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diction, and classi�cation of CVDs. The objective of this 
review is to help practicing clinicians better understand 3 
key questions: (1) what are AI, ML, and algorithms; (2) 
what tasks can ML-based AI perform in cardiovascular 
clinical practice; and (3) what is the general work�ow to 
conduct a study associated with AI-based diagnosis, pre-
diction, or classi�cation in CVDs?

AI, ML, and Algorithms

AI is a �eld of computer science that aims to mimic human 
thought processes, learning capacity, and knowledge stor-
age.5 ML, one of the methods to realize AI, usually refers 
to the process by which a system obtains information from 
data through algorithms. ML can be roughly divided into 
supervised and unsupervised learning. There are 2 main 
di�erences between supervised and unsupervised learning. 
First, supervised learning uses data that have been tagged 
with 1 or more labels, like properties, characteristics, or 
classi�cations, whereas unsupervised learning uses data 
that have not been tagged.5 Second, supervised learning is 
focused on classi�cation, which involves classifying an 
observation into several subsets (e.g., classifying an ECG 
into atrial �brillation (AF), sinus rhythm, or other), and 

C
ardiovascular diseases (CVDs) are the leading 
cause of death in humans, currently accounting for 
approximately one-third of all deaths worldwide.1 

Although considerable progress has been made in the man-
agement of CVDs in recent years, many challenges remain 
in clinical practice. First, the diagnosis of CVDs is highly 
dependent on electrocardiograms (ECGs) and/or cardio-
vascular imaging, the interpretation of which is time con-
suming and requires experience.2 Second, most currently 
used prediction models of CVDs are based on traditional 
statistical methods, limiting prediction performance.3 
Third, the “one-size-�ts-all” management concept in the 
clinic is not helpful for prognosis because it ignores the 
heterogeneity of CVDs.4

Arti�cial intelligence (AI) is regarded as a revolutionary 
frontier technology, and it has become a global research 
interest in the �eld of medicine, especially in cardiovascular 
medicine. AI could help clinicians overcome the aforemen-
tioned 3 challenges by automatically interpreting ECGs 
and/or cardiovascular imaging results, building more pow-
erful prediction models, and characterizing subgroups of 
CVDs.

In this review we provide an overview of the applications 
of machine learning (ML)-based AI in the diagnosis, pre-
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With the rapid development of artificial intelligence (AI) and machine learning (ML), as well as the arrival of the big data era, techno-

logical innovations have occurred in the field of cardiovascular medicine. First, the diagnosis of cardiovascular diseases (CVDs) is 

highly dependent on assistive examinations, the interpretation of which is time consuming and often limited by the knowledge level 

and clinical experience of doctors; however, AI could be used to automatically interpret the images obtained in auxiliary examinations. 

Second, some of the predictions of the incidence and prognosis of CVDs are limited in clinical practice by the use of traditional pre-

diction models, but there may be occasions when AI-based prediction models perform well by using ML algorithms. Third, AI has 

been used to assist precise classification of CVDs by integrating a variety of medical data from patients, which helps better charac-

terize the subgroups of heterogeneous diseases. To help clinicians better understand the applications of AI in CVDs, this review 

summarizes studies relating to AI-based diagnosis, prediction, and classification of CVDs. Finally, we discuss the challenges of 

applying AI to cardiovascular medicine.
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on ECGs (Table 1).
As a cheap and non-invasive clinical tool, the ECG plays 

an important role in the diagnosis of CVDs. Although 
computer-aided ECG interpretation has been widely used 
in clinical practice, there is still considerable possibility of 
misinterpretation.7 In recent years, progress in computer 
algorithms and the use of big data have signi�cantly 
improved the accuracy of automatic ECG interpretation. 
To date, ECGs have been used as inputs to construct ML 
models to mainly perform 4 tasks: automatic recognition 
of heart rhythm, detection of cardiac structural abnor-
malities, detection of cardiac functional abnormalities, and 
detection of CVDs.

Recognition of Heart Rhythm
AI has been successfully used to recognize heart rhythms, 
especially AF. There has been increased interest in detecting 
AF due to its increasing incidence, as well as the possibility 
of preventing AF-related strokes. With 16,557 annotated 
12-lead ECGs, an NN model was trained to diagnose AF, 
achieving an overall accuracy >0.99.8 To further explore 
the ability of AI to detect AF during sinus rhythm, a con-
volutional neural network (CNN) was trained with 649,931 
annotated 12-lead ECGs from 180,922 patients with sinus 
rhythm, with the ML model able to diagnose AF with an 

prediction, which involves estimating an unknown variable 
(e.g., predicting whether a patient will die in 5 years). In 
contrast, unsupervised learning is focused on discovering 
underlining patterns and relationships among the unlabeled 
dataset.3 A typical representative example of unsupervised 
learning is clustering analysis, which involves subgrouping 
objects based on their similarity. ML is based on algorithms, 
such as decision trees, random forests (RF), support vector 
machines (SVM), neural networks (NN), and deep learn-
ing (DL). These algorithms have been reviewed in detail 
elsewhere.6

To clearly illustrate the role of ML-based AI in CVDs, 
in this review we summarize the applications of AI from 3 
aspects: diagnosis, prediction, and prognosis.

AI-Assisted Diagnosis of CVDs

The diagnosis of most CVDs is highly dependent on ECG 
and/or cardiovascular imaging examinations. However, 
the interpretation of medical images is time consuming and 
inter-rater variations may not be negligible. With the appli-
cation of AI, image interpretation could be automated, 
saving clinicians much time, improving the detection rate, 
and reducing the rate of misdiagnosis and missed diagno-
sis. In this section, due to space limitations, we only focus 

Table 1. Artificial Intelligence-Assisted Diagnosis of CVDs Based on Electrocardiograms

Study Objectives Sample size
Algorithm/ 
software

ML model performance

Cai et al8 Detect AF 16,557 12-lead ECGs NN Sensitivity 0.9919, specificity 
0.9944, accuracy 0.9935

Attia et al9 Detect AF under sinus rhythm 649,931 12-lead ECGs CNN AUC 0.87, sensitivity 0.79,  
specificity 0.795, accuracy 0.794

Wasserlauf et al10 Detect AF based on ECGs  
using smartwatch

7,500 patients CNN Sensitivity 0.975

Tison et al11 Detect AF based on ECGs  
using smartwatch

9,750 patients DNN Sensitivity 0.980, specificity  
0.902

Hannun et al12 Classify cardiac rhythms into  
12 rhythm classes

91,231 single-lead ECGs DNN AUC 0.97, F1 0.837

Ribeiro et al13 Recognize 6 types of heart 
rhythm abnormalities

2 million 12-lead ECGs DNN F1 >0.8, specificity >0.99

Kwon et al14 Detect left ventricular  
hypertrophy

21,286 patients with 12-lead 
ECGs

DNN+CNN Internal AUC 0.880, external  
AUC 0.868

Attia et al15 Detect cardiac contractile 
dysfunction

44,959 patients with 12-lead 
ECGs

CNN AUC 0.93, sensitivity 0.863,  
specificity 0.857, accuracy 0.857

Attia et al16 Detect cardiac contractile 
dysfunction

16,056 patients with 12-lead 
ECGs

CNN AUC 0.918

Noseworthy et al17 Detect cardiac contractile 
dysfunction

97,829 patients with 12-lead 
ECGs

CNN AUC >0.93

Sengupta et al18 Detect abnormal myocardial 
relaxation

188 patients with 12-lead 
ECGs

RF AUC 0.91

Ko et al19 Diagnose HCM 12-lead ECGs of 3,060 HCM 
patients and 63,941 controls

CNN AUC 0.96, sensitivity 0.87,  
specificity 0.90

Kwon et al20 Diagnose HF 55,163 12-lead ECGs of 
22,765 patients

DNN Internal AUC 0.843, external  
AUC 0.889

Kwon et al21 Diagnose mitral regurgitation 70,709 12-lead ECGs of 
38,241 patients

CNN Internal AUC 0.816, external  
AUC 0.877

Kwon et al22 Diagnose aortic stenosis 56,689 12-lead ECGs of 
43,051 patients

MLP+CNN Internal AUC 0.884, external  
AUC 0.861

Kwon et al23 Diagnose pulmonary  
hypertension

70,709 12-lead ECGs of 
38,241 patients

DNN+CNN Internal AUC 0.859, external  
AUC 0.902

AF, atrial fibrillation; AUC, area under the curve; CNN, convolutional neural network; CVDs, cardiovascular diseases; DCNN, deep convolu-
tional neural network; DNN, deep neural network; ECGs, electrocardiograms; NN, neural network; HCM, hypertrophic cardiomyopathy; HF, 
heart failure; MLP, multilayer perceptron; RF, random forest.
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contractile dysfunction, with an AUC of 0.93.15 Subse-
quently, the ability of this CNN to detect cardiac contrac-
tile dysfunction was validated in a prospective cohort of 
16,056 patients in a single cardiovascular center, achieving 
an AUC of 0.918.16 Furthermore, it was proved that this 
CNN could be applied to patients of di�erent races and 
ethnicities.17 Similarly, to detect abnormal myocardial 
relaxation, Sengupta et al developed an RF model.18 But, 
unlike the study of Attia et al,15 which directly used raw 
12-lead ECGs, the ECGs used in the study of Sengupta et 
al were processed using continuous wavelet transform 
mathematics before being used to train the RF model.18 
Such image preprocessing actually ampli�ed the ECG sig-
nal, and is a useful way to reduce sample size.18

Detection of CVDs
In addition to classifying cardiac rhythms and evaluating 
cardiac structure and function, AI has been used to directly 
diagnose CVDs, such as hypertrophic cardiomyopathy,19 
heart failure (HF),20 mitral regurgitation,21 aortic steno-
sis,22 and pulmonary hypertension.23 The outstanding per-
formance of the ML models in diagnosing these diseases 
based on ECGs indicates that many CVDs may cause 
subtle abnormalities in ECGs that cannot be easily recog-
nized by human eyes, but can be detected by AI.

Work�ow
Generally speaking, the work�ow of an ML-based diagnosis 
study using ECGs usually involves the collection of ECGs, 
preprocessing, model construction, and assessment. To 
enhance the generalization of ML models, it is better to use 
ECG machines that are widely used in clinics nationwide 
or worldwide (Figure 1A). ECG preprocessing primarily 
includes removal of noise and proper representations, such 

area under the receiver operating characteristic curve (AUC) 
of 0.87.9 Furthermore, NN models that could detect AF 
have been inserted in smartwatches, and this technology 
may bene�t thousands of people due to the widespread use 
of smartwatches.10,11

Importantly, AI could be used to recognize other types 
of heart rhythms in addition to AF. Using 91,232 single-
lead ECGs from 53,549 patients who used a single-lead 
ambulatory ECG monitoring device, Hannun et al devel-
oped a deep neural network (DNN) model that was able 
to classify 12 cardiac rhythm classes, including 10 arrhyth-
mias, sinus rhythm, and noise.12 The mean F1 score (i.e., 
the harmonic mean of the positive predictive value and 
sensitivity) for the DNN exceeded that of average cardi-
ologists (0.837 vs. 0.780).12 Similarly, another DNN model 
was trained with >2 million labeled 12-lead ECGs, and the 
model was able to recognize 6 types of heart rhythm 
abnormalities, with F1 scores >0.80.13

Detection of Cardiac Structural or Functional Abnormalities
Apart from heart rhythm recognition, AI has also been 
used to detect abnormalities in cardiac structure or function. 
An ensemble neural network (ENN) model was constructed 
with ECGs to diagnose left ventricular hypertrophy, with 
the model signi�cantly outperforming the cardiologist dur-
ing internal validation.14 This result was con�rmed external 
validation (sensitivity: 0.454 vs. 0.284). The datasets used 
for the internal validation and ML model training were 
derived from the same hospital and cohort, whereas the 
external validation involved an independent dataset derived 
from another hospital and cohort.14 To detect cardiac con-
tractile dysfunction based on ECG data alone, Attia et al 
trained a CNN with 44,959 annotated 12-lead ECGs; this 
model performed well in screening patients with cardiac 

Figure 1.  Workflow for a machine learning (ML)-based diagnostic study using electrocardiograms (ECGs). (A) ECG collection. 
(B) ECGs preprocessing, which mainly includes noise removal and proper representations, such as (a) 1-dimensional signals, (b) 
important ECGs feature, and (c) wavelets. (C) Model construction using supervised algorithms, mainly deep learning. (D) Model 
assessment. AF, atrial fibrillation; AUC, area under the curve; ROC, receiver operating characteristic.
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or non-AF. The most commonly used algorithm is DL, 
especially CNN (Figure 1C). Finally, model performance 
is assessed by receiver operating characteristic (ROC) 
curve analysis and indices like the AUC, accuracy, sensitiv-
ity, speci�city, and F1 score (Figure 1D).

as 1-dimensional signals (suitable for CNN9,10,14–17,19,21–23), 
important ECG features (suitable for DNN11–14,20,23), and 
wavelets (suitable for RF;18 Figure 1B). Next, ML models 
can be constructed with supervised algorithms to perform 
classi�cation tasks, like classifying the input ECG as AF 

Table 2. Artificial Intelligence-Assisted Prediction of CVDs

Diseases, events, or  
interventions at baseline

Predicted disease  
or event

Time from  
baseline

Sample size

Incidence prediction

  No CVDs Death, stroke, CHD, 
CVDs, HF, and AF

12 years 6,814 subjects, 66.6% for training (3-fold cross-validation), 
33.3% for testing 

  No CVDs CVDs 13 years Training: 3,230 subjects (2-fold cross-validation); internal  
validation: 3,229 subjects; external validation: 1,348 subjects 

  No VF VF 30 s 27 cases and 28 controls (10-fold cross-validation)

Prognosis prediction

  CAD Death 5 years 10,030 patients (10-fold cross-validation)

  HFpEF Death and hospitalization 3 years 1,767 patients (5-fold cross-validation) 

  Hypertension Composite end point 
events

33 months 508 young patients with hypertension (10-fold cross-validation)

  OHCA In-hospital death – 39,566 patients; 90% for training, 10% for testing

  OHCA Poor functional outcome 180 days 932 patients; 90% for training, 10% for testing (5-fold cross-
validation)

  CRT Death 1, 2, 3, 4,  
and 5 years

Training: 1,510 patients (10-fold cross-validation); testing: 158 
patients 

  PCI In-hospital death – 11,709 patients with 14,349 PCIs (8-fold cross-validation)

  PCI HF readmission 30 days 11,709 patients with 14,349 PCIs (8-fold cross-validation)

  PCI Death 180 days 11,709 patients with 14,349 PCIs (8-fold cross-validation)

Diseases, events, or  
interventions at baseline

Parameters used to  
construct ML models

Algorithm AUC Reference

Incidence prediction

  No CVDs 20 variables from imaging, non-invasive 
tests, questionnaires, and biomarker 
panels

RF 0.84 for death, 0.75 for stroke, 0.80 for 
CHD, 0.80 for CVD, 0.84 for HF, and 
0.75 for AF

24

  No CVDs 9 variables (age, sex, ethnicity, TC, 
HDL-C, SBP, treatment for  
hypertension, diabetes, and smoking)

SVM Internal AUC: 0.94; external AUC: 0.95 26

  No VF 4 variables from 120-s ECG signals ANN 0.99 27

Prognosis prediction

  CAD 19 clinical and 35 CCTA parameters Logit-Boost 0.79 28

  HFpEF 86 clinical, laboratory, and ECG  
variables

RF 0.72 for death, 0.76 for hospitalization 29

  Hypertension 11 clinical, laboratory, and  
echocardiographic variables

XGBoost 0.757 30

  OHCA 46 clinical and laboratory parameters GBM 0.87 32

  OHCA 54 clinical and laboratory parameters ANN 0.891 33

  CRT 33 pre-implant clinical variables RF 0.768, 0.793, 0.785, 0.776, 0.803 for 
1-, 2-, 3-, 4-, and 5-year mortality 
prediction, respectively

34

  PCI 52 admission variables RF 0.92 35

  PCI 358 discharge variables RF 0.90 35

  PCI 358 discharge variables RF 0.87 35

ANN, artificial neural network; CAD, coronary artery diseases; CCTA, coronary computed tomography angiography; CHD, congenital heart 
disease; CRT, cardiac resynchronization therapy; GBM, gradient boosting machine; HDL-C, high-density lipoprotein cholesterol; HFpEF, heart 
failure with preserved heart failure; OHCA, out-of-hospital cardiac arrest; PCI, percutaneous coronary intervention; SBP, systolic blood pres-
sure; SVM, support vector machine; TC, total cholesterol; VF, ventricular fibrillation. Other abbreviations as in Table 1.
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predictive model,25 for all these RF models were not less 
than 0.75.24 To further compare the prediction abilities of 
ML models and the traditional American College of 
Cardiology and American Heart Association (ACC/AHA) 
risk calculator, Kakadiaris et al trained SVM models using 
the MESA cohort and 2-fold cross-validation.26 The SVM 
models, constructed with the same 9 traditional risk vari-
ables used by the ACC/AHA Risk Calculator, performed 
better than ACC/AHA Risk Calculator (AUC 0.94 vs. 
0.72) and this was veri�ed by using an external validation 
cohort (AUC 0.95 vs. 0.71).26

In addition to predicting long-term events, ML models 
can also predict the incidence of cardiovascular events in 
the short term. For example, an NN model was constructed 
with 4 QRS complex shape features from baseline 120-s 
ECGs of 27 ventricular �brillation cases and 28 controls.27 
This model was trained with 10-fold cross-validation and 
was able to predict the incidence of ventricular �brillation 
in 30 s, with an AUC of 0.99. Although 30 s is a short period, 
it is of importance to save patients’ lives in the clinic.27

Prognosis Prediction
Prediction of the prognosis of CVDs is critical in clinical 
practice because an accurate prognosis prediction model 
could inform clinicians of each patient’s prognosis, helping 
with decision making, the use of disease management pro-
grams, and in discussing end-of-life preferences.

AI-Assisted Prediction of CVDs

Apart from performing diagnostic tasks, AI performs well 
in prediction tasks, including predictions of incidence and 
prognosis (see Table 2).

Incidence Prediction
Most CVDs have a subclinical phase, during which the 
patients exhibit no clinical symptoms. Importantly, disease 
progression can be slowed down or even prevented if inter-
ventions occur during this phase. Therefore, the prediction 
of the incidence of CVDs is of great signi�cance for the 
asymptomatic population.

To explore the ability of ML models to predict the inci-
dence of CVDs, Ambale-Venkatesh et al evaluated 6,814 
participants who were initially free of CVDs from the 
Multi-Ethnic Study of Atherosclerosis (MESA).24 Baseline 
data for 735 variables, including imaging, non-invasive 
tests, questionnaires, and biomarkers, were collected for 
these participants, and the RF technique was used to iden-
tify the top 20 variables for each of the 6 outcomes of 
death, stroke, coronary artery disease (CAD), CVDs, HF, 
and AF. These 20 variables were then used to construct 6 
RF models with 3-fold cross-validation to predict the inci-
dence of each of the 6 outcomes in 12 years. Results showed 
that the concordance indices, a generalization of the AUC 
and a useful parameter to evaluate the performance of the 

Figure 2.  Workflow for the construction of a machine learning (ML)-based prediction model. (A) Raw data is collected at baseline 
and during follow-up. (B) More informative and non-redundant variables are selected from the available baseline variables to 
construct ML models. (C) The internal dataset is divided into a training set and a testing set (e.g., 4 : 1, as in the figure), which are 
used to develop the ML model and assess its generalizability, respectively. Furthermore, cross-validation is usually used to 
enhance the model’s performance. The example of 4-fold cross-validation is shown in the figure, in which the training set is divided 
into 4 equal-sized groups, with one of the groups used as a validation set and the other 3 groups used as training sets at each 
iteration. In some studies, an external dataset is used to independently assess the model’s performance. (D) Classifier algorithms 
are used to build ML models and then assess their performance. AUC, area under the curve; ECG, electrocardiogram.
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A total of 33 pre-implantation clinical variables was col-
lected to train an RF model, and 10-fold cross-validation 
was performed. The model was then tested on an indepen-
dent cohort of 158 patients and did well in predicting 1-, 
2-, 3-, 4-, and 5-year mortality, with an AUC >0.75.34 To 
predict the short- and long-term prognosis after PCI, Zack 
et al built RF prediction models by analyzing 11,709 
patients with 14,349 PCIs.35 In all, 52 clinical parameters 
at admission were used to predict in-hospital mortality, 
whereas 358 variables at discharge were used to predict 
30-day HF readmission and all-cause death. Eight-fold 
cross-validation was used in the RF models, and all 3 mod-
els achieved an AUC >0.85.35

The studies mentioned above show that ML models may 
be superior to standard linear regression models29,32,33,35 
and currently used clinical risk scoring systems28,30,32,34 in 
performing prediction tasks. This is mainly because ML is 
not only able to incorporate a larger number of variables, 
but it can also analyze the possibly complex interactions 
and nonlinear e�ects of the variables.36

Work�ow
The work�ow of an ML-based prediction study usually 
involves the collection of raw data, feature selection, data-
set splitting, and model building. There are mainly 2 types 
of raw data: variables available at baseline, and whether a 
subject experience targeted CVDs or events based on fol-
low-up records (Figure 2A). Feature selection is used to 
select more informative and non-redundant variables from 
the available variables, and the selected variables are used 
to construct ML models (Figure 2B). The whole dataset is 
typically divided into a training set and a testing set. The 
former is used to develop the ML model, whereas the latter 
is used to assess its generalizability. The training set is usu-
ally randomly divided into several equal-sized groups; one 
of the groups is used as a validation set, whereas the other 
groups are used as training sets at each iteration, a process 
called “cross-validation”, a useful way to avoid over�tting. 
Brie�y, over�tting indicates that models perform well on 
the training set but poorly on unseen datasets. Details 
regarding the reasons for over�tting and how to avoid it 
have been reviewed elsewhere.37 Sometimes an external 
dataset is used to further test a model’s generalizability 
(Figure 2C).

The prediction of incidence or prognosis is actually a 
classi�cation task, so classi�er algorithms, such as RF, NN, 
and gradient boosting, are usually required in the develop-
ment of prediction ML models. Once the prediction model 
is built, indices like the AUC, sensitivity, and speci�city are 
calculated to quantify the performance of the ML model 
(Figure 2D).

AI-Assisted Classi�cation of CVDs

Most CVDs are heterogeneous,38 which means patients 
with the same CVD may have distinct etiologies, clinical 
characteristics, auxiliary examination results, outcomes, 
and therapeutic responses. Therefore, there is an urgent 
need to integrate data from di�erent sources to make the 
classi�cation of a disease more accurate. Such accurate 
classi�cation could guide risk strati�cation, prognostic 
prediction, and even the choice of treatment, so it is dis-
cussed in this section.

ML models have been used to predict the prognosis of 
chronic CVDs, like HF, CAD, and hypertension. The clas-
si�cation algorithm Logit-Boost was used to predict 5-year 
mortality of patients with CAD.28 Before ML model build-
ing, features were selected using information gain ranking, 
and only those variables helpful in predicting outcomes 
(information gain >0) were selected for model building. 
Although data on 25 clinical plus 44 coronary computed 
tomography angiography (CCTA) parameters were collected, 
only 19 clinical and 35 CCTA variables were selected for 
model building. The prediction model was trained and val-
idated using 10-fold cross-validation. This ML model (AUC 
0.79) outperformed the Framingham risk score (AUC 
0.61) and CCTA severity scores (AUC 0.62–0.64).28

Similarly, an ML model was constructed to predict 
death and hospitalization in 3 years for patients with HF 
with preserved ejection fraction (HFpEF) based on data at 
discharge. The model used 86 clinical, laboratory, and ECG 
variables from 1,767 patients, and the RF algorithm and 
5-fold cross-validation. This model achieved an AUC of 
0.72 and 0.76 for death and hospitalization, respectively.29

To achieve accurate prognosis prediction for young 
patients with hypertension, Wu et al collected 58 variables 
at baseline and the 33-month follow-up for 508 patients.30 
Then, features were selected using recursive feature elimi-
nation, with only 11 variables �nally selected to build the 
prediction model. A classi�er algorithm called extreme 
gradient boosting, as well as 10-fold cross-validation, was 
used to train and validate the ML model. This model did 
well in predicting composite endpoint events and achieved 
an AUC of 0.757, higher than the recalibrated Framingham 
risk score model (AUC 0.529).30

Similarly, prognosis prediction for patients with acute 
CVDs can be achieved using ML models. Out-of-hospital 
cardiac arrest (OHCA) is an acute cardiovascular event 
with over 300,000 cases among adults in the US.31 The 
prediction of adverse events for patients after OHCA is 
critical because it could inform clinicians and the patients’ 
families of the prognosis and then guide intervention. ML 
models have been used to predict short- and long-term 
outcomes for this population. To predict the in-hospital 
mortality of OHCA patients, Nanayakkara et al collected 
43 clinical and laboratory parameters from 39,566 OHCA 
patients within the �rst 24 h after OHCA.32 Then, 90% of 
the total data set was used to train the prediction model 
using a classi�er algorithm called gradient boosting 
machine, after which the model was tested with the remain-
ing 10% of data and showed great ability to predict in-
hospital mortality, with an AUC of 0.87.32 To further 
predict the long-term functional outcome of OHCA patients, 
a dataset composed of 54 clinical and laboratory parame-
ters at admission and 180-day follow-up records for 932 
OHCA patients was collected.33 The outcome prediction 
model was trained with 90% of the data with 5-fold cross-
validation, with the remaining 10% of data used for test-
ing. An NN algorithm was used during model development, 
and the model performed well in predicting poor functional 
outcomes, comprising dependence, coma, or vegetative 
state, and death within 180 days after OHCA (AUC=0.891).33

ML models can also be used to predict prognosis for 
patients after cardiovascular interventions, such as cardiac 
resynchronization therapy (CRT) and percutaneous coro-
nary intervention (PCI). To build ML models capable of 
predicting long-term prognosis after CRT, a database of 
1,510 patients undergoing CRT implantation was used.34 
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of the subgroups was characterized by a relatively isolated 
impairment of left ventricular systolic reserve and a better 
prognosis, whereas the other showed abnormal longitudi-
nal deformation, ventricular-arterial coupling, and cardiac 
output responses to exercise.43 All the studies described 
above proved the feasibility of ML-based clustering analy-
sis to de�ne HFpEF subgroups with di�erent clinical char-
acteristics and prognoses, but further studies are required 
to determine whether these subgroups respond di�erently 
to speci�c therapies and whether there are optimal thera-
peutic targets for each of the subgroups (Table 3).

Other CVDs
Unsupervised clustering analysis has also been applied in 
other CVDs besides HFpEF. Sweatt et al used unsupervised 
ML to classify pulmonary arterial hypertension (PAH) 
patients into 4 clusters based on blood proteomic pro�les 
that included 48 in�ammation- or autoimmunity-related 
molecules.44 These 4 PAH clusters were distinct in terms of 
proteomic immune pro�les, clinical risk, and long-term 
outcomes. That study was valuable because it identi�ed 
possible immunotherapy targets for PAH.44

Primary mitral regurgitation (PMR) is another hetero-
geneous clinical disease, with considerable di�erences in 
prognosis among patients after valve surgery. To identify 
phenotypically distinct categories of PMR patients, Pimor 
et al performed unsupervised clustering analysis using 64 
clinical and echocardiographic variables of PMR patients 
before valve surgery.45 These patients were then classi�ed 
into 3 phenotypes that di�ered markedly in terms of clini-
cal characteristics and post-surgery prognosis. The ML 

HF With Preserved Ejection Fraction (HFpEF)
HFpEF is an acknowledged phenotypically heterogeneous 
disease with a high prevalence and no proven useful medi-
cal therapies.39 Accurate classi�cation of HFpEF may be a 
critical step for the design of a clinical trial and the devel-
opment of useful therapies for speci�c HFpEF subgroups. 
To this end, several research groups have used AI to identify 
phenotypically distinct HFpEF categories. For example, 
Shah et al prospectively collected 67 phenotypic variables 
from 397 HFpEF patients, generated a correlation matrix 
of phenotypic variables, and �ltered out variables that 
were correlated at a correlation coe�cient of >0.6, leaving 
46 continuous variables for the �nal clustering analyses.40 
Three clusters were determined using the 46 identi�ed vari-
ables. Surprisingly, the 3 subgroups di�ered signi�cantly 
not only in clinical characteristics, but also survival. These 
results were validated in another prospective cohort of 107 
HFpEF patients.40 Using di�erent HFpEF cohorts but 
similar study strategies, Segar et al also identi�ed 3 mutu-
ally exclusive subgroups of HFpEF patients with distinct 
clinical characteristics and long-term outcomes.41 Hedman 
et al used 32 echocardiographic and 11 clinical and labora-
tory variables to perform ML-based clustering and identi-
�ed 6 phenotype-based groups.42 Importantly, the results 
of that study revealed di�erential characteristics and out-
comes, as well as di�erent levels of in�ammatory and car-
diovascular plasma proteins across the newly identi�ed 
subgroups.42 In another study, instead of inputting several 
di�erent types of medical data, Przewlocka-Kosmala et al 
used only resting and postexercise echocardiographic param-
eters and divided HFpEF patients into 2 subgroups.43 One 

Table 3. Artificial Intelligence-Assisted Classification of CVDs

Disease Sample size
Parameters used in  

unsupervised ML methods
No.  

subgroups
Differences among  

subgroups
Reference

HFpEF Discovery cohort: 397; 
validation cohort: 107

46 clinical, laboratory, ECG,  
and echocardiographic  
parameters

3 Clinical characteristics, cardiac 
structure/function, invasive 
hemodynamics, and outcomes

40

HFpEF Discovery cohort: 654; 
internal validation  
cohort: 1,113; external 
validation cohort 216

61 clinical, laboratory, ECG,  
and echocardiographic  
parameters

3 Clinical characteristics and long-
term outcomes

41

HFpEF 320 32 echocardiographic and 11 
clinical/laboratory parameters

6 Clinical characteristics and 
outcomes, as well as  
concentrations of inflammatory 
and cardiovascular plasma 
proteins

42

HFpEF 177 8 resting and post-exercise 
echocardiographic parameters

2 Left ventricular systolic reserve 
and prognosis

43

PAH Discovery cohort: 281; 
validation cohort: 104

Circulating proteomic panel of 
48 cytokines, chemokines, and 
factors

4 Blood proteomic immune 
profiles, clinical risk, and  
long-term outcomes

44

PMR 122 64 clinical and  
echocardiographic variables

3 Clinical characteristics,  
prognosis, and therapeutic 
response to surgery (mitral  
valve repair or replacement)

45

AC Discovery cohort: 60; 
validation cohort: 92

18 parameters derived from 
pathological images of  
explanted AC hearts

4 Genetic background,  
echocardiographic and ECG 
parameters

46

HF 1,106 50 clinical, laboratory, ECG,  
and echocardiographic  
parameters

4 Clinical characteristics, 
biomarker values, ventricular 
structure/function, and  
therapeutic response to CRT

47

AC, arrhythmogenic cardiomyopathy; ECG, electrocardiography; PAH, pulmonary arterial hypertension; PMR, primary mitral regurgitation. 
Other abbreviations as in Tables 1,2.
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algorithms to select more valuable features for classi�cation, 
and is critical to improve the performance of algorithms by 
reducing redundant features (Figure 3B). Feature projection 
involves projecting the selected features into a 2-dimensional 
space, which helps visualization (Figure 3C). After dimen-
sionality reduction, unsupervised ML is used to de�ne homo-
geneous subgroups (Figure 3D,E). Finally, a comparison 
among di�erent subgroups is performed (Figure 3F). Unsu-
pervised learning was used to achieve clustering analysis in 
the most of the relevant studies, and the determination of 
di�erent clusters is based on the similarity of patients’ 
input data.

Summary and Perspectives

To help clinicians better understand AI and conduct related 
studies, we have described some basic knowledge about 
AI, ML, and algorithms, and then summarized reported 
studies associated with AI-based diagnosis, prediction, and 
classi�cation in CVDs (Tables 1–3), after which the general 
work�ow of each of the 3 applications was illustrated 
(Figures 1–3).

There are still some obstacles in using ML-based AI in 
cardiovascular practice. First, data availability limits the 
generalizability of ML algorithms. The data used for the 
training of ML models are typically acquired from 1 or 
several laboratories, health centers, or hospitals, and the 
algorithms are therefore likely to fail when applied to dif-
ferent populations.6 Second, obtaining large quantities of 
high-quality labeled data, which are essential for the train-
ing of supervised learning algorithms, is labor intensive 
and often performed manually.48 Third, the “black box” 
property of DL, which means the inner mechanisms and 
processes of DL models, cannot be explained and is not 
accepted by many clinicians.49

model could be used to guide cardiac surgeons to identify 
the high-risk subgroup, and these patients could be care-
fully monitored and may even be treated earlier.45

Arrhythmogenic cardiomyopathy (AC) is an inherited 
cardiomyopathy that is heterogeneous in the overall distri-
bution of �brofatty in�ltration in the heart. We have previ-
ously used unsupervised clustering to classify AC patients 
into 4 subgroups based on 18 parameters derived from 
pathological images of 60 explanted AC hearts, and these 
4 subgroups had distinct genetic backgrounds, echocardio-
graphic variables, and ECG parameters.46 That study 
established a novel pathological classi�cation with distinct 
genotypes indicating di�erent potential mechanisms in the 
pathogenesis of AC.46

HF is a heterogeneous clinical syndrome with a substan-
tial proportion of patients who do not respond to CRT. To 
identify patients who are likely to respond to CRT, Cikes 
et al used unsupervised ML to categorize 1,106 HF patients 
who were randomized to either receive CRT or not.47 Fifty 
baseline clinical and echocardiographic variables were 
used in the ML method, and 4 phenogroups were identi-
�ed. Surprisingly, 2 of these phenogroups were found to be 
likely to bene�t from CRT by comparing the HF-free 
survival rate after treatment in each of the phenogroups.47 
This �nding may guide cardiologists to identify patients 
who are most likely to respond to CRT (Table 3).

Work�ow
Most CVDs are heterogeneous (Figure 3A). To classify the 
heterogeneous population into several homogenous sub-
groups, information is collected for the available variables, 
such as clinical characteristics, cardiac imaging, ECGs, labo-
ratory tests, and even pathological images. Then, dimen-
sionality reduction, including feature selection and feature 
projection, is performed. Feature selection involves using 

Figure 3.  Workflow to conduct a classification study of cardiovascular diseases (CVDs) using machine learning (ML). (A) Most 
CVDs are heterogeneous. (B,C) Dimensionality reduction consists of 2 important processes, namely feature selection (B) and 
feature projection (C). (D) Unsupervised ML. (E) Homogeneous subgroups. (F) Comparisons among different subgroups. ECG, 
electrocardiogram.
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