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Summary 

This review provides an update on the current clinical and preclinical understanding of 

chemotherapy induced peripheral neuropathy (CIPN). The overview of the clinical syndrome, 

includes a review of its assessment, diagnosis and treatment. CIPN is caused by several widely-

used chemotherapeutics including paclitaxel, oxaliplatin, bortezomib. Severe CIPN may require 

dose reduction, or cessation, of chemotherapy, impacting on patient survival. While CIPN often 

resolves after chemotherapy, around 30% of patients will have persistent problems, impacting on 

function and quality of life. Early assessment and diagnosis is important, and we discuss tools 

developed for this purpose. There are no effective strategies to prevent CIPN, with limited 

evidence of effective drugs for treating established CIPN. Duloxetine has moderate evidence, with 

extrapolation from other neuropathic pain states generally being used to direct treatment options 

for CIPN. The preclinical perspective includes a discussion on the development of clinically-

relevant rodent models of CIPN and some of the potentially modifiable mechanisms that have been 

identified using these models. We focus on the role of mitochondrial dysfunction, oxidative stress, 

immune cells and changes in ion channels from summary of the latest literature in these areas. 

Many causal mechanisms of CIPN occur simultaneously and/or can reinforce each other. Thus, 

combination therapies may well be required for most effective management. More effective 

treatment of CIPN will require closer links between oncology and pain management clinical teams 

to ensure CIPN patients are effectively monitored. Furthermore, continued close collaboration 

between clinical and preclinical research will facilitate the development of novel treatments for 

CIPN. 
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Introduction 

Neuropathic pain, defined as " Pain caused by a lesion or disease of the somatosensory nervous 

system” is a challenging clinical problem, with up to 8% of the population suffering from moderate to 

severe pain. 1, 2, 3. Neuropathic pain may have an even greater impact on patients than other chronic 

pain syndromes with affected individuals rating their quality of life as "worse than death" , on the EQ-

5D, a validated quality of life measure 3. Unfortunately, many modern chemotherapeutic agents can 

cause both acute and chronic peripheral neuropathy - chemotherapy induced peripheral neuropathy 

(CIPN) 4. During oncological treatment, the severity of the acute syndrome may require reducing the 

dose of chemotherapy or even stopping it, with potential impact on tumour control and survival.  

 

Chemotherapy-induced painful neuropathy (CIPN) is a major dose-limiting side effect of several 

first-line chemotherapeutic agents 5-10. CIPN is a challenging and complex pain syndrome that we 

have no effective preventive and limited treatment options for currently. CIPN can have a major 

and prolonged impact on quality of life for patients. As oncological treatments have advanced, 

cancer survival has increased significantly, with many patients either being cured of cancer or 

living for many years with cancer. Given the prevalence of the common cancers (e.g. breast, 

ovarian, colorectal) these chemotherapeutics counteract, CIPN affects several million patients 

worldwide each year. CIPN also places a significant economic burden on patients due to workloss 

and the healthcare system due to its prevalence 11.  Effective collaboration between preclinical and 

clinical researchers is needed to translate improved understanding of the underlying mechanisms 

into development of effective preventive and treatment strategies 12. This review aims to provide an 

overview of the clinical syndrome, its assessment, diagnosis and treatment, and how our improved 

understanding of underlying mechanisms contribute to this. While there are, multiple factors 

contributing to CIPN, we will focus on the role of mitochondrial dysfunction, oxidative stress, 

immune cells and changes in ion channels in CIPN rodent models. 
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CIPN: The Clinical Syndrome 

CIPN usually presents as a typical "glove and stocking" neuropathy. Patients describe a range of 

predominantly sensory symptoms including numbness, parathesia, ongoing/spontaneous pain, 

hypersensitivity to mechanical and/or cold stimuli in their hands and feet. In more severe cases, loss 

of vibration sense and joint position sense contribute to the impact on function. Autonomic and motor 

dysfunction may also occur. Patients can have significant difficulty in essential daily functions 

including difficulty in fine finger movement such as buttoning clothing, and unsteady gait (numbness, 

loss of joint position sense); pain on walking (mechanical hypersensitivity); inability to remove items 

from a fridge, or exacerbation in cold weather (cold hypersensitivity). CIPN may present acutely, 

during chemotherapy, such as is commonly seen with platinum based compounds 13. It may also 

occur after treatment has finished - a phenomenon known as "coasting" -where either mild 

neuropathy worsens, or new CIPN develops. This is challenging for oncologists, as there is no 

indication during chemotherapy to allow dose modification in order to reduce CIPN 14. Pain and 

sensory abnormalities can persist for months or years following the cessation of chemotherapy 5, 15, 

16. Therefore, patients may well be cancer-free, but suffering a debilitating neuropathy evoked by 

their cancer treatment.  

 

Peripheral neuropathy has been long associated with established drugs such as platinum agents 

(e.g. oxaliplatin), vinca alkaloids (e.g. vincristine), and taxanes (e.g. paclitaxel). However, newer, 

more targeted drugs, such as bortezomib, eribulin and ixabepilone 4, 17 are also associated with 

significant incidence of peripheral neuropathy. All of these chemotherapeutics have different 

mechanisms by which they evoke their anti-mitotic effects e.g. perturbation of microtubule dynamics, 

DNA cross-linking, proteasome inhibition. Whether all these drugs evoke neurotoxicity by similar 

mechanisms remains to be determined. 

 

Prevalence and risk factors for CIPN 

The prevalence of CIPN varies between different agents, with reported rates varying from 19% to 

more than 85% 18. While the agent and dose used is an important determining factor, there is no 

doubt that the lack of a gold standard agreed assessment tool impacts on reported rates of CIPN 19. 
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A systemic review and meta-analysis of CIPN incidence and prevalence with paclitaxel, bortezomib, 

cisplatin, oxaliplatin, vincristine or thalidomide (solo or combination) treatment demonstrated the 

persistence of this disorder 20. CIPN was observed in 68.1%, 60%, and 30% of patients, within the 

first month, at 3 months, and at ≥6 months, respectively, after cessation of chemotherapy, when 

looking at chemotherapy as a whole. While type of chemotherapy is important, at least part of the 

variability in reported prevalence was due to differences in the timing of assessment 20.   

 

A number of possible risk factors have been identified, including genetic factors, although there is a 

need for more systematic evaluation of potential contributory factors.  A number of single nucleotide 

polymorphisms potentially associated with CIPN have been identified through Genome Wide 

Association Studies. Proteins with a range of functions have been identified, including axon 

outgrowth, sodium channels and neuronal apoptosis 21-25. Studies of clinical risk factors are limited, 

often with small sample sizes. From the available data for CIPN, a history of neuropathy prior to 

starting chemotherapy (eg diabetic), impaired renal function with reduced creatinine clearance, and 

a history of smoking may all increase risk of developing CIPN. The cumulative dose of chemotherapy 

is well recognised as a major risk factor, with growing interest in the effect of levels of circulating 

growth factors or other biological markers as a means of early identification of quantifiable risk factors 

20. 

 

Assessment and diagnosis of CIPN 

There is currently no widely accepted, standardized assessment approach for diagnosis of CIPN 

per se. There are a number of guidelines on assessment and diagnosis of neuropathic pain in 

general, which may be useful in CIPN 26-28.  Onset of symptoms during, or shortly after, 

chemotherapy is normally described, often affecting feet first, then with impairment of sensation in 

fingers and hands.  If patients describe abnormalities in sensation, or these are detected on clinical 

examination, then CIPN should be suspected. Early identification allows treatment decisions about 

continuation, or not, of chemotherapy to be better informed, as well as allowing initiation of anti-

neuropathic agents, if appropriate 29, 30.  
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Accurate understanding of the epidemiology of CIPN, early identification and treatment of the 

clinical problem and evaluation of new treatments would all be improved by a standardized 

approach.  The aim of the CI-PeriNomS Study Group was to assess reproducibility and validity of 

existing measures, and if necessary develop a simple and reproducible assessment for CIPN to try 

and meet this need 31. A number of the tools available for assessing CIPN have been robustly 

assessed and show good reliability and validity (see table 1) 32. From this, abnormalities in 

monofilament testing and vibration perception may be useful in identifying CIPN 33-35. Quantitative 

sensory testing (QST) is recommended as part of neuropathic pain assessment, and may have 

clinical utility in early assessment of CIPN. 26, 27. There is some evidence that there are baseline 

QST deficits in cancer patients even prior to starting chemotherapy, that may predispose them to 

developing CIPN, raising the possibility that the cancer process itself may be involved 36. Sensory 

abnormalities, for example with raised detection threshold of small bumps of variable quantified 

sizes ("bumps test"), with an associated reduction in Meissner's Corpuscles counts were found in 

patients before chemotherapy. Furthermore, long-term outcome for pain and sensory disturbances 

during chemotherapy was more pronounced in patients with baseline sensory deficits compared to 

patients who presented without deficits 37, 38.  

 

In patients with established CIPN QST abnormalities indicate deficits in A-beta fibe (altered touch 

detection to monofilaments, and altered bumps test), A-delta fibre (impaired sharpness detection) 

and C-fibre (pin prick) function. The importance of these findings is that classes of primary afferent 

fibers show differential impairments, indicating that the underlying mechanisms are particular to 

nerve fiber types as opposed to a non-specific toxicity 16, 39, 40. Changes in QST have been shown 

to be associated with alterations in epidermal nerve fibre density, occurring in a pattern that 

matches the distribution of symptoms, such that the lowest counts are in the painful area, but get 

progressively higher moving proximal where the symptoms change to numbness and then to no 

complaint. The decrease in ENF density matches the QST data in these patients in that they had 

elevated pain and sharpness detection thresholds in the fingers and palm 16, 41 . Currently, routine 

clinical assessment of patients undergoing chemotherapy often does not include measurement of 
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sensory function. Based on the current evidence, simple tests of vibration sense or light touch may 

be useful clinical tools, that merit further study.  

  

Prevention and treatment of CIPN 

Many RCTs have investigated potential therapies for the prevention of CIPN development or 

reversal of established CIPN. However, clinical practice guidelines from the American Society of 

Clinical Oncology (ASCO) following a systematic review of this literature did not recommend any 

agent for the prevention of CIPN. There have been a number of small trials of agents to prevent 

CIPN developing, ranging from acteyl-l-carnitine to vitamin E, with no evidence of major benefit 30. 

Treatment of CIPN is mainly based on evidence from other chronic neuropathic pain conditions, 

rather than specifically targeting underlying mechanisms in CIPN.  A comprehensive review of the 

evidence base for all types of neuropathic pain found some overestimation of the treatment effect 

(~10%), with combined numbers needed to treat (NNTs) being modest (table 2). In the ASCO 

guidelines, specifically about CIPN, a moderate recommendation was made for duloxetine in the 

treatment of established CIPN. Generally, whilst evidence for agents used in other neuropathic 

pain syndromes (as shown in table 2) is lacking for CIPN, it is still reasonable to try them, after 

appropriate discussion with the patient.  There was also a weak recommendation for a topical  gel 

containing baclofen (10mg), amitripyline (40mg) and ketamine (20mg), based on one study 30, 42. 

As preventative/curative treatment options for CIPN are currently limited, dose reduction or 

cessation of chemotherapy is often associated with the emergence of symptoms of neuropathy 43. 

Thus, CIPN potentially impacts on both the quality of life and survival of cancer patients. There are 

a number of areas of therapeutic interest arising from preclinical studies. 

 

Animal models of CIPN 

Developing rodent models of CIPN which replicate all the symptoms that patients report is somewhat 

challenging because numbness, tingling and ongoing pain all rely on verbal report from the patient. 

Thus, most studies have focussed on measuring evoked pain-like behaviours as has been the case 

for preclinical studies with other chronic pain models. Investigations into novel measures of 
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spontaneous pain in CIPN rats are ongoing and paclitaxel-induced deficits in burrowing behaviour 

and voluntary wheel running were recently observed (data shown at NeupSIG 2017). Rat and mice 

models of CIPN have been reported following administration of different chemotherapeutics 

including paclitaxel, docetaxel, vincristine, cisplatin, oxaliplatin, bortezomib 44, 45. Initial work 

investigating the neurotoxicity associated with paclitaxel involved direct application of paclitaxel to 

peripheral nerves resulting in degeneration and specific aggregation of microtubules 46-48. However, 

the relevance of such local application of chemotherapy to understanding mechanisms of CIPN that 

are evoked by systemic administration is limited due to the high endoneurial concentration.  In later 

studies, rodent models of paclitaxel-induced painful neuropathy were developed using systemic 

paclitaxel administered via intravenous or intraperitoneal routes e.g. 49, 50. In fact, most of the dosing 

regimens (reviewed in 44, 45) utilized to create rodent CIPN models involve intermittent systemic 

administration to mimic cycles of chemotherapy as opposed to daily dosing.  

 

Typically, most models of CIPN involve the solo administration of a given chemotherapeutic in the 

absence of tumour load. However, there are reports using a rat model possessing an implanted 

subcutaneous tumour with combined paclitaxel and cisplatin treatment 51, 52. Animal health must be 

considered when employing rodent models of CIPN for ethical reasons and practical feasibility. Pain-

like behaviours cannot be accurately assessed if rodents are ill due to systemic toxicity and thus 

lethargic/unresponsive to hind paw stimulation. Although rodent models of CIPN with a tumour could 

be considered as more clinically relevant, the practical/ethical issues of this should not to be 

underestimated. In addition, as chemotherapy is often received after surgical removal of the tumour 

to eliminate possible micro-metastases, modelling CIPN through chemotherapy administration alone 

is a valid approach. For new preclinical investigations, the use of established intermittent dosing 

schedules to generate CIPN models is encouraged as much as possible. Wide adoption of the same 

dosing schedules across different laboratories would further understanding of causal mechanisms 

of CIPN and enhance reproducibility. 
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CIPN models typically display sensory symptoms such as mechanical allodynia, mechanical 

hyperalgesia, cold allodynia, and in some reports, heat hyperalgesia. tOxaliplatin-induced peripheral 

neuropathy is associated with an acute cold/mechanical hypersensitivity within hours of 

administration and a chronic neuropathy. Both syndromes can be replicated in rats and mice at a 

range of systemic doses 45. Studies with paclitaxel demonstrated that the cumulative dose 

administered affects both the integrity of peripheral nerves and the behavioural symptoms evoked. 

Systemic administration of low-doses of paclitaxel (<10mg/kg cumulative dose) did not markedly 

affect neural microtubule structure or cause aggregation 53 as observed following epineural 

administration 46-48. Following low dose paclitaxel, neurodegeneration was not evident mid-axon or 

in the DRG 53, however there is a loss of intraepidermal nerve fibres (IENFs) 54, 55. Greater degrees 

of degeneration in peripheral nerves and the DRG were caused by larger cumulative doses of 

paclitaxel (<16mg/kg) in a dose-dependent manner 49, 56-58. The dose-dependent effects of paclitaxel 

administration have also been observed in patients, where the incidence and severity of neuropathic 

signs and symptoms increased relative to increasing cumulative doses of paclitaxel 59. Paclitaxel-

evoked behaviours in rodents are also dose-dependent. Mechanical and cold allodynia without motor 

deficit are observed at low doses 50, 60, 61. In contrast, heat hypoalgesia and motor deficit is reported 

at high doses, which is likely indicative of significant neurodegeneration 49, 62-64. Collectively, these 

studies indicate that pain associated with CIPN is not necessarily a result of marked peripheral nerve 

degeneration.  

 

Role of mitochondrial dysfunction in CIPN 

Over the last decade, research has identified mitochondrial dysfunction has a significant contributory 

factor in CIPN. The first preclinical evidence identified swollen and vacuolated mitochondria in both 

myelinated axons and C-fibres in peripheral sensory nerves following systemic paclitaxel 53. 

Paclitaxel-induced changes in neuronal mitochondria, correlated to the development and 

maintenance of paclitaxel-induced pain syndrome i.e. present prior to and during paclitaxel-induced 

pain, but absent when the pain syndrome had resolved 53. These low dose paclitaxel-induced 

mitochondrial changes in C-fibres and myelinated axons have since been confirmed by many groups 
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65-70. Paclitaxel increased the incidence of swollen/vacuolated mitochondria in dorsal root C-fibres 

and A-fibres 66 and the DRG 70-72, but not in the ventral root or Schwann cells 66. There is also 

evidence for mitochondrial dysfunction from the clinical literature. Two case reports show electron 

micrographs of sensory axons containing swollen, vacuolated mitochondria in sural nerve biopsies 

from patients with chemotherapy-induced neuropathy evoked by paclitaxel 73 and docetaxel 74. 

Swollen/vacuolated mitochondria have also been observed in C-fibres and A-fibres of rat models of 

oxaliplatin-induced painful neuropathy 75 and bortezomib-induced painful neuropathy 76. The 

presence of swollen mitochondria does not indicate the nature of mitochondrial dysfunction evoked. 

This can be determined through assays of mitochondrial function. Significant decreases in complex 

I-stimulated and complex II-stimulated respiration in sciatic nerves from paclitaxel-, oxaliplatin and 

bortezomib-treated rats were observed prior to, and during chemotherapy-induced pain behaviour 

76, 77. Recent data discussed at NeupSIG 2017 demonstrates the maximal respiration and spare 

reserve capacity (the respiratory ability of the cell to overcome stress) were significantly decreased 

in DRG neurons from paclitaxel-treated rats prior to pain onset 78. During paclitaxel-induced pain, 

these OXPHOS-driven respiratory deficits in DRG neurons resolved, yet DRG neurons become more 

glycolytic in their function and preferentially switch to glycolysis from OXPHOS. The switch to 

glycolysis may be an adaptive mechanism to produce less ROS and prevent apoptosis through the 

increased pentose phosphate pathway activity and elevated glutathione peroxidase levels 79. These 

paclitaxel-evoked changes in bioenergetics are also associated with decreased ATP. Prior to and 

during paclitaxel-induced pain, less ATP was present in DRG neurons in situ 78, yet deficits in ATP 

production in peripheral nerves are only observed during maximally stimulated conditions 77, 80. There 

was no change in the bioenergetic status of DRG neurons of paclitaxel-treated rats when the pain 

syndrome had resolved 78 further indicating the contribution of these factors to the development and 

maintenance of paclitaxel-induced pain.  

 

Several studies have examined in vivo pharmacological modulation of the mitochondrial electron 

transport chain (ETC) in CIPN models 81-83. Differential effects of specific complex inhibition have 

been observed (reviewed in 84) which may be explained by route of drug administration, inhibitor in 
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question or time point examined post chemotherapy administration. For example, antimycin A 

(complex III inhibitor) significantly inhibited the development of paclitaxel-induced mechanical 

hypersensitivity when given before and during paclitaxel administration, but had no effect when given 

after paclitaxel administration 83. Other pharmacological reagents that directly interact with 

mitochondria and their function in different ways have shown their potential to alleviate CIPN 53, 69, 70, 

85-87. Acetyl-L-carnitine (ALC) is involved in free fatty acid oxidation and acts as an antioxidant. 

Prophylactic ALC administration prevented the development of paclitaxel-induced mechanical 

hypersensitivity 53; paclitaxel-evoked increase in swollen/vacuolated mitochondria in C-fibres 65; and 

paclitaxel-, oxaliplatin and bortezomib-evoked compromises in mitochondrial respiration in sciatic 

nerves 76, 77. Despite promising preclinical data 88-91 and an open-label phase II trial of CIPN patients 

92, a placebo-controlled RCT reported prolonged ALC treatment was associated with more severe 

paclitaxel-evoked neurotoxicity in breast cancer patients 93. TRO19622 /Olesoxime, which directly 

binds to mitochondria (at the mPTP), attenuated chemotherapy-induced mechanical hypersensitivity 

and IENF loss, but had no effect on paclitaxel-induced spontaneous discharge in C- and A-fibres 85, 

86. Inhibition of mitochondrial fission significantly attenuated oxaliplatin-induced mechanical 

hyperalgesia 87. Pifithrin-μ, an inhibitor of mitochondrial p53 accumulation, prevented development 

of paclitaxel- and cisplatin-induced mechanical hypersensitivity70. Pifithrin-μ also prevented 

paclitaxel-evoked mitochondrial changes in sensory neurons and IENF loss with evidence of 

enhancement of paclitaxel’s anti-tumour effects 70. Similarly, minoxidil was recently shown to prevent 

paclitaxel-evoked nociceptive behaviour and mitochondrial changes in sensory neurons 

accompanied with augmentation of paclitaxel’s anti-tumour action 69.  

Role of oxidative stress in CIPN  

Mitochondria are a major source of reactive oxygen species (ROS) and increased ROS production 

can be a consequence of mitochondrial dysfunction. However, there are other cellular sources of 

ROS and reactive nitrogen species (RNS). Evidence for ROS involvement in neuropathic pain 

dates back to the 1990s e.g. 94 and ROS/RNS have multiple effects on neuronal excitability 

(reviewed in 95). The role of oxidative stress in CIPN has been examined in vivo using 

pharmacological reagents that scavenge ROS. PBN, a non-specific ROS scavenger, inhibited the 
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development of paclitaxel-induced mechanical hypersensitivity 96, 97; reversed established 

paclitaxel-induced mechanical & cold hypersensitivities 96, 97; and bortezomib-induced mechanical 

hypersensitivity 98. High doses of TEMPOL, a superoxide dismutase mimetic, inhibited the 

development and maintenance of paclitaxel-induced mechanical hypersensitivity 97, 99, but was 

ineffective on cold allodynia 97. Another SOD mimetic, MnL4, inhibited oxaliplatin-induced 

mechanical and cold hypersensitivities 100. Peroxynitrite decomposition catalysts have been shown 

to reverse established paclitaxel-induced mechanical hypersensitivity 101 and to also prevent the 

development of mechanical hypersensitivity induced by paclitaxel, oxaliplatin and bortezomib 80, 101. 

Novel mitochondria-targeted antioxidants have also been evaluated. SS-31 attenuated oxaliplatin-

induced cold & mechanical hypersensitivities 102. MitoVitE attenuated the development of 

paclitaxel-induced mechanical hypersensitivity 103.  

 

Other studies have measured ROS/RNS levels within the nociceptive system of CIPN models in 

vivo to understand the cellular basis/location of oxidative stress during CIPN. Increased RNS 

production was indicated in the spinal cord of paclitaxel-treated rats 101. In addition, increased ROS 

and RNS levels were seen in lumbar DRG following chronic oxaliplatin treatment in mice 102. Data 

discussed at NeupSIG 2017 showed how oxidative stress is linked to the development, 

maintenance and resolution of CIPN. ROS levels were elevated in superficial spinal neurons and 

non-peptidergic (IB4+) DRG neurons, in vivo, prior to the onset of paclitaxel-induced pain 

behaviour 79, suggesting ROS is an initiating factor. The preferential elevation of ROS in IB4+ 

neurons could suggest a direct mechanism by which TRPA1 channels, known neuronal ROS 

sensors and predominantly expressed on IB4+ DRG neurons 104, contribute to paclitaxel-induced 

pain 105, 106. To understand how ROS was managed endogenously, we also examined the activity 

of different antioxidant enzymes in the DRG and peripheral sensory nerves during the timecourse 

of paclitaxel-induced painful neuropathy. Enhanced activity of mitochondrial and cellular 

endogenous antioxidant enzymes in the DRG and peripheral nerves was observed, however this 

was inadequate and delayed in its onset leading to excessive ROS in peripheral sensory axons 79. 

Others have demonstrated an impaired mitochondrial antioxidant response following paclitaxel, 
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oxaliplatin and bortezomib 80. Collectively these in vivo preclinical studies suggest that 

mitochondrial ROS is causal to the development and maintenance of CIPN. 

 

Role of immune cells in CIPN  

In addition to effects on mitochondria and the generation of oxidative stress, chemotherapy agents 

also engage the innate immune system to induce peripheral neuropathy. A key mediator in this is 

the toll-like receptors (TLR). These are transmembrane proteins that normally function to detect 

various pathogens, TLR4 specialized to detect bacterial pathogens and TLR3 specialized to detect 

viral pathogens by example. TLR4 is also activated by several chemotherapeutics107. TLR4 and its 

immediate downstream signals are increased in the DRG of rats with paclitaxel-induced 

hyperalgesia; and this hyperalgesia can be prevented by co-treating animals with TLR4 antagonists 

during chemoterapy108, 109. Similarly, mice with a genetic knockout of either TLR4 or TLR3 fail to 

develop hyperalgesia following treatment with cisplatin110. It appears that a key result of TLR4 

activation by chemotherapeutics is to increase pro-inflammatory cytokine expression in the 

peripheral and central nervous systems.  The C-C motif chemokine ligand 2 (CCL2, also called 

monocyte chemoattractant protein 1 or MCP1) and its receptor CCR2 are increased small DRG 

neurons that appear to be nociceptors and in spinal astrocytes in rats with paclitaxel related CIPN. 

111. Gene knockdown or knockout of CCR2 or use of a chemical CCR2 antagonist reduced 

neuropathic pain in mice112 113. 

 

Macrophages are normally not found in large numbers in the DRG, yet the immediate result of the 

paclitaxel-induced increase in CCL2 in the DRG is a marked increase in these cells within the DRG 

within a few days of treatment114. These macrophages have a pro-inflammatory phenotype that 

results in increased levels of Interleukin-1 (IL-1) and Tumor necrosis factor alpha (TNFα) in the DRG. 

A number of studies have shown that pro-inflammatory cytokines such as these produce 

hyperalgesia to both thermal and mechanical stimuli115, 116. This occurs by a number of mechanisms. 

IL-1 and TNFα act on both spinal and DRG neurons to lower their threshold of activation, a process 
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termed sensitization, and to induce spontaneous discharges117, 118, 119. TNFα specifically also 

suppresses the signalling of spinal GABA neurons leading to central disinhibition of pain signalling 

120. IL-1 and TNFα, as well as IL-6 also increase the release of bradykinin, serotonin, and histamine 

that further augments pro-inflammatory processes 121, 122.  Increased production and release of IL-1, 

TNFα and CCL2 is a shared effect following administration of several chemotherapeutics including 

paclitaxel 123, cisplatin 124 and vincristine125. Importantly given that both neurons and glial cells 

express receptors for these cytokines and can also produce these following activation this 

mechanism has the potential to become self-sustaining126. 

 

Increased levels of IL-1, TNFα and CCL2 in the DRG and spinal cord produce alterations in Schwann 

cells along peripheral axons, satellite cells in the DRG, and astrocytes in the spinal cord that further 

contribute to chemotherapy related hyperalgesia.  A constant observed following treatment with 

several different chemotherapy agents is that astrocytes show a down-regulation in the expression 

of glutamate transporters. These are key to clearing synaptically released glutamate and dysfunction 

in this process leads to hyperexcitability of spinal neurons. As referenced above, the activation of 

Schwann cells leads to further release cytokines IL-1 and TNFα 127 128, 129 (see more below), but also 

leads to the extirpation of these cells from peripheral axons 56, resulting in reduced action potential 

propagation as well as longer term reduced protection and nourishment of nerve fibers. Satellite cells 

in the DRG react similarly to Schwann cells when exposed to chemotherapy agents130 resulting in 

pro-apoptotic stress in DRG neurons. Satellite cells also increase their expression of gap junctions 

following chemotherapy treatment. Although the exact basis is unclear this appears to further 

promote pain signalling given that gap junction blockers produce an analgesic effect in CIPN mice 

131. An unusual aspect of glial response in the spinal cord is that astrocytes, but not microglia become 

activated in CIPN 132, 133, 134. In many other types of neuropathic pain a primary role is assigned to 

microglia that does not appear to be involved in CIPN. Like in Schwann cells, inhibitors of gap 

junctions in astrocytes results in reduced hyperalgesia in CIPN, an a similar anti-hyperalgesic 

response is produced using the glial inhibitor minocycline 135, 136. 
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Changes in ion channels in CIPN 

The net result of the activation of innate immune responses in the DRG and spinal cord is the 

induction of hyperexcitability and ectopic spontaneous activity in both peripheral and spinal neurons. 

These, in turn are due to alterations in neuronal ionic homeostasis as revealed by ion channel 

microarray 137. By example, given the primacy of Na+ ions in generating electrical activity in neurons, 

it is almost expected that alterations in voltage-gated sodium channels occur in CIPN. Recent work 

by our group that will be presented at NeuPSIG 2017 shows that the expression and function of the 

voltage-gated sodium channel Nav1.7 is markedly increased in DRG neurons following paclitaxel 

treatment and contributes directly to the development of ectopic spontaneous activity in nociceptors 

(Li et al, 2017, submitted). As well, prolonged opening in voltage-gated Na+ channels is produced 

by oxalate, a metabolite of oxaliplatin that results in lowered activation threshold and ectopic firing 

in DRG neurons 138, 139. Enhanced activity in sodium channels would appear to reflect the increased 

peripheral axonal excitability seen prior to symptom expression in patients 140, 141. Beyond the spinal 

cord and DRG, increased expression of voltage gated sodium channels is also found in forebrain 

regions following paclitaxel treatment 142. A caveat to this latter observation is that forebrain changes 

in sodium channels would be secondary to alterations occurring elsewhere given the poor 

penetrance of paclitaxel to the CNS. These preclinical observations are supported by clinical findings 

in that voltage-gated sodium channel blockers, such carbamazepine, that have found success in 

treating some 143, but not all neuropathic pain patients 144.  

 

A second ion channel that is key in resulting neuronal excitability is that for potassium. Alterations in 

K+ channel function have been noted at several levels of the neuraxis in CIPN. By example, K+ 

channels are down-regulated in the cortex and in primary afferent neurons of rats with oxaliplatin 

CIPN 145, 146; and in the DRG of rats with paclitaxel-related CIPN 137. In congruity with the observed 

changes in Na+ and K+ channels just noted others have reported an increased expression in 

hyperpolarization-activated channels (HCNs) that are permeable to both ions in CIPN 147. 

Mathematical modelling of the consequences of the observed changes in Na+ and K+ channels 

indicates that these account well for the observed hyper-excitability in nociceptors that occurs in 
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oxaliplatin CIPN 148. The therapeutic potential of targeting K+ channels in CIPN is supported by the 

observation that the K+ channel opener, retigabine, reduced signs of hyperalgesia in mice with 

cisplatin-related CIPN 149.  

 

Voltage-gated calcium channels are key in regulating synaptic transmission and so not surprisingly 

also implicated in the hyper-excitability in CIPN. DRG neurons show increased levels of voltage-

gated calcium channel mRNA following paclitaxel treatment in mice 150. Antagonists to voltage-gated 

calcium channels including gabapentin and ethosuximide were both effective in reducing signs of 

hyperalgesia in rodents with paclitaxel- and vincristine-induced CIPN60, 151. Consistent with these 

findings is that paclitaxel treatment was shown to alter calcium metabolism in primary afferent fibers 

152 and treatment with minoxidil reversed this effect while also ameliorating the behavioural signs of 

paclitaxel-related CIPN 69. 

 

A large group of non-selective cation channels specifically localized in nociceptors that are 

involved in CIPN symptoms is the transient receptor potential (TRP) channels. Specifically, the 

TRP vanilloid 1 (TRPV1) and the TRP ankyrin 1 (TRPA1) subgroups have been implicated in 

CIPN-related pain. TRPV1, commonly also known as the receptor for capsaicin (the active 

ingredient in hot chili peppers) is physiologically activated by protons, heat above 42oC, and 

endogenous lipids produced during inflammation (for review, see153). The sensation produced by 

activation of TPV1 are exactly those that are experienced by CIPN patients16, 41, in cutaneous 

nociceptors TRPV1 produces burning154, while in deep tissue nociceptors TRPV1 produces deep 

aching pain 155, 156. Paclitaxel activates and sensitizes the function of TRPV1 and TRPV1 

antagonists produce analgesia in paclitaxel-related CIPN 157. Similarly treatment with either 

bortezomib or cisplatin produced an increases in TRPV1 expression in DRG and spinal cord in 

mice 158, 159. Paclitaxel directly interacts with the TRPV1 channel to produce both and acute 

facilitation of signalling and also produces a long-term alteration of channel desensitization. The 

acute interaction has also been validated in human DRG neurons  160. Parallel studies suggest that 



17 

 

oxaliplatin also sensitizes the TRPV1 and that this effect is mediated by the G-protein coupled 

receptor G2A 161. 

 

TRP ankyrin 1 (TRPA1) is often colocalized with TRPV1 and is activated by formalin, allyl 

isothiocyanate, and acrolein; and by temperatures below 170C 162. Given that activation of TRPA1 is 

activated by noxious cold stimuli in animals163, it has been suggested that this channel may mediate 

the acute hypersensitivity to cold observed in patients following oxaliplatin treatment. Preclinical 

studies using oxaliplatin appear to support this view164, 165 and appear to also be generalizable to 

paclitaxel-induced cold hyperalgesia 105. Preclinical studies have further detailed that chronic 

symptoms of CIPN may be mediated by chemotherapy-induced activation of proteinase-activated 

receptors (PARs) that activate phospholipase C, protein kinase A and protein kinase C epsilon that 

then sensitize TRPA1 as well as TRPV1 and TRPV4 channels, respectively 106. Further support for 

a role of TRPA1 in CIPN is that receptor deficient mice were shown to be resistant to both oxaliplatin- 

and bortezomib-related CIPN167. Interestingly, in the context of previous discussion on oxidative 

stress, TRPA1 mediates neuropathic pain in trigeminal neurons downstream to the activation of 

macrophages/monocytes and their generation of oxidative stress 168. Yet, human psychophysical 

studies suggest that even though noxious cold activates TRPA1 in rodents this may not be true in 

humans166, indicating that perhaps one final TRP channel may have an important role. 

 

The transient receptor potential melastatin 8 (TRPM8) channel is activated by mild cool stimuli 

between 25 and 28oC and chemically by menthol 169 and has been implicated as analgesic when 

activated in some nerve injury models 170. Some have suggested that TRPM8 could mediate cold-

hyperalgesia in humans in CIPN. Yet, others have shown that topical menthol produces analgesia 

in paclitaxel CIPN patients 171 and this has been supported in a recent proof-of-concept study 172. 

Other receptors subtypes including A3 adenosine receptors 173, 5HT2A receptors 174, 175, sigma-1 

receptors68 and mGluR5 receptors 176 have been implicated in CIPN and could prove potential 

avenues for new treatments.  
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Conclusions  

Preclinical models of CIPN can provide vital insight into the neurotoxic mechanisms that initiate and 

maintain CIPN. Compared to other chronic pain conditions, differential analgesic effects are 

observed in both CIPN patients and rodent models suggesting different causal mechanisms for 

CIPN. Many of the causal mechanisms of CIPN described in this review occur simultaneously and/or 

can reinforce each other. It seems likely therefore, that effective future developments may use 

combination therapies to either prevent development of CIPN where possible, or direct effective 

treatment for CIPN. There are very few clinical trials of combination therapies in any type of 

neuropathic pain, and it may be that to detect a clinically significant effect, we need to reconsider 

how clinical trials for neuropathic pain are designed 177-179. An additional complexity in trials of CIPN 

is the effect of cancer on the pathophysiology of the pain systems: we do need to address how to 

translate preclinical models of single morbidities (such as CIPN) to the often complex co-morbidities 

that are seen in our aging population. More effective treatment of CIPN will require closer links 

between oncology and pain management clinical teams to ensure CIPN patients are effectively 

monitored. Furthermore, continued close collaboration between clinical and preclinical research will 

facilitate the development of novel treatments for CIPN. 

 

Figure Legends 

Figure 1: Summary of the pathophysiological events contributing to chemotherapy-induced 

peripheral neuropathy (CIPN) as highlighted in this review. The most common agents provoking 

CIPN are shown in the bubble in A and the sites of action for these compounds are indicated by 

the arrows. The structures are also labeled in A while in B the changes occurring in these 

structures with CIPN are summarized. Reproduced with permission from Boyette-Davis JA, 

Walters ET, Dougherty PM, Mechanisms involved in the development of chemotherapy induced 

peripheral neuropathy. Pain Manag. 5 (4): 285-296, 2015. 

 

References 

1 van Hecke O, Torrance N, Smith BH. Chronic pain epidemiology and its clinical relevance. BJA 2013; 111: 
13-8 
2 Taxonomy ITFo. Classification of Chronic Pain. Descriptions of Chronic Pain Syndromes and Definitions of 
Pain Terms. http://wwwiasp-
painorg/AM/Templatecfm?Section=Classification_of_Chronic_Pain&Template=/CM/HTMLDisplaycfm&Conte
ntID=2687 2012: 214 

http://wwwiasp-painorg/AM/Templatecfm?Section=Classification_of_Chronic_Pain&Template=/CM/HTMLDisplaycfm&ContentID=2687
http://wwwiasp-painorg/AM/Templatecfm?Section=Classification_of_Chronic_Pain&Template=/CM/HTMLDisplaycfm&ContentID=2687
http://wwwiasp-painorg/AM/Templatecfm?Section=Classification_of_Chronic_Pain&Template=/CM/HTMLDisplaycfm&ContentID=2687


19 

 

3 Torrance N, Lawson K, Afolabi E, et al.  Estimating the burden of disease in chronic pain with and without 
neuropathic characteristics: does the choice between the EQ-5D and SF-6D matter?  Pain 2014 155 1996 - 
2004  doi: 10.1016/j.pain.2014.07.001 

4 Cavaletti G, Marmiroli P. Chemotherapy-induced peripheral neurotoxicity. Curr Opin Neurol 2015; 28: 500-
7 
5 Dougherty PM, Cata JP, Cordella JV, Burton A, Weng HR. Taxol-induced sensory disturbance is 
characterized by preferential impairment of myelinated fiber function in cancer patients. Pain 2004; 109: 132-
42 
6 Vasey PA, Jayson GC, Gordon A, et al. Phase III randomized trial of docetaxel-carboplatin versus 
paclitaxel-carboplatin as first-line chemotherapy for ovarian carcinoma. J Natl Cancer Inst 2004; 96: 1682-91 
7 Argyriou AA, Koltzenburg M, Polychronopoulos P, Papapetropoulos S, Kalofonos HP. Peripheral nerve 
damage associated with administration of taxanes in patients with cancer. Crit Rev Oncol Hematol 2008; 66: 
218-28 
8 Argyriou AA, Polychronopoulos P, Iconomou G, et al. Incidence and characteristics of peripheral 
neuropathy during oxaliplatin-based chemotherapy for metastatic colon cancer. Acta Oncol 2007; 46: 1131-7 
9 Attal N, Bouhassira D, Gautron M, et al. Thermal hyperalgesia as a marker of oxaliplatin neurotoxicity: a 
prospective quantified sensory assessment study. Pain 2009; 144: 245-52 
10 Reyes-Gibby CC, Morrow PK, Buzdar A, Shete S. Chemotherapy-induced peripheral neuropathy as a 
predictor of neuropathic pain in breast cancer patients previously treated with paclitaxel. J Pain 2009; 10: 
1146-50 
11 Pike CT, Birnbaum HG, Muehlenbein CE, Pohl GM, Natale RB. Healthcare costs and workloss burden of 
patients with chemotherapy-associated peripheral neuropathy in breast, ovarian, head and neck, and 
nonsmall cell lung cancer. Chemotherapy research and practice 2012; 2012: 913848 
12 Sikandar S, Dickenson AH. II. No need for translation when the same language is spoken. BJA 2013; 
111: 3-6 
13 Wilson RH, Lehky T, Thomas RR, Quinn MG, Floeter MK, Grem JL. Acute oxaliplatin-induced peripheral 
nerve hyperexcitability. J Clin Oncol 2002; 20: 1767-74 
14 Cavaletti G, Alberti P, Frigeni B, Piatti M, Susani E. Chemotherapy-induced neuropathy. Current 
Treatment Options in Neurology 2011; 13: 180-90 
15 van den Bent MJ, van Raaij-van den Aarssen VJ, Verweij J, Doorn PA, Sillevis Smitt PA. Progression of 
paclitaxel-induced neuropathy following discontinuation of treatment. Muscle Nerve 1997; 20: 750-2 
16 Boyette-Davis JA, Cata JP, Zhang H, et al. Follow-up psychophysical studies in bortezomib-related 
chemoneuropathy patients. J Pain 2011; 12: 1017-24 
17 Grisold W, Cavaletti G, Windebank AJ. Peripheral neuropathies from chemotherapeutics and targeted 
agents: diagnosis, treatment, and prevention. [Review]. Neuro-Oncology 2012; 14 Suppl 4: iv45-iv54 
18 Fallon MT. Neuropathic pain in cancer. [Review]. BJA 2013; 111: 105-11 
19 Alberti P, Rossi E, Cornblath DR, et al. Physician-assessed and patient-reported outcome measures in 
chemotherapy-induced sensory peripheral neurotoxicity: two sides of the same coin. Annals of Oncology 
2014; 25: 257-64 
20 Seretny M, Currie GL, Sena ES, et al. Incidence, prevalence, and predictors of chemotherapy-induced 
peripheral neuropathy: A systematic review and meta-analysis. Pain 2014; 155: 2461-70 
21 Chhibber A, Mefford J, Stahl EA, et al. Polygenic inheritance of paclitaxel-induced sensory peripheral 
neuropathy driven by axon outgrowth gene sets in CALGB 40101 (Alliance). Pharmacogenomics Journal 
2014; 14: 336-42 
22 Wheeler HE, Gamazon ER, Wing C, et al. Integration of cell line and clinical trial genome-wide analyses 
supports a polygenic architecture of Paclitaxel-induced sensory peripheral neuropathy. Clinical Cancer 
Research 2013; 19: 491-9 
23 Corthals SL, Kuiper R, Johnson DC, et al. Genetic factors underlying the risk of bortezomib induced 
peripheral neuropathy in multiple myeloma patients. Haematologica 2011; 96: 1728-32 
24 Baldwin RM, Owzar K, Zembutsu H, et al. A genome-wide association study identifies novel loci for 
paclitaxel-induced sensory peripheral neuropathy in CALGB 40101. Clinical Cancer Research 2012; 18: 
5099-109 
25 Broyl A, Corthals SL, Jongen JL, et al. Mechanisms of peripheral neuropathy associated with bortezomib 
and vincristine in patients with newly diagnosed multiple myeloma: a prospective analysis of data from the 
HOVON-65/GMMG-HD4 trial. Lancet Oncology 2010; 11: 1057-65 
26 Cruccu G, Sommer C, Anand P, et al. EFNS guidelines on neuropathic pain assessment: revised 2009. 
European Journal of Neurology 2010; 17: 1010-8 
27 Haanpaa M, Attal N, Backonja M, et al. NeuPSIG guidelines on neuropathic pain assessment. Pain 2011; 
152: 14-27 
28 Treede RD, Jensen TS, Campbell JN, et al. Neuropathic pain. Redefinition and a grading system for 
clinical and research purposes. Neurology 2008; 70: 1630-5 



20 

 

29 Alberti P, Cavaletti G. Management of side effects in the personalized medicine era: chemotherapy-
induced peripheral neuropathy. [Review]. Methods in Molecular Biology 2014; 1175: 301-22 
30 Hershman DL, Lacchetti C, Dworkin RH, et al. Prevention and management of chemotherapy-induced 
peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology clinical practice 
guideline. J Clin Oncol 2014; 32: 1941-67 
31 The CIPSG. CI-PERINOMS: chemotherapy-induced peripheral neuropathy outcome measures study. 
Journal Of The Peripheral Nervous System 2009; 14: 69-71 
32 Cavaletti G, Cornblath DR, Merkies IS, et al. The chemotherapy-induced peripheral neuropathy outcome 
measures standardization study: from consensus to the first validity and reliability findings. Annals of 
Oncology 2013; 24: 454-62 
33 Griffith KA, Merkies IS, Hill EE, Cornblath DR. Measures of chemotherapy-induced peripheral neuropathy: 
a systematic review of psychometric properties. [Review]. Journal Of The Peripheral Nervous System 2010; 
15: 314-25 
34 Griffith KA, Dorsey SG, Renn CL, et al. Correspondence between neurophysiological and clinical 
measurements of chemotherapy-induced peripheral neuropathy: secondary analysis of data from the CI-
PeriNomS study. Journal Of The Peripheral Nervous System 2014; 19: 127-35 
35 Griffith KA, Couture DJ, Zhu S, et al. Evaluation of chemotherapy-induced peripheral neuropathy using 
current perception threshold and clinical evaluations. Supportive Care in Cancer 2014; 22: 1161-9 
36 Boyette-Davis JA, Eng C, Wang XS, et al. Subclinical peripheral neuropathy is a common finding in 
colorectal cancer patients prior to chemotherapy. Clin Cancer Res 2012; 18: 3180-7 
37 de Carvalho Barbosa M, Kosturakis AK, Eng C, et al. A quantitative sensory analysis of peripheral 
neuropathy in colorectal cancer and its exacerbation by oxaliplatin chemotherapy. Cancer Res 2014; 74: 
5955-62 
38 Vichaya EG, Wang XS, Boyette-Davis JA, et al. Subclinical pretreatment sensory deficits appear to 
predict the development of pain and numbness in patients with multiple myeloma undergoing chemotherapy. 
Cancer Chemother Pharmacol 2013; 71: 1531-40 
39 Cata JP, Weng HR, Burton AW, Villareal H, Giralt S, Dougherty PM. Quantitative sensory findings in 
patients with bortezomib-induced pain. J Pain 2007; 8: 296-306 
40 Dougherty PM, Cata JP, Burton AW, Vu K, Weng HR. Dysfunction in multiple primary afferent fiber 
subtypes revealed by quantitative sensory testing in patients with chronic vincristine-induced pain. J Pain 
Symptom Manage 2007; 33: 166-79 
41 Boyette-Davis JA, Cata JP, Driver LC, et al. Persistent chemoneuropathy in patients receiving the plant 
alkaloids paclitaxel and vincristine. Cancer Chemother Pharmacol 2013; 71: 619-26 
42 Smith E, Pang H, Cirrincione C, et al. Effect of duloxetine on pain, function, and quality of life among 
patients with chemotherapy-induced painful peripheral neuropathy: A randomized clinical trial. JAMA 2013; 
309: 1359-67 
43 Bhatnagar B, Gilmore S, Goloubeva O, et al. Chemotherapy dose reduction due to chemotherapy 
induced peripheral neuropathy in breast cancer patients receiving chemotherapy in the neoadjuvant or 
adjuvant settings: a single-center experience. SpringerPlus 2014; 3: 366 
44 Authier N, Balayssac D, Marchand F, et al. Animal models of chemotherapy-evoked painful peripheral 
neuropathies. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 
2009; 6: 620-9 
45 Hopkins HL, Duggett NA, Flatters SJ. Chemotherapy-induced painful neuropathy: pain-like behaviours in 
rodent models and their response to commonly used analgesics. Current opinion in supportive and palliative 
care 2016; 10: 119-28 
46 Roytta M, Horwitz SB, Raine CS. Taxol-induced neuropathy: short-term effects of local injection. J 
Neurocytol 1984; 13: 685-701 
47 Roytta M, Raine CS. Taxol-induced neuropathy: further ultrastructural studies of nerve fibre changes in 
situ. J Neurocytol 1985; 14: 157-75 
48 Roytta M, Raine CS. Taxol-induced neuropathy: chronic effects of local injection. J Neurocytol 1986; 15: 
483-96 
49 Cavaletti G, Cavalletti E, Montaguti P, Oggioni N, De Negri O, Tredici G. Effect on the peripheral nervous 
system of the short-term intravenous administration of paclitaxel in the rat. Neurotoxicology 1997; 18: 137-45 
50 Polomano RC, Mannes AJ, Clark US, Bennett GJ. A painful peripheral neuropathy in the rat produced by 
the chemotherapeutic drug, paclitaxel. Pain 2001; 94: 293-304 
51 Boyle FM, Beatson C, Monk R, Grant SL, Kurek JB. The experimental neuroprotectant leukaemia 
inhibitory factor (LIF) does not compromise antitumour activity of paclitaxel, cisplatin and carboplatin. Cancer 
Chemother Pharmacol 2001; 48: 429-34 
52 Boyle FM, Wheeler HR, Shenfield GM. Amelioration of experimental cisplatin and paclitaxel neuropathy 
with glutamate. J Neurooncol 1999; 41: 107-16 
53 Flatters SJL, Bennett GJ. Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral 
neuropathy: evidence for mitochondrial dysfunction. Pain 2006; 122: 245-57 



21 

 

54 Siau C, Xiao W, Bennett GJ. Paclitaxel- and vincristine-evoked painful peripheral neuropathies: loss of 
epidermal innervation and activation of Langerhans cells. Exp Neurol 2006; 201: 507-14 
55 Boyette-Davis J, Xin W, Zhang H, Dougherty PM. Intraepidermal nerve fiber loss corresponds to the 
development of Taxol-induced hyperalgesia and can be prevented by treatment with minocycline. Pain 2011; 
152: 308-13 
56 Cliffer KD, Siuciak JA, Carson SR, et al. Physiological characterization of Taxol-induced large-fiber 
sensory neuropathy in the rat. Ann Neurol 1998; 43: 46-55 
57 Cavaletti G, Bogliun G, Marzorati L, et al. Peripheral neurotoxicity of taxol in patients previously treated 
with cisplatin. Cancer 1995; 75: 1141-50 
58 Peters CM, Jimenez-Andrade JM, Jonas BM, et al. Intravenous paclitaxel administration in the rat induces 
a peripheral sensory neuropathy characterized by macrophage infiltration and injury to sensory neurons and 
their supporting cells. Exp Neurol 2007; 203: 42-54 
59 Postma TJ, Vermorken JB, Liefting AJ, Pinedo HM, Heimans JJ. Paclitaxel-induced neuropathy. Ann 
Oncol 1995; 6: 489-94 
60 Flatters SJL, Bennett GJ. Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral 
neuropathy. Pain 2004; 109: 150-61 
61 Smith SB, Crager SE, Mogil JS. Paclitaxel-induced neuropathic hypersensitivity in mice: responses in 10 
inbred mouse strains. Life Sci 2004; 74: 2593-604 
62 Authier N, Coudore F, Eschalier A, Fialip J. Pain related behaviour during vincristine-induced neuropathy 
in rats. Neuroreport 1999; 10: 965-8 
63 Apfel SC, Lipton RB, Arezzo JC, Kessler JA. Nerve growth factor prevents toxic neuropathy in mice. 
Annals of Neurology 1991; 29: 87-90 
64 Wang MS, Davis AA, Culver DG, Glass JD. WldS mice are resistant to paclitaxel (taxol) neuropathy. Ann 
Neurol 2002; 52: 442-7 
65 Jin HW, Flatters SJL, Xiao WH, Mulhern HL, Bennett GJ. Prevention of paclitaxel-evoked painful 
peripheral neuropathy by acetyl-l-carnitine: Effects on axonal mitochondria, sensory nerve fiber terminal 
arbors, and cutaneous Langerhans cells. Exp Neurol 2008; 210: 229-37 
66 Xiao WH, Zheng H, Zheng FY, Nuydens R, Meert TF, Bennett GJ. Mitochondrial abnormality in sensory, 
but not motor, axons in paclitaxel-evoked painful peripheral neuropathy in the rat. Neuroscience 2011; 199: 
461-9 
67 Wu Y, Li J, Zhou J, Feng Y. Dynamic long-term microstructural and ultrastructural alterations in sensory 
nerves of rats of paclitaxel-induced neuropathic pain. Chin Med J (Engl) 2014; 127: 2945-52 
68 Nieto FR, Cendan CM, Canizares FJ, et al. Genetic inactivation and pharmacological blockade of sigma-1 
receptors prevent paclitaxel-induced sensory-nerve mitochondrial abnormalities and neuropathic pain in 
mice. Mol Pain 2014; 10: 11 
69 Chen YF, Chen LH, Yeh YM, et al. Minoxidil is a potential neuroprotective drug for paclitaxel-induced 
peripheral neuropathy. Sci Rep 2017; 7: 45366 
70 Krukowski K, Nijboer CH, Huo X, Kavelaars A, Heijnen CJ. Prevention of chemotherapy-induced 
peripheral neuropathy by the small-molecule inhibitor pifithrin-mu. Pain 2015; 156: 2184-92 
71 Barriere DA, Rieusset J, Chanteranne D, et al. Paclitaxel therapy potentiates cold hyperalgesia in 
streptozotocin-induced diabetic rats through enhanced mitochondrial reactive oxygen species production and 
TRPA1 sensitization. Pain 2012; 153: 553-61 
72 Matsumura Y, Yokoyama Y, Hirakawa H, Shigeto T, Futagami M, Mizunuma H. The prophylactic effects 
of a traditional Japanese medicine, goshajinkigan, on paclitaxel-induced peripheral neuropathy and its 
mechanism of action. Mol Pain 2014; 10: 61 
73 Sahenk Z, Barohn R, New P, Mendell JR. Taxol neuropathy. Electrodiagnostic and sural nerve biopsy 
findings. Arch Neurol 1994; 51: 726-9 
74 Fazio R, Quattrini A, Bolognesi A, et al. Docetaxel neuropathy: a distal axonopathy. Acta Neuropathol 
1999; 98: 651-3 
75 Xiao WH, Zheng H, Bennett GJ. Characterization of oxaliplatin-induced chronic painful peripheral 
neuropathy in the rat and comparison with the neuropathy induced by paclitaxel. Neuroscience 2012; 203: 
194-206 
76 Zheng H, Xiao WH, Bennett GJ. Mitotoxicity and bortezomib-induced chronic painful peripheral 
neuropathy. Exp Neurol 2012; 238: 225-34 
77 Zheng H, Xiao WH, Bennett GJ. Functional deficits in peripheral nerve mitochondria in rats with 
paclitaxel- and oxaliplatin-evoked painful peripheral neuropathy. Exp Neurol 2011; 232: 154-61 
78 Duggett NA, Griffiths LA, Flatters SJL. Paclitaxel-induced painful neuropathy is associated with changes 
in mitochondrial bioenergetics, glycolysis and an energy deficit in dorsal root ganglia neurons. Pain 2017; 
Apr 24 [epub] doi: 10.1097/j.pain.0000000000000939 
79 Duggett NA, Griffiths LA, McKenna OE, et al. Oxidative stress in the development, maintenance and 
resolution of paclitaxel-induced painful neuropathy. Neuroscience 2016; 333: 13-26 



22 

 

80 Janes K, Doyle T, Bryant L, et al. Bioenergetic deficits in peripheral nerve sensory axons during 
chemotherapy-induced neuropathic pain resulting from peroxynitrite-mediated post-translational nitration of 
mitochondrial superoxide dismutase. Pain 2013; 154: 2432-40 
81 Joseph EK, Levine JD. Mitochondrial electron transport in models of neuropathic and inflammatory pain. 
Pain 2006; 121: 105-14 
82 Xiao WH, Bennett GJ. Effects of mitochondrial poisons on the neuropathic pain produced by the 
chemotherapeutic agents, paclitaxel and oxaliplatin. Pain 2012; 153: 704-9 
83 Griffiths LA, Flatters SJL. Pharmacological modulation of the mitochondrial electron transport chain in 
paclitaxel-induced painful peripheral neuropathy. J Pain 2015; 16: 981-94 
84 Flatters SJL. The contribution of mitochondria to sensory processing and pain. Progress in molecular 
biology and translational science 2015; 131: 119-46 
85 Bordet T, Buisson B, Michaud M, et al. Specific antinociceptive activity of cholest-4-en-3-one, oxime 
(TRO19622) in experimental models of painful diabetic and chemotherapy-induced neuropathy. J Pharmacol 
Exp Ther 2008; 326: 623-32 
86 Xiao WH, Zheng FY, Bennett GJ, Bordet T, Pruss RM. Olesoxime (cholest-4-en-3-one, oxime): analgesic 
and neuroprotective effects in a rat model of painful peripheral neuropathy produced by the 
chemotherapeutic agent, paclitaxel. Pain 2009; 147: 202-9 
87 Ferrari LF, Chum A, Bogen O, Reichling DB, Levine JD. Role of Drp1, a key mitochondrial fission protein, 
in neuropathic pain. J Neurosci 2011; 31: 11404-10 
88 Pisano C, Pratesi G, Laccabue D, et al. Paclitaxel and Cisplatin-induced neurotoxicity: a protective role of 
acetyl-L-carnitine. Clin Cancer Res 2003; 9: 5756-67 
89 Ghirardi O, Lo Giudice P, Pisano C, et al. Acetyl-L-Carnitine prevents and reverts experimental chronic 
neurotoxicity induced by oxaliplatin, without altering its antitumor properties. Anticancer Res 2005; 25: 2681-
7 
90 Ghirardi O, Vertechy M, Vesci L, et al. Chemotherapy-induced allodinia: neuroprotective effect of acetyl-
L-carnitine. In Vivo 2005; 19: 631-7 
91 Flatters SJL, Xiao WH, Bennett GJ. Acetyl-l-carnitine prevents and reduces paclitaxel-induced painful 
peripheral neuropathy. Neurosci Lett 2006; 397: 219-23 
92 Bianchi G, Vitali G, Caraceni A, et al. Symptomatic and neurophysiological responses of paclitaxel- or 
cisplatin-induced neuropathy to oral acetyl-L-carnitine. Eur J Cancer 2005; 41: 1746-50 
93 Hershman DL, Unger JM, Crew KD, et al. Randomized double-blind placebo-controlled trial of acetyl-L-
carnitine for the prevention of taxane-induced neuropathy in women undergoing adjuvant breast cancer 
therapy. J Clin Oncol 2013; 31: 2627-33 
94 Tal M. A novel antioxidant alleviates heat hyperalgesia in rats with an experimental painful peripheral 
neuropathy. Neuroreport 1996; 7: 1382-4 
95 Gamper N, Ooi L. Redox and nitric oxide-mediated regulation of sensory neuron ion channel function. 
Antioxid Redox Signal 2015; 22: 486-504 
96 Kim HK, Zhang YP, Gwak YS, Abdi S. Phenyl N-tert-butylnitrone, a free radical scavenger, reduces 
mechanical allodynia in chemotherapy-induced neuropathic pain in rats. Anesthesiology 2010; 112: 432-9 
97 Fidanboylu M, Griffiths LA, Flatters SJL. Global inhibition of reactive oxygen species (ROS) inhibits 
paclitaxel-induced painful peripheral neuropathy. PLoS ONE 2011; 6: e25212 
98 Duggett NA, Flatters SJL. Characterisation of a rat model of bortezomib-induced painful neuropathy. Br J 
Pharmacol 2017: Submitted 
99 Kim HK, Hwang S-H, Abdi S. Tempol Ameliorates and Prevents Mechanical Hyperalgesia in a Rat Model 
of Chemotherapy-Induced Neuropathic Pain. Frontiers in Pharmacology 2017; 7: 532 
100 Di Cesare Mannelli L, Zanardelli M, Landini I, et al. Effect of the SOD mimetic MnL4 on in vitro and in 
vivo oxaliplatin toxicity: Possible aid in chemotherapy induced neuropathy. Free Radic Biol Med 2016; 93: 
67-76 
101 Doyle T, Chen Z, Muscoli C, et al. Targeting the overproduction of peroxynitrite for the prevention and 
reversal of paclitaxel-induced neuropathic pain. J Neurosci 2012; 32: 6149-60 
102 Toyama S, Shimoyama N, Ishida Y, Koyasu T, Szeto HH, Shimoyama M. Characterization of acute and 
chronic neuropathies induced by oxaliplatin in mice and differential effects of a novel mitochondria-targeted 
antioxidant on the neuropathies. Anesthesiology 2014; 120: 459-73 
103 McCormick B, Lowes DA, Colvin L, Torsney C, Galley HF. MitoVitE, a mitochondria-targeted antioxidant, 
limits paclitaxel-induced oxidative stress and mitochondrial damage in vitro, and paclitaxel-induced 
mechanical hypersensitivity in a rat pain model. Br J Anaesth 2016; 117: 659-66 
104 Barabas ME, Kossyreva EA, Stucky CL. TRPA1 is functionally expressed primarily by IB4-binding, non-
peptidergic mouse and rat sensory neurons. PLoS One 2012; 7: e47988 
105 Materazzi S, Fusi C, Benemei S, et al. TRPA1 and TRPV4 mediate paclitaxel-induced peripheral 
neuropathy in mice via a glutathione-sensitive mechanism. Pflugers Arch 2012; 463: 561-9 



23 

 

106 Chen Y, Yang C, Wang ZJ. Proteinase-activated receptor 2 sensitizes transient receptor potential 
vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-
induced neuropathic pain. Neuroscience 2011; 193: 440-51 
107 Byrd-Leifer CA, Block EF, Takeda K, Akira S, Ding A. The role of MyD88 and TLR4 in the LPS-mimetic 
activity of Taxol. Eur J Immunol 2001; 31: 2448-57 
108 Li Y, Zhang H, Zhang H, Kosturakis AK, Jawad AB, Dougherty PM. Toll-like receptor 4 signaling 
contributes to Paclitaxel-induced peripheral neuropathy. J Pain 2014; 15: 712-25 
109 Li Y, Zhang H, Kosturakis AK, et al. MAPK signaling downstream to TLR4 contributes to paclitaxel-
induced peripheral neuropathy. Brain Behav Immun 2015; 49: 255-66 
110 Park HJ, Stokes JA, Corr M, Yaksh TL. Toll-like receptor signaling regulates cisplatin-induced 
mechanical allodynia in mice. Cancer Chemother Pharmacol 2014; 73: 25-34 
111 Zhang H, Boyette-Davis JA, Kosturakis AK, et al. Induction of monocyte chemoattractant protein-1 
(MCP-1) and its receptor CCR2 in primary sensory neurons contributes to paclitaxel-induced peripheral 
neuropathy. J Pain 2013; 14: 1031-44 
112 Zhang ZJ, Dong YL, Lu Y, Cao S, Zhao ZQ, Gao YJ. Chemokine CCL2 and its receptor CCR2 in the 
medullary dorsal horn are involved in trigeminal neuropathic pain. J Neuroinflammation 2012; 9: 136 
113 Abbadie C, Lindia JA, Cumiskey AM, et al. Impaired neuropathic pain responses in mice lacking the 
chemokine receptor CCR2. Proc Natl Acad Sci U S A 2003; 100: 7947-52 
114 Zhang H, Li Y, de Carvalho-Barbosa M, et al. Dorsal Root Ganglion Infiltration by Macrophages 
Contributes to Paclitaxel Chemotherapy-Induced Peripheral Neuropathy. J Pain 2016; 17: 775-86 
115 Woolf CJ, Allchorne A, Safieh-Garabedian B, Poole S. Cytokines, nerve growth factor and inflammatory 
hyperalgesia: the contribution of tumour necrosis factor alpha. Br J Pharmacol 1997; 121: 417-24 
116 Binshtok AM, Wang H, Zimmermann K, et al. Nociceptors Are Interleukin-1 beta Sensors. Journal of 
Neuroscience 2008; 28: 14062-73 
117 Sorkin LS, Xiao WH, Wagner R, Myers RR. Tumour necrosis factor-alpha induces ectopic activity in 
nociceptive primary afferent fibres. Neuroscience 1997; 81: 255-62 
118 Ozaktay AC, Cavanaugh JM, Asik I, DeLeo JA, Weinstein JN. Dorsal root sensitivity to interleukin-1 
beta, interleukin-6 and tumor necrosis factor in rats. European Spine Journal 2002; 11: 467-75 
119 Onda A, Hamba M, Yabuki S, Kikuchi S. Exogenous tumor necrosis factor-alpha induces abnormal 
discharges in rat dorsal horn neurons. Spine 2002; 27: 1618-24; discussion 24 
120 Zhang H, Nei H, Dougherty PM. A p38 mitogen-activated protein kinase-dependent mechanism of 
disinhibition in spinal synaptic transmission induced by tumor necrosis factor-alpha. J Neurosci 2010; 30: 
12844-55 
121 McMahon SB, Cafferty WB, Marchand F. Immune and glial cell factors as pain mediators and 
modulators. Exp Neurol 2005; 192: 444-62 
122 Vetere A, Choudhary A, Burns SM, Wagner BK. Targeting the pancreatic beta-cell to treat diabetes. 
Nature reviews 2014; 13: 278-89 
123 Zaks-Zilberman M, Zaks TZ, Vogel SN. Induction of proinflammatory and chemokine genes by 
lipopolysaccharide and paclitaxel (Taxol) in murine and human breast cancer cell lines. Cytokine 2001; 15: 
156-65 
124 Basu S, Sodhi A. Increased release of interleukin-1 and tumour necrosis factor by interleukin-2-induced 
lymphokine-activated killer cells in the presence of cisplatin and FK-565. Immunol Cell Biol 1992; 70 ( Pt 1): 
15-24 
125 Weintraub M, Adde MA, Venzon DJ, et al. Severe atypical neuropathy associated with administration of 
hematopoietic colony-stimulating factors and vincristine. J Clin Oncol 1996; 14: 935-40 
126 Ledeboer A, Jekich BM, Sloane EM, et al. Intrathecal interleukin-10 gene therapy attenuates paclitaxel-
induced mechanical allodynia and proinflammatory cytokine expression in dorsal root ganglia in rats. Brain 
Behav Immun 2007; 21: 686-98 
127 Cata JP, Weng HR, Lee BN, Reuben JM, Dougherty PM. Clinical and experimental findings in humans 
and animals with chemotherapy-induced peripheral neuropathy. Minerva Anestesiol 2006; 72: 151-69 
128 Cavaletti G, Cavalletti E, Oggioni N, et al. Distribution of paclitaxel within the nervous system of the rat 
after repeated intravenous administration. Neurotoxicology 2000; 21: 389-93 
129 Ozturk G, Erdogan E, Anlar O, Kosem M, Taspinar M. Effect of leukemia inhibitory factor in experimental 
cisplatin neuropathy in mice. Cytokine 2005; 29: 31-41 
130 Takeda M, Takahashi M, Matsumoto S. Contribution of activated interleukin receptors in trigeminal 
ganglion neurons to hyperalgesia via satellite glial interleukin-1beta paracrine mechanism. Brain Behav 
Immun 2008; 22: 1016-23 
131 Warwick RA, Hanani M. The contribution of satellite glial cells to chemotherapy-induced neuropathic 
pain. Eur J Pain 2013; 17: 571-80 
132 Zhang H, Yoon SY, Zhang H, Dougherty PM. Evidence that spinal astrocytes but not microglia 
contribute to the pathogenesis of Paclitaxel-induced painful neuropathy. J Pain 2012; 13: 293-303 



24 

 

133 Robinson CR, Zhang H, Dougherty PM. Astrocytes, but not microglia, are activated in oxaliplatin and 
bortezomib-induced peripheral neuropathy in the rat. Neuroscience 2014; 274: 308-17 
134 Gao YJ, Zhang L, Samad OA, et al. JNK-induced MCP-1 production in spinal cord astrocytes 
contributes to central sensitization and neuropathic pain. J Neurosci 2009; 29: 4096-108 
135 Yoon SY, Robinson CR, Zhang H, Dougherty PM. Spinal astrocyte gap junctions contribute to 
oxaliplatin-induced mechanical hypersensitivity. J Pain 2013; 14: 205-14 
136 Robinson CR, Dougherty PM. Spinal astrocyte gap junction and glutamate transporter expression 
contributes to a rat model of bortezomib-induced peripheral neuropathy. Neuroscience 2015; 285: 1-10 
137 Zhang H, Dougherty PM. Enhanced excitability of primary sensory neurons and altered gene expression 
of neuronal ion channels in dorsal root ganglion in paclitaxel-induced peripheral neuropathy. Anesthesiology 
2014; 120: 1463-75 
138 Grolleau F, Gamelin L, Boisdron-Celle M, Lapied B, Pelhate M, Gamelin E. A possible explanation for a 
neurotoxic effect of the anticancer agent oxaliplatin on neuronal voltage-gated sodium channels. J 
Neurophysiol 2001; 85: 2293-7 
139 Webster RG, Brain KL, Wilson RH, Grem JL, Vincent A. Oxaliplatin induces hyperexcitability at motor 
and autonomic neuromuscular junctions through effects on voltage-gated sodium channels. Brit J Pharmacol 
2005; 146: 1027-39 
140 Park SB, Goldstein D, Lin CS, Krishnan AV, Friedlander ML, Kiernan MC. Acute abnormalities of 
sensory nerve function associated with oxaliplatin-induced neurotoxicity. J Clin Oncol 2009; 27: 1243-9 
141 Park SB, Lin CS, Krishnan AV, Goldstein D, Friedlander ML, Kiernan MC. Oxaliplatin-induced 
neurotoxicity: changes in axonal excitability precede development of neuropathy. Brain 2009; 132: 2712-23 
142 Masocha W. Gene expression profile of sodium channel subunits in the anterior cingulate cortex during 
experimental paclitaxel-induced neuropathic pain in mice. PeerJ 2016; 4: e2702 
143 Grothey A. Clinical management of oxaliplatin-associated neurotoxicity. Clin Colorectal Cancer 2005; 5 
Suppl 1: S38-46 
144 Lehky TJ, Leonard GD, Wilson RH, Grem JL, Floeter MK. Oxaliplatin-induced neurotoxicity: acute 
hyperexcitability and chronic neuropathy. Muscle Nerve 2004; 29: 387-92 
145 Thibault K, Calvino B, Dubacq S, et al. Cortical effect of oxaliplatin associated with sustained 
neuropathic pain: exacerbation of cortical activity and down-regulation of potassium channel expression in 
somatosensory cortex. Pain 2012; 153: 1636-47 
146 Descoeur J, Pereira V, Pizzoccaro A, et al. Oxaliplatin-induced cold hypersensitivity is due to 
remodelling of ion channel expression in nociceptors. EMBO Mol Med 2011; 3: 266-78 
147 Emery EC, Young GT, Berrocoso EM, Chen L, McNaughton PA. HCN2 ion channels play a central role 
in inflammatory and neuropathic pain. Science 2011; 333: 1462-6 
148 Dimitrov AG, Dimitrova NA. A possible link of oxaliplatin-induced neuropathy with potassium channel 
deficit. Muscle Nerve 2012; 45: 403-11 
149 Nodera H, Spieker A, Sung M, Rutkove S. Neuroprotective effects of Kv7 channel agonist, retigabine, 
for cisplatin-induced peripheral neuropathy. Neurosci Lett 2011; 505: 223-7 
150 Matsumoto M, Inoue M, Hald A, Xie W, Ueda H. Inhibition of paclitaxel-induced A-fiber 
hypersensitization by gabapentin. J Pharmacol Exp Ther 2006; 318: 735-40 
151 Xiao W, Boroujerdi A, Bennett GJ, Luo ZD. Chemotherapy-evoked painful peripheral neuropathy: 
analgesic effects of gabapentin and effects on expression of the alpha-2-delta type-1 calcium channel 
subunit. Neuroscience 2007; 144: 714-20 
152 Yilmaz E, Gold MS. Sensory neuron subpopulation-specific dysregulation of intracellular calcium in a rat 
model of chemotherapy-induced peripheral neuropathy. Neuroscience 2015; 300: 210-8 
153 Nagy I, Friston D, Valente JS, Torres Perez JV, Andreou AP. Pharmacology of the capsaicin receptor, 
transient receptor potential vanilloid type-1 ion channel. Prog Drug Res 2014; 68: 39-76 
154 Simone DA, Baumann TK, LaMotte RH. Dose-dependent pain and mechanical hyperalgesia in humans 
after intradermal injection of capsaicin. Pain 1989; 38: 99-107 
155 Marchettini P, Simone DA, Caputi G, Ochoa JL. Pain from excitation of identified muscle nociceptors in 
humans. Brain Res 1996; 740: 109-16 
156 Witting N, Svensson P, Gottrup H, Arendt-Nielsen L, Jensen TS. Intramuscular and intradermal injection 
of capsaicin: a comparison of local and referred pain. Pain 2000; 84: 407-12 
157 Hara T, Chiba T, Abe K, et al. Effect of paclitaxel on transient receptor potential vanilloid 1 in rat dorsal 
root ganglion. Pain 2013; 154: 882-9 
158 Quartu M, Carozzi VA, Dorsey SG, et al. Bortezomib treatment produces nocifensive behavior and 
changes in the expression of TRPV1, CGRP, and substance P in the rat DRG, spinal cord, and sciatic nerve. 
Biomed Res Int 2014; 2014: 180428 
159 Ta LE, Bieber AJ, Carlton SM, Loprinzi CL, Low PA, Windebank AJ. Transient Receptor Potential 
Vanilloid 1 is essential for cisplatin-induced heat hyperalgesia in mice. Molecular Pain 2010; 6 
160 Li Y, Adamek P, Zhang H, et al. The Cancer Chemotherapeutic Paclitaxel Increases Human and Rodent 
Sensory Neuron Responses to TRPV1 by Activation of TLR4. J Neurosci 2015; 35: 13487-500 



25 

 

161 Hohmann SW, Angioni C, Tunaru S, et al. The G2A receptor (GPR132) contributes to oxaliplatin-
induced mechanical pain hypersensitivity. Sci Rep 2017; 7: 446 
162 Laursen WJ, Bagriantsev SN, Gracheva EO. TRPA1 channels: chemical and temperature sensitivity. 
Curr Top Membr 2014; 74: 89-112 
163 Koivisto A, Hukkanen M, Saarnilehto M, et al. Inhibiting TRPA1 ion channel reduces loss of cutaneous 
nerve fiber function in diabetic animals: sustained activation of the TRPA1 channel contributes to the 
pathogenesis of peripheral diabetic neuropathy. Pharmacol Res 2012; 65: 149-58 
164 Nassini R, Gees M, Harrison S, et al. Oxaliplatin elicits mechanical and cold allodynia in rodents via 
TRPA1 receptor stimulation. Pain 2011; 152: 1621-31 
165 Zhao M, Isami K, Nakamura S, Shirakawa H, Nakagawa T, Kaneko S. Acute cold hypersensitivity 
characteristically induced by oxaliplatin is caused by the enhanced responsiveness of TRPA1 in mice. Mol 
Pain 2012; 8: 55 
166 Chen J, Kang D, Xu J, et al. Species differences and molecular determinant of TRPA1 cold sensitivity. 
Nature communications 2013; 4: 2501 
167 Trevisan G, Materazzi S, Fusi C, et al. Novel therapeutic strategy to prevent chemotherapy-induced 
persistent sensory neuropathy by TRPA1 blockade. Cancer Res 2013; 73: 3120-31 
168 Trevisan G, Benemei S, Materazzi S, et al. TRPA1 mediates trigeminal neuropathic pain in mice 
downstream of monocytes/macrophages and oxidative stress. Brain 2016; 139: 1361-77 
169 Peier AM, Moqrich A, Hergarden AC, et al. A TRP Channel that Senses Cold Stimuli and Menthol. Cell 
2002; 108: 705-15. 
170 Proudfoot CJ, Garry EM, Cottrell DF, et al. Analgesia mediated by the TRPM8 cold receptor in chronic 
neuropathic pain. Curr Biol 2006; 16: 1591-605 
171 Storey DJ, Colvin LA, Mackean MJ, Mitchell R, Fleetwood-Walker SM, Fallon MT. Reversal of dose-
limiting carboplatin-induced peripheral neuropathy with TRPM8 activator, menthol, enables further effective 
chemotherapy delivery. J Pain Symptom Manage 2010; 39: e2-4 
172 Fallon MT, Storey DJ, Krishan A, et al. Cancer treatment-related neuropathic pain: proof of concept 
study with menthol-a TRPM8 agonist. Supportive Care in Cancer 2015; 23: 2769-77 
173 Janes K, Esposito E, Doyle T, et al. A3 adenosine receptor agonist prevents the development of 
paclitaxel-induced neuropathic pain by modulating spinal glial-restricted redox-dependent signaling 
pathways. Pain 2014; 155: 2560-7 
174 Thibault K, Van Steenwinckel J, Brisorgueil MJ, et al. Serotonin 5-HT2A receptor involvement and Fos 
expression at the spinal level in vincristine-induced neuropathy in the rat. Pain 2008; 140: 305-22 
175 Hansen N, Uceyler N, Palm F, et al. Serotonin transporter deficiency protects mice from mechanical 
allodynia and heat hyperalgesia in vincristine neuropathy. Neurosci Lett 2011; 495: 93-7 
176 Ghelardini C, Menicacci C, Cerretani D, Bianchi E. Spinal administration of mGluR5 antagonist prevents 
the onset of bortezomib induced neuropathic pain in rat. Neuropharmacology 2014; 86: 294-300 
177 Moore RA, Derry S, McQuay HJ, et al. Clinical effectiveness: an approach to clinical trial design more 
relevant to clinical practice, acknowledging the importance of individual differences. [Review] [40 refs]. Pain 
2010; 149: 173-6 
178 Straube S, Derry S, McQuay HJ, Moore RA. Enriched enrollment: definition and effects of enrichment 
and dose in trials of pregabalin and gabapentin in neuropathic pain. A systematic review. [Review] [62 refs]. 
British journal of clinical pharmacology 2008; 66: 266-75 
179 Chaparro LE, Wiffen PJ, Moore RA, Gilron I. Combination pharmacotherapy for the treatment of 
neuropathic pain in adults. Cochrane Database of Systematic Reviews 2012; 7: CD008943-CD 
180 Brundage MD, Pater JL, Zee B. Assessing the Reliability of Two Toxicity Scales: Implications for 
Interpreting Toxicity Data. JNCI: Journal of the National Cancer Institute 1993; 85: 1138-48 
181 Trotti A, Colevas AD, Setser A, et al. CTCAE v3.0 : Development of a comprehensive grading system for 
the adverse effects of cancer treatment. Seminars in Radiation Oncology 2003; 13(3): 176-81 
182 Cornblath DR, Chaudhry V, Carter K, et al. Total neuropathy score: validation and reliability study. 
Neurology 1999; 53(8): 1660-4 
183 Merkies IS, Schmitz PI, van der Mech‚ FG, van Doorn PA. Psychometric evaluation of a new sensory 
scale in immune-mediated polyneuropathies. Inflammatory Neuropathy Cause and Treatment (INCAT) 
Group. Neurology 2000; 54(4): 943-9 
184 Aaronson NK, Ahmedzai S, Bergman B, et al. The European Organization for Research and Treatment 
of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. Journal of 
the National Cancer Institute 1993; 85(5): 365-76 
185 Postma TJ, Aaronson NK, Heimans JJ, et al. The development of an EORTC quality of life questionnaire 
to assess chemotherapy-induced peripheral neuropathy: the QLQ-CIPN20. European Journal of Cancer 
2005; 41(8): 1135-9 
186 Wolf SL, Barton DL, Qin R, et al. The relationship between numbness, tingling, and shooting/burning 
pain in patients with chemotherapy-induced peripheral neuropathy (CIPN) as measured by the EORTC QLQ-
CIPN20 instrument, N06CA. Supportive Care in Cancer 2012; 20: 625-32 



26 

 

187 Finnerup NB, Attal N, Haroutiunian S, et al. Pharmacotherapy for neuropathic pain in adults: a 
systematic review and meta-analysis. Lancet Neurology 2015; 14(2): 162-73 

 





Table 1: Some of the tools used for assessing CIPN 

Tool Comments Reference
s 

 National Cancer Institute-Common Toxicity Criteria (NCI-CTC) Grade 0-3 
depending on 
degree of 
sensory loss; 
deep tendon 
reflexes; 
parathesia 

180, 181 

Total Neuropathy Score clinical version (TNSc) Includes 
assessment of 
neuropathy 
signs and 
symptoms, with 
limited 
information 
about pain; 
some 
quantitative 
sensory testing 
(vibration  
threshold, 
standardized 
monofilaments) 

182 

modified Inflammatory Neuropathy Cause and Treatment 
(INCAT) group sensory sumscore (mISS) 

Includes 
vibration  
threshold, 
standardized 
monofilaments, 
plus 2 point 
discrimination 

183 

European Organization for Research and Treatment of Cancer 
(EORTC) QLQ-C30  

Not specific for 
CIPN, but gives 
a reliable 
measure of the 
impact of CIPN, 
and can allow 
comparison with 
other cancer 
populations. 

184 

CIPN20 quality-of-life measures Assesses 
different 
components, 
including 
sensory, 
autonomic and 
motor 
symptoms;  

185, 186 

 



Table 2. Combined NNTs for agents used in treatment of neuropathic pain (based on results 

from 187). NNT = number-needed-to-treat; CI= confidence interval; SNRI= serotonin, 

noradrenaline reuptake inhibitor 

Drug NNT (95% CI) Strength of recommendation for 
use 

SNRIs (mainly 
Duloxetine) 

6.4 (5.2-8.4)  
Strong, first line 

Pregabalin 7.7 (6.5-9.4) 
Gabapentin 7.2 (5.9-9.21) 
Tri-cyclic anti-
depressants 

3.6 (3.0-4.4) 

Lidocaine patches 5% Low quality evidence  
Weak, second line Capsaicin patch 8% 10.6 (7.4-19.0) 

Tramadol 4.7 (3.6-6.7) 
Strong opioids 4.3 (3.4-5.8) Weak, third line 
Botulinum toxin A Only very small 

studies  
Weak, third line, specialist use only 
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