates to PD-L1

and PD1 checkpoint blockade therapy [14, 15].

For further advancements to be made in understanding

MCC, especially for patients not responsive to current

therapies, clear and accurate determination of the MCPyV

virus status and actionable variants in these tumors are re-

quired. In this study, we developed a viral hybrid capture

next-generation sequencing (NGS) method to detect the

presence of integrated MCPyV DNA in FFPE clinical

specimens for routine use in a clinical setting. This ap-

proach was combined with targeted sequencing of several

hundred cancer-related genes to assess oncogenic changes

in the tumor genome. Lastly, we compared the sensitivity

and accuracy of this viral hybrid capture approach to more

traditional approaches, PCR detection of viral DNA, IHC
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for detection of MCPyV LT, and synoptic assessment of

MCC pathology.

Methods
Study design and participants

This study included all patients (n = 71) with a reported

diagnosis of MCC at Dana-Farber/Brigham and Women’s

Cancer Center who underwent comprehensive genomic

profiling by OncoPanel between May 2013 and April

2018. OncoPanel version 3 (POPv3) is a custom hybrid

capture assay targeting the exons of 447 genes and 191 re-

gions across 60 genes commonly rearranged in cancer [23,

24]. A retrospective chart review collected demographic,

clinical, disease, treatment, and outcome variables on all

71 patients. For 40 patients, sufficient DNA remained

from the initial OncoPanel profiling or from additional

FFPE tumor specimens to perform POPv3/ViroPanel.

When available, FFPE sections were sectioned for immu-

nohistochemistry with antibodies CM2B4 and Ab3 [17].

Sections stained with hematoxylin and eosin were evalu-

ated by synoptic review [25].

Nucleic acid isolation, library preparation and sequencing

To perform ViroPanel with and without supplementation

with the OncoPanel (v3) bait set, purified DNA was quan-

tified using a Quant-iT PicoGreen dsDNA assay (Thermo

Fisher). Library construction was performed using 200 ng

of DNA, which was first fragmented to ~ 250 bp using a

Covaris LE220 Focused ultrasonicator (Covaris, Woburn,

MA) followed by size-selected cleanup using Agencourt

AMPureXP beads (Beckman Coulter, Inc. Indianapolis,

IN) at a 1:1 bead to sample ratio. Fragmented DNA was

converted to Illumina libraries using a KAPA HTP library

kit using the manufacturer’s recommendations (Thermo

Fisher). Adapter ligation was done using xGen dual index

UMI adapters (IDT, Coralville, IA).

Samples were pooled in equal volume and run on an

Illumina MiSeq nano flow cell to quantitate the amount of

library based on the number of reads per barcode. All

samples yielded sufficient library (> 250 ng) and were

taken forward into hybrid capture. Libraries were pooled

at equal mass (3 × 17-plex and 1 × 18-plex) to a total of

750 ng. Captures were done using the SureSelectXT Fast

target enrichment assay (Agilent, Technologies, Santa

Clara, CA) with ViroPanel with and without supplementa-

tion with the OncoPanel (v3) bait set. Captures were se-

quenced on an Illumina 2500 in rapid run mode (Illumina

Inc., San Diego, CA).

Sequence alignment and somatic variant calling

Pooled samples were de-multiplexed and sorted using

Illumina’s bcl2fastq software (v2.17). Reads were aligned

to the reference sequence b37 edition from the Human

Genome Reference Consortium as well as viral genomes

targeted by the Virus Capture Baitset v2 using bwa mem

(http://bio-bwa.sourceforge.net/bwa.shtml) [26]. The

viral genomes and human genome were combined into

one alignment reference so reads could map to the clos-

est matching reference sequence.

Duplicate reads were identified using unique molecular

indices (UMIs) and marked using the Picard tools. The

alignments were further refined using the Genome Ana-

lysis Toolkit (GATK) for localized realignment around

indel sites and base quality score recalibration [27, 28].

Mutation analysis for single nucleotide variants (SNV)

was performed using MuTect v1.1.4 (CEPH control was

used as the “project normal”) and annotated by Variant

Effect Predictor v 79 (VEP) [29, 30]. We used the Somati-

cIndelDetector tool that is part of the GATK for indel

calling. After initial identification of SNVs and indels by

MuTect and GATK respectively, the variants were anno-

tated using OncoAnnotate to determine what genes were

impacted and their effect on the amino acid sequence.

OncoAnnotate also applied additional filters using the Ex-

ome Sequencing Project (ESP) and gnomAD datasets to

flag common SNPs.

Variants that affect protein coding regions underwent

further filtering/classification based on frequency in the

gnomAD, ESP, and COSMIC (version 80) databases. If the

frequency of the variant was less than or equal to 1% in all

gnomAD and ESP populations, the variant was flagged as

“REVIEW_REQUIRED”. If the frequency of the variant

was greater than 1% and less than or equal to 10% in all

gnomAD and ESP populations and present in “COSMIC”

database at least two times, the variant was flagged as “RE-

VIEW_REQUIRED”. If the frequency of the variant was

between 1% and less than or equal to 10% in all gnomAD

and ESP populations and not present in “COSMIC” data-

base at least two times, the variant is flagged as “NO_RE-

VIEW_GERMLINE_FILTER”. If the frequency of the

variant was greater than 10% in any gnomAD and ESP

populations, the variant was flagged as “NO_REVIEW_

GERMLINE_FILTER”. Variants with a frequency greater

than 10% in any gnomAD or ESP population were consid-

ered to be a common SNP irrespective of presence in the

COSMIC database.

Variants in the viral genomes were called using sam-

tools mpileup and bcftools from the aligned bam files.

Called variants were filtered to have a minimum cover-

age of 5 reads and minimum allele frequency of 1% of

total reads covering that base in a single sample. Vari-

ants were annotated based on the NC_010277.2 refer-

ence sequence in GenBank using SnpEff [31].

Recurrent copy number analysis

Copy number variant calling was performed using a com-

bination of VisCap Cancer and CNVkit as previously de-

scribed [32, 33]. All resulting gene copy number variants
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from all patients were compared against each other with

UV status and significant mutual exclusivity/co-occurrence

was calculated using Fisher’s exact test corrected by FDR for

multiple comparisons in the R statistical environment. Using

the network and iGraphs packages the significantly co-

occurrent variants were clustered into networks. The genes

belonging to each distinct network cluster with more than

five member genes were then labeled and extracted. Using

these gene lists as cluster definitions, each patient was evalu-

ated for presence or absence of each CNV cluster. Presence

of a CNV cluster was determined if more than 50% of the

member genes of that cluster were modified in the same pa-

tient. Copy number variants from TCGA were retrieved

from cBioPortal (https://www.cbioportal.org/) and plotted

using ggplot2 in the R statistical environment [34, 35].

Viral integration analysis

A custom perl script was written to extract, assemble, an-

notate, and visualize viral reads and determine viral inte-

gration sites. Viral reads and their mates were first

identified and extracted by those that have at least one

mate map to the viral genome. Additional reads contain-

ing viral sequence were identified by a bloom filter con-

structed of unique, overlapping 31 bp k-mers of the

MCPyV genome [36]. The human genome positions for

any read with a mate mapping to the viral genome were

output into a bed file and the orientation of viral and hu-

man pairs was stored to accurately deconvolute overlap-

ping integration sites. This bed file was then merged down

into overlapping ranges based on orientation counting the

number of reads overlapping that range. Skewdness in

coverage of integration junctions was calculated by the

difference in the fraction of virus-host read pairs overlap-

ping the first and second halves of the aforementioned

ranges. This skewdness value was used to determine the

orientation of the viral-host junction (i.e., positive values,

junction is on the 3′ end of the range; negative values,

junction is on the 5′ end of the range), which was vali-

dated from the results of de novo assembly. Integrated

viral genomes were assembled from extracted reads using

SPAdes with default parameters [37]. The assembly graphs

from SPAdes were annotated using blastn against hg19

and the MCPyV reference genome with an e-value cutoff

of 1 × 10− 10. Annotated assembly graphs were visualized

using the ggraph R package.

Integrations sites confirmed by reference guided align-

ment and assembly data were analyzed for stretches of

microhomology between the human and viral genomes by

selecting 10 bp upstream and downstream of the integra-

tion junction on the viral and human genomes. Within

these sequences stretches of identical sequence at the

same position longer than two base pairs were counted.

Overall homology between the sequences was calculated

by Levenshtein distance. Three integration junctions with

indeterminate DNA sequence ranging from 1 to 25 bp

inserted between viral and human DNA were excluded

from analysis. Expected microhomology was calculated by

randomly selecting 1000 20 bp pairs of non-N containing

sequence from the human and MCPyV genomes.

Integration site proximity to repeat elements were de-

termined using bedtools closest and repeatmasker anno-

tations acquired from the UCSC genome browser [38].

Expected frequency of integration near repeat elements

was determined by randomly selecting 1000 sites in the

human genome. Sites within 2 kb of a repeat element

were counted as close proximity.

Functional annotation of somatic mutations and viral

integration events was performed using PANTHER

(www.pantherdb.org) [39].

Statistics

The association between relapse and genomic character-

istics are tested with Fisher’s exact test using all patient

sequencing data regardless of primary or recurrence bi-

opsy. Overall survival (OS) is defined as the time from

initial diagnosis to death, and patients who did not die

are censored at the last follow-up date. The 95% confi-

dence intervals of the median OS times are estimated

using log(−log(OS)) methodology. Statistical significance

is defined as p ≤ 0.05.

Associations between recurrent CNV, TMB, or viral

copies and overall survival were calculated and graphed

using GraphPad Prism 7. Fisher’s exact test and Kaplan-

Meier curves were computed with the R statistical envir-

onment. Significant enrichment of microhomology and re-

peat elements at integrations sites was determined using

Fisher’s exact test between observed and expected events.

Human subjects

This study was conducted according to the Declaration

of Helsinki principles and approved by the Dana-Farber

Cancer Institute institutional review board. Written in-

formed consent was received from participants prior to

inclusion in the study.

Results
Summary of patient cohort

A total of 71 patients diagnosed with MCC were in-

cluded in this study (Table 1). The median (95% CI)

follow-up duration from initial diagnosis of MCC was 47

(95% CI: 38–60) months based on inverse Kaplan-Meier

estimation. Overall, 69 enrolled patients were white and

two were black. Forty (56%) patients were male. The me-

dian age was 70 years (range < 50 to 93). The initial site

of MCC presentation was in the head and neck (27%),

upper extremity (20%), lower extremity (21%), and trunk

(32%). The seventh edition TNM staging system of the

American Joint Committee on Cancer (AJCC) was used
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to classify the initial presentation of MCC with 27% pre-

senting at stage I, 14% stage II, 42% stage III, and 17%

stage IV.

Somatic variant analysis of targeted sequencing

All 71 patients underwent OncoPanel analysis [32]. Gen-

omic studies were performed using DNA isolated from tu-

mors obtained at the time of initial diagnosis (n=50) or

upon relapse (n=21). The total number of mutations ranged

from 0 to 73 corresponding to a tumor mutational burden

(TMB; mutations/megabase) from 0 to 38.89 with four

cases containing no detectable mutations (Fig. 1a,

Additional file 1: Table S1). From this mutation data, pa-

tients were binned into TMB-high (≥ 20), TMB-

intermediate (> 6 < 20), and TMB-low (≤ 6). A limited set of

mutation signatures could be identified (see “Methods”).

The UV mutational signature (Signature 7) was detected in

24 cases, corresponding to the TMB-high patients [40].

Additional mutational signatures identified included Aging

(Signature 1; 3 cases), APOBEC (Signatures 2 and 13; 4

cases with 3 that also had an UV signature), and Signature 5

(one case) (Fig. 1a, Additional file 1: Table S1). TMB had

some correlation with the number of copy number altered

genes (Fig. 1b). Several genes including RB1, TP53, KMT2D,

NOTCH1, NOTCH2, and FAT1 were highly enriched for

missense and truncating mutations (Fig. 1c, Additional file 2:

Fig. S1). Single and dinucleotide substitutions in RB1 and

TP53 revealed that most were likely mediated by UV dam-

age (CC >TT, C >T; Fig. 1d).

Copy number variants (CNVs) were examined indi-

vidually as well as against each other and other likely

functional somatic changes for significant co-occurrence

or mutual exclusivity (Additional file 1: Table S2). Clus-

ters of significantly co-occurrent CNVs were determined

via network analysis (Fig. 2a, Additional file 2: Fig. S2 &

Fig. S3). From these analyses, two distinct CNV clusters

were each found to be altered in more than 36% of cases

(Fig. 2b, c). Chromosome 10 (cluster 14) had frequent

copy number loss with 26 tumors showing heterozygous

or homozygous loss of the chromosome (Fig. 2b) [41].

Some cancer-relevant genes on chromosome 10 include

PTEN and SUFU, negative regulators of PI3K and

Hedgehog signaling respectively, with deletions reported

in prior studies of MCC [41, 42]. A region of Chr1q

(cluster 13) was amplified in 28 cases. This region in-

cludes MDM4 (also known as MDMX), whose protein

product cooperates with MDM2 to promote the ubiqui-

tination and subsequent degradation of p53 (Fig. 2b) [43,

44]. In addition, we observed a focal amplification of

MYCL within a greater amplification of Chr1p (cluster

4), which was reported in an earlier study of MCC [45].

CNV clusters 13 and 14 were observed at nearly equal

frequencies in both TMB-high and TMB-low cases

(Fig. 2b, c). Six other CNV clusters were strongly associ-

ated with UV signature and high TMB (Fig. 2c). Func-

tional annotation of the clusters revealed that the two

largest UV-associated CNV clusters (1 and 3) had signifi-

cant enrichment for genes related broadly to DNA dam-

age response and S-phase DNA damage checkpoint likely

enhancing tolerance for UV mutagenesis.

Cluster 5, corresponding to 6p22.3 to 6q26 and likely

representing a gain of the entire chromosome 6, was the

only cluster more than twice as frequent in TMB-low tu-

mors than TMB-high tumors (Fig. 2c). Interestingly, 33.3%

(6/18) of metastatic tumors carried cluster 5 and all but

one of these metastatic tumors were TMB-low MCC. Fur-

thermore, CNV cluster 5 was 2.5 times more frequent in

TMB-low (25%, 11/44) than TMB-high (11%, 2/18) tumors

in primary tumors. Both TMB-low and TMB-high patients

with amplification of CNV cluster 5 had significantly im-

proved overall survival compared to wild type carrying pa-

tients (p = 0.005). Restricting this analysis to only primary

tumors, revealed that there were no deaths at the time of

this study in patients carrying this amplification (p = 0.007)

Table 1 Patient characteristics (N = 71)

Characteristics All (N = 71)

Age at initial diagnosis, years 70 (10–93)

Age at initial diagnosis, years

< =70 36 (51%)

> 70 35 (49%)

Gender

Female 31 (44%)

Male 40 (56%)

Race

Black or African American 2 (3%)

White 69 (97%)

Initial site

Head 19 (27%)

LE 15 (21%)

Trunk 23 (32%)

UE 14 (20%)

AJCC stage at initial diagnosis

I 19 (27%)

II 10 (14%)

III 30 (42%)

IV 12 (17%)

Significant immunosuppression

No 61 (86%)

Yes 10 (14%)

Prior chemotherapy or radiation

No 53 (75%)

Yes 18 (25%)
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(Fig. 2d, e). Unsurprisingly, considering the prevalence of

this CNV event in metastatic patients, there was no

difference in recurrence-free survival (RFS, Additional file 2:

Fig. S4).

The recurrent copy number events on chromosomes

1, 6, and 10 were compared within The Cancer Genome

Atlas (TCGA) for similarities to other tumor types

(Fig. 2f–h). This analysis revealed that the chromosome

1 (cluster 13) amplification was also frequently observed

in ovarian, breast, and bladder cancers, whereas the

chromosome 10 (cluster 14) loss was most frequently

seen in prostate cancer. Gain of chromosome 6 (cluster

5) was most frequently seen in ovarian, bladder, and

esophago-gastric cancers.

Analysis of viral sequences in tumors

Of the 71 tumors analyzed by OncoPanel, 48 with suffi-

cient remaining material were re-analyzed by OncoPanel

(Profile/OncoPanel version 3, POPv3) combined with a

hybrid-capture probe bait set targeting the entire gen-

ome of MCPyV and other known oncogenic viruses

(ViroPanel). For the 48 cases, the number of MCPyV

reads ranged from 0 to 21,095,751 with only a single

case having zero MCPyV reads (Fig. 3a). In total, 28

cases had substantial reads (> 6800) mapping to the

MCPyV genome that also supported integration of the

virus into the host genome through reads and read pairs

that span integration junctions. For the remaining 20

cases without evidence of integration, the number of

viral reads ranged from 0 to 971. Generally, these cases

had reads that covered less than 10% of the viral genome

with the normalized coverage less than two logs com-

pared to samples with evidence for virus integration

(Fig. 3b, c). Concordantly, the viral reads from most of

these cases were unable to be assembled into larger viral

contigs. Two cases, MCC011 and MCC015, had 212 and

177 MCPyV reads that could be assembled into nine

and five contigs each smaller than 761 base pairs,

Fig. 1 Somatic variants in Merkel cell carcinoma. a Tumor mutation burden (TMB) for each patient in descending order colored by mutation signature.

b Count of gene copy number alterations per patient. c OncoPrint for the top 10 genes with the greatest number of point mutations in this MCC

cohort. d Distribution of point mutations in the CDS of RB1 and TP53 from this MCC cohort. Functional domains of p53 and pRB are highlighted by

colored boxes. Each type of base substitution is highlight by a different color lollipop and nonsense mutations are indicated by asterisks
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respectively. Case MCC007 had the most reads of any

likely virus-negative sample and could be assembled into

a single 5343 bp contig. However, analysis of the point

and deletion variants in these aforementioned viral con-

tigs revealed that they were identical to the virus se-

quence from patient MCC037 indicating that the viral

reads resulted from low-level contamination (< 0.005%

of MCC037 MCPyV reads were detected in other

samples).

For the 28 cases with evidence for integration of the

viral DNA into the tumor, the number of reads mapping

to the viral genome ranged from 6824 to 21,095,751 (me-

dian 28,726). Consistent with previous reports, the inte-

grated viral genome had undergone extensive mutagenesis

Fig. 2 Recurrent copy number variants in MCC. a Representative network analysis clusters of significantly co-modified genes in MCC on chromosomes

1 (red), 6 (yellow), and 10 (blue). b Frequency of amplifications (red) and deletions (blue) for the genes comprising representative CNV clusters and

their occurrence in each patient with UV, RB1, and TP53 status clustered by all variants. c Counts of each CNV cluster colored by TMB-low (blue), TMB-

intermediate (gray), and TMB-high (red) categories. Clusters that are nearly equivalent between TMB-low and TMB-high (< 2:1 ratio are highlighted by

open triangles). The cluster that is more frequent in TMB-low than TMB-high is highlighted by a black-filled triangle. d Kaplan-Meier plot of overall

survival stratified by chromosome 6 amplification for all patients. e Kaplan-Meier plot of overall survival stratified by chromosome 6 amplification for

primary tumors. f–h Analysis of TCGA cancers for the two most abundant CNV clusters (13, 14, and 6, respectively) in MCC
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with large deletions (> 100 bp) particularly in the 3′ half of

LT as well as in the viral coat protein genes VP1 and VP2

(Fig. 4). In 10 cases, approximately half of the total viral

genome was deleted, 6 cases had approximately 25% of

the viral genome deleted, while 12 cases had sequences

corresponding to the entire or nearly complete genome

(Figs. 3c and 4). In all but one of the cases with a nearly

complete coverage of the viral genome, there was a clonal

point mutation which inserted a premature stop codon in

LT resulting in truncated proteins between 208 and 771

amino acids (Fig. 5a) similar to what has previously been

seen in MCC cell lines and clinical cohorts. In a single

case (MCC054), LT was truncated by a 5-bp deletion

resulting in a frame shift that introduced a premature stop

codon in frame. In all cases, the non-coding control re-

gion, the N-terminal 208 residues of LT, and an intact ST

region of the viral genome were conserved.

Beyond indels and nonsense mutations, LT also car-

ried numerous novel clonal missense mutations (Fig. 5a)

unique to the patients in this cohort. In stark contrast,

ST only had missense mutations at three residues, and

the amino acid change A20S is consistent with a previ-

ously observed MCPyV strain difference (GenBank

identical protein accession number: ACI25295.1). The

other missense mutations occurred clonally at H41Y and

N100S once in the entire cohort (Fig. 5b). Neither of

these mutations are present in any of the ST sequences

in GenBank and have not been previously reported.

The integration sites were mapped using the oncovirus

tools suite (https://github.com/gstarrett/oncovirus_tools)

(Fig. 6a, Table 2) [46]. As previously reported, integrations

primarily fell into two categories: either those that appear

as a single integration event or as two events separated by

> 10 kilobases (kb) [8]. Interestingly, two cases had inte-

gration events in non-identical but overlapping sites in

chromosome 1 (Fig. 6b). These represent the first reported

cases of recurrent viral integration sites in MCC.

Based on previous MCC WGS, MCPyV integration

sites frequently coincide with focal amplifications in the

human genome. We can therefore infer that the regions

between distant (> 10 kb) viral integration sites were

amplified; however, no targeted exon were within these

regions [8]. Because of the limited number of capture

targets sequence by the OncoPanel platform, determin-

ing the exact boundaries of the expected virus-mediated

amplifications in cases with junctions < 10 kb apart was

Fig. 3 Detection of MCPyV via targeted capture and NGS. a Raw number of reads mapping to the MCPyV genome per patient from ViroPanel

(n = 48). b Normalized count of MCPyV reads based on number of human reads and fraction of viral genome covered. c Scatter plot of genome

coverage vs normalized MCPyV copies with virus-positive patients highlighted in red and virus-negative patients in black
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not possible. However, using the normalized viral cover-

age, the estimated number of viral genome copies ranged

between 1 and 1881 copies (median: 7, interquartile

range (IQR) 4–13) (Table 2). When annotating these re-

gions, we observed that they frequently contain enhancer

regions that may contribute to oncogenesis as seen in

HPV-associated tumors [47]. Uniquely, patient MCC026

had integrations in chromosomes 9, 16, and 18, all of

which had integration sites separated by between 107.5

and 129.9 kbp appearing to be distinct events.

Using automated computational methods, we could not

confidently determine an integration site for case MCC037

with the highest viral genome copy number in this study.

Manually interrogating the human sequence hits from the

assembly revealed that it matched a tandem repeat se-

quence flanked by MLT1H2 ERVL-MaLR elements. Based

on the estimated copy number and the assembly graph, the

viral component of this fusion DNA structure is likely

larger than 10 Mbp (Additional file 3: Fig. S6).

With the high depth of coverage facilitated by the

targeted NGS method, high-resolution assemblies for the

integrated virus were generated. Many integrations that

appeared as a single linear contig contained a single copy

of the viral genome flanked by the host genome (Fig. 6c,

Additional file 3: Fig. S6). However, other integrations

generated more complex assembly graphs with a multiple

contigs linked together in a “pigtails” conformation

(Fig. 6d, Additional file 3: Fig. S6). Based on coverage and

conformation, this graph likely represents an integration

event containing partially duplicated viral genome conca-

temers fused to different segments of the human genome.

For samples with distant integration sites, the directional-

ity of the virus-host junctions strongly supports a circular

virus-host DNA fusion intermediate prior to reintegration

into the host chromosome. This model is further sup-

ported by assemblies in which one arm of the fusion con-

tains sequences from both distant sites of the human

genome (Fig. 6e, Additional file 3: Fig. S6).

To address a possible mechanism for integration, we

looked for microhomology between the human and

MCPyV genomes at fusion junctions. We found signifi-

cant enrichment for 4, 5, and 7 bp sequence microho-

mology at the site of integration compared to randomly

selected sites in the human and MCPyV genomes

Fig. 4 MCPyV coverage and mutations from virus-positive cases.

Read coverage for MCPyV in gray and each plot represents a single

patient with their ID in the upper left corner. Scales for the coverage

plots are set from 0 to the maximum read coverage per patient.

Point and insertion-deletion mutations are indicated by vertical lines

located at the start point of the mutation colored by the type of

base substitution. The effects of point mutations within LT antigen

are indicated by a triangle (frameshift) or asterisk (stop gain) at the

top of the vertical line of the mutation
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(Fig. 6f). There was no significant increase in overall

homology between MCPyV and human DNA at integra-

tion sites versus randomly selected sites. Patient

MCC027 had the integration site with the longest

stretch of homology, and MCC041 had both the integra-

tion site with the greatest overall homology on its 3′ end

and lowest homology with no microhomology greater

than 1 bp on its 5′ end (Fig. 6g). Additionally, we anno-

tated integration sites for proximity to repeat elements,

including LINEs, SINEs, LTR retrotransposons, and sim-

ple repeats in the human genome. No type of repeat

element was significantly enriched, but all integration

sites were within 1.5 kb of a repeat element and there

was a trend towards integrations near LTR retrotranspo-

sons and low-complexity regions (Fig. 6h).

Distinguishing virus-positive MCC from virus-negative

MCC using somatic variants in comparison to

immunohistochemistry and PCR

Given the striking differences in the number of muta-

tions and mutational signature we observed in the Viro-

Panel dataset that strongly correlated with virus

integration, we compared the data from the OncoPanel

and POPv3/ViroPanel datasets to determine the viral

status of all 71 tumors studied (Table 3). From the

OncoPanel sequencing, we identified off-target reads for

MCPyV in a total of 18/71 cases, ranging from 1 to 194

reads total. When compared to the ViroPanel data, there

was a rough correlation between the number of off-

target reads and the number of MCPyV reads in the Vir-

oPanel dataset. There were 8 samples with MCPyV reads

in the OncoPanel dataset that were not also analyzed by

ViroPanel. None of these 8 cases have any evidence for a

UV mutational signature.

We assessed the total number of mutations, TMB, UV

signature, and detection of MCPyV reads to characterize

each tumor as either virus-positive MCC or virus-negative

MCC. Using these criteria, we called 25 tumors as virus-

negative. All but one of the virus-negative MCC tumors

had a UV mutational signature and had higher number of

total mutations (18–73), higher TMB, and absence of inte-

grated MCPyV compared to virus-positive MCC. The

virus-negative MCC without a UV signature (MCC007)

originally presented as a subcutaneous breast mass [48]. A

total of 46 MCC tumors of the 71 analyzed were character-

ized as virus-positive. These virus-positive MCC had an ab-

sence of UV mutational signature, a lower number of total

mutations (0–16), and lower TMB than did any of the

virus-negative MCC. The TMB-low and -high categories

had perfect concordance with virus-positive and virus-

negative MCC determined by sequencing, respectively.

The TMB-intermediate samples were mostly virus-

negative (7/9), but the lowest two TMB patients in this cat-

egory are likely virus-positive based on ViroPanel sequen-

cing and absence of UV mutation signature.

FFPE sections were available for 28 of the 71 cases to

assess for MCPyV LT by IHC with antibodies CM2B4

and Ab3. For 8 of the virus-negative MCC, all were

negative by IHC with both antibodies. For 20 virus-

positive MCC cases, we observed 16 stained positive

with both antibodies and 4 were negative (Table 3). In

addition, DNA was tested by PCR with 5 primer sets for

15 cases. In 9 virus-positive MCC cases, all returned

positive results with 2 to 5 primer sets (Table 3). For 6

virus-negative cases, PCR was negative for 5 primer sets

and one was positive with one primer set. Interestingly,

the virus-negative MCC (MCC007) with one PCR pri-

mer set positive also ranked at the TMB borderline

Fig. 5 Residue changes in large and small T antigens in MCC. a Lollipop plot of all LT missense mutations relative to the NC_010227.2 MCPyV

reference with height reflecting the number of observations in our cohort and residue change labeled above the position. LT domains are

highlighted by colored boxes. Below the LT diagram, MAFFT alignment of predicted LT sequences from all virus-positive cases colored by amino

acids. b Lollipop plot of all ST missense mutations relative to the NC_010227.2 MCPyV reference genome
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Fig. 6 (See legend on next page.)
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(9.58) between virus-negative and virus-positive and did

not score as having a UV mutational signature; rather,

the majority of mutations were classified as APOBEC-

associated.

A synoptic review of dermatopathology was available

for 19 cases (Additional file 1: Table S4) [25]. Criteria

evaluated included procedure, site, size (mm), thickness

(mm), lymphovascular invasion, tumor extension, mi-

totic rate, tumor infiltrating lymphocytes (TILs), growth

pattern, neurotropism, and necrosis (%). TILS were

largely absent in both virus-positive and virus-negative

samples. An infiltrative growth pattern was observed in

virus-positive MCC and nodular or nodular infiltrative

observed in both forms of MCC. Neurotropism was

present in three cases of virus-positive MCC and necro-

sis which ranged from 0 to 40%.

Statistical comparison of clinical and molecular

characteristics

Overall, 28 patients remained disease free after initial

therapy and 43 developed one or more relapses or per-

sisted as stage IV (Additional file 2: Fig. S5). According

to the biopsy type and first relapse status, patients could

be grouped into primary biopsy with no further recur-

rence (N = 30), primary biopsy with further recurrence

(N = 22), and recurrence biopsy (N = 19). For all biopsies

annotated as a recurrence, the first recurrence occurred

before the biopsy was obtained. Among the 19 recur-

rence biopsies, 15 were distant metastatic biopsies, one

local recurrence (MCC027), one unspecified recurrence

(MCC063), one second recurrence (MCC057), and one

local recurrence with no prior chemo/XRT (MCC026).

Regardless of the biopsy type, all patients and sequen-

cing data were grouped into either no relapse (N = 30)

or relapse (N = 41). Table 4 shows the association be-

tween relapse and genomic characteristics. Among 71

patients, 30 (42.3%) patients had no relapse and 41

(57.7%) had relapse after initial diagnosis. From Fisher’s

exact test results, UV, RB1 status, TP53 status, and virus

status were all not significantly associated with relapse

(Table 4). If the OncoPanel data obtained after relapse

(and prior treatment) was excluded and restricted to the

52 patients with primary biopsy, UV, RB1 status, TP53

status, and virus status were all not significantly associ-

ated with relapse (Additional file 1: Table S5).

Consistent with known risk factors of MCC, 10 of the 71

cases had immunosuppression diagnosed prior to develop-

ing MCC. Remarkably, 8 of the 10 (80%) of the immuno-

suppressed cases were identified as virus-negative MCC

with relatively high TMB compared to the 28% virus-

negative MCC in immunocompetent patients (Fig. 7a,

Table 5). Virus-negative MCC was present in three pa-

tients with solid organ transplantation; three with auto-

immune diseases including myasthenia gravis, rheumatoid

arthritis, and granulomatosis with polyangiitis; one with

monoclonal gammopathy of undetermined significance

(MGUS); and another with Waldenstrom’s macroglobuli-

nemia. In contrast, virus-positive MCC was identified in a

patient with mantle zone lymphoma having been treated

with Rituximab for 3 years and another with germline mu-

tations in NF1 and GATA2 [49]. The median OS for pa-

tients with immunosuppression was 17.5months (95% CI

5.6–24.4months), significantly shorter than patients with-

out immunosuppression (48.5months, 95% CI 35.4–113.3

months, p < 0.01) (Fig. 7b, Table 5). Immunosuppressed

patients also exhibited significantly shorter recurrence-free

survival, 7.5months (95% CI 3.5–20.1months) and 20.2

months (95% CI 12.9–50.2months, p = 0.01), respectively.

We acknowledge that some cases have relatively short

follow-up times that may impact survival analysis; how-

ever, the association of OS and immunosuppression only

shifts slightly after keeping patients with follow-up times

greater than 6months (n = 63) remaining statistically sig-

nificant. Under this criterion, the median OS for immuno-

competent and immunosuppressed cases were 48.5

months (95% CI 35.4 to 113.3months) and 21.6months

(95% CI 6.9 to 30.7months, p value < 0.01), respectively.

Discussion
We undertook this study to develop an assay to more

accurately distinguish between virus-positive and virus-

negative MCC by genetic features. We built upon an

(See figure on previous page.)

Fig. 6 Characterization of MCPyV integration sites. a Location of integration events in the human genome labeled and colored by patient. b

Coverage of reads corresponding to predicted overlapping integration sites in chromosome 1. Direction of virus-to-host fusion is shown by black

arrows. c–e Representative assembly graphs for different types of viral integrations. Human DNA is a blue gradient and viral DNA is a red gradient

representing different genomic segments. Human chromosome positions at the virus junctions are shown. Detailed assembly graphs for all virus-

positive cases are in Additional file 3: Fig. S6. c Representative single linear assembly graph for integrated MCPyV from case MCC001 on chromosome

3. d Representative assembly graph of partially duplicated MCPyV genome integrated into the tumor genome of MCC025 on chromosome 1. Path for

linearization of assembly graph shown by the dark gray line. e Representative assembly graph of MCPyV genome integrated into chromosome 7 of

MCC071 supporting a circular DNA intermediate diagrammed on the right. f Barplot showing the frequency of microhomology lengths between 2

and 7 bp. Expected values are in black and observed are in gray. Asterisks representing p values from Fisher’s exact test are represented above the bars

(* < 0.05, ** < 0.01). g Diagram of representative integration sites with viral sequence highlighted in yellow and host sequence in blue. Matching bases

between host and virus are in red. h Barplot showing the frequency of repetitive elements within 2 kb of integration sites. Expected values are in black

and observed are in gray. P values from Fisher’s exact test are represented above the bars
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Table 2 MCPyV integration sites

ID Off-target reads ViroPanel reads MCPyV coverage Normalized coverage Integration site(s)

MCC001 0 7562 0.85 0.27197 3:181965781,181965770

MCC002 0 74 0.61 0.00013

MCC003 4

MCC004 0

MCC005 4 87,721 0.77 5.60786 5:20753360,33939328

MCC006 4 37,150 0.77 2.50159 2:196945370,196945371

MCC007 0 971 0.97 0.00317

MCC008 0 69,634 1.00 1.73052 5:149618981,149709442

MCC009 0 3 0.05 0.00004

MCC010 4 111,147 1.00 5.37166 1:116791739,117025123

MCC011 0 212 0.87 0.00039

MCC012 0

MCC013 78 113,184 1.00 5.32306 6:36192882,36282634

MCC014 0 21,307 0.70 1.45712 5:138420218,138511276

MCC015 0 177 0.77 0.00036

MCC016 0

MCC017 0

MCC018 2

MCC019 0 13,343 0.50 0.83000 10:63999700,64000021

MCC020 0 120 0.83 0.00029

MCC021 0 8 0.07 0.00004

MCC022 0 22,715 0.93 0.72455 16:83581326,83890305

MCC023 0 1 0.02 0.00002

MCC024 8 521,049 1.00 24.81107

MCC025 0

MCC026 0 48,346 0.99 2.25473 9:76893837,77023700;
16:47914233,48036152;
18:1561377,1668866

MCC027 0 17,748 0.36 1.84619 1:3582621,4107851

MCC028 0 0 0.00 0.00000

MCC029 0 8808 0.53 0.51872 2:206984157,206984156

MCC030 0 102 0.77 0.00026

MCC031 0

MCC032 14

MCC033 0

MCC034 0 119 0.76 0.00026

MCC035 0 5 0.08 0.00002

MCC036 0 21,479 0.47 1.21591 15:57507670,57507677

MCC037 194 21,095,751 1.00 511.66883

MCC038 0

MCC039 0

MCC040 0 181,807 0.96 7.46100 8:28408988,28457320

MCC041 0 12,858 0.74 0.78054 9:111568335,111579165

MCC042 0 75,177 1.00 1.99230 1:116797448,116797523

MCC043 1 31,969 0.48 3.14034 9:13451094,13451103
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NGS platform that has been instituted as a routine part

of clinical care at the Dana-Farber Cancer Institute,

Brigham and Women’s Hospital, and Boston Children’s

Hospital. The viral hybrid capture assay, ViroPanel, ac-

quired a high number of MCPyV reads for many sam-

ples. Importantly, evidence for specific integration was

associated with all cases with a high number of reads (>

6000). Spurious MCPyV reads were also detected in 19

of 20 MCC cases that were deemed to be virus-negative

by TMB and UV mutations. There was no evidence for

integration in these cases; rather, these reads could be

traced to be extremely low-level contamination from

MCC037 during library preparation or sequencing. In

contrast, true virus-positive MCCs have low TMB with

clear assemblies of virus-host junctions with MCC-

hallmark deletions in the MCPyV genome.

Integration sites were observed in 12 different chro-

mosomes with the most occurring on chromosome 5. In

addition, two fully overlapping integration sites from

two different tumors were observed on chromosome 1

separated by only 10–20 kb. Based on the clonality of de-

letions and point mutations in the MCPyV genome,

these events most likely occurred before or during inte-

gration as was similarly determined from another study

on MCC cell lines [50]. For both MCPyV and HPV, it

has previously been proposed that integration initiates

after DNA double strand breaks in the host genome and

viral genomes, likely during viral genome replication as

integrated viral concatemers are common [8, 51]. In this

study, we identified that integration is then likely medi-

ated through erroneous DNA repair at sites of microho-

mology between the host and viral genomes. This is

Table 2 MCPyV integration sites (Continued)

ID Off-target reads ViroPanel reads MCPyV coverage Normalized coverage Integration site(s)

MCC044 0 35,415 1.00 1.39092 11:79113528,79113529

MCC045 4

MCC046 0 2 0.04 0.00003

MCC047 0 6824 0.40 0.60372

MCC048 0 2 0.04 0.00002

MCC049 0 1 0.02 0.00003

MCC050 0 34,047 0.48 2.10949 6:51146411,51146421

MCC051 7

MCC052 8 74,199 1.00 2.06071 8:113896842,114256794

MCC053 0

MCC054 0 103,352 1.00 2.95039 5:8556313,34193826
(34349919–34349456)

MCC055 0 265 0.96 0.00052

MCC056 6 85,232 0.80 5.65339 6:9659029,9659034

MCC057 0 7 0.09 0.00004

MCC058 3

MCC059 0 1 0.02 0.00003

MCC060 0

MCC061 7

MCC062 0 10,735 0.38 0.66668 7:121478017,121478033

MCC063 0 4 0.07 0.00001

MCC064 0

MCC065 0

MCC066 0

MCC067 10

MCC068 3

MCC069 0 25,483 0.55 1.31799 1:76825442,76826185

MCC070 0 5 0.09 0.00001

MCC071 0 19,543 0.47 1.61800 7:1330002,1593035
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Table 3 Comparison of sequencing, PCR, and IHC for determination of tumor viral status

ID TMB TMB category PCR # primer sets IHC ViroPanel Virus-positive Evidence Add’l VP Evidence UV VP or VN

MCC001 8.5 Intermediate 2 1 Positive ViroPanel PCR IHC 0 VP

MCC002 30.4 High 0 0 Negative UV ViroPanel TM 1 VN

MCC003 0.0 Low 0 VP

MCC004 6.6 Intermediate 0 VP

MCC005 1.6 Low 1 Positive ViroPanel IHC 0 VP

MCC006 3.7 Low Positive ViroPanel 0 VP

MCC007 9.6 Intermediate 1 0 Negative ViroPanel 0 VN

MCC008 2.7 Low 5 1 Positive ViroPanel PCR IHC 0 VP

MCC009 28.2 High 0 Negative UV ViroPanel TM 1 VN

MCC010 4.3 Low 1 Positive IHC 0 VP

MCC011 11.7 Intermediate 0 1 Negative UV TM 1 VN

MCC012 0.0 Low 0 0 VP

MCC013 3.2 Low 5 1 Positive ViroPanel PCR IHC 0 VP

MCC014 3.7 Low 1 Positive ViroPanel 0 VP

MCC015 27.7 High 0 0 Negative UV ViroPanel TM 1 VN

MCC016 23.0 High UV TM 1 VN

MCC017 2.5 Low 0 VP

MCC018 1.6 Low 0 VP

MCC019 4.3 Low Positive ViroPanel 0 VP

MCC020 27.7 High 0 Negative UV TM 1 VN

MCC021 25.0 High Negative UV ViroPanel TM 1 VN

MCC022 3.7 Low Positive ViroPanel 0 VP

MCC023 19.2 Intermediate Negative UV ViroPanel TM 1 VN

MCC024 3.2 Low Positive ViroPanel 0 VP

MCC025 0.0 Low 0 VP

MCC026 4.3 Low Positive ViroPanel 0 VP

MCC027 2.7 Low 4 1 Positive ViroPanel PCR IHC 0 VP

MCC028 29.3 High Negative UV ViroPanel TM 1 VN

MCC029 5.3 Low 0 0 VP

MCC030 38.9 High 0 0 Negative UV ViroPanel TM 1 VN

MCC031 1.6 Low 0 VP

MCC032 1.1 Low 0 VP

MCC033 5.3 Low 1 Positive ViroPanel IHC 0 VP

MCC034 28.8 High 0 0 Negative UV ViroPanel TM 1 VN

MCC035 11.2 Intermediate Negative UV ViroPanel TM 1 VN

MCC036 3.2 Low 4 1 Positive ViroPanel PCR IHC 0 VP

MCC037 4.8 Low 1 Positive ViroPanel IHC 0 VP

MCC038 1.6 Low 0 VP

MCC039 22.4 High UV TM 1 VN

MCC040 3.7 Low Positive ViroPanel 0 VP

MCC041 2.1 Low Positive ViroPanel 0 VP

MCC042 2.1 Low Positive ViroPanel 0 VP

MCC043 4.3 Low Positive ViroPanel 0 VP

MCC044 5.3 Low 2 1 Positive ViroPanel PCR IHC 0 VP
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similar to mechanisms identified for microhomology-

mediated end joining (MMEJ) for HPV genome integra-

tion in tumors, but it has yet to be determined if the

same host factors are involved [52]. For both MCPyV

and HPV mediated tumors, the MMEJ event frequently

leads to the formation of a transiently circular DNA

intermediate, which can be amplified through aberrant

firing of the viral origin of replication [53]. The resulting

large linear DNA then reintegrates into the chromosome

and appears as amplified regions of the host genome in

a tandem head-to-tail conformation interspersed with

the viral genome [8].

Case MCC026 has three apparently separate integration

events occurring on different chromosomes. The integra-

tion event on chromosome 16 only contains a small sec-

tion of the viral genome from positions 2853–3521, which

would only encode the helicase domain of LT and there-

fore is unlikely to contribute to tumor survival. Conversely,

the event on chromosome 18 has a full copy of the viral

genome while the event on chromosome 9 contains the

NCCR, ST, and a truncated LT, likely sufficient to contrib-

ute to oncogenesis. Based on the assembly graphs and

coverage, one or both of these integration events have

more than one copy of ST and LT (Fig. 4 and Add-

itional file 3: Fig. S6). Distinct sequences derived during as-

sembly and the distances between the intrachromosomal

junctions (107–129kbp) indicate that these likely are separ-

ate events, but only long-read sequencing of this tumor

can definitively determine that these are not part of a larger

interchromosomal translocation.

The most common chromosomal copy number changes

involved chromosomes 1 and 10. Amplification of 1p (clus-

ter 4) involving MYCL was observed more commonly in

virus-negative cases, but was identified in a few virus-

positive cases. Interestingly, in virus-positive MCC, MCPyV

ST binds MYCL and the EP400 chromatin modifying

Table 3 Comparison of sequencing, PCR, and IHC for determination of tumor viral status (Continued)

ID TMB TMB category PCR # primer sets IHC ViroPanel Virus-positive Evidence Add’l VP Evidence UV VP or VN

MCC045 2.1 Low 1 Positive ViroPanel IHC 0 VP

MCC046 20.8 High Negative UV ViroPanel TM 1 VN

MCC047 2.1 Low 1 Positive ViroPanel IHC 0 VP

MCC048 26.6 High Negative UV ViroPanel TM 1 VN

MCC049 34.1 High Negative UV ViroPanel TM 1 VN

MCC050 4.8 Low Positive ViroPanel 0 VP

MCC051 3.2 Low 1 Positive ViroPanel IHC 0 VP

MCC052 2.1 Low 0 VP

MCC053 0.0 Low 3 0 PCR 0 VP

MCC054 3.7 Low 3 1 Positive ViroPanel PCR IHC 0 VP

MCC055 30.9 High Negative UV ViroPanel TM 1 VN

MCC056 3.7 Low Positive ViroPanel 0 VP

MCC057 29.8 High Negative UV ViroPanel TM 1 VN

MCC058 1.1 Low 0 VP

MCC059 19.2 Intermediate Negative UV ViroPanel TM 1 VN

MCC060 1.1 Low 0 VP

MCC061 2.1 Low 0 VP

MCC062 4.8 Low 4 0 Positive ViroPanel PCR 0 VP

MCC063 27.2 High Negative UV ViroPanel TM 1 VN

MCC064 25.6 High UV TM 1 VN

MCC065 13.3 Intermediate UV TM 1 VN

MCC066 18.6 Intermediate UV TM 1 VN

MCC067 0.5 Low 0 VP

MCC068 2.1 Low 0 VP

MCC069 4.3 Low 1 Positive ViroPanel IHC 0 VP

MCC070 29.8 High Negative UV ViroPanel TM 1 VN

MCC071 3.2 Low 0 VP

IHC MCPyV staining, 0 = negative, 1 = positive; UV UV signature present, 0 = negative, 1 = positive
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complex to activate transcription of several hundred target

genes [54]. Amplification of MYCL is likely to be an onco-

genic event that contributes to MCC aggressiveness. Amp-

lification of Chr1q (cluster 13) was also observed in both

virus-positive and virus-negative MCC. This region in-

cludes MDM4, whose protein product cooperates with

MDM2 to promote the ubiquitination and subsequent deg-

radation of p53 [43, 44]. There may be additional pro-

oncogenic genes in this cluster that contribute to MCC

oncogenesis when p53 is mutated. Heterozygous loss of

chromosome 10 (cluster 14) was observed in 26/71 MCC

including both virus-positive and virus-negative tumors.

Loss of chromosome 10 likely reduces PTEN levels con-

tributing to activation of the PI3K signaling pathway.

A recurrent amplification of chromosome 6 has previ-

ously been observed for MCC; however, this observation

predated the discovery of MCPyV and was not associated

with morphology or outcome [55]. In other cancers, such

as basal cell carcinoma and ovarian cancer, this amplifica-

tion is typically associated with worse outcome [55]. Al-

though the chromosome 6 amplification in this study was

significantly associated with better overall survival, it was

also more frequent in metastasis. This amplification con-

tains genes such as VEGFA, which promotes angiogenesis

and has been observed to be expressed at higher levels in

distant ovarian cancer metastases [56]. Interestingly, further

analysis of genes that are more abundantly mutated in the

sequenced metastatic lesions, revealed statistically signifi-

cant (q = 2.47 × 10− 7) pathway enrichment for angiogenesis

as well as EGFR signaling and p53 dysregulation. FANCE is

also carried on this chromosome and as a DNA damage re-

sponse gene act to limit number of point mutations and

copy number changes observed in virus-positive MCC, hin-

dering tumor evolution. Together, this amplification co-

occurring with MCPyV may represent a less fatal, but more

metastatic subtype of MCC. Additionally, this result could

be impacted by diagnosis, treatment, or study recruitment

of metastatic MCC.

Unexpectedly, we observed that 8 of 10 cases with im-

munosuppression were virus-negative MCC. While it

was recognized in the early 1990s that individuals with

hematologic malignancies that developed MCC had a

poor prognosis [57], it was not until 1997 when a direct

link between immunosuppression and MCC was postu-

lated [58]. At that time, a correlation was noted between

medically induced immunosuppression with azathio-

prine and cyclosporine and the development and rapid

spread of MCC. Early reports highlighted a prolonged

period of immunosuppression prior to MCC develop-

ment. Notably, the search for a viral pathogen in MCC

was initiated because of reports linking MCC with im-

munosuppression and with HIV-1/AIDS [2]. A subse-

quent report has shown similar rates of MCPyV-

positivity in immunocompetent and suppressed patients,

but relied on PCR and IHC for virus detection [18].

In the present report, three solid organ transplant recip-

ients, three with chronic autoimmune diseases, and two

with hematologic malignancies developed virus-negative

Table 4 Association between relapse and genomic sequencing (N = 71)

Relapse or not

Characteristics All (N = 71) No relapse (N = 30) Relapse (N = 41) Fisher’s exact test
p value

UV

Negative 47 (66%) 20 (67%) 27 (66%) > 0.99

Positive 24 (34%) 10 (33%) 14 (34%)

pRB status

Mutate 32 (45%) 13 (43%) 19 (46%) 0.81

Wild type 39 (55%) 17 (57%) 22 (54%)

p53 status

Mutate 31 (44%) 13 (43%) 18 (44%) > 0.99

Wild type 40 (56%) 17 (57%) 23 (56%)

Virus positive or negative

VN 25 (35%) 10 (33%) 15 (37%) 0.81

VP 46 (65%) 20 (67%) 26 (63%)

pRB and p53

pRB = M, p53 =M 24 (34%) 10 (33%) 14 (34%) > 0.99

pRB = M, p53 =W 8 (11%) 3 (10%) 5 (12%)

pRB=W, p53 =M 7 (10%) 3 (10%) 4 (10%)

pRB=W, p53 =W 32 (45%) 14 (47%) 18 (44%)
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MCC. It is well established that the risk for developing

MCC is increased in patients with chronic inflammatory

disorders such as rheumatoid arthritis or medically in-

duced immunosuppression for solid organ transplantation

[58–61]. Within the latter population, skin cancers ac-

count for 40–50% of all posttransplant malignancies with

squamous cell carcinoma (SCC) and basal cell carcinoma

(BCC) comprising 90–95% of these skin cancers [62].

Importantly, some therapeutics used in organ transplant-

ation are known to further increase risk for developing

skin cancers. Azathioprine can sensitize cells to UV-

induced damage through the incorporation of a metabol-

ite into DNA that generates reactive oxygen species upon

exposure to UV light [63]. In patients with rheumatoid

arthritis, methotrexate and anti-TNF drugs were associ-

ated with an increased risk of nonmelanoma skin cancer

Fig. 7 Clinical outcome based on mutation signature, virus status, and immune suppression. a Pie charts representing the portion of patients that

are virus-positive (VP, red) or virus-negative (VN, gray) and immunocompetent or immunosuppressed. b Kaplan-Meier plot of overall survival of

immunocompetent (black) and immunosuppressed (red) MCC patients
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[64]. The increased risk for skin cancers in organ trans-

plant recipients and rheumatoid arthritis is associated with

UV-light-induced mutagenesis for SCC and BCC. There-

fore, the increased risk for UV-induced skin cancers may

also extend to virus-negative MCC. Although this study is

one of the largest molecular studies on MCC genetics to

date, the small sample size and inherent confounding fac-

tors of studying outcome in a cancer that manifests in

older populations are important limitations. This also

highlights the need for accurate determination of virus sta-

tus and importance to continue to study this rare cancer to

fully address the involvement of immune suppression on

the etiology and outcome of this aggressive cancer.

Despite the significant differences in the TMB between

virus-positive and virus-negative MCC, there were few

phenotypic differences in the two types of MCC. Based

on histopathological features alone, two subtypes of

MCC can be recognized: pure neuroendocrine tumors

Table 5 Association between patient characteristics and immunosuppression using Fisher’s exact test

Immunosuppression

Characteristics All (N = 71) No (N = 61) Yes (N = 10) Fisher’s exact test
p value

Gender

Female 31 (44%) 29 (48%) 2 (20%) 0.17

Male 40 (56%) 32 (52%) 8 (80%)

Race

Black or African American 2 (3%) 2 (3%) 0 (0%) > 0.99

White 69 (97%) 59 (97%) 10 (100%)

Age at initial diagnosis, years

< =70 36 (51%) 32 (52%) 4 (40%) 0.51

> 70 35 (49%) 29 (48%) 6 (60%)

Initial site

Head 19 (27%) 14 (23%) 5 (50%) 0.39

LE 15 (21%) 14 (23%) 1 (10%)

Trunk 23 (32%) 21 (34%) 2 (20%)

UE 14 (20%) 12 (20%) 2 (20%)

AJCC stage at initial diagnosis

I 19 (27%) 16 (26%) 3 (30%) 0.96

II 10 (14%) 9 (15%) 1 (10%)

III 30 (42%) 25 (41%) 5 (50%)

IV 12 (17%) 11 (18%) 1 (10%)

Prior chemotherapy or radiation

No 53 (75%) 46 (75%) 7 (70%) 0.71

Yes 18 (25%) 15 (25%) 3 (30%)

UV

Negative 47 (66%) 45 (74%) 2 (20%) < 0.01

Positive 24 (34%) 16 (26%) 8 (80%)

RB1 status

Mutant 32 (45%) 24 (39%) 8 (80%) 0.04

Wild type 39 (55%) 37 (61%) 2 (20%)

TP53 status

Mutant 31 (44%) 25 (41%) 6 (60%) 0.31

Wild type 40 (56%) 36 (59%) 4 (40%)

Virus positive or negative

VN 25 (35%) 17 (28%) 8 (80%) < 0.01

VP 46 (65%) 44 (72%) 2 (20%)
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and combined tumors with neuroendocrine and diver-

gent (mainly squamous) differentiation. Most pure tu-

mors are MCPyV-positive and CK20-positive while

combined tumors are uniformly MCPyV-negative and

occasionally CK-20 negative [9, 65]. Virus-negative MCC

can also present as pure neuroendocrine-type MCC.

While genomic sequencing has revealed that virus-

negative MCC has evidence for a high degree of UV

damage, this does not exclude a role for UV exposure in

the development of virus-positive MCC. The relative

lack of UV damaged DNA in virus-positive MCC indi-

cates that the etiologies are clearly different, suggesting

that the precursor to virus-negative MCC was a recipient

of lifelong intense UV exposure while the virus-positive

MCC were not exposed to sunlight for the same degree

or for as long. It was reported that the early promoter of

MCPyV responds to UV exposure and that levels of ST

mRNA increased in UV exposed skin from a healthy hu-

man volunteer [66]. Transient UV exposure could affect

the immune response to virus-negative and virus-

positive MCC etiology. The effect of UV radiation in the

pathogenesis of MCC has been suggested to be more

likely a result of immune modulation rather than direct

effects on DNA itself [67].

Conclusions
Here we present a comprehensive characterization of

the Merkel cell carcinoma genetics using a clinically im-

plemented sequencing platform. This platform was aug-

mented using a hybrid capture baitset against Merkel

cell polyomavirus. From our analyses, we identified CNV

clusters unique to and common to virus-negative and

virus-positive, which reflect the evolutionary mecha-

nisms of the tumors. We also accurately reconstructed

the viral integration events providing clear evidence for

a circular host-fusion DNA intermediate initiated by re-

combination at 4+ bp microhomology enriched at low-

complexity regions in the human genome. Lastly, we ob-

served a surprising number of virus-negative tumors in

immunosuppressed patients in our cohort potentially

reflecting a previously misunderstood risk population.
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