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Abstract: Background: While protein therapeutics are invaluable in managing numerous diseases,

many require frequent injections to maintain therapeutically effective concentrations, due to their 

short half-life in circulation. PolyXen™, a platform and patented technology employing biodegrada-

ble, non-immunogenic and hydrophilic Polysialic Acids (PSA) for drug delivery, is being utilized to 

overcome such limitations, thereby potentially enabling the clinical utility of a broad range of protein 

therapeutics. Here, we report the recent progress on two development candidates, polysialylated deox-

yribonuclease I (PSA-DNase) and polysialylated erythropoietin (PSA-EPO). 

Methods and Results: Chemical polysialylation of DNase I (DNase) using PSA with different chain

length at various conjugation sites led to improved stability against proteases and thermal stress, and 

slightly reduced enzymatic activity. Polysialylation of EPO resulted in retention of protein structure and 

PSA-EPO remained biologically active. PSA-EPO had a significantly prolonged circulating half-life (e.g. 

t1/2 of PSA-EPO = ~400 h in patients after subcutaneous administration, aimed for once monthly admin-

istration, vs. t1/2 of EPO = ~22 h; administered twice or thrice weekly), and retained in vivo efficacy. 

Conclusion: This approach has been clinically validated in phase I (in healthy volunteers) and II stud-

ies of PSA-EPO [for managing anemia in patients with chronic kidney disease (CKD)]. 
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1. INTRODUCTION

Biopharmaceutical drugs, including peptides and pro-
teins, have transformed medicine, as they can address targets 
that often are not treatable by small molecules. However, 
complex macromolecules do have limitations, such as sensi-
tivity to storage conditions, instability in circulation, unde-
sired immunogenicity and antigenicity, which can lead to 
reduced clinical and commercial utility. Half-life extension 
is a common approach to improve biological therapeutics, as 
clinical efficacy is highly dependent on this pharmacokinetic 
(PK) parameter. Methodologies for extending half-life in-
clude polymeric delivery, design of fusion proteins, 
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glycoengineering and nanoparticles [1-6], all of which have 
been employed for developing next-generation biopharma-
ceuticals. 

PolyXen™ is a platform technology for drug delivery, in 

which polysialic acid (PSA)  a naturally occurring, highly 
hydrophilic, non-immunogenic, linear homopolymer of sialic 

acid (N-acetyl neuraminic acid, Neu5Ac)  is attached to a 
protein to improve its in vivo pharmacokinetics and pharma-
codynamics (PD) [7, 8]. The polysialic acid used (also called 

colominic acid) in PolyXen™ consists of 2-8 linkages and 
is present in both microbes and human tissues. Of particular 
noteworthiness, microorganisms coated with this polysac-
charide, such as N. meningitidis serogroup B (NmB), can 
evade human immune surveillance and complement response 
[9, 10]. In addition, certain tumor cells overexpress glyco-
proteins containing terminal sialic acids, forming sialic acid 
decorated surfaces which avoid recognition by immune cells 



[11, 12]. Recognizing these stealth features enabled by sialic 
acids, it was postulated that polysialylation could reduce the 
immunogenicity and antigenicity of therapeutic proteins 
[13]. Furthermore, PSA is highly hydrophilic and is suitable 
as a bulking agent to improve the pharmacokinetics of pro-
tein drugs, in a manner conceptionally similar to PEGylation 
and XTEN technology [14-16]. PSA is inherently biode-
gradable and the catabolic products are not known to be tox-
ic. All these properties are important for next-generation 
therapeutics, especially in clinical scenarios where chronic 
use is required (e.g. anemia).

Several proteins have been polysialylated in attempts to 

improve their pharmacological properties including highly 

immunogenic enzymes such as asparaginase [17, 18], meta-

stable proteinase inhibitor 1-antitrypsin [19], tissue-
penetrating antibody fragments [20, 21], blood clotting fac-

tor VIII (FVIII) [22, 23], and dimeric as well as tetrameric 

butyrylcholinesterase [24, 25]. Here, we report the effects of 

polysialylation on deoxyribonuclease I (DNase) and erythro-

poietin (EPO), with respect to protease protection, thermal 

stability, biological activity, duration of action and in vivo 
efficacy. Previous and ongoing studies suggest that pol-

ysialylation could serve as a broadly applicable and effective 

approach for enhancing therapeutic proteins [26-28]. 

DNase is an endonuclease that selectively cleaves the 

phosphodiester bond in deoxyribonucleic acid (DNA). Its 

recombinant form, Dornase  (Pulmozyme®), has been used 
in combination with standard therapies for the treatment of 

cystic fibrosis (CF), as it effectively breaks down the abun-

dant extracellular DNA found in mucus of CF patients, 

thereby reducing the mucus’ viscoelasticity and facilitating 

its clearance from the lungs [29]. As the lung secretions of 

CF patients are rich in proteases, a stable, protease-resistant 

form of DNase represents an opportunity for an improved 

next-generation therapy [30]. 

Recombinant human erythropoietin (rhEPO), an 
erythropoiesis-stimulating agent (ESA), has become indis-

pensable for the treatment of all forms of anemia [31]. Since 

the approval of Epogen in 1989, considerable efforts have 

been devoted to improve this protein, which requires multi-

ple injections per week because of its rapid renal clearance 

due to its small size of ~30 kDa. These efforts have led to the 

commercial availability of long-acting EPOs such as 

Aranesp® and Mircera®.

The success of long-acting EPOs relies on the retained 

interaction between EPO and its cognate receptor (EPOR) 

at a molecular level [32-34], and the prolonged residence 

time at a systemic level. As hyperglycosylation and 

PEGylation of EPO at selective sites resulted in Aranesp 

and Mircera that have improved PK properties and in vivo 
activity [33, 35, 36], we reasoned that attachment of PSA 

to the N-terminal end of EPO would likely afford an active 

conjugate with extended circulating half-life, thereby po-

tentially yielding a commercializable next-generation EPO 

therapy. Several elimination pathways of EPO (e.g. renal 
clearance, receptor-mediated endocytosis and degradation, 

and possible others) are likely hindered simultaneously by 

the attached PSA. 

2. MATERIALS AND METHODS

2.1. Materials 

Polysialic acid was manufactured using E.coli K1 cells at
Serum Institute of India Limited (SIIL) according to Current 
Good Manufacturing Practice (cGMP) standards. Briefly, 
cells were grown in a bioreactor under controlled conditions 
(e.g. media, pH, dissolved oxygen and agitation) for a de-
fined period. PSA was harvested, hydrolyzed, purified, oxi-
dized and then lyophilized to give activated PSA with vari-
ous molecular weights (MWs) [37]. The activated PSAs 
generally had a degree of oxidation in the range of 80 120%, 
polydispersity (pd) less than 1.15, O-acetylation less than 
0.35 mole%, free amine content less than 0.1 mole% and 
endotoxin unit (EU) below 100 EU/100 mg.

Recombinant human DNase (rhDNase) was manufac-
tured under cGMP conditions by Catalent Pharma Solutions 
(Madison, WI, USA) using a proprietary Chinese hamster 
ovary (CHO) cell line. PSA-DNase used for clinical trial was 
manufactured at Pharmsynthez using the reductive amination 
method as described in Section 2.2 below. PSA-DNase was 
formulated in calcium chloride and sodium chloride at pH 
6.3. Carla Riberiro, The Cystic Fibrosis Center and Depart-
ment of Medicine, University of North Carolina, provided 
supernatant of mucopurulent material (SMM) used in DNase 
assays.

Recombinant human EPO (rhEPO) alpha was produced
in CHO cells using serum-free media at SIIL under cGMP. 
PSA-EPO used for clinical trials is formulated as a sterile, 
preservative-free solution for subcutaneous (SC) administra-
tion. The drug product contains PSA-EPO drug substance 
and sodium chloride, sodium dihydrogen phosphate mono-
hydrate, disodium hydrogen phosphate dodecahydrate, ster-
ile water for injection.

Sodium cyanoborohydride, sodium azide, acetonitrile, 
trifluoroacetic acid, PBS and other common chemicals were 
procured from Sigma-Aldrich and were used directly. Endo-
sialidase (Endo-N) was from ABC Scientific. Electrophore-
sis gels, staining agents and running buffers were from Life 
technologies.

2.2. PSA-DNase 

2.2.1. Synthesis and Purification of PSA-DNases 

Sodium periodate-activated PSA (14, 24 or 32 kDa) was 
coupled to DNase, intended at N-terminal primary amines, 
by means of reductive amination in the presence of sodium 
cyanoborohydride (NaCNBH3), using procedures similar as 
previously disclosed [38]. In the case of glycan-directed con-
jugation, PSA was functionalized with an amine-bearing 
linker. Glycans on the DNase molecule were activated with 
sodium periodate, followed by reductive amination assisted 
by sodium cyanoborohydride [39]. The conjugates were iso-
lated by hydrophobic interaction chromatography (HIC), 
anion exchange chromatography (AEX), ultrafiltration and 
diafiltration (UF/DF). 

2.2.2. Molecular Characterization of PSA-DNases 

The purified PSA-DNase conjugates were analyzed by 
sodium dodecyl sulfate-polyacrylamide gel electrophoresis



(SDS-PAGE), size exclusion chromatography-tetra detector 
array (SEC-TDA), resorcinol assay and reverse phase-high 
performance liquid chromatography (RP-HPLC) for their 
MW, PSA to protein molar ratio and purity [40]. The starting 
recombinant DNase was characterized by liquid 
chromatography-mass spectroscopy (LC-MS) and HPLC for 
its peptide backbone and glycan profiles, and the starting 
PSA was characterized for its degree of oxidation, MW and 
pd by colorimetric assay and SEC-TDA. The enzymatic ac-
tivity of conjugates was determined by a methyl green (MG) 
assay as previously described [41, 42].

2.2.3. DLS Characterization of PSA-DNases 

The conjugates were analyzed for their size by dynamic 
light scattering (DLS) using a Malvern Zetasizer nano ZS. 
The thermal stability of DNase and PSA-DNases was evalu-
ated by melting point experiments. The unconjugated PSA 
was added to DNase solution, at molar ratios of 1:1 or 10:1, 
to serve as controls. 

2.2.4. DNA Degradation Assay 

Genomic deoxyribonucleic acid (DNA) was treated with 

DNase and PSA-DNase over 6 hour (h) at 37°C. Samples at 
various time points were applied to agarose gel, electro-
phoresed, stained by ethidium bromide, and imaged. Non-
treated genomic DNA and a 10kb ladder were included as 
controls. 

2.2.5. Enzymatic Activity after Treatment with SMM 

DNase and PSA-DNases (0.6 g/mL) were incubated 
with SMM for 6 h, then genomic DNA was added for 30 
minutes (mins). A PicoGreen assay was used to measure the 
residual DNA concentrations, as previously described [43]. 

2.2.6. Rheological Measurement of CF Sputum after En-
zyme Treatment 

Cystic fibrosis (CF) sputum was treated with DNase and 
PSA-DNases for 15 mins, and changes in rheological proper-
ties were measured using a Bohlin Gemini rheometer using a 
20mm parallel plate geometry as previously described [44, 45]. 

2.2.7. Phase I Clinical Trial of PSA-DNase 

A single center, open-label, non-randomized phase I clin-
ical study, sponsored by Pharmsynthez, evaluated the safety 
and tolerance of PSA-DNase prepared using 14 kDa PSA via 
reductive amination (14K PSA-DNase RA) in two consecu-
tive groups at repeated inhalation by healthy volunteers dur-
ing 7 days. 

2.3. PSA-EPO 

2.3.1. Synthesis of PSA-EPO 

Sodium periodate-activated PSA (15 kDa) was coupled to 
EPO via reductive amination at molar ratio of PSA to EPO 
25:1 in the presence of sodium cyanoborohydride at room tem-
perature. The conjugates were isolated by HIC, AEX and gel 
filtration chromatography, followed by UF/DF [46]. 

2.3.2. Molecular Characterization of PSA-EPO 

The apparent MW of the conjugate was determined by 
SDS-PAGE. Protein concentration was determined by 

UV280nm and/or amino acid analysis. The resorcinol assay 
was used to determine PSA content. 

The primary structure (amino acid sequence) of PSA-
EPO was determined by electrospray ionization time-of-
flight mass spectrometry (ESI/TOF-MS) analysis of the pol-
ypeptide after removal of N-glycans. RP-HPLC peptide 
mapping of the N-deglycosylated peptides using Endo Lys-C 
and trypsin-digested mixtures were employed for identifica-
tion of conjugation sites. 

Circular dichroism (CD) spectra of EPO and PSA-EPO 
were recorded in the far-UV region. Thermal denaturation 
was monitored by following the CD signal at 222 nm. Tm was
determined using a sigmoid fit representing a two-state tran-
sition. 

2.3.3. In Vitro Degradation of PSA-EPO 

PSA-EPO was incubated with Endo-N sialidases at vari-
ous ratios at 37°C; the mixtures at time points were profiled 
by SEC-HPLC to detect the hydrolysis of PSA. 

2.3.4. In Vitro and In Vivo Bioactivity of PSA-EPO in An-
imals 

Female Wistar rats (8 9 weeks old) were subcutaneously 
injected with EPO or PSA-EPO on day 0 (0.6 or 1.5 g/kg).
Blood samples (20 L) were taken from the tail vein at day
0, 4, 7, 9 and 11. An aliquot of blood samples was diluted 
with Reticdye R and analyzed for reticulocytes by fluores-
cence-activated cell sorting (FACS). In vitro bioactivity of
PSA-EPO was also determined on murine splenocytes, de-
rived from anemic mice using a 3H-thymidine incorporation
assay [47]. 

2.3.5. Clinical PK and PD 

A multi-center, open-label, randomized, parallel group, 
single-dose study in CKD patients not on dialysis was con-
ducted to evaluate PK and PD properties of PSA-EPO. Three 
cohorts of CKD patients, not on dialysis were administrated 
with PSA-EPO at three dose levels (0.5, 1.0, and 2.0 g/kg)
via single SC injection. Blood samples were drawn pre-dose 
and post-dose at time points, centrifuged, decanted and 
stored at -20°C until analyzed. The serum PSA-EPO was 
detected by an analyte capture sandwich enzyme-linked im-
munosorbent assay (ELISA). The assay is sensitive in detect-
ing PSA-EPO in human sera with a lower limit of detection 
(LOD) for PSA-EPO at 526 pg/mL. The absolute reticulo-
cytes were measured by flow cytometry using a Coulter 
Counter. 

2.3.6. Immunogenicity Assay 

Luminex beads were coupled with either PSA, EPO, or 
PSA-EPO, and the conjugated beads were used to capture 
any anti-PSA, anti-EPO, or anti-PSA-EPO IgG and IgM an-
tibodies from human sera collected at day 28 post-dose. Sec-
ondary antibodies (anti-polysialic acid-NCAM antibody, 
clone 2-2B, Chemicon, anti-human IgM-PE conjugated anti-
body, or anti-human IgG, Jackson ImmunoResearch) were 
used for detection. Raw data collected on the Luminex in-
strument were analyzed using Masterplex QT to estimate 
antibody concentrations (if any) by comparison to a 4-P 
standard curve. 



3. RESULTS AND DISCUSSION

3.1. Polysialylated DNase 

3.1.1. Construction of PSA-DNase 

Polysialylated DNases were prepared using two different 

conjugation strategies: one targeted glycosylation sites for 

PSA attachment, while the other preferentially linked the 

PSA chain to N-terminal primary amines. PSA (Fig. 1A)

from E.coli fermentation was sized by hydrolysis, activated

by sodium metaperiodate, and fractionated to give polymers 

with defined MW and pd [48]. The activated PSA contained 

an aldehyde group at the non-reducing end of the polymer 

chain (Fig. 1B). For N-terminal derivatization, the activated

PSA reacted with the N-terminal primary amines of DNase 

to generate PSA-DNase RA under mildly acidic conditions 

(Fig. 1C) [40]. For glycoconjugation, the activated PSA was

functionalized with an amine-bearing linker, and the surface 

carbohydrates of DNase were oxidized to generate aldehydes 

[49]. The amine-functionalized PSA then reacted with alde-

hyde-containing DNase to create PSA-DNase glycan pol-

ysialylation (GP) [50]. The conjugates were then purified by 

HIC and AEX chromatography, and UF/DF. 

3.1.2. Characterization of PSA-DNase 

The conjugates were characterized for their MW, degree 

of conjugation, molecular size, enzymatic activity and ther-

mal stability. Their apparent MW was characterized by SDS-

PAGE, (see Supplement Fig. 1 for representative conju-

gates). Their degree of conjugation was determined by a res-

orcinol assay, and/or confirmed by SEC-TDA (Fig. 2A). All

PSA-DNase conjugates were analyzed by a methyl green 

(MG) assay for their activity [41], relative to a reference 

DNase. Six out of the 10 conjugates displayed greater than 

50% enzyme activity relative to the reference standard (Fig. 

2B, Supplement Table 1). The conjugates with single PSA

chain attached at the N-terminus retained the most DNase 

activity, and the conjugate with the smallest PSA chain 

length in the range studied had the best activity. The conju-

gates with PSA chains attached to the glycans were less ac-

tive, compared to the N-terminal conjugated DNases. Multi-

ple attachments of PSA chains resulted in further decreases 

of enzymatic activity. Still, with two 32 kDa PSA attached at 

the glycans, the conjugate retained significant activity (~50% 

of activity of DNase). Based on the retained enzymatic activ-

ity and cost of manufacturing at scale, the 14K PSA-DNase 

RA, 24K PSA-DNase RA and 24K PSA-DNase GP were 

selected for further characterization. 

The molecular sizes of 14K PSA-DNase RA and 24K 
PSA-DNase RA were measured by SEC-TDA and dynamic 
light scattering (DLS). As the correlation between apparent 
size and MW differs for proteins and PSA polymers (the 
increase in a PSA polymer’s apparent size vs. MW is greater
than for proteins, due to a difference in respective hydration 
dynamics and intramolecular tertiary interactions) interpreta-
tion of sizing measurements for PSA-protein conjugates re-
quires application of its own empirical standard. As shown in 
Fig. 2C, the size of 14K PSA-DNase RA (~47 kDa) is simi-
lar to that of bovine serum albumin (BSA) dimer with an 

MW of ~120 kDa, and the size of 24K PSA-DNase RA 
(MW ~57 kDa) is close to that of trimeric BSA (MW ~180 
kDa). Considering that the pore size for filtration in the renal 
membrane is about the size of monomeric BSA, the conjuga-
tion of a 14 kDa PSA to a protein of DNase size (~32.6 kDa) 
would provide enough bulking effect to decrease the direct 
removal of the conjugates by the renal clearance pathway. 

Thermal stability of proteins is often indicative of both in 
vivo stability and stability in commercial formulations.
Thermal denaturation of various PSA-DNases was evaluated 
by DLS. The onset of unfolding/aggregation of all PSA- 
DNases occurred at a temperature ~5°C higher than that of 
DNase (Fig. 2D). This unfolding and aggregation were irre-
versible, consistent with a previous study on DNase [51]. 
The sizes of aggregates of 14K PSA-DNase RA and 24K 
PSA-DNase RA upon heating were much smaller, compared 
to those generated from DNases. The measured particle size 
of DNases with PSA added to the assay buffer, increased 
with temperature ramping in a manner similar to that of 
DNase alone. These results demonstrate that covalently 
linked PSA, not the free PSA in the solution, provided a sta-
bilizing effect against the thermal stress and mitigated the 
formation of large aggregates. A similar protective property 
against environmental stressors has been reported for a treha-
lose glycopolymer [52] and heparin-mimicking polymer [53] 
(a copolymer consisting of styrene sulfonate units and me-
thyl methacrylate units bearing PEG side chains) designed 
by Maynard and coworkers.
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Fig. (1). Polysialic acid and polysialylated DNases. (A) Chemical

structure of polysialic acid. (B) Activated polysialic acid. The pol-

ysialic acid is functionalized at the non-reducing end to have either 

an aldehyde or an amine group. (C) Schematic presentation of pol-

ysialylated DNases. The attachment of PSA chain(s) can be di-

rected either at N-terminal primary amines or at glycan(s). 
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3.1.3. Genomic DNA Digestion 

Genomic DNA digestion by 14K PSA-DNase RA was 

compared side-by-side with Dornase  at concentrations of 
0.6 and 3 g/mL (based on the specific activity of the pro-
tein). Migration patterns of digested DNA in the agarose gel 
were visually inspected and used to evaluate the enzyme 

activity. Intact genomic DNA migrated as a diffuse smear, 
while DNA treated with enzymes ran faster and condensed 
into narrower bands that represented a distribution of low 
MW DNA fragments. Further digestion of these cleaved 
DNAs generated much smaller fragments that run off the gel. 
Both 14K PSA-DNase and Dornase  hydrolyzed DNA in a 
time- and concentration-dependent fashion (Fig. 3), and dis-

Fig. (2). (A) SEC-TDA traces of representative 14K PSA-DNase RA. The degree of conjugation (~1 mole PSA per DNase) was determined

by the UV and refractive index (RI) signals. The MW of this conjugate was calculated by right angle light scattering/low angle light scatter-

ing (RALS/LALS) detectors to be ~47 kDa. (B) The enzymatic activity of various PSA-DNases. The activity relative to a DNase in house

reference standard was measured using a Methyl Green assay. The number after PSA indicates the number of PSA chains per DNase, evalu-

ated by a resorcinol assay. RA and GP indicate that the conjugation sites were intended at the N-terminal primary amines and glycans, re-

spectively. For example, 14K PSA1 RA refers to a DNase conjugate containing 1 chain of 14 kDa PSA, prepared via reductive amination

that was intended to occur at the N-terminal amine. (C) Hydrodynamic radius of DNase and PSA-DNases measured by SEC-TDA and DLS,

with BSA as control. (D) Thermal denaturation/aggregation of DNase and PSA-DNases evaluated by DLS temperature ramping experiments.

The control samples contained DNase with free PSA added, with a molar ratio of PSA to DNase at 1:1 or 10:1. Conjugates were formulated 

in 150 mM NaCl, 1 mM CaCl2, pH ~6.3. 

Fig. (3). Side-by-side comparison of 14K PSA-DNase RA (1) and Dornase  (D ) with respect to genomic DNA digestion. DNA samples

were treated with enzymes at two concentrations (0.6 and 3 g/mL) and analyzed at various time points over 6 h. The amount of enzymes

used was adjusted based on their specificity activity. Non-treated DNA (NT) and a 10 kb ladder were included as controls. The agarose gel 

was stained with ethidium bromide. 
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played a similar activity profile, with 14K PSA-DNase RA 
being slightly more active at several time points. Similar 
results for enzyme activity were also obtained in CF sputum 
(data not shown). 

3.1.4. Enzyme Stability in SMM 

The enzymatic activity of PSA-DNases was next tested 
in the SMM from CF lung secretions, which contain proteas-
es typically found in CF lungs such as neutrophil elastases. 
PSA-DNases were incubated with SMM for 6h and then 
genomic DNA was added. After 30 mins, DNA concentra-
tions were measured by a PicoGreen assay [43]. Dornase  
lost activity and was similar to the PBS control samples, 
while all three PSA-DNase species continued to digest DNA 
(Fig. 4A). The results demonstrated that PSA-DNases are
more stable than Dornase  and remain active in a protease-
rich, physiologically relevant environment. 

3.1.5. Short-term Effect on Rheology of CF Sputum 

To investigate whether PSA-DNases are more effective 
than Dornase  at reducing the viscoelasticity of sputum, CF 
sputum was treated with three forms of DNases for 15 mins 
after which the rheological properties were measured by a 
cone and plate rheometer. All three compounds significantly 
decreased viscoelasticity of sputum (Fig. 4B).

Dornase  reduced the elastic modulus of sputum (G ) by 
80%, and the viscous modulus (G ) by 72%, relative to non-
treated sputum (NT data not shown). The 14K PSA-DNase 
RA reduced G  and G  by 86 and 82%, respectively. Both
14K PSA-DNase RA and 24K PSA-DNase GP were superior 
to Dornase  in reducing the viscoelasticity of CF sputum, 
with the effect more pronounced on the elastic modulus. 

These aforementioned studies have demonstrated that 
polysialylation can increase the thermal and proteolytic sta-
bility of DNase. The chain length of PSA, conjugation sites, 
and the number of PSA chains attached, all have an impact 
on the enzymatic activity. Polysialylated DNases were supe-
rior to Dornase  in reducing the viscoelasticity of CF spu-
tum. It will be useful to further investigate the structure-
activity relationships of various conjugated DNases, in order 

to optimize the balance between nuclease activity and re-
sistance to proteases. 

The statistical analysis (ANOVA) of the effect of PSA-
DNase on CF sputum from several experiments showed that 
the treated samples (D , and both PSA-DNases) are statisti-
cally different from the control. T-test of the individual 
treatments show that PSA-DNase is statistically significantly 
different from D , but the two PSA-DNases treatments were
not statistically different from one another. 

3.1.6. Clinical Safety and Tolerability 

The single center, open-label, non-randomized phase I 
clinical study, evaluated the safety and tolerance of 14K 
PSA-DNase RA in two consecutive groups at repeated inha-
lation by healthy volunteers for 7 days. Six volunteers in the 
first cohort were treated with a daily dose of 2,500 units of 
the investigational drug in 2.5 mL solution, while another 6 
volunteers in the second cohort were administrated with 
5,000 units in 5 mL solution. After 7 days of treatment, no 
significant adverse events and no significant influence on the 
respiratory function parameters were observed, demonstrat-
ing that 14K PSA-DNase RA is safe and well tolerated. 

In addition to CF, PSA-DNase may be useful for other 
disease indications where excess extracellular DNA or neu-
trophil extracellular traps (NET) contributes to disease pro-
gression [54], such as chronic obstructive pulmonary dis-
ease, metastatic pancreatic cancer and breast cancer [55, 56] 
as well as stroke [57]. 

3.2. Polysialylated EPO 

3.2.1. Construction of PSA-EPO 

PSA-EPO was generated from 15 kDa PSA and fully 
glycosylated recombinant EPO via reductive amination. The 
target 15K PSA-EPO was purified by HIC, AEX, SEC and 
UF/DF. 

3.2.2. Molecular Characterization 

The MW of the PSA-EPO conjugate was found to be ~45 
kDa (Supplement Fig. 2) by SDS-PAGE. The conjugate con-

Fig. (4). (A) Superior activity of PSA-DNases after incubation with SMM. Enzymes were incubated with SMM for 6 h before adding ge-

nomic DNA for 30 min. The concentration of residual DNA was determined by a PicoGreen assay. The final enzyme concentration was 0.6 

g/mL (n = 3). The concentrations of enzymes were adjusted based on their specific activity. (B) Rheological measurement of CF sputum

treated with Dornase  and PSA-DNases for 15 mins. Elastic modulus (G ) and viscous modulus (G ) were determined via a cone and plate

rheometer using the same sputum (n = 3). Phosphate buffered saline (PBS), Dornase  (D ), 14K PSA-DNase RA (1), 24K PSA-DNase RA 

(2) and 24K PSA-DNase GP (3). These assays were run on n = 3 samples. The error bars are shown as mean ± SD.
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tained an average ~1 mole of PSA per mole of EPO, meas-
ured by resorcinol assay and UV280nm. The attachment site of 
PSA was determined by peptide mapping after Lys-C diges-
tion of PSA-EPO. The N-terminal peptides of PSA-EPO 
were detected only at signal intensities of 20-25% of those 
observed for the EPO starting material and reference stand-
ard, indicating that the majority of PSA had attached at the 
N-terminal primary amines of EPO (Supplement Scheme 1
and Fig. 3). The result of peptide mapping of PSA-EPO after
tryptic digestion was consistent with this characterization 
(data not shown). 

EPO is a compact globular protein, consisting of a four  
helix bundle and two short helices. The structural integrity of 
EPO dictates its binding to and activation of EPOR. The 
crystal structure of EPO and EPOR, as well as alanine 
scanning have revealed that the N-terminus is distal to the 
effective binding interface between EPO and EPOR [33]. As 
observed by circular dichroism (CD), the secondary structure 
of EPO in the PSA-EPO conjugate remained highly similar 
to wild-type EPO (Fig. 5A), displaying a minimum at 208
nm and a shoulder at 222 nm [58]. The minimal structural 
perturbation of EPO, upon controlled polysialylation di-
rected toward specific attachment site, is expected to permit 
the proper binding and activation of EPOR. Of additional 
note, the melting point (Tm) of PSA-EPO was ~13°C higher
than that of EPO (Fig. 5B), illustrating superior thermal sta-
bility imparted by polysialylation. This increased thermal 
stability, and the high water solubility of PSA allowed the 
PSA-EPO to be formulated in a buffered solution without 
additional excipients such as albumin or polysorbate. 

3.2.3. In Vitro Degradation by Sialidases 

In humans, PSA found on native polysialylated proteins 
[such as PSA-neural cell adhesion molecule (PSA-NCAM)] 
is presumably degraded by both enzymatic and acid-induced 
mechanisms. We found that the PSA of PSA-EPO was hy-
drolyzable upon treatment with endosialidases in phosphate 
buffer at physiological pH. PSA-EPO was incubated with 
Endo-N sialidases and the mixtures at time points were pro-
filed by SE-HPLC. A shift of elution time indicated the hy-
drolysis of the PSA chain (Supplement Fig. 4). Depolymeri-
zation of PSA also occurs under acidic conditions similar to 
those found in endosomes and lysosomes [59, 60]. Such bio-

degradability could mitigate the risk of tissue accumulation, 
particularly in clinical uses that call for high, frequent, or 
chronic dosing. 

Fig. (6). Prolonged erythropoiesis induced by PSA-EPO in female

Wistar rats (8 9 weeks old) at doses of 0.6 and 1.5 g/kg body

weight. Data are represented as mean ± s.e.m (n = 5 rats per group).

3.2.4. Biological Activity 

In vitro activity of PSA-EPO was evaluated by a 3H-
thymidine incorporation assay using spleen cells collected 
from phenylhydrazine (PHZ) treated mice [47]. 3H-thymidine
is incorporated into newly formed chromosomal DNA in these 
pro-erythroblasts upon EPO stimulation. The acquired radio-
activity was about 10- to 20-fold lower when treated with 
PSA-EPO, as compared to EPO on a protein equivalent basis 
(data not shown). However, this decreased in vitro potency of
PSA-EPO did not lead to lowered response of erythropoiesis 
in vivo, as the extended half-life of PSA-EPO was the primary
driver for the degree of erythropoiesis, not the decreased in 
vitro potency. In female Wistar rats (8-9 weeks old), PSA-
EPO increased reticulocyte levels at doses of 0.6 and 1.5 

g/kg body weight to a greater extent than EPO (Fig. 6). A
dose-dependent response in terms of erythropoiesis for all 
EPO preparations was observed. Reticulocyte counts peaked 
at day 4 and returned to baseline level when given EPO at 1.5 

g/kg, while PSA-EPO exhibited a significantly prolonged
duration of activity, lasting at least 7 days at both doses, with a 
gradual onset of action at 0.6 g/kg.

Fig. (5). CD measurements of 15K PSA-EPO and EPO. (A) Far-UV CD spectra of EPO and 15K PSA-EPO. (B) Thermal unfolding of EPO

and 15K PSA-EPO monitored at 222nm with a heating rate of 1°C/min. [EPO] = 0.2 mg/mL. 
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It would be interesting to explore the cross-reactivity of 
human EPO to murine and rat EPOR in order to assess 
whether the reduced activity of PSA-EPO on murine eryth-
roblasts could be due to a heterologous system if any. 

3.2.5. Clinical PK and PD 

Single-dose PK and PD were evaluated at three dose lev-
els (0.5, 1 and 2 g/kg body weight) after SC administration
in CKD patients not on dialysis during a clinical study of 
PSA-EPO. The mean serum concentrations of PSA-EPO 
over time are shown in Fig. 7A. The maximum serum con-
centration (Cmax) was achieved at around 80 100 h for all
three dosages, ranging from 1.4 to 9.3 ng/mL (Table 1), indi-
cating a much slower absorption of PSA-EPO relative to 
rhEPO (Cmax, 15 29 h in healthy volunteers) [31]. The area
under the concentration-time curve (AUC) increased in a 
dose-dependent manner (Table 1). PSA-EPO has a half-life
of 400 500 h in CKD patients not on dialysis, significantly 
longer than that of rhEPO, which has a half-life of 19~24 h
after SC injection. It should be noted that there is a pro-
nounced difference in the half-life of PSA-EPO between 
patients and healthy volunteers (~120 h after SC injection). 
This result appears to be in direct contrast to rhEPO, which
has comparable PK characteristics in healthy volunteers and 
CKD patients [52]. Nevertheless, conjugation of PSA greatly 
extended the half-life of EPO, which may lead to a once-
monthly injection or even longer interval between injections 
by adjusting the dose accordingly. 

EPO binds to its receptors on progenitor cells in the bone 
marrow, and then stimulates proliferation and differentiation 

of erythroid cells, leading to the generation of reticulocytes, 
which develop into red blood cells. Absolute reticulocyte 
count (ARC), as the primary pharmacodynamic parameter, 
was measured by flow cytometry. The mean ARC was high-
er in the patients given higher doses of PSA-EPO during 
most visits, in the order of 2.0, 1.0 and 0.5 g/kg cohorts
(Fig. 7B). The absolute reticulocyte response in 2.0 g/kg
dose cohort reached a maximum at day 7, with sustained 
response until day 28, manifesting a property of long-acting 
ESAs. 

In a phase II clinical trial, CKD patients not on dialysis 
were treated with PSA-EPO with a dosing interval of 2 
weeks during the correction phase, followed by 4-week dos-
ing intervals, during the maintenance phase. The hemoglobin 
level was gradually improved to the therapeutic range [61] of 
10 12 g/dL during the correction phase, and was stable in 
the maintenance phase (data to be reported). The increase of 
serum hemoglobin level was dose-dependent over several 
doses examined. These results together with the tolerability 
profiles suggest that PSA-EPO is promising as a next-
generation long-acting ESA. 

The ratio of AUC for pharmacodynamics (reticulocyte 
count) using 0.5, 1 and 2 g/kg PSA-EPO doses were 1, 2.7
and 7.2 respectively. The number of subjects with significant 
response was higher in 2 g/kg cohort, as compared to 0.5
and 1 g/kg cohorts.

At this stage, we do not have a clear understanding on 
why the half-life of PSA-EPO is much longer in patients, in 
comparison with EPO. EPO is eliminated from human bod-

Table 1. Pharmacokinetic parameters of PSA-EPO in CKD patients not on dialysis after single SC injection at three dosing levels.a 

Dose 
Tmax (h) 

Cmax AUC(0-t) AUC(0-inf) 
ke (h

-1) t1/2 (h) 
( g/kg) (ng/ml) (h ng/ml) (h ng/ml) 

0.5 91.18±43.54 1.36±0.19 345.42±47.41 1001.25±611.10 0.0019±0.0008 461.03±289.41

1 83.99±32.49 3.63±0.71 937.87±157.69 2710.17±1813.43 0.0021±0.001 515.35±450.32

2 110.39±92.50 9.31±2.13 2488.30±547.31 5889.88±2376.38 0.002±0.0007 394.64±168.98

a Pharmacokinetic parameters of PSA-EPO were calculated by a non-compartmental method, using WinNonlin EnterpriseTM, Version 5.1. The difference in 

time to reach Cmax (Tmax) and t1/2 among three doses are not statistically significant. 

Fig. (7). Single-dose PK and PD of PSA-EPO in CKD patients not on dialysis after single SC injection at 0.5, 1.0 and 2.0 g/kg. A) Serum

concentrations of PSA-EPO over time. B) Absolute reticulocyte counts over time. Data are represented as mean ± s.e.m (n = 10 or 9). 
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ies mainly by renal filtration and receptor-mediated internal-
ization/degradation. One possible reason is that PSA is high-
ly negatively charged, and therefore removal of PSA-EPO 
through filtration via the basal membrane (highly negatively 
charged as well) is hindered due to charge-charge repulsion. 
Could it be this impairment intensified in the CKD patients? 
Another reason may be that the lowered EPO level in the 
CKD patients results in different receptor-mediated clear-
ance for PSA-EPO. 

This clinical study has no control EPO arm. The extend-
ed half-life and effective PD are still manifested in our clini-
cal studies, though. A head-to-head study certainly would 
provide scientifically sound comparisons, in particular when 
inclusion, exclusion criteria, geographic factor, lab method 
and testing are all considered. The resource constraints (e.g. 
patient enrollment, expense of the study, ethical reasons) did 
have an impact on the protocol design. 

3.2.6. Immunogenicity 

Unwanted immunogenicity of protein therapeutics, as 
well as immunogenicity of any copolymers and linkers 
(e.g. PEG), could render proteins or conjugated proteins 
ineffective or cause undesirable side effects [62]. Repeated 
use of some EPO drugs has been shown to provoke im-
mune responses and the development of anti-EPO antibod-
ies, and pure red cell aplasia (PRCA) in some patients, 
rendering those patients refractory to continued use of 
EPO [63, 64]. 

Immunogenicity of PSA-EPO in CKD patients not on di-
alysis was examined by a Luminex-based antibody capture 
assay. The assay was developed using conjugated Luminex 
beads in a singleplex format, and its specificity was verified 
using two commercial antibodies specific for EPO and PSA, 
respectively. A total of 55 human sera were screened for the 
presence of human IgM or IgG antibodies against PSA, EPO 
and PSA-EPO target antigens at day 28 post-dosing after a 
single dose of PSA-EPO. No IgM or IgG antibodies recog-
nizing any of these target antigens were identified in these 
samples (see Supplement Table 2 for related LOD and 
LOQ). In a previous phase I trial, no anti-PSA, anti-EPO, 
and anti-PSA-EPO antibodies were detected in 63 healthy 
volunteers at day 14, 28, 42 and 56 after SC administration 
of single-dose PSA-EPO. Since the sampling, reagents, assay 
sensitivity and patient population, all have an impact on the 
antibody detection; the immunogenicity of PSA-EPO will be 
continuously evaluated, particularly after repeated dosing. 
The results so far support that PSA conjugated to EPO does 
not elicit immune responses and might reduce the immuno-
genicity of the EPO moiety itself. 

CONCLUSION 

Enhancement of protein therapeutics through polymer 
conjugation is a proven approach, illustrated by a significant 
number of Fc-fusion and PEGylated proteins in clinical use 
and many more in development. Pharmacologically im-
portant attributes such as biodegradability, non-
immunogenicity and hydrophilicity of polysialic acids make 
them attractive as a drug delivery polymer. The two case 
studies on DNase and EPO presented here demonstrate that 
polysialylated DNase and EPO remained functionally active 

and had increased stability against thermal stress, in the pro-
tease-rich environments, and in human circulation. Phase I 
and II clinical trials of PSA-EPO in CKD patients not on 
dialysis, highlighted its significantly improved pharmacoki-
netic properties and possibly non-immunogenicity (albeit 
limited data so far), suggesting that PSA-EPO has potential 
as a next-generation long-acting ESA for managing anemia. 

CURRENT & FUTURE DEVELOPMENTS 

The PolyXen™ polysialylation platform, Xenetic Biosci-

ences’ patented and proprietary technology has been expand-

ed to improve a number of protein drug candidates, e.g. pol-

ysialylated erythropoietin (PSA-EPO) and polysialylated 

recombinant factor VIII (PSA-FVIII, BAX 826, SHP656), 

the latter being the subject of a recent Phase I clinical trial 

sponsored by Shire plc [22, 23]. The PolyXen platform may 

also prove useful for delivery of other therapeutic agents 

including small molecules and oligonucleotides. 
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