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Clinical assessment of a non-invasive wearable MEMS

pressure sensor array for monitoring of arterial pulse

waveform, heart rate and detection of atrial fibrillation
Matti Kaisti1,2, Tuukka Panula1, Joni Leppänen3, Risto Punkkinen1, Mojtaba Jafari Tadi1, Tuija Vasankari4, Samuli Jaakkola 4,

Tuomas Kiviniemi 4,5, Juhani Airaksinen 4, Pekka Kostiainen3, Ulf Meriheinä3, Tero Koivisto 1 and Mikko Pänkäälä 1

There is an unmet clinical need for a low cost and easy to use wearable devices for continuous cardiovascular health monitoring. A
flexible and wearable wristband, based on microelectromechanical sensor (MEMS) elements array was developed to support this
need. The performance of the device in cardiovascular monitoring was investigated by (i) comparing the arterial pressure waveform
recordings to the gold standard, invasive catheter recording (n= 18), (ii) analyzing the ability to detect irregularities of the rhythm
(n= 7), and (iii) measuring the heartrate monitoring accuracy (n= 31). Arterial waveforms carry important physiological information
and the comparison study revealed that the recordings made with the wearable device and with the gold standard device resulted
in almost identical (r= 0.9–0.99) pulse waveforms. The device can measure the heart rhythm and possible irregularities in it. A
clustering analysis demonstrates a perfect classification accuracy between atrial fibrillation (AF) and sinus rhythm. The heartrate
monitoring study showed near perfect beat-to-beat accuracy (sensitivity= 99.1%, precision= 100%) on healthy subjects. In
contrast, beat-to-beat detection from coronary artery disease patients was challenging, but the averaged heartrate was extracted
successfully (95% CI: −1.2 to 1.1 bpm). In conclusion, the results indicate that the device could be useful in remote monitoring of
cardiovascular diseases and personalized medicine.
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INTRODUCTION

Flexible wearable devices have taken a key role in remote
monitoring of vital signs while cardiovascular health monitoring is
expected to witness substantial growth in the coming years.1

Increasing cost of treatments, aging population, and the demand
for independent living are driving the growth of remote
monitoring device markets.2 The maturing technologies now
allow the integration of flexible wearable sensors to low-cost
computational platforms with unprecedented capabilities to store,
share, and analyze data.3 Wearable monitoring systems with low
power consumption, ruggedness and high sensitivity are required
for new continuous and unobtrusive remote health monitoring
opportunities.4

Pressure sensors are one of the promising sensing modalities
for remote health monitoring and several approaches that have
been investigated recently include field-effect transistors,5–7

resistivity-based sensing,8–10 piezoelectric sensors,11 passive sen-
sors with wireless read-out electronics,12 electronic skin applica-
tions,13–15 and nature-inspired sensor structures.16,17 These studies
present great advancements in the field and measurements have
been conducted for measuring the arterial or carotid pulse
pressure waveforms,5–8,11–13 as well as intracranial pressure.12

Although significant progress have been made on the device
and sensor development, the previous studies have not investi-
gated capabilities beyond proof-of-concept measurements

outside of laboratory. The goal of this study is to design a highly
sensitive wearable device for continuous cardiovascular monitor-
ing, and examine the device’s performance in a clinic with real
patients. We demonstrate a simple process for creating a low-cost
and low-power wearable tactile pressure sensor based on a
microelectromechanical sensor (MEMS) elements. The applicability
of the sensor is studied by carrying out arterial waveform analysis,
atrial fibrillation detection, and heart rate monitoring. The arterial
waveform analysis and pulse profile carries valuable information
related to cardiovascular disorders, such as hypertension, arterio-
sclerosis, and cardiomyopathy18–21 and by analyzing the entire
arterial waveform continuously a more complete health status can
be obtained.22–24 On the other hand, atrial fibrillation is
manifested by irregular beat intervals rather than the shape of
the waveform.25

Currently there are several commercial devices that can capture
the arterial waveform with calibrated amplitude, effectively
measuring the beat-to-beat blood pressure.26,27 These devices
are intended for clinical use in hospital environment and are
expensive. Similarly, intra-arterial measurements can capture
arterial waveform with correct pressure values, but this method
is strictly limited to clinical environment and further hold risk for
infection and discomfort.28

In this study, we show that it is also possible to monitor heart
rate, detect arrhythmias, and extract high-quality arterial
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waveforms for further medical analysis with a single sensing
modality wearable low-cost device with a minimal power
consumption that is suitable for remote and home-monitoring
applications.

RESULTS

Device construction and sensor operation
A MEMS pressure sensor element (SCB10H) capable of measuring
absolute pressures in the range of 0–120 kPa was selected as a
starting point for the wearable sensor system.29 The sensor is a
silicon chip with 27 µm-thick diaphragm that separates the outer
and inner pressures. This diaphragm (area A) bends when an outer
pressure induces a force F ¼ Pint � Pextð Þ ´A on it, resulting in a
change in the distance (d) between capacitor plates. Thus
the capacitance is a function of outer pressure according to the
well-known capacitive relation C ¼ εA=d, where ϵ is permittivity.
Figure 1 illustrates an overview of the MEMS pressure sensor setup
of this study where (a) depicts the operating principle of pressure
sensing element, (b) displacement simulation of the gel bulb, (c)
shows a set of pristine and modified elements, (d) microscopic
photograph of an element and the sensor array configuration
assembled on PCB, (e) an example of the wearable device in its
intended use and the coupling mechanism of the arterial pulse
wave to the sensor array, and (f) recorded sensory signals and a
typical pulse profile obtained from one cardiac cycle.
The MEMS elements in the array, originally intended for

atmospheric measurements, were modified for wearable cardio-
vascular monitoring by curing a silicone gel bulb over the
element. First, the sensor was fixed on 5mm diameter substrate
and gold wires were bonded from the element to the substrate. A
gel bulb was manually applied over the element. The gel was then
cured at 150 °C in an oven for a few minutes. Three elements were
assembled as an array on a circuit board. The array configuration
relaxes the requirement for accurate positioning of the device and
therefore improves the reproducibility of the measurement. The
capacitive-to-digital converter was soldered on the backside of the
circuit board, as close as possible to the signal source to minimize
the noise coupling. Behavior of the gel under uniform pressure of
100mmHg was simulated using Autodesk Inventor 2018 stress
analysis. The exerted force creates a displacement in the gel
towards the elements diaphragm causing it to bend and
simultaneously change its capacitance. By attaching the elements
on the wrist using the wristband so that the artery is being pushed
between the sensor and the wrist bone, a pulse wave can be
measured.18,19 This is due to the pressure wave traveling across
the arteries during each cardiac cycle. When this pressure wave
arrives at the location of the sensor, the dilating artery creates a
pressure signal which changes the capacitance of the sensor and
the arterial pulse waves can be recorded continuously.
It was found that the signal quality is affected by the tightness

of the strap. If the strap is attached loosely, the device produces a
signal with minuscule pulse amplitudes. This is most likely due to
the poor coupling of the arterial pressure signal to the sensing
element. In contrast, with a very tight attachment, the artery was
almost entirely blocked and the pulse waveform was by most part
lost. The optimal strap tightness for monitoring the waveform was
found empirically, and roughly equal strap tension was applied in
each measurement without any subject-specific optimization. The
strap did not cause significant discomfort for the user. However,
the recording times were no longer than 10min and for
applications requiring clearly longer measurement times the user
comfort should be improved using, e.g. wristwatch type designs
that would be at least partly rigid and only press the sensors down
where needed. Furthermore, all the used materials are skin safe
and thus do not cause any skin irritation.

Another factor having a significant impact on the detected
signal quality was the placement of the sensor element. The
developed array configuration, however, overcomes this difficulty
as it significantly simplifies the attachment procedure since proper
signal is required only from one element. Moreover, having
several gel-covered elements resulted in a good placement
stability, i.e. sensor array remained in its placed position regardless
of hand movement or tension, but such movement and tension
do cause a significant changes in the signal amplitude. This is not
surprising as forces created by the movement of the radial artery
are minuscule. In practice, high-quality recordings can be made
when subjects are staying idle and by automatically removing
motion artifacts when they are not.
The use of this new single modality sensor, that has been

clinically tested for continuous monitoring of arterial pulse profile,
atrial fibrillation, and heart rate, holds promise for future
personalized medicine applications.

Device characterization
The sensor element characterization setup is illustrated in Fig. 2a.
The enclosed sensor element with two protruding contact pads
were attached to a piece of epoxy laminate board. This allowed
the assembly to be securely attached to the probe station (Rucker
& Kolls 666) bottom plate using a vacuum pump. Needle tester
probes were used for connecting the sensor to the LCR meter
(Hewlett Packard 4284A). A lift-able piece of plexiglass with a
beveled brass tip of 1.2 mm in diameter was used for focusing the
weight on the sensor element. Precise amounts of force were
applied to the sensor by simply placing a set of different weights
on top of the plexiglass while measuring the sensor capacitance
with an LCR meter (HP4284A).
First, the capacitive properties of the modified sensor over a

broad range of frequency was examined and compared with a
pristine element as shown in Fig. 2b. The solid lines present an
average of three measurements and dashed lines show the
standard deviation. The batch-dependent variation of pristine
sensors is clearly larger than the negligible difference measured
before and after the modification (see Fig. 2b inset). It can also be
observed that the sensor provides a constant capacitance value of
10.4 pF in the frequency range around 1 kHz–1 MHz in atmo-
spheric pressure. The modified sensor characteristics were further
evaluated against a simulation model of the pristine sensing
element29,30 (see Supplementary Information: sensor element
capacitance model). The model showed that the capacitance of
the modified elements matches that of the predicted value by the
model and that there is no reduction in the sensitivity due to gel
modification.
In Fig. 2c the response of the sensor was tested by placing

several weights on top of the modified element. The sensor’s
capacitance follows a parabolic curve in terms of weight. The
response curve was fitted with a second-order polynomial
resulting in a perfect R-squared value indicating good pressure
reproducibility between different weights and that the modifica-
tion does not weaken the element’s properties. An average
sensitivity of 0.404 pF/g was obtained when using weights in the
range 2–3 g and assuming a linear response.
The resolution of the modified sensor was investigated by

placing a minuscule weight on the sensor. As small as 10 mg
weight creates a clearly detectable signal as shown in Fig. 2d. This
is further illustrated in Fig. 2e, where the averaged values of
loading and unloading with different small weights are shown. For
each weight (10, 20, 56 mg) three load/unload cycles over three
different sensors were averaged. These results show that the
differences caused by loading/unloading are easily observable,
but also that measurements can be made in absolute terms down
to 10mg.
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The frequency response of the modified sensor was examined
by subjecting the sensor to an impulse. A fast impulse was created
by dropping an elastic ball on top of the sensor that was already
under modest static pressure. The frequency response was
obtained by a fast Fourier transform (FFT). Before taking FFT the
signal was up-sampled to a 1000 Hz. The response is shown in Fig.
2f. The 3 dB point is found around 210 Hz. This provides only a
lower limit for the sensor because with this test setup the
minimum duration of the impulse is limited. Also, the sampling
frequency should be higher to examine the high-frequency
response of the element in more detail. However, the results

show clearly that the sensor has sufficient bandwidth for the
intended application area.
The pristine sensor provides excellent ruggedness and can be

exposed to as large as 200 bar pressures without damaging the
element.29 The ruggedness of the modified elements were studied
by repeatedly exposing them to high loads (31 g) causing large,
around 50 pF, changes in capacitance as shown in Fig. 2g, h. These
tests did not damage the sensors nor did they weaken the sensor
characteristics showing that the sensors are rugged and durable.
The temperature dependency of the sensor was studied by

heating the sensors to several fixed temperatures between room

Fig. 1 Sensory system overview. a Sensor operation principle where the capacitance of the element changes as a function of outer pressure
deforming the diaphragm. b Stress analysis results; top: a cross-section of the silicone gel bulb applied on top of the sensor element and
substrate, bottom: simulated displacement of the gel when uniform pressure of 100mmHg is applied to the surface. c Pristine and gel-
modified elements. d Top view microscope photograph of the square-shaped element with a side length of 1.2 mm and photographs of the
assembled sensor array; top view showing the elements and backside view of the PCB showing the capacitance to digital converter. e The
array assembled on a flexible wristband and strapped on a healthy study subject and a cross-section of the tissue at the point of
measurement. Most of the force created by blood pressure in the radial artery is projected to the sensor array. f Illustration of the obtained
signals from the array and details of the pulse profile during one cardiac cycle
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temperature (22 °C) and 45 °C. A small weight was placed on the
sensor mimicking the conditions of the target application. The
sensor did not show any significant temperature dependency.
From three measured sensors two drifted slightly downward and
one upward. The results are shown in Fig. 2i.

Comparison of non-invasive (NI) and invasive (I) waveforms
The arterial pulse waveform recorded by the MEMS pressure
sensors is composed by an initial wave followed by series of

reflected waves from the vasculature tree.31 We sought to assess
the origin and the clinical relevance of the recorded waveform
and compared it with the corresponding I catheter pressure
recording. In the NI wristband sensing the pressure reading is a
sum of three components: (i) atmospheric pressure, (ii) sensor
attachment pressure (the pressure that the attachment exerts on
the sensor), and (iii) the physiological pressure signal caused by
the dilating artery. The atmospheric pressure can be subtracted
from the signal with modest ease, but the sensor attachment

Fig. 2 Sensor characterization. a Characterization setup. b Capacitive properties of modified sensor over frequency. Dashed lines are the
standard deviation (n= 3). Inset compares pristine and modified sensors. c Sensitivity with different weights placed on the top of the sensor
(n= 3). d Time trace of the sensor with sequential loading and unloading of 10mg weight and e repeatability of three sequential loading/
unloading of different weights (n= 3). f Frequency response. g Time trace of the sensor when sequentially loaded three times with a large
weight mimicking a damaging situation (n= 3). h Repeatability of three sequential loading/unloading on three sensors and i temperature
dependence (n= 3). All error bars present standard deviation
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pressure may vary if the measurement is not controlled rigorously
which is unavoidable in most real-life settings. For this reason we
concentrate on the shape of the waveforms rather than the
absolute amplitude values.
From the ensemble of averaged pulse waveforms we computed

the cross-correlation between the NI measurements (DSI) and
corresponding I waveforms (DSII) that were aligned from the
maximum point. For details on datasets DSI and DSII see the
section “Human studies”. Figure 3 illustrates the measurement
setup and typical waveforms obtained from I and NI recordings
(a), and waveform shape comparison where (b) presents the
highest, and (c) the lowest similarity between the I and NI
waveforms in the dataset, respectively. The average Pearson
correlation over all waveforms in DSII was 0.97 ± 0.02 (mean ± SD)
indicating high similarity between all study subjects. Such
correlation have not been found with PPG signals,32 which might
be explained by the fact that PPG does not directly measure
pressure waveforms, but mostly arterial blood volume variations.33

In addition to the overall waveform similarity, we computed the
time differences between the NI and I waveforms in clinically
relevant time points.34,35 This was examined by computing the
time differences between I and NI signals in the following points:
(i) maximum slope in the systolic part, (ii) Dicrotic notch, and (iii)
diastolic peak. The corresponding linear correlation and
Bland–Altman plots are shown in Fig. 3d–f. The R2 values
computed from the linearity plots was above 0.9 for each case.
The 95% confidence intervals between the time points from the
wearable device and the reference measurements were 22, 21,
and 38ms for (i)–(iii), respectively. From these, the point of
maximum slope shows a clear bias towards the NI time point
arriving earlier which is a result of the NI pulse waveforms being
slightly wider in several measurements. The average fractional
errors were roughly 21%, 6%, and 9%. Overall, these results
indicate high agreement between the waveforms, but the point of
maximum slope has a clear deviation from the reference. This is
most likely due to different time constants between the
measurement devices that are device construction and post-
processing dependent.
In addition to time interval comparison between the wave-

forms, the waveform amplitude carries plentiful of information.
Several parameters such as cardiac output, stroke volume, and
vascular resistance, and the variations in the pulse pressure are
based on amplitude values of the signal.36,37 To evaluate the
possibility of a self-referenced measurement system that is able to
track relative changes in these parameters we compared the
normalized mean arterial pressure (MÂP) between NI and I
measurements (Fig. 3g). Several NI measurements had clearly
higher MÂP and on average the NI had a higher MÂP estimate.
This is due to several low-quality signals caused by poor signal
coupling to the element. In higher quality signals, however, the
estimates are in close agreement. The average fractional error is
about 20%. These errors are systematic within a given measure-
ment and thus indicates that useful continuous measurements
based on relative change can be made together with additional
signal calibration or by possibly using emerging machine learning-
based analysis.38,39

Using the developed system, the monitoring of continuous
central blood pressure waveform might be possible. Currently, the
standard NI method for acquiring aortic waveform is radial
tonometry.40,41 It requires a trained medical professional to record
a short radial waveform sample. The systolic and diastolic
pressures measured from brachial artery using a standard blood
pressure cuff are matched with the recorded radial pulse. Using
specialized signal processing, an estimate of aortic blood pressure
waveform is generated. Using our approach, aortic pulse wave-
form could be created from the radial waveform, e.g. by using a
generalized transfer function (GTF).42

Detection of atrial fibrillation
Atrial fibrillation is a condition that makes the heart beat
irregularly and also leads to large beat-to-beat blood pressure
variability.43 Both of these characteristics can be seen in Fig. 4
where typical pressure sensor signals of AF patient and a
healthy subject are shown. We demonstrate the ability to
discriminate between sinus rhythm (DSI) and (persistent) AF
patients (n= 7) using a time–frequency analysis.44 While for
the screening of AF, the patients having paroxysmal AF would
be more correct test group, it is also acknowledged that
separating patients having persistent AF from normal is more
difficult because they often have medication that mitigates the
differences to the normal rhythm. The pipeline of the
automated algorithm is shown in Fig. 4a. The classification
algorithm relies on k-means clustering with two features: area
under autocorrelation (AUA) and spectral entropy. The algo-
rithm is detailed in the section “Algorithm”. The typical time
traces of a healthy and AF patient are shown in Fig. 4b, c. Both
signals provide clearly distinguishable features and the AF
shows, as expected, more irregularity in the heart beats. This is
also evident in Fig. 4d, e showing the corresponding absolute
value of autocorrelations. The AF signal does not have clear
prominent peaks outside zero lag indicating that the rhythm is
irregular. Finally, in Fig. 4f, the results from k-means clustering
is shown. All subjects here are correctly assigned a correct
cluster. It is notable that the AF patients are all tightly clustered
whereas the healthy subjects are distributed more widely. In
both features, at least one healthy subject has a value similar to
the AF patients indicating the need for several features for
reliable discrimination. As expected, autocorrelation-based
values are lower and spectral entropy values are higher on
average than the respective values with healthy subjects.

Heart rate monitoring
We considered two independent datasets for assessing the heart
rate monitoring capability. These included a group of healthy
subjects (DSI) and a group of coronary artery disease patients
(DSII). The heart rate algorithm pipeline is shown in Fig. 5a. The
algorithm is detailed in the section “Algorithm”. It can extract the
beats from DSI with extremely high accuracy due to excellent
signal quality. The averaged sensitivity (TRP) and precision (PPV)
over all the measurements were 99.1% and 100%, respectively,45

without removing any motion artifacts. The beat detection
performance of each subject is detailed in Table 1.
The patient group DSII consisted of patients recovering from a

surgery and the results are clearly inferior compared to the results
with DSI. One reason is that these patients often had swollen
hands making the measurement more difficult. The obtained
signal coverage after artifact removal was on average 48 ± 25%
(mean ± SD). This clear reduction in coverage compared to DSI
was due to artifacts. Visually these artifacts can be divided into a
flat signal or high amplitude noise signals. Flat signals are a result
of poor signal coupling due to loose attachment and/or a swollen
hand, whereas high amplitude noise are due to restless patients.
With calm patients there are no artifacts present and signal quality
is high, which was indeed observed in DSI and DSIII that did not
require any artifact removal. With DSII the artifacts were removed
automatically and correctness verified visually which is subject to
some interpretation. However, large part of the artifacts are easy
to interpret, since the signal is either completely lost or it exhibits
high amplitude noise from which the arterial pulse cannot
be seen.
Regardless of the artifacts, the averaged 30 s heart rate was

accurately obtained as shown in Fig. 5b. The 95% confidence
interval indicated with the dashed line in the Bland–Altman plot
was (−1.2 to 1.1 bpm) with a mean value of 0.05 bpm. Fig. 5c, d
show high-quality signal segment after band-pass filtering and
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after convolving the signal with triangle-shaped template for
easier peak detection.46 Found peaks are indicated in the figures
with read circles (NI) and corresponding reference peaks with blue
diamonds (I).

DISCUSSION

We developed a wearable real-time monitoring device for
continuous arterial pulse recordings for cardiovascular healthcare
monitoring. Miniature MEMS pressure sensing elements of size

Fig. 3 Comparison of non-invasive and invasive waveforms. a Measurement setup with the invasive (I) catheter (left) and the non-invasive (NI)
wristband (right) along with samples of high-quality and low-quality signals. Comparison of ensemble averaged pulse waveforms of I (blue)
and NI (red) pulse waveforms. The waveforms with highest b and lowest c Pearson correlation coefficient between the I and NI measurements
from the study group are shown. d–f show the correlation and Blandt–Altman plots of the time intervals at (i) maximum slope, (ii) Dicrotic
notch, and (iii) diastolic peak, respectively, and g compares the normalized MAP values between I and NI measurements. The dashed lines in
Bland–Altman plots present the 95% CI
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1.2 mm× 1.2 mm29 were covered with a soft silicone gel that
effectively mediates the pressure wave from the dilating artery to
the sensing element. The hemisphere-shaped gel provides an
effective way to obtain high-quality arterial waveforms that are
nearly identical in shape when compared to I catheter pressure
sensor readings. The sensing element itself is a passive capacitive
element and has an extremely low power consumption. The
power consumption is mostly dictated by the capacitive currents
during the charge–discharge readout. A simple capacitive loss
model revealed that the power consumption is only 5 μW when
using a 3.3 V power supply and a 100 kHz readout frequency
(model details in Supplementary Information: Capacitance mea-
surement principle). This shows that monitoring for long periods
with minimal battery sizes is feasible and that the system could be
extended to have wireless operation using, e.g. low-energy
Bluetooth. The sensors are embedded into a flexible and wearable
wristband configuration providing a good sensor to skin contact
with a fair user comfort.

It was demonstrated that the device produces a very high-
quality signal with healthy subjects as indicated by a near perfect
ability to detect heartbeats in continuous monitoring with healthy
subjects (DSI). In contrast, the success of the beat-to-beat
detection with coronary artery disease patients (DSII) was modest
although a high accuracy average heart rate detection was
successful after artifact removal. These patients were covering
from surgical operation and many had swollen hands limiting the
sensors coupling to the artery. It is expected that similar issue
prevails with severely obese patients as well. However, from the
same challenging dataset (DSII), arterial waveforms that corre-
spond very closely to the I catheter measurements could be
extracted along with clinically relevant timing points. Additionally,
the capability to detect arrhythmias was tested by classifying sinus
rhythm and atrial fibrillation patients. A clustering analysis showed
high promise in AF detection. However, the study groups were
fairly small and therefore a larger study group is needed to
investigate the potential of wearable MEMS pressure sensing for
AF detection and to infer the performance compared to ECG,

Fig. 4 Detection of atrial fibrillation. a Pipeline for the atrial fibrillation detection algorithm (band-pass filter, top: autocorrelation, absolute
value, integration; bottom: fast Fourier transform, absolute value, spectral entropy; classification). b Five second measurement of a healthy 34-
year-old male. c Typical atrial fibrillation recording of 5 s. d and e The corresponding absolute value of the autocorrelation of b and c. f
Clustering of healthy (n= 13) and atrial fibrillation patients (n= 7) using time–frequency analysis
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photoplethysmography and mechanocardiography-based meth-
ods.47,48 We envision that using the presented approach a new
class of pressure sensors could be harnessed into a broad range of
home monitoring solutions either as a stand-alone solution or
integrated with other sensing modalities in the future.

METHODS

Human studies
DSI (Healthy group): This dataset consisted of 13 healthy volunteers (one
female). The demographic of these subjects were as follows (mean,
standard deviation): age (34, ±8 years), height (179, ±5 cm), weight (88,
±22 kg), and BMI (27, ±6.0 kg/m2). All measurements were NI and carried
out using the developed wristband.
DSII (I group): This dataset consisted of 18 volunteers treated at Heart

Center Turku University Hospital, who had heart surgery operation the
preceding day. The NI and I measurements were taken simultaneously. The
location of the arterial cannula prevented taking the NI measurement from
the same wrist as the I wave. The NI measurement was taken from left wrist
and I measurement from right wrist. The patients were in supine position
during the 10min recording. Study subjects were instructed to be silent
and still during the session. The demographic of these subjects were as
follows (mean, standard deviation): height (175, ±9 cm), weight (86,
±14 kg), systolic pressure (120, ±15mmHg), and diastolic pressure (70,
±13mmHg).
DSIII (AF group): This dataset consisted of seven atrial fibrillation patients

admitted to the Heart Center Turku University Hospital. The demographic
of these subjects were as follows (mean, standard deviation): height (179,
±5 cm), weight (87, ±10 kg). All measurements were NI and carried out
using the developed wristband.
The measurements (DSII, DSIII) were conducted according to the

Declaration of Helsinki guidelines at Heart Center, Turku University
Hospital, Finland with the permission of Ethical Committee of the Hospital
District of Southwest Finland. Written informed consent was collected from
all study participants in DSI, DSII and DSIII. The measurements taken from
healthy control individuals (DSI) were captured from voluntary participants
at University of Turku.

Fig. 5 Heartrate detection. a Pipeline of the heart rate detection algorithm (bandpass filter, artifact removal, convolution with triangular
wavelet, multiscale-based peak detection, median beat interval, accepted HR interval). b Bland–Altman plot showing the agreement of heart
rates obtained with the non-invasive wearable wristband (NI) and the invasive catheter (I). The dashed lines with corresponding values present
the 95% CI. c Example of NI signal after band-pass filtering (top) and after convolution with triangle-shaped template (bottom). The red circles
present the automatically detected peaks. d The found peaks referred back to the band-pass-filtered signal. Red circles and blue diamonds
present the peaks from the NI and I (reference) signals, respectively

Table 1. Performance metrics of the beat-to-beat detection (DSI)

ID HR (bpm) TPR (%) PPV (%)

1 90.3 96.9 99.5

2 72.0 100 100

3 67.5 100 100

4 91.8 92.7 100

5 57.5 99.2 100

6 93.4 100 100

7 61.6 100 100

8 107.6 100 100

9 96.9 100 100

10 69.9 100 100

11 60.8 100 100

12 60.2 99.2 100

13 74.3 100 100

Average 77.2 99.1 100
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Measuring devices and systems
The characterization measurements were carried out using a precision LCR
meter (HP4284A) controlled by a Labview program. Connection to the
element contact pads was made using Rucker & Kolls needle tester. A brass
tip was attached to a hinged plastic sheet in order to focus the pressure
directly to the sensor element. By using a tip with a beveled head, the
effective area of the pressure was consistent between weights and the gel
surface of the sensor was not damaged by sharp edges. A vacuum pump
was used to make sure that the sensor does not move or tilt during the
measurement. The setup illustration is shown in Fig. 2a.
The human subject measurements (DSI and DSIII) and the frequency-

response measurements were done with an in-house design. The design
employs a capacitance-to-digital converter (PCap01) controlled via Silicon
labs EFM32 2-bit ARM Cortex-M3 core- based microcontroller. A Python
application was used to acquire the signal from the microcontroller to the
PC via the RS232 serial interface. The application was used to display the
signal in real-time and save the data for post-processing. Post-processing
was carried out with Matlab R14. The sensor board included three pressure
sensor elements and the capacitance-to-digital converter was mounted on
a printed circuit board (PCB). The board was assembled on an elastic strap
and a velcro tape was used to adjust the tightness of it. The sensor board
was connected to the microcontroller via flexible copper wires required for
powering and for the RS232 interface. Photographs of the readout
electronics and accompanying desktop application are shown in
Supplementary Information: Measurement devices.
Carescape B40 patient monitor was used for the I catheter measure-

ments (DSII). The data was saved on a file and read using iCollect software
and post-processed with Matlab.

Sensor calibration
The gel-modified sensor elements were calibrated in a pressure chamber
using five externally controlled pressure values, Pext, of 1000, 1100, 1200,
1300, and 1400mbar. A second-order polynomial fit was created between
the Pext values and the recorded output signal. This relationship was used
to calibrate measured values to atmospheric pressure. This procedure
corrects the inherent non-linearity between the measured pressure and
capacitance of the elements.

Algorithm
Pre-processing. The signals were filtered with a third-order Butterworth IIR
filter with 0.1 and 25 Hz cut-off frequencies that remove bias, trend, and
high-frequency noise.

Artifact removal. Each signal was segmented into 10 s epochs and for
each epoch a single sided FFT is computed. The resulting spectra are
smoothed with a moving average filter of 10 samples. Each epoch was
integrated using the pre-processing filter pass-band. Epochs that have an
integrated value more than 1.3 times the median over all epochs are
removed. The median value is updated after each epoch removal yielding
always comparable removal threshold. All epochs with a length smaller
than 30 s were removed. Artifact removal is used for heart rate monitoring,
but not for ensemble averaging described below.

Heart rate estimation. The signals after artifact removal are divided into
30 s epochs with 29 s overlap. First, the signal is convoluted with a triangle-
shaped wavelet with a width of 0.5 s to simplify the signal shape.46

Secondly, the peaks are detected using a multiscale-based peak detection
(AMPD) algorithm.49 This algorithm constructs a matrix consisting of scale-
dependent local maxima. The details for the peak detection are provided
in ref. 45 Thirdly, the median beat interval is computed over the entire
epoch and a corresponding heart rate is computed. Lastly, the heart rates
that fall within the range HRi 1:6 ´m ^ HRih im=1:6 are included,46 where m
is the median value over one recording.

Average waveform. The I and NI signals obtained from two independent
measurement devices were synchronized by computing the lag between
the two signals via cross-correlation and shifting the signals in relation to
others by the lag time of the highest correlation. The peaks in the I
measurements were used as fiducial points for waveform ensemble
averaging by creating a window around each peak for one full waveform
extraction, referred as template. The same fiducial time points were used
for NI measurement to ensure that the ensemble averaging is obtained
from the corresponding templates in both signals. The templates that had

a correlation with the median waveform (obtained from the entire signal)
<0.98, were omitted, or 0.9 when all templates were disregarded. This
template selection was used independently to both I and NI signals. The
remaining templates were ensemble-averaged resulting in the final
waveform. For quantitative comparison, a Pearson correlation coefficient
was computed between each corresponding template in both signals after
which the coefficients were averaged. This method is applied for the full
length signals without artifact removal.

Waveform analysis. The obtained waveforms (both I and NI) were up-
sampled to 1000 Hz and normalized to have amplitude values from 0 to 1.
First-order and second-order derivatives were computed from the
ensemble-averaged pulse waveform. The maximum amplitude was
considered as the systolic peak. The Dicrotic notch was found by
evaluating the zero crossing in the first-order derivative signal occurring
after the systolic peak. Diastolic peak was the local maxima in the mean
waveform occurring after the Dicrotic notch. The normalized MÂP was
computed from the normalized pulse waveforms by first computing the
area under the curve via integration and by dividing this result with the
length of the waveform.

Detection of atrial fibrillation. After pre-processing, the signals were
divided into 5 s non-overlapping epochs without any artifact removal. A
time–frequency analysis was carried out to each epoch. (i) autocorrelation
was computed to each epoch and the results were normalized to have a
maximum amplitude of 1. Subsequently, a sample-wise ensemble average
was computed and the absolute value was taken. Finally, the AUA was
computed via integration. (ii) The spectral entropy was computed for each
epoch by first taking the |FFT| from each epoch. The spectra were
normalized to have an area of one. The spectral entropy is computed
from the resulting probability density function p fð Þ by
SEepoch ¼ �

P
p fð Þ ´ ln p fð Þð Þ. Each epoch has one entropy value assigned

to it and the final entropy value SE is average over all SEepoch.
These time and frequency features were used as input features in k-

means clustering. Both features were normalized to have values between 0
and 1 by v �min vð Þð Þ= max vð Þ �min vð Þð Þ, where v presents the feature
vector. The measurements were clustered using the cosine distance.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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