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Abstract 

Blood flow is one such available observable promoting a wealth of physiological insight both 

individually and in combination with other metrics. Near-infrared diffuse correlation 

spectroscopy (DCS) and, to a lesser extent, diffuse correlation tomography (DCT), have 

increasingly received interest over the past decade as noninvasive methods for tissue blood 

flow measurements and imaging. DCS/DCT offers several attractive features for tissue blood 

flow measurements/imaging such as noninvasiveness, portability, high temporal resolution, 

and relatively large penetration depth (up to several centimeters). This review first introduces 

the basic principle and instrumentation of DCS/DCT, followed by presenting clinical 

application examples of DCS/DCT for the diagnosis and therapeutic monitoring of diseases in 

a variety of organs/tissues including brain, skeletal muscle, and tumor. Clinical study results 

demonstrate technical versatility of DCS/DCT in providing important information for disease 

diagnosis and intervention monitoring.  
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1. Introduction 

Near-infrared (NIR) diffuse optical technologies have gained popularity in recent years as 

simple, fast, continuous, portable, and relatively inexpensive methods for noninvasive 

quantification of hemodynamics and metabolism in deep tissues up to several centimeters 

(Vardi and Nini, 2008; Schachner et al., 2008; Bouye et al., 2005; Boas et al., 2001; Ferrari et 

al., 2011; Jobsis, 1977; Murkin and Arango, 2009; Shuler et al., 2009). One type of NIR 

technology, namely near-infrared spectroscopy (NIRS) or diffuse optical spectroscopy (DOS), 

takes advantage of the low absorption spectrum of biological tissues in the NIR range 

(650-950 nm) and penetrates deep tissues to detect light absorption by oxy-hemoglobin 

(HbO2) and deoxy-hemoglobin (Hb) in red blood cells (RBCs) (Kim et al., 2005; Strangman 

et al., 2003). As a result, oxy-, deoxy-, total- hemoglobin concentrations (i.e., [HbO2], [Hb], 

and THC) and tissue blood oxygen saturation (StO2) in local tissue microvasculature can be 

quantified (Liu et al., 1995; Boas et al., 2001; Wolf et al., 2003; Fantini et al., 1995). Over 

past decades, a variety of NIRS/DOS technologies have been extensively explored to study 

various diseases affecting blood oxygenation levels in local and regional tissues (Liu et al., 

1995; Wolf et al., 2003; Quaresima et al., 2004; Fantini et al., 1995; Patterson et al., 1989; 

Al-Rawi and Kirkpatrick, 2006). Correspondingly, diffuse optical tomography (DOT) based 

on NIRS/DOS has also been developed for 3-dimensional (3-D) imaging of oxygenation 

distributions in organs or regional tissues (Intes et al., 2010; Eggebrecht et al., 2014; 

Dehghani et al., 2009; Zhang et al., 2013; Arridge and Hebden, 1997; Jermyn et al., 2013). 

Another emerging NIR technology, diffuse correlation spectroscopy (DCS), has also been 

developed to directly measure blood flow variations in deep tissue microvasculature (Boas et 
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al., 1995; Maret and Wolf, 1989; Pine et al., 1988; Yu et al., 2005a; Jaillon et al., 2007; Boas, 

1996; Durduran, 2004; Choe, 2005; Zhou, 2007; Irwin, 2011; Gurley, 2012; Cheng, 2013; He, 

2015; Dong, 2015). DCS uses coherent NIR light to penetrate deep tissues and monitors 

temporal light intensity fluctuation caused by moving scatterers (primarily RBCs in the 

microvasculature) to extract a blood flow index (BFI) (Irwin et al., 2011; Cheung et al., 2001). 

The relative change of blood flow (rBF) is calculated by normalizing BFI to its baseline value 

before the physiological change occurs. DCS measurements of tissue blood flow changes 

have been extensively validated against other standards, including power spectral Doppler 

ultrasound (Yu et al., 2005b), Doppler ultrasound (Buckley et al., 2009; Roche-Labarbe et al., 

2010), laser Doppler (Durduran, 2004; Shang et al., 2011a), Xenon computed tomography 

(Xenon-CT) (Kim et al., 2010), fluorescent microsphere flow measurement (Zhou et al., 

2009), and arterial spin labeling magnetic resonance imaging (ASL-MRI) (Yu et al., 2007). In 

some studies, DCS has been combined with NIRS/DOS in hybrid instruments to 

simultaneously measure tissue blood flow and oxygenation (Durduran et al., 2004; Yu et al., 

2005a; Cheng et al., 2012; Munk et al., 2012; Shang et al., 2012; Gurley et al., 2012), which 

allows for the derivation of metabolic rate of tissue oxygen consumption. 

Despite advances in DCS applicability, there have been limited tomographic imaging 

realizations. An early contact-measurement based 3-D diffuse correlation tomography (DCT) 

approach using an optical fiber array was applied to tissue phantoms with a semi-infinite 

geometry (Boas and Yodh, 1997), but is disadvantaged in vivo due to the irregular geometries 

of biological tissues. A few noncontact-measurement based DCT examinations have been 

recently conducted to avoid tissue hemodynamic variations induced by the probe compression 
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or the disturbance of sensitive tissue areas (Culver et al., 2003; Huang et al., 2015a; Zhou et 

al., 2006; Lin et al., 2014; He et al., 2015; Huang et al., 2015b). In these noncontact 

measurement systems, lenses were positioned between a sample and an optical fiber array 

connected to the light sources and detection elements. The noncontact DCS/DCT has been 

successfully applied in examining blood flow distributions in animal models (Zhou et al., 

2006; Culver et al., 2003) and human subjects (Li et al., 2013; He et al., 2015; Lin et al., 

2012; Huang et al., 2015c; Huang et al., 2015b). 

 Since NIRS/DOS/DOT technologies for tissue blood oxygenation measurements have 

been broadly reviewed (Durduran et al., 2010a; Ferrari et al., 2011; Ghosh et al., 2012; Wolf 

et al., 2007), our review focuses on the DCS/DCT technologies for tissue blood flow 

measurements in the clinic. We first introduce the principle and instrumentation of DCS/DCT. 

We then provide typical clinical examples of DCS/DCT for the diagnosis of diseases and 

therapeutic monitoring of interventions in a variety of organs/tissues such as brain, skeletal 

muscle, and tumor. Finally, we highlight the limitations of DCS/DCT and point out future 

perspectives in technology development and clinical applications. 

2. DCS/DCT Methods 

2.1 Diffuse Correlation Spectroscopy (DCS) 

DCS originates from the concept of “dynamic light scattering (DLS)”, a technology that 

can be used to quantify the motion of moving scatterers in a thin solution through 

investigating the correlation of light electric field after photons are scattered once by the 

moving scatterers (i.e., single light scattering) (Brown, 1993; Fletcher, 1976). The extension 

from single light scattering to multiple light scattering has been explored since 1980s (Maret 

Page 6 of 50AUTHOR SUBMITTED MANUSCRIPT - PMEA-101644.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



7 
 

and Wolf, 1987; Pine et al., 1988; Boas et al., 1995). This extension, called diffusing-wave 

spectroscopy (DWS) (Pine et al., 1988; Li et al., 2005; Jaillon et al., 2006) or diffuse 

correlation spectroscopy (DCS) (Cheung et al., 2001; Yu et al., 2005a; Gagnon et al., 2008; 

Boas and Yodh, 1997; Boas et al., 1995), makes it possible to quantify the motion of moving 

scatterers in a thick sample, such as red blood cells (RBCs) flowing through biological 

tissues.  

The principle and instrumentation of DCS have been described elsewhere (Boas et al., 

1995; Cheung et al., 2001; Durduran and Yodh, 2014; Irwin et al., 2011; Yu, 2012b, a; Yu, 

2012c). Briefly, a long-coherence laser delivers NIR light via an optical fiber to the tissue 

(Fig. 1a). Photons entering into the tissue are either absorbed or more dominantly, scattered 

by static scatterers (e.g., organelles and mitochondria) and dynamic scatterers (mainly moving 

RBCs). Due to the scattering effect photons may change directions many times while 

traveling throughout the tissue, resulting in light diffusion. Only a few photons can eventually 

reach tissue surface and be collected by a single-mode detector fiber placed millimeters or 

centimeters away from the source fiber. Photons collected by the detector fiber are detected 

by a single photon-counting avalanche photodiode (APD) to yield light intensity signals (Fig. 

1b).  

The detected light intensity fluctuates with time (Fig. 1b), which is caused by the motion 

of moving scatterers (mainly RBCs) inside the tissue volume measured. To quantify the 

motion of RBCs (i.e., blood flow) the normalized light intensity temporal autocorrelation 

function (g2(τ)) is calculated by a hardware correlator board or a software correlator, which 

can then be converted to the normalized electric field temporal autocorrelation function (g1(τ), 
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Fig. 1c) through the Siegert relation (Rice, 1954): 

(1)                                                                                        ),(1),(
2

12  rgrg


   

where τ is the correlation delay time, r


 is the position vector, and β is a parameter which is 

dependent of laser stability, coherence length, and the number of speckles detected. 

The g1(τ) can be expressed in an integral form (Boas and Yodh, 1997; Li et al., 2013; Pine 

et al., 1988; Maret and Wolf, 1987) 

(2)                         ))(
3

1
(exp)(

)0(

)()0(
)(

*

22

0
02

*

1 ds
l

s
rk-sP

E

EE
g  







    
 

Here E(0) and E
*
(τ) are the scattered light electric field at time 0 and its conjugation at 

time τ, respectively. P(s) is the normalized distribution of detected photon path length s, k0 is 

the wave vector magnitude of the light in the medium, and l
*
 is the photon random-walk step 

length, which is equal to '/1 s  ( '

s is the medium reduced scattering coefficient).  

The unknown <Δr
2
(τ)> represents the mean-square-displacement of moving scatterers, 

which is conventionally difficult to be solved directly using Eq. 2. Alternately, the integral 

form of autocorrelation function can be converted to a partial differential equation form (Pine 

et al., 1990). As such, the unnormalized electric field autocorrelation function G1(τ) = 

<E(0)E
*
(τ)> satisfies a correlation diffusion equation (Cheung et al., 2001; Boas and Yodh, 

1997) 

(3)                                          )(ν),()(
3

1ν 1

22

0

'2 rSrGrkD sa









    

Here, v is the light speed in the medium; μa is the medium absorption coefficient; 

'3/ sD   is the medium photon diffusion coefficient, and )(rS


is the continuous-wave 
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isotropic source. The form of <Δr
2
(τ)> depends on a flow model specifically adopted. For 

example, a diffuse model, i.e., <Δr
2
(τ)> = 6DBτ, has been found to fit experimental data well 

over a wide range of different tissues (Cheung et al., 2001; Irwin et al., 2011). Here, DB is the 

effective diffusive coefficient. To account for the fact that not all scatterers are “moving” in 

the tissue, a factor α, representing the ratio of “moving” scatterers to the total number of 

scatterers, is added to <Δr
2
(τ)> (i.e., <Δr

2
(τ)> = 6αDBτ). The combined term, αDB, is referred 

to as blood flow index (BFI) in biological tissues. The αDB can be extracted by fitting the 

measured autocorrelation function curve to an analytical solution of the correlation diffusion 

equation (Eq. 3) under certain geometries (e.g., semi-infinite boundary) (Cheung et al., 2001; 

Dong et al., 2012a; Roche-Labarbe et al., 2010; Irwin et al., 2011). 

2.2 Diffuse Correlation Tomography (DCT)  

The extension of DCS to DCT is comparable to that of DOS extension to DOT, which 

images the optical property distribution based on photon diffusion equation and its inverse 

solutions (i.e., image reconstruction). A DOT instrument typically illuminates tissue and 

measures the diffusive light leaving the tissue with multiple sources and detectors on the 

tissue boundary (Intes et al., 2010; Eggebrecht et al., 2014; Dehghani et al., 2009; Zhang et 

al., 2013). The diffusive propagation of light in tissue can be characterized with photon 

diffuse equation and parameterized in terms of the unknown )(ra

  and )('
rs


 
at different 

locations ( r


) of the measured tissue volume. One can then “invert” the propagation model to 

recover these unknown parameters. Imaging with DOT has been described in many papers 

covering computer simulations, phantom tests, and in vivo applications (Franceschini et al., 

2006; Durduran et al., 2010a; Eggebrecht et al., 2014; Arridge and Lionheart, 1998; Arridge 
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and Hebden, 1997; Jermyn et al., 2013; Dehghani et al., 2009). 

Similarly, DCT requires a large number of sources and detectors to measure 

autocorrelation functions on the tissue boundary. Early DCT approaches rely on analytical 

solutions of Eq. 3 with the assumption of simple semi-infinite geometries and/or strict 

heterogeneities (e.g., spherical anomaly) of tissues (Zhou et al., 2006; Culver et al., 2003), 

which precludes the transition to complex boundaries and imperfect heterogeneities in 

realistic tissues. 

The finite-element-method (FEM) framework has been applied to model light transport in 

highly diffuse media to resolve the geometry and heterogeneity limitations for DOS/DOT 

(Arridge and Lionheart, 1998; Arridge and Hebden, 1997; Eggebrecht et al., 2014; Dehghani 

et al., 2009; Jermyn et al., 2013). For example, NIRFAST (www.nirfast.org) (Dehghani et al., 

2009; Jermyn et al., 2013) and TOAST++ (http://web4.cs.ucl.ac.uk/research/vis/toast/) 

(Schweiger and Arridge, 2014) are publically available image reconstruction toolboxes based 

on the diffusive model and FEM for DOT  

Exploiting the high mathematical similarity of the forward and inverse problems (e.g., 

boundary conditions and mathematical assumptions) between DOT and DCT, our group first 

reported the application of FEM in DCT (Lin et al., 2014; Huang et al., 2015a; He et al., 2015; 

Huang et al., 2015b). We introduced this concept into the FEM-based light transport and 

image reconstruction modules in NIRFAST (Dehghani et al., 2009), as a shortcut for FEM 

implementation of DCT. Specifically, we used the “effective )(ra

 ” (i.e., 

 )()(2)( 2

0

'
rDkrr Bsa


 ) and measured ),(1 rG



 
to replace the )(ra

  and photon 

fluence rate ),( tr


  respectively in the NIRFAST for the accomplishment of DCT in tissues 
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with complex boundaries (Lin et al., 2014; Huang et al., 2015a; He et al., 2015; Huang et al., 

2015b). Computer simulations, phantom tests, and in-vivo studies have verified the accuracy 

of our modifications of NIRFAST adapted for DCT. As a result, the realm of DCT becomes 

available for comprehensive imaging under complex geometries and heterogeneous optical 

properties. 

2.3 DCS/DCT Instrumentation 

Typical DCS/DCT systems are illustrated in Fig. 2. The DCS/DCT systems consist of 

long-coherence NIR lasers (e.g., 785 nm, Crystalaser, USA), single photon-counting APDs 

(e.g., SPCM-AQR-12, Perkin Elmer Inc., Canada), and digital correlator boards (e.g., 

FLEX03LQ, www.correlator.com, USA). A control panel (laptop or desktop) is used to 

control the DCS/DCT system for data collection and calculation of temporal autocorrelation 

function via the correlator board. Blood flow index (αDB) can be extracted by fitting the 

measured autocorrelation function curve to an analytical solution of Eq. 3 under certain 

geometries. In contrast to the portable DCS device (b) with a limited number of sources and 

detectors, the DCT instrument (c) has a large number of sources and detectors for 3-D flow 

imaging. 

    A variety of fiber-optics probes have been designed for DCS (Fig. 3) and DCT (Fig. 4) 

measurements in different applications (Huang et al., 2015c; Durduran et al., 2005; Yu et al., 

2011; Shang et al., 2011b; Huang et al., 2015b) (see Section 3). These probes are connected 

to the DCS/DCT instruments (Fig. 2) through optical fibers for light delivery and detection. 

Examples of DCS probes for the studies of brains, skeletal muscles, and tumors are illustrated 

in Fig. 3a-e, respectively. For instance, a hand-held probe was designed to scan over a breast 
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tumor in both horizontal and vertical directions for diagnostic purpose (Durduran et al., 2005) 

(Fig. 3d). For the tissues whose shapes promote hemodynamic variations induced by 

compression or disturb sensitive areas, DCS probes were designed in a noncontact manner 

(Huang et al., 2015c) (Fig. 3f). In the noncontact measurement design, a lens system with 

separated source and detector paths was utilized to focus the light from the source and 

detector fibers on the measured tissue surface. The noncontact DCS (ncDCS) probe was also 

extended to a noncontact imaging probe head for DCT measurements, which consisted of a 

linear array of 15 photodetectors and two laser sources connected to a mobile lens-focusing 

system (Fig. 4) (Lin et al., 2014; He et al., 2015; Huang et al., 2015b). A motorized stage was 

utilized for automatic scanning (Fig. 4a), enabling large ROI coverage and flexible S-D 

arrangements without greatly increasing hardware requirements and costs. This new design of 

noncontact DCT (ncDCT) probe, combined with a novel FEM framework for DCT image 

reconstruction, has been validated in a tissue-like phantom with anomaly flow contrast design 

(Fig. 4d) (Lin et al., 2014) and has been applied in detection of breast tumors (He et al., 2015; 

Huang et al., 2015b). In practice, any innovations adopted in DOS/DOT probes can be 

adapted for the design of DCS/DCT probes, and a combined probe integrating DOS/DOT and 

DCS/DCT measurements can be constructed by adding extra optical fibers.  

3. Clinical Application Examples 

DCS/DCT technologies have been extensively explored to be used in animal models and 

human subjects for the diagnosis and therapeutic monitoring of diseases in various tissues and 

organs including brains (Cheng et al., 2014; Hou et al., 2014; Busch et al., 2016a; Kim et al., 

2014; Kim et al., 2010; Favilla et al., 2014; Lin et al., 2016; Dehaes et al., 2014; Durduran et 
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al., 2010b; Shang et al., 2011b; Buckley et al., 2013; Zirak et al., 2014), skeletal muscles 

(Henry et al., 2015; Mesquita et al., 2013; Yu et al., 2005a; Shang et al., 2012; Gurley et al., 

2012), and tumors (Chung et al., 2015; Choe et al., 2014; Zhou et al., 2007; Durduran et al., 

2005; He et al., 2015; Sunar et al., 2006; Dong et al., 2012b; Dong et al., 2016). Since this 

review focuses on the clinical applications, only typical clinical examples are presented in the 

following subsections based on different types of tissues/organs. For more details, readers are 

encouraged to read primary papers that are cited but not discussed here and to learn from 

recent reviews (Yu, 2012a; Yu, 2012c; Durduran and Yodh, 2014; Mesquita et al., 2011). 

3.1 Brain 

3.1.1 Diagnosis of cardio-cerebral diseases 

DCS has been explored for the diagnosis and evaluation of cardio-cerebral diseases 

affecting cerebral blood flow (CBF) in adults, children, and neonates. For example, DCS was 

utilized to investigate CBF responses in adult patients with cerebral diseases including 

vasovagal syncope (Cheng et al., 2014), obstructive sleep apnea-hypopnea (Hou et al., 2014; 

Busch et al., 2016a), traumatic brain injury (Kim et al., 2010; Kim et al., 2014), and ischemic 

stroke (Durduran et al., 2009; Favilla et al., 2014).  

Vasovagal syncope (VVS) is the sudden loss of consciousness, which can be fatal if 

occurring in public such as driving and flying. In a study of CBF variations to predict VVS 

(Cheng et al., 2014), a 70-degree head-up-titling (HUT) protocol was applied to 14 healthy 

adults, and relative changes of CBF (rCBF) to the baseline were continuously monitored 

using a fiber-optic probe illustrated in Fig. 3a. In addition, relative changes of main artery 

blood pressure (rMAP) were also continuously monitored using a noninvasive finger sensor 
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(Portapres, FMS Inc., Netherlands). In the subjects having presyncope symptoms during HUT, 

physiological responses to the tilting were observed to have two stages; while Stage I showed 

a small changes, Stage II demonstrated a rapid and dramatic decreases in both rCBF and 

rMAP that were coincided with presyncope symptoms (Fig. 5). On average, rCBF reached the 

Stage II earlier and decreased larger (76 ± 8%, from a baseline of 100%) than rMAP (39 ± 

19%, assigning a baseline value of 100%) during presyncope. Moreover, a threshold of ~50% 

rCBF decline was determined to completely separate the subjects with or without presyncope. 

This study suggests that continuous monitoring of CBF variations by the portable DCS device 

may provide predictive information to prevent VVS (e.g., using an automatic feedback to 

maintain MAP and CBF at normal levels). 

Another example of DCS applications is the study of obstructive sleep apnea-hypopnea 

(OSAH) (Hou et al., 2014), a disease characterized by repetitive pausing of breath resulted 

from upper airway obstruction during sleep. The impeded airflow during OSAH may cause 

cerebral ischemia and disturb CBF. Although OSAH can be diagnosed through monitoring of 

overnight sleep with a polysomnography, evaluation of cerebral ischemia and hypoxia 

induced by OSAH is not routinely conducted, due to lack of appropriately technologies. 

Using a dual-wavelength DCS flow-oximeter (Shang et al., 2009), our group conducted 

continuous and simultaneous measurements of relative changes of CBF, oxy- and deoxy- and 

total hemoglobin concentrations (rCBF, Δ[HbO2], ∆[Hb], ∆THC) in adult subjects with 

OSAH for ~8 hours overnight (Hou et al., 2014). Two fiber-optic probes connected to the 

DCS flow-oximeter were taped on both sides of the subject’s forehead for cerebral monitoring 

during sleep (illustrated in Fig. 3b). To minimize the disturbance to patients, we remotely 
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operated the optical measurements in a control room and designed special fiber-optic 

connectors which could easily disconnect the probes when the patient went to bathroom. The 

results showed that apneic events caused significant variations in rCBF and ∆THC. Moreover, 

the degrees of these hemodynamic variations were significantly correlated with the severity of 

OSAH.  

Similarly, DCS was also adopted to measure CBF responses to hypercapnia during 

wakefulness rather than during sleep in children with obstructive sleep syndrome (OSA) 

and/or snores (Busch et al., 2016a). Both OSA and snore subjects were found to have 

significant less changes in CBF during hypercapnia than health controls, indicating the 

diseased-induced blunted brain responses. 

DCS was also utilized to monitor CBF variations in adults with traumatic brain injury 

(Kim et al., 2014; Kim et al., 2010) or ischemic stroke (Favilla et al., 2014; Durduran et al., 

2009). In those studies, CBF changes were found to be associated with large variations in 

cerebral blood pressure induced by physiological manipulations (Kim et al., 2010; Favilla et 

al., 2014; Durduran et al., 2009), indicating the impairments of cerebral autoregulation to 

maintain a constant CBF. 

In addition to the applications in adults and children, DCS was employed to assess CBF 

in neonates with malfunctions/defects and during surgical treatments, including those with 

congenital heart disease (CHD) (Durduran et al., 2010b) , hypoxic ischemic encephalopathy 

(Dehaes et al., 2014), single-ventricle CHD undergoing surgery (Dehaes et al., 2015), as well 

as the neonates during open heart surgery (Busch et al., 2016b). In those studies, DCS 
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measurements benefited from higher signal-to-noise ratio (SNR) due to the thinner skulls of 

neonates.  

When subjected to a protocol of CO2 inhalation for inducing hypercapnia (Durduran et 

al., 2010b), CBF values in neonates with CHD were elevated significantly (158 ± 6%, 

assigning a baseline of 100%), which were detectable by both DCS and ASL-MRI 

measurements. Since complex CHD may lead to impaired cerebral autoregulation and 

low-baseline CBF, this study explored the potential of DCS for longitudinally probing 

cerebral defects in critically ill neonates.  

Apart from physiological challenging mentioned above, CBF values before and after 

heart surgeries were measured and compared between the neonates with single-ventricle CHD 

and healthy controls (Dehaes et al., 2015). The results showed impaired cerebral development 

in diseased neonates, as characterized by decreased CBF. Furthermore, CBF was 

continuously monitored during neonatal open heart surgery, an intervention aiming to treat 

heart defects (Busch et al., 2016b). Significant variations in CBF during deep hypothermia, 

circulatory arrest, and rewarming were observed, indicating the capability of DCS for cerebral 

hemodynamic monitoring in a highly challenging clinical environment. 

In study of cerebral hemodynamics in premature neonates (Roche-Labarbe et al., 2010), 

a steady increase (28%, from a baseline of 100%) in CBF was found over the first six weeks 

of life, indicating that the neonates gained improvements in brain microcirculation since birth. 

In another study of extremely preterm neonates, the subjects with hemorrhage were found to 

have lower CBF when compared with those without hemorrhage (Lin et al., 2016). Similarly, 

Page 16 of 50AUTHOR SUBMITTED MANUSCRIPT - PMEA-101644.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



17 
 

lower CBF levels in neonates with hypoxic ischemic encephalopathy were reported, 

compared to age-matched healthy neonates (Dehaes et al., 2014).   

In summary, many cardio-cerebral diseases affect nervous system, cerebral 

microvasculature, and cerebral oxygen kinetics, leading to abnormality in CBF (Durduran and 

Yodh, 2014; Mesquita et al., 2011). Therefore, CBF is considered as an important biomarker 

of brain health, which links the oxygen demand, supply, and consumption. Continuous 

measurements of CBF in the clinical setting, however, are not easily achievable due to 

technology unavailability. DCS offers a continuous, fast, portable, and low-cost tool to 

noninvasively monitor CBF variations at the bedside of the clinic. Studies presented in this 

subsection demonstrate that CBF abnormities are associated with a variety of cerebral 

diseases. While the explicit relationships between CBF abnormities and clinical outcomes 

need to be further investigated, these studies support DCS as a useful tool for the diagnosis of 

cerebral diseases in adults, children, and neonates. 

3.1.2 Therapeutic monitoring of cardio-cerebral diseases   

DCS has been used to evaluate the effects of surgical interventions on CBF in adults and 

infants. Those surgeries included carotid endarterectomy in adults (Shang et al., 2011b), 

thrombolysis in adults (Zirak et al., 2014), and cardiac surgery in infants (Buckley et al., 

2013). 

Carotid endarterectomy (CEA) is a surgical intervention to restore the blood supply to 

brain through removal of the blockage in carotid artery (Shang et al., 2011b). During CEA, 

some of major vessels are temporarily clamped, causing a shutdown of blood supply to local 

cerebral tissues. Thus, intraoperative monitoring of CBF variation is particularly important as 
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it permits acute assessment of cerebral hemodynamic level during surgery and post-surgical 

hemodynamic improvement in the brain. Electroencephalography (EEG) is an often-used 

technology for cerebral monitoring during CEA, which offers indirect assessment of cerebral 

ischemia through analysis of brain waves. In a comparison study of EEG and DCS 

measurements for evaluating cerebral hemodynamic variations during CEA, EEG electrodes 

were placed all over the scalps of eleven patients undergoing CEA, and two optical probes 

were taped on both sides of forehead for simultaneous measurements of CBF and cerebral 

oxygenation. The internal carotid artery (ICA) clamps during CEA resulted in significant 

CBF decreases (−24.7 ± 7.3%, assigning a baseline of 100%) at the surgical sides (Fig. 6a). 

On the other hand, post-CEA CBF values were significantly higher (+43.2 ± 16.9%, assigning 

a baseline of 100%) than pre-CEA CBF values. Flow compensation via circle of Willis was 

also observed at the nonsurgical side (Fig. 6b). CBF responses to ICA clamping were found 

to be significantly faster, larger, and more sensitive than EEG responses (Fig.7). 

Simultaneous monitoring of CBF and EEG provided a comprehensive evaluation of cerebral 

physiological status and showed potential for the adoption of acute interventions (e.g., 

shunting, medications) during CEA to reduce the risks of severe cerebral ischemia and 

cerebral hyperperfusion syndrome.  

 DCS was also applied to a patient with acute ischemic stroke, who received 

thrombolytic therapy to restore CBF (Zirak et al., 2014). CBF was monitored by DCS 

throughout the 60-minute thrombolytic therapy. DCS data showed an acute improvement in 

CBF after thrombolytic therapy, which agreed with the improvement in stroke scale score. 

This study suggested the potential of continuous DCS monitoring for therapeutic evaluation 
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of acute stroke.  

DCS measurements of CBF during interventions were also reported in infants. For 

example, CBF, cerebral oxygenation, and cerebral oxygen metabolism were continuously 

monitored during the period of postoperative neonatal cardiac surgery using a hybrid optical 

instrument (Buckley et al., 2013). Due to the complicated communications between the 

cerebral and cardiac vessels, the surgeries on hearts were found to significantly affect cerebral 

oxygen extraction fraction, but not CBF and cerebral metabolic rate of oxygen consumption. 

In summary, many intervention strategies for cardio-cerebral diseases are to restore 

tissue blood flow. Studies presented in this subsection show high sensitivity of DCS for 

continuous monitoring of CBF variations during interventions, which holds the potential for 

dynamic assessment and optimization of cardio-cerebral interventions to maintain CBF in a 

normal level. 

3.2 Skeletal muscle 

3.2.1 Diagnosis of muscular diseases 

DCS has been adopted to evaluate the vascular diseases affecting skeletal muscle 

perfusion such as fibromyalgia and peripheral arterial disease (Shang et al., 2012; Mesquita et 

al., 2013). Evaluation of muscular diseases was often performed in a dynamic manner 

because those diseases restrict patients from performing leg or arm exercises. Blood flow 

responses to exercise reflect how skeletal muscles properly perform physiological functions.  

In a study of fibromyalgia (FM) (Shang et al., 2012), women with FM were instructed to 

perform knee extension exercises with steadily increasing intensity. Calf muscle 
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hemodynamics was continuously monitored by a hybrid instrument during exercise using a 

probe illustrated in Fig. 3c. Results showed that subjects with FM had significantly lower 

oxygen extraction rate during exercise than healthy controls, and the time of oxygenation 

recovery were significantly longer. These results suggested an alteration of muscle oxygen 

utilization in the FM population.  

In another study investigating the influence of peripheral arterial disease (PAD) on 

skeletal muscle hemodynamics (Mesquita et al., 2013), calf blood flow values were found to 

occur at more depressed levels in PAD population after treadmill and pedal exercises, 

compared to those in age-matched healthy people. These results indicated adverse impact of 

PAD on blood flow responses to exercise. 

Limitations existed when using DCS techniques to continuously monitor muscle 

hemodynamic changes during exercise, such as the nature of relative measurement (rBF) and 

the motion artifact induced by the exercise. To overcome these limitations, our group recently 

created a calibration protocol for absolute flow measurements and a gating algorithm to 

minimize motion artifacts during exercise (Gurley et al., 2012; Henry et al., 2015). Briefly, a 

hybrid DCS/NIRS instrument along with a pre-exercise arterial occlusion protocol was 

utilized to quantify the absolute baseline blood flow value before exercise. The absolute 

baseline flow value was then used to calibrate the measured rBF during exercise in order to 

obtain absolute flow measurements over the entire exercising period. Motion artifacts were 

minimized using a novel dynamometer-based gating algorithm embedded in the DCS control 

software. Essentially, this software determined muscle contraction status based on signals 

from the dynamometer and recorded data only when muscle fiber motion was minimal.  
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The innovative calibration and gating algorithms have been recently applied on patients 

with FM and compared with age-matched healthy controls. Blood flow responses in forearm 

muscles to handgrip exercise were continuously monitored and patients with FM exhibited 

less capability to perform handgrip exercise than healthy controls, evidenced by the weaker 

blood flow responses during exercise (Fig. 8). 

Overall, deficiency of skeletal muscle function may result from mitochondrial 

dysfunction (Cordero et al., 2010), lower capillary density (Lindh et al., 1995; Morf et al., 

2005), reduced capillary permeability (Grassi et al., 1994) and impaired vasodilatory capacity 

(Kasikcioglu et al., 2006; McIver et al., 2006), all of which are difficult to measure 

noninvasively. Hybrid DCS/NIRS devices enable noninvasive dynamic quantification of 

blood flow, blood oxygenation, and oxidative metabolism during exercise, providing unique 

and comprehensive diagnostic information for skeletal muscle diseases. 

3.2.2 Therapeutic monitoring of muscular diseases 

A few studies have been reported using DCS to investigate the impacts of surgical 

interventions on skeletal muscle diseases (Yu et al., 2011; Huang et al., 2015c). For muscular 

revascularization, ultrasound Doppler is routinely used in surgical rooms to test post-surgical 

reperfusion in large vessels. However, ultrasound Doppler cannot directly assess the 

restoration of tissue microcirculation, which is generally the major goal of revascularization. 

Using a portable DCS flow-oximeter and the probe illustrated in Fig. 3c (Shang et al., 

2009), we continuously monitored calf muscle blood flow variations on twelve human limbs 

undergoing artery revascularization (Yu et al., 2011). The high sensitivity of DCS in 

detecting blood flow changes was confirmed through clamping or ballooning on/off the 
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femoral or aorta arteries during surgeries. Furthermore, immediate hyperemia following the 

release of occlusions and post-surgery flow improvements in calf muscles were observed, 

indicating the potential of the DCS for objective assessment of revascularization effects.   

Another representative application of DCS is the assessment of blood flow in free 

transfer muscle flaps following salvage surgeries in patients with head and neck cancer. 

Conventional approaches to evaluate the success of tissue flaps rely on visual examination 

along with blood flow measurements in large vessels by ultrasound Doppler. DCS offers a 

tool to directly assess tissue blood flow in peripheral muscle flaps, which is crucial to 

evaluate the success of surgeries. For intraoperative monitoring of reconstructive flaps, we 

designed a lens system which focused the sources and detectors on the tissue surface, 

permitting noncontact measurements of flap blood flow (see Fig. 3f) (Huang et al., 2015c). 

The noncontact DCS probe was applied to eight free muscle flaps at multiple time points of 

blood flow measurements during and post the surgical operations. Fig. 9 shows comparison 

results obtained from seven successful flaps and one unsuccessful flap. Postoperative blood 

flow values in the successful flaps were significantly higher than the intraoperative baseline 

values, indicating a gradual recovery of flap vascularity after the tissue transfer. By contrast, 

postoperative blood flow recovered much less in the unsuccessful flap. Measurement of blood 

flow recovery after flap anastomosis holds the potential to act early to salvage ischemic flaps. 

3.3 Tumor 

3.3.1 Diagnosis of tumors 

The first translational case of DCS for clinical cancer diagnosis was reported on human 

breast tumors (Durduran et al., 2005). Through scanning over the breast tumors (n = 5) using 
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a contact optical probe illustrated in Fig. 3d, higher blood flow contrasts were found in 

malignant (230% by averaging over three subjects) and benign (153% by averaging over two 

subjects) tumors, respectively, as compared to the surrounding normal tissues (assigning 

100%). Similar measurement configuration was thereafter applied to a larger population with 

breast tumors (n = 32) (Choe et al., 2014), confirming the high blood flow contrasts in breast 

tumors (225~227% in mean value and 190~270% in 95% confidence intervals).  

Moreover, a recent pilot study investigated the correlations between tumor hemodynamic 

parameters (i.e., blood flow, [HbO2], [Hb], StO2, THC) and tumor histopathological 

biomarkers. Increased blood supply to breast tumors was observed, which agreed with the 

high expression level of Ki67 nuclei in the confirmed breast tumors (Chung et al., 2015). This 

study suggested that the macroscopic measurements of tissue hemodynamics could reveal 

pathological properties of breast cancer in microscopic level. 

A significant problem with contact DCS measurements described above is the deformation 

of soft breast tissue, which may distort blood flow distribution in the soft breast. To solve this 

problem, noncontact DCS/DCT (ncDCS/ncDCT) systems with unique fiber-optic probes were 

recently developed enabling fully noncontact measurement/imaging of blood distributions in 

deep tissue volumes with complex boundaries (Lin et al., 2014; Lin et al., 2012; Li et al., 

2013; Huang et al., 2015c; He et al., 2015; Huang et al., 2015b). The noncontact probe was 

attached to a motorized stage that scanned linearly or rotationally over a ROI (Fig. 4). Fig. 10 

shows in vivo imaging results from two breast carcinomas. Higher blood flow contrasts (5.9- 

and 10.9-fold) in the tumor regions compared to the surrounding tissues were observed. The 

reconstructed locations of the two tumors matched ultrasound imaging results when the tumor 
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was within the sensitivity region of diffuse light. The ncDCT system showed the promise to 

image blood flow distributions in soft and vulnerable tissues without distorting tissue 

hemodynamics. 

The autonomic growth and spread of tumors are dependent on increased angiogenesis 

arising from the increased metabolic demand. Since functional alternations in tumors often 

appear earlier than detectable morphological changes, functional imaging of tumor blood flow 

by DCT is a new strategy for early cancer diagnosis and localization. 

3.3.2 Therapeutic monitoring of tumor treatments 

It has been found that the patients with hypoxic tumors show incomplete clinical 

responses when receiving chemo-radiation therapy that requires tissue oxygen for treatment 

efficacy (Busch et al., 2000; Carlson, 2006). Many tumors are hypoxic because of abnormal 

vasculature, malignancy-related anemia, and/or high oxygen consumption by tumor cells. 

Studies have shown that pretreatment tumor hypoxia is associated with significantly poor 

responses to the therapy when compared to oxygenated tumors. However, some 

well-oxygenated tumors failed to respond while some hypoxic tumors responded well, 

possibly due to the dynamic changes during treatment in tumor oxygen status induced by 

radiation. Therefore, repeated monitoring of individual tumor hemodynamic status during 

therapy may provide predictive information for treatment outcomes. 

To date, DCS has been utilized to monitor the tumor hemodynamic responses to 

chemo-radiation therapy in breast tumors (Zhou et al., 2007) and head/neck tumors (Sunar et 

al., 2006; Dong et al., 2012b; Dong et al., 2016). In a case study of breast cancer using a 

hybrid DCS/NIRS device, significant changes in tumor blood flow and blood oxygenation 
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were observed in the first week of chemo-radiation therapy (Zhou et al., 2007). 

In another pilot study of head/neck tumors using a hybrid DCS/NIRS instrument, tumor 

hemodynamic responses in a small group of patients (n = 8) were continually measured once 

a week over the period of chemo-radiation therapy (Sunar et al., 2006). Tumors exhibited 

significant dynamic flow and oxygenation changes during the first four weeks of the 

treatment. This study, however, was limited by the small number of patients examined and 

only one patient out of 8 showed a partial response to the treatment. 

Very recently, our group employed a hybrid DCS/NIRS instrument to continually 

monitor tumor hemodynamic responses to chemo-radiation therapy for early prediction of 

treatment outcomes in a relative large patient population with head/neck cancers (Dong et al., 

2016). Forty-seven patients were measured once per week over 7 weeks of treatment period to 

evaluate the hemodynamic status of clinically involved cervical lymph nodes. Patients were 

classified into two groups: complete response (CR) (n = 29) and incomplete response (IR) (n 

= 18). Interestingly, tumor hemodynamic responses were found to be associated with clinical 

outcomes (CR/IR), wherein the associations differed depending on human papillomavirus 

(HPV-16) status. In HPV-16 positive patients, significantly lower levels in tumor [HbO2] at 

weeks 1 to 3, THC at week 3, and StO2 at week 3 were found in the IR group. In HPV-16 

negative patients, significantly higher levels in tumor BFI and μs
’
 at week 3 were observed in 

the IR group. These hemodynamic parameters exhibited significantly high accuracies for 

early prediction of clinical outcomes, within the first three weeks of therapy, with the areas 

under the receiver operating characteristic curves (AUCs) ranging from 0.83 to 0.96 (Fig. 11).  
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Overall, tumor hemodynamic parameters exhibited significantly high accuracies for early 

prediction of clinical outcomes. Such predications, based on frequent optical measurements, 

may ultimately be used to optimize individual therapeutic outcomes at an early time of 

therapy. For example, treatment outcomes may be improved by dynamically promoting 

oxygenation levels (e.g., hyperbaric oxygen therapy) in HPV-16 positive tumors or inhibiting 

angiogenesis (e.g., anti-VEGF antibody) in HPV-16 negative tumors. 

4. Summary and future perspectives 

In contrast to large imaging modalities such as CT, MRI, and PET, optical instruments 

such as NIRS/DOS/DOT and DCS/DCT are portable, fast, inexpensive, and suitable for 

continuous measurements at the bedside of clinical settings. NIRS/DOS/DOT techniques have 

been extensively used to measure tissue oxygenation in the clinic. Compared to 

NIRS/DOS/DOT, DCS/DCT is a relatively new technique that enables direct measurement of 

tissue blood flow. DCS/DCT or hybrid DCS/NIRS is being increasingly employed worldwide 

in a large variety of clinical contexts for the diagnosis and therapeutic monitoring of various 

diseases affecting tissue hemodynamics and metabolism. Overall, these pilot clinical studies 

in relatively small populations have shown the technique's versatility and demonstrated that 

the method provides new and complementary information about patient pathophysiology in a 

noninvasive fashion. It should be noticed that DCS/DCT has only been applied to a small 

population of patients with short measurement time frames (minutes to several weeks). 

Longitudinal studies in large populations are needed to elucidate potential unresolved 

technical problems and translate DCS/DCT into the clinic as a routine diagnostic and 

monitoring tool.  
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There has been a concern on the physical modeling of blood flow (i.e., the motion of red 

blood cells) in the microvasculature. It was found that diffusive motion (see Section 2.1) fits 

the experimental autocorrelation curves rather well over a broad range of tissue types 

(Durduran, 2004; Zhou, 2007). Intuitively, however, random ballistic flow would be 

considered as a better model to fit the DCS/DCT data. Modified mixture models were 

proposed to include both ballistic flow and diffusive motion (Carp et al., 2011; Boas et al., 

2016). Experimental data supported the proposed models for capturing the transition from 

early ballistic to subsequent diffusive motion. Computer simulations on the tissue with varied 

vessel diameters and spacing showed that the diffusive motion dominates the correlation 

decay in typical DCS measurements, and the blood flow index is modulated proportionally by 

the concentration of hemoglobin and the average diameter of blood vessels. Nevertheless, 

more clinical investigations are needed for accurate extracting of blood flow information in 

deep tissues. 

Some technical issues exist when applying NIR diffuse optical technologies to deep 

tissues with heterogeneous properties. Since NIRS and DCS techniques rely on the transport 

of NIR light through top layer tissues (e.g., skin, skull), both methods must account for partial 

volume contributions from the top layer-structure to the deep tissue signals (e.g., brain, 

muscle, and tumor). In addition, measurement signal-to-noise ratio (SNR) and penetration 

depth are two interrelated and important parameters that affect the utility of both DCS and 

NIRS. Furthermore, most research with DCS reports only relative changes of blood flow 

index with respect to some baseline condition.  
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The “partial volume effect” substantially affects the accuracy of DCS measurements, as 

discussed in literature (Durduran and Yodh, 2014; Yu, 2012a; Strangman et al., 2003). 

Slab-layered models were proposed to reduce the partial volume effect (Jaillon et al., 2006; Li 

et al., 2005; Verdecchia et al., 2016). A recently developed method, “Modified Beer-Lambert 

law for blood flow”, has been proved to be effective in pressure modulation experiments to 

reduce the skin-effect on cerebral blood flow measurements (Baker et al., 2014; Baker et al., 

2015). However, those methods ignored the influence of irregular tissue geometries. Recently, 

we created a new algorithm integrating a linear model of autocorrelation function with the 

Monte Carlo simulation of photon migrations in heterogeneous tissues with arbitrary 

geometries for simultaneous extraction of blood flow indices in multiple layered tissues 

(Shang and Yu, 2014). 

Compared to NIRS/DOS/DOT, DCS/DCT measurements have relatively lower SNRs 

when probing deep tissue blood flow with large S-D separations (e.g., >2.5 mm). This is due 

to the utilization of single-mode detector fibers with a small core diameter of 5 µm in 

DCS/DCT measurements to ensure the detection of autocorrelation functions of light intensity. 

Efforts have been made to improve SNR through the spatial average of multiple 

autocorrelation functions detected by a detector fiber bundle (Dietsche et al., 2007) or the 

temporal average of DCS signals obtained by a fast software correlator (Wang et al., 2016).   

A potential remedy for the absolute blood flow measurement problem is to calibrate 

DCS/DCT against a gold standard. As mentioned early, comparison studies in small 

populations have been done in skeletal muscles, tumors, and brains against other established 

methods including power spectral Doppler ultrasound (Yu et al., 2005b), Doppler ultrasound 
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(Buckley et al., 2009; Roche-Labarbe et al., 2010), laser Doppler (Durduran, 2004; Shang et 

al., 2011a), Xenon-CT (Kim et al., 2010), fluorescent microsphere flow measurement (Zhou 

et al., 2009), and ASL-MRI (Yu et al., 2007). Results from these studies show the promise to 

obtain absolute flow measurements although further validation works need to be done with 

different types of tissues in large populations. 

DCT/ncDCT enables 3-D imaging of blood flow distributions in deep tissues. While 

effective, ncDCS/ncDCT employs a limited number of expensive APDs for blood flow 

detection, leading to low spatiotemporal resolution and high instrument cost (Lin et al., 2014; 

He et al., 2015; Huang et al., 2015b). With current ncDCT, the ROI must be mechanically 

scanned for a complete tissue coverage, which can take up to 40 minutes and may result in 

motion artifacts. To overcome these limitations, we recently developed and tested a 

non-scanning, noncontact, fast, portable, cost-effective device, namely speckle contrast 

diffuse correlation tomography (scDCT), for 3-D imaging flow distributions (Huang et al., 

2015a; Huang et al., 2016). The scDCT used a charge-coupled-device (CCD) as a 2-D 

detector array to cover a ROI, thus eliminating the mechanical scanning and consequent 

problems. Thousands of detectors provided by the CCD significantly improved 

spatiotemporal resolution and reduced instrument cost/size. The scDCT prototype has been 

tested using computer simulations and tissue phantoms with anomaly flow contrast design. 

We are currently translating this novel optical technique to the clinic. 

It is well known that many diseases are associated with tissue hypoxia, which is 

influenced by oxygen supply (i.e., blood flow) and tissue oxygen consumption. Simultaneous   

measurements of tissue blood flow and blood oxygenation using combined DCS and NIRS 
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instruments enable the evaluation of tissue metabolic rate of oxygen consumption (Durduran 

et al., 2004; Roche-Labarbe et al., 2010; Lin et al., 2016; Dehaes et al., 2014; Durduran et al., 

2010b; Buckley et al., 2013; Henry et al., 2015; Shang et al., 2012; Gurley et al., 2012; 

Chung et al., 2015). This metabolic parameter is potentially a more direct indicator of tissue 

metabolic activities, which integrates many factors and provides further insight about tissue 

pathophysiology. It is expected that with further technology development and more clinical 

applications, DCS/DCT and hybrid DCS/NIRS technologies will be eventually utilized as 

routine diagnostic and intervention monitoring tools for clinical investigations of various 

diseases. 
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Fig. 1: The principle of diffuse correlation spectroscopy (DCS) for blood flow measurements 

in deep/thick tissues. (a) Source and detector fibers are placed on the tissue surface within a 

distance of r for light delivery and collection; (b) Light intensity I(t), detected by the APD, 

fluctuates with time due to the motions of RBCs; (c) Blood flow change can be quantified 

from the shift of temporal electric field autocorrelation function curves. 
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Fig. 2: The schematic diagram (a) and instrument photos of typical DCS (b) and DCT (c) 

systems. 
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Fig. 3: A variety of optical probes for DCS/DCT measurements. (a) A typical DCS probe 

consisting of source and detector fibers; (b) Two DCS probes taped on both sides of a frontal 

head for cerebral blood flow measurements; (c) A DCS probe taped on top of the calf muscle; 

(d) A hand-held DCS probe scanning over a breast tumor; (e) A DCS probe placed on top of 

the head/neck tumor; (f) A noncontact DCS probe with lens system focusing the source and 

detectors on the surface of tissue. Some of the figures are reproduced from the subfigures in 

the references (Huang et al., 2015c; Durduran et al., 2005) 
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Fig. 4: A noncontact DCT probe with rotational scanning system. (a) Noncontact DCT probe 

head was scanned over a region of interest (ROI) on the breast by a motorized rotational stage, 

(b) A linear array of single-mode detector fibers, (c) Source and detector fibers were projected 

on the breast surface using achromatic lenses; two source paths were attached to the sides of 

the detector path. This figure is reproduced from Fig. 1 in the reference (Huang et al., 2015b). 
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Fig. 5. Relative changes in mean artery blood pressure (rMAP) and cerebral blood flow 

(rCBF) from a control subject (a) and a presyncope subject (b) during Head-Up-Tilting 

(HUT). The solid vertical lines indicate the beginning or ending of tilting up and tilting down. 

The triangles indicate the minima of rMAP and rCBF during HUT. The two connected dashed 

lines on top of the raw data (b) demonstrate the two-line fitting results. The dashed vertical 

lines indicate the break-points separating Stage I and Stage II. This figure is reproduced from 

the subfigures of Fig. 1 in the reference (Cheng et al., 2014). 
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Fig. 6. Typical relative changes in cerebral blood flow (rCBF) (a) at the surgical side 

(ipsilateral) and (b) at the nonsurgical side (contralateral). This figure is reproduced from 

subfigures of Fig. 2 in the reference (Shang et al., 2011b).  
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Fig. 7: Comparison of DCS and EEG measurement results in a typical patient during carotid 

endarterectomy (CEA) when the internal carotid artery (ICA) was temporarily clamped. The 

resulted ischemic status by the ICA clamping was characterized by the slope (S), D-index, 

and time-to-minimum for both CBF (top panel) and EEG (bottom panel) at the surgical side. 

Here the slope (S) is the deceasing rate of variable D(t) during the first 30-second clamping 

period, and D(t) represents the percentage change of variable (CBF or EEG spectral power) at 

time t, when compared to pre-clamping baseline. The minimum of D(t) during the entire 

period of clamping is defined as D-index, representing the most severe cerebral 

hypoperfusion during ICA clamping. The period from the beginning of clamping to the time 

of D(t) attaining its minimum (D-index) is defined as time-to-minimum. The large negative 

CBF slope (S = -1.25) during the first 30-second clamping period indicates the rapid CBF 

decrease due to ICA clamping (a). The time duration of CBF decrease and maximal CBF 

decrease during the entire clamping period were characterized by time-to-minimum (80 s) and 

D-index (-66.2%), respectively (b). By contrast, the EEG power changes were small and slow 

(S = 0.11) (c), and reached its minimum (D-index = -42.8%) in a long period of time 

(time-to-minimum = 1016 s) (d). This figure is reproduced from Fig. 4 in the reference 

(Shang et al., 2011b). 
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Fig. 8: Average absolute blood flow responses to handgrip exercise in 10 subjects with 

fibromyalgia (FM) and 13 age-matched healthy controls (HC). The vertical lines indicate the 

beginning and end of exercise. Average pre-exercise blood flow value, determined as the 

average of data points 30 s before the onset of exercise, was 3.19 ± 1.03 ml/100 ml/min for 

the healthy subjects and 2.63 ± 0.71 ml/100 ml/min for the FM subjects (p = 0.444). Plateau 

blood flow value, determined as the average of points 30 s before the end of exercise was 

10.71 ± 3.91 ml/100 ml/min for healthy subjects and 4.83 ± 1.42 ml/100 ml/min for FM 

subjects (p = 0.018). 
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Fig. 9: Comparison of rBF changes between seven successful and one unsuccessful flaps. The 

rBF values over the seven successful cases (Cases 1 to 8) during operation and on 

postoperative days 2, 4, 7 are presented individually. rBF from the unsuccessful flap case 

(Case 8) was measured at the time of flap elevation and on postoperative days 2 and 4. The 

data from the unsuccessful case (Case 8) at Day 7 are not available due to the subsequent 

re-flap before that day. This figure is reproduced from Fig. 6 in the reference (Huang et al., 

2015c). 
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Fig. 10: Clinical examples of two low-grade carcinomas in situ. (a) Ultrasound image of 

breast with a tumor (inside the yellow dashed circle) in the first patient. The tumor mass 

center is located at 19.2 mm beneath the skin surface. (d) Ultrasound image of breast with a 

tumor (inside the yellow dashed circle) in the second patient. The tumor mass center is 

located at 13.3 mm beneath the skin surface. (b) and (e) show the reconstructed 3-D tumor 

blood flow contrasts imaged by the ncDCT in the first and second patients, respectively. For 

the comparison of ultrasound and ncDCT results, an ultrasound imaging plane along the 

transducer line and across the overlapped two specific light sources (S1 and S2) of ncDCT 

(see Fig. 4) is presented in the 3-D reconstructed image. The backgrounds are presented with 

30% transparency of the original color clarity. (c) and (f) show the cross-section views 

through the reconstructed tumor centers, which can be directly compared to the 2-D 

ultrasound tumor images [(a) and (d)], respectively. This figure is reproduced from Fig. 8 in 

the reference (He et al., 2015). 
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Fig. 11:  Receiver operating characteristic curves (ROC) and the associated areas under the 

curve (AUC) for discriminating tumors with incomplete response (IR) or complete response 

(CR). (a, b) [HbO2] at Week 1 and Week 3 in HPV-16 positive patients, (c) THC at Week 3 in 

HPV-16 positive patients, (d) StO2 at Week 3 in HPV-16 positive patients, (e) BFI in HPV-16 

negative patients at Week 3, and (f) μs’ in HPV-16 negative patients at Week 3. This figure is 

reproduced from Fig. 5 in the reference (Dong et al., 2016). 
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