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Abstract
Objective—High-mobility group box-1 (HMGB1) protein is an alarmin, a normal cell
constituent, which is released into the extracellular environment upon cellular stress/damage, and
is capable of activating inflammation and tissue repair. The receptor for advanced glycation end
products (RAGE) can bind HMGB1. RAGE, in turn, can induce the production of pro-
inflammatory cytokines; this may be modulated the soluble truncated forms of RAGE, including
soluble RAGE (sRAGE) and endogenous secretory RAGE (esRAGE). The objective of this study
was to determine: 1) if clinical chorioamnionitis at term is associated with changes in amniotic
fluid concentrations of HMGB1, sRAGE and esRAGE; and 2) if the amniotic fluid concentration
of HMGB1 changes with labor or as a function of gestational age.

Methods—Amniotic fluid samples were collected from the following groups: 1) mid-trimester
(MT) (n=45); 2) term with (n=48) and without labor (n=22) without intra-amniotic infection; and
3) term with clinical chorioamnionitis (n=46). Amniotic fluid concentrations of HMGB1, sRAGE
and esRAGE concentrations were determined by ELISA.

Results—1) the median amniotic fluid HMGB1 concentration was higher in patients at term with
clinical chorioamnionitis than that of those without this condition (clinical chorioamnionitis:
median 3.8 ng/mL vs. term in labor: median 1.8 ng/mL, p=0.007; and vs. term not in labor median
1.1 ng/mL, p=0.003); 2) in contrast, patients with clinical chorioamnionitis had a lower median
sRAGE concentration than those without this condition (clinical chorioamnionitis: median 9.3 ng/
mL vs. term in labor: median 18.6 ng/mL, p=0.001; and vs. term not in labor median 28.4 ng/mL,
p<0.001); 3) amniotic fluid concentrations of esRAGE did not significantly change in patients
with clinical chorioamnionitis at term (clinical chorioamnionitis: median 5.4 ng/mL vs. term in
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labor: median 6.1 ng/mL, p=0.9; and vs. term not in labor median 9.5 ng/mL, p=0.06); and 4)
there was no significant difference in the median AF HMGB1 concentration between women at
term in labor and those not in labor (p=0.4) and between women in the mid-trimester and those at
term not in labor (mid-trimester: median 1.5 ng/mL; p=0.2).

Conclusion—An increase in the amniotic fluid HMGB1 concentration and a decrease in sRAGE
were observed in clinical chorioamnionitis at term. This finding provides evidence that an alarmin,
HMGB1, and one of its receptors, sRAGE, are engaged in the process of clinical chorioamnionitis
at term. These changes are quite different from those observed in cases of intra-amniotic infection/
inflammation in preterm gestations.

Keywords
danger signal; intra-amniotic inflammation; sterile inflammation; pregnancy; neuroinflammation;
neuro-immune reflects; amniotic fluid; DAMPs; damage-associated molecular patterns; intra-
amniotic infection; term labor

INTRODUCTION
Clinical chorioamnionitis is diagnosed by the presence of maternal fever accompanied by
signs and symptoms of intrauterine inflammation (i.e. foul smelling discharge, uterine
tenderness, fetal tachycardia, etc.) [1–3]. Neonates born to mothers with clinical
chorioamnionitis, even at term gestation, are at an increased risk for short- and long- term
complications including low APGAR scores, umbilical cord pH<7, delivery room
intubation, pneumonia, sepsis [4], neonatal encephalopathy [5,6], long-term cognitive
impairment [7] and cerebral palsy [8–12].

Inflammation can be elicited in response to an infection or sterile injury such as trauma or
ischemia/reperfusion [13–15]. Indeed, several physiologic processes such as implantation,
ovulation [16] and parturition [17,18] utilize cells and mediators involved in the innate
immune response. Classically, the innate immune system of multicellular organisms
recognizes infection via specific molecular patterns (pathogen-associated molecular patterns
or PAMPs) on microbes by specific receptors (pattern recognition receptors or PRRs) on
host cells [19–21]. In cases of trauma or sterile injury, cells sense an endogenous “danger
signal” through alarmins, normal cell constituents capable of inducing an inflammatory
response upon release into the extracellular environment [14,15,22–24]. Currently, several
endogenous proteins including S100 proteins [25,26], uric acid [27], interleukin (IL)-1α
[28], heat shock protein [29,30], hepatoma-derived growth factor [31], and high mobility
group box (HMGB)-1 have been proposed to be alarmins [14].

The specific characteristics of alarmins include the ability to: 1) undergo passive release
following necrotic cell death or actively secrete through the non-classical pathway; 2) recruit
and activate antigen presenting cells (eg: dendritic cells, macrophages) to induce adaptive
immune responses; and 3) promote tissue repair [14,23,32–36].

HMGB-1, a nuclear protein, is considered to be the only alarmin that meets all the proposed
criteria for a danger signal [14]. HMGB1 exerts its biological effects through specific
receptors including Toll-Like Receptor (TLR)-2, 4 and 9 [32–36] as well as a receptor for
advanced glycation end products (RAGE) [37,38]. Upon binding to RAGE, HMGB1 can
induce and sustain the production of pro-inflammatory cytokines which may be modulated
by soluble, truncated forms of RAGE including soluble RAGE (sRAGE) and endogenous
secretory RAGE (esRAGE) [23,38–45].
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We have examined the changes of amniotic fluid concentrations of pro-inflammatory
cytokines [46–54], anti-inflammatory cytokines [55], chemokines [56–62], proteases/anti-
proteases [63], matrix-metalloproteinase [64–71], pro- and anti-angiogenic factors [72–74],
coagulation factors [75,76], adipocytokines [77–79], anti-microbial peptides [80] and
prostaglandins [81–84] in patients with intra-amniotic infection /inflammation (IAI) both at
term and preterm gestations. Amniotic fluid concentrations of sRAGE and esRAGE have
been reported to be elevated in patients with IAI in preterm gestations and decreased in labor
at term [85], whereas the amniotic fluid concentration of HMGB1 in patients at term with
clinical chorioamnionitis has not yet been examined.

The objective of this study was to determine if: 1) clinical chorioamnionitis at term is
associated with changes in amniotic fluid concentrations of HMGB1, sRAGE and esRAGE;
and 2) amniotic fluid concentration of HMGB1 changes as a function of gestational age or
labor at term, a condition generally considered as a sterile inflammatory response [17].

MATERIALS AND METHODS
Study design and population

A retrospective cross-sectional study was conducted by searching our clinical database and
bank of biologic samples. Women with singleton pregnancies who had amniotic fluid
samples obtained by trans-abdominal amniocentesis from the following groups were
included: 1) those in the mid-trimester of pregnancy (14–18 weeks) who underwent
amniocentesis for genetic indications and delivered at term (n=45); 2) women at term
gestation and without intra-amniotic fluid infection with (n=22) and without labor (n=48);
and 3) those at term with clinical chorioamnionitis (n=46).

All women provided written informed consent before the collection of amniotic fluid
samples. The collection and utilization of the samples was approved by the Human
Investigation Committee of the participating institutions and the IRB of the Eunice Kennedy
Shriver National Institute of Child Health and Human Development (NICHD/NIH/DHHS).
Many of these samples have been used in previous studies of sRAGE and esRAGE in intra-
amniotic infection.

Clinical definition
Clinical chorioamnionitis was diagnosed by the presence of a temperature elevation to
37.8°C or higher and two or more of the following criteria: uterine tenderness, malodorous
vaginal discharge, fetal tachycardia (fetal heart rate >160 beats/min), maternal tachycardia
(heart rate >100 beats/min) and maternal leukocytosis (leukocyte count >15,000 cells/mm3)
[1,86]. Spontaneous term labor was defined as the presence of regular uterine contractions
with a frequency of at least one every 10 min and cervical changes after 37 weeks of
gestation. Intra-amniotic infection was defined as a positive microbiological culture in
amniotic fluid, and intra-amniotic inflammation as an amniotic fluid IL-6 concentration of
2.6ng/mL or more [87].

Sample collection
Amniotic fluid samples were obtained by transabdominal amniocentesis performed for
genetic indications, evaluation of microbial status of the amniotic cavity and/or assessment
of fetal lung maturity in patients approaching term. Women with clinical chorioamnionitis
underwent amniocentesis to evaluate infection/inflammation status in the amniotic cavity.
This information was used by obstetricians and neonatologists in the management of
mothers and neonates in terms of treatment with antibiotics. Women at term in labor
consisted of those who were admitted for suspected preterm labor because of uncertain dates

Romero et al. Page 3

J Matern Fetal Neonatal Med. Author manuscript; available in PMC 2014 February 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and had an amniocentesis for the assessment of fetal lung maturity. The criteria for
considering whether these patients were at term in labor was derived retrospectively, if the
following criteria were met: 1) spontaneous labor; 2) delivery within 24 hours of
amniocentesis; 3) analysis of amniotic fluid was consistent with fetal lung maturity; 4)
birthweight >2500 g; 5) absence of respiratory distress syndrome or other complications of
prematurity; and 6) physical examination of the newborn by a pediatrician was consistent
with a term neonate. Samples of amniotic fluid were transported to the laboratory in a sterile
capped syringe and cultured for aerobic/anaerobic bacteria and genital mycoplasmas. White
blood cell count [88], glucose concentration [89] and Gram stain [90] were also performed
shortly after collection as previously described [88,89]. The results of these tests were used
for clinical management. Amniotic fluid IL-6 concentrations were obtained in some patients
and used only for research purposes. Amniotic fluid not required for clinical assessment was
centrifuged at 1300g for 10 min at 4°C and the supernatant was stored at −70°C.

Determination of HMGB1, sRAGE and esRAGE in amniotic fluid
Concentrations of HMGB1, sRAGE, and esRAGE in amniotic fluid were determined by
sensitive and specific enzyme immunoassays obtained from IBL International (Toronto,
Canada); and IL-6 immunoassay from R&D Systems (Minneapolis, MN, USA). The initial
assay validation was performed in our laboratory prior to the conduction of this study.
Briefly, the immunoassay utilized the quantitative sandwich enzyme immunoassay
technique and the concentrations were determined by interpolation from the standard curves.
The inter-assay coefficients of variations for HMGB1, sRAGE, esRAGE and IL-6 were
3.1%, 3.2%, 4.8%, and 8.7% respectively. Intra-assay coefficients of variations for HMGB1,
sRAGE, esRAGE and IL-6 were 4.4%, 4.2%, 2.1% and 4.6%, respectively. The sensitivities
of the assays for HMGB1, sRAGE, esRAGE and IL-6 were 0.2 ng/mL, 33 pg/mL, 28 pg/mL
and 0.09 pg/mL, respectively. The results of plasma sRAGE and esRAGE concentrations in
patients in the mid-trimester and at term with and without labor have been previously
reported, but were included in this manuscript in order to provide a comprehensive picture
of HMGB1 and its soluble receptors

Statistical analysis
The Kolmogorov-Smirnov test and Shapiro-Wilk test were used to determine if the data
were normally distributed. Kruskal-Wallis and post-hoc Mann-Whitney U tests were used to
compare continuous nonparametric variables among and between groups. Comparisons
between proportions were performed using Chi-square or Fisher’s exact tests. A p-value
<0.05 was considered statistically significant. Analysis was performed with SPSS, version
15 (SPSS Inc., Chicago, IL, USA).

RESULTS
Demographic and clinical characteristics of the study population

Tables I and II display the demographic and clinical characteristics of patients in the mid-
trimester, term not in labor, term in labor and term with clinical chorioamnionitis. Among
patients with the clinical diagnosis of chorioamnionitis, 41% (19/46) had a positive
microbial culture in amniotic fluid and 76% (35/46) had evidence of intra-amniotic fluid
inflammation (defined as an amniotic fluid concentration of IL-6 of 2.6ng/mL or more). The
most common organisms were Ureaplasma urealyticum (n=7), Mycoplasma hominis (n=3)
and Streptococcus agalactiae (n=3).
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Clinical chorioamnionitis is associated with high HMGB1 concentrations
Patients with clinical chorioamnionitis at term had a significantly higher median amniotic
fluid HMGB1 concentration than women at term (clinical chorioamnionitis: median 3.8 ng/
mL; range: 0–37.4 ng/mL vs. term without labor: median 1.1 ng/mL; range: 0–8.8 ng/mL;
p=0.007; vs. term with labor: median 1.8 ng/mL; range: 0–21.5 ng/mL; p=0.003; Figure 1).
Similar results were obtained when the analysis was restricted to patients with clinical
chorioamnionitis with evidence of intra-amniotic infection/inflammation (clinical
chorioamnionitis with IAI (n=35): median 5.1 ng/mL; range: 0–37.4 ng/mL vs. term without
labor; p=0.001; vs. term with labor: p=0.001).

Amniotic fluid concentrations of sRAGE decreased in patients with clinical
chorioamnionitis at term

Patients with clinical chorioamnionitis at term had a lower median sRAGE concentration
than those without chorioamnionitis (clinical chorioamnionitis: median 9.3 ng/mL; range: 0–
29.3 ng/mL vs. term not in labor: median 28.4 ng/mL; range: 1.1–56.8 ng/mL; p<0.001; vs.
term in labor: median 18.6 ng/mL; range: 0–79.8 ng/mL; p=0.001; Figure 2). In contrast,
there were no significant differences in the median amniotic fluid concentration of esRAGE
between patients with clinical chorioamnionitis at term and patients at term (clinical
chorioamnionitis: median: 5.4 ng/mL; range: 0–18.1 ng/mL vs. term not in labor median: 9.5
ng/mL; range: 0–22.6 ng/mL; p=0.06; vs. term in labor median: 6.1 ng/mL; range: 0–15.1
ng/mL; p=0.9; Figure 3).

When the analysis was restricted to patients with clinical chorioamnionitis with evidence of
intra-amniotic infection/inflammation, similar findings were observed (clinical
chorioamnionitis with IAI: sRAGE median 9.2 ng/mL; range: 0–29.3 ng/mL vs. term
without labor; p<0.001; vs. term with labor: p=0.001 and clinical chorioamnionitis with IAI:
esRAGE median 5.1 ng/mL; range: 0–18.1 ng/mL vs. term without labor; p=0.06; vs. term
with labor: p=1.0).

Among patients with clinical chorioamnionitis, there was a significant relationship between
amniotic fluid concentrations of HMGB1 and the soluble forms of its receptor (sRAGE:
Spearman’s Rho 0.53; p<0.001 and esRAGE Spearman’s Rho 0.46; p<0.001) and between
HMGB1 and markers of inflammation (WBC: Spearman’s Rho 0.4; p=0.005 and IL-6:
Spearman’s Rho 0.49; p=0.001).

Amniotic fluid concentration of HMGB1 did not change with spontaneous labor at term
There was no significant difference in the median amniotic fluid HMGB1 concentration
between women at term with and without labor (p=0.4; Figure 1). In contrast, similar to
results previously reported, spontaneous labor at term was associated with a decrease in the
median amniotic fluid concentration of sRAGE and esRAGE (p=0.007 and p= 0.02
respectively; Figures 2 and 3).

Amniotic fluid concentrations of HMGB1 did not change as a function of gestational age
There was no significant difference in the median amniotic fluid concentration of HMGB1
between women in the mid-trimester and those at term not in labor (mid-trimester median:
1.5 ng/mL; range: 0–8 ng/mL vs. term not in labor median: 1.1 ng/mL; range: 0–8.8 ng/mL;
p=0.2; Figure 4).
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DISCUSSION
Principal findings of the study

1) clinical chorioamnionitis at term was associated with an increase in amniotic fluid
concentration of HMGB1, but a decrease in its soluble receptor (sRAGE); 2) amniotic fluid
concentration of HMGB1 did not change with spontaneous labor at term, a condition in
which amniotic fluid concentrations of sRAGE and esRAGE decreased; and 3) amniotic
fluid concentration of HMGB1 did not change as a function of gestational age.

The Biology of HMGB1
HMGB1, a non-histone, chromatin-associated protein, was originally characterized to be
involved in DNA organization and the regulation of transcription [24,39,40,44,91].
Subsequently, this protein has been proposed to be a late mediator of sepsis [42] and to play
an important role in infection-induced lung injury and lethality [92,93].

HMGB1 is constitutively expressed in almost every cell type that has a nucleus [24]. This
alarmin can be released actively or passively into the extracellular environment. The active
release of HMGB1 outside the cell is accomplished through a nontraditional “leaderless”
pathway (i.e. not through endoplasmic reticulum or Golgi apparatus) [14,94] upon stress
(ischemia, oxidative stress) [95–97] or stimulation with bacterial products [98–101] or
cytokines such as tumor necrosis factor (TNF)-α, IL-1, interferon-γ [101–103]. The passive
release of HMGB1 out of the cells was observed during cellular necrosis [104,105]. Extra-
cellular HMGB1 can potentially be associated with DNA, RNA, endotoxin, nucleosomes
[24], thrombospondin [106–108] or CD24 [109,110] to augment or decrease the function of
HMGB1 itself when they bind to its receptors [111].

HMGB1 exerts a wide variety of biological activities, including induction of the maturation
and migration of dendritic cells, neutrophils and monocytes [43,112–115], stimulation of the
production of reactive oxygen species [116], chemotaxis of neutrophils [117], secretion of
inflammatory cytokines from immune cells [23,40,118–120], proliferation of T cells[43,121]
and migration of stem cells for tissue repair [122–129]. These effects are accomplished
through the binding of HMGB1 to its receptors, which include Toll-Like Receptors
(TLR)-2, 4 and 9 [32–35] as well as RAGE [37,38,43,112,130,131].

The Biology of soluble RAGE and endogenous secretory RAGE
RAGE was first described as a transmembrane receptor for advanced glycation products
(AGE), the product of nonenzymatic glycation and oxidation of proteins and lipids that
accumulate under the condition of oxidative stress and hyperglycemia. AGE induces the
expression of pro-inflammatory mediators through mitogen-activated protein kinase and
nuclear factor (NF)-κB [132]. Other ligands of RAGE are amyloid-β peptides (accumulating
in Alzheimer’s disease)[133–136], amyloid A (accumulating in systemic amyloidosis)[137],
S100/calgranulins [138], surface molecules on bacteria [139], prions [140], leukocytes [141]
and HMGB1 [131]. Engagement of RAGE and its ligand also results in a rapid and
sustained activation of NF-κB with a positive feedback loop, in which ligand interaction
increases expression of the receptor itself [142]. Thus, activation of NF-κB results in
increased RAGE expression and the numbers of ligand binding sites, thereby prolonging
NF-κB activation [37].

RAGE is expressed in vascular smooth muscle and endothelial cells, cardiac myocytes,
neural tissues, macrophages [143], human pregnant myometrium [144], first trimester
human chorionic villi [145] and human term placenta [146,147]. Animal experiments and
studies in humans indicate that RAGE is involved in the pathophysiologic processes of
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neurogenerative disorders [148], rheumatoid arthritis [149,150], chronic renal disease [151],
inflammatory bowel disease and chronic vascular disorders, which include diabetic
complications (i.e. neuropathy, nephropathy) and atherosclerosis [37,133,137,152–154].
Moreover, an intense immunostaining for RAGE in both myometrium and omental blood
vessels of patients with preeclampsia [155] has been observed.

The soluble form of RAGE is composed of the extracellular ligand-binding domain without
transmembrane and cytosolic regions. This protein is originally thought to function as a
decoy receptor abrogating cellular activation [141,156–159]. Subsequently, sRAGE has also
been found to have pro-inflammatory activity, depending on the cell types and conditions of
target cells [160,161]. Recently, a novel splice variant of RAGE mRNA has been identified
as esRAGE and reported to be released from human microvascular endothelial cells and
pericytes [162,163].

Amniotic fluid concentrations of HMGB1 increased in term clinical chorioamnionitis
The finding that clinical chorioamnionitis at term was associated with an increase in
amniotic fluid concentration of HMGB1 suggests that this alarmin participates in the
inflammatory response. Moreover, a relationship between amniotic fluid concentrations of
HMGB1 and IL-6 was observed. Bacterial endotoxin is capable of stimulating macrophages
to release HMGB1 partly through CD14 and TNF-dependent mechanisms, since either
genetic disruption of CD14 expression or neutralization of TNF activity blocks endotoxin-
induced TNF production, but only partially attenuates HMGB1 release from macrophages
[99]. However, either endotoxin or pro-inflammatory cytokines, individually, are capable of
inducing HMGB1 release into the extracellular environment [39]. These observations are
consistent with our findings in preterm gestations in which the amniotic fluid concentration
of HMGB1 was elevated in patients with preterm labor or preterm PROM with IAI [164].

Amniotic fluid concentrations of sRAGE decreased in term clinical chorioamnionitis
Patients with clinical chorioamnionitis or those with IAI at term had lower amniotic fluid
concentrations of sRAGE than those without clinical chorioamnionitis. These findings differ
from our observation in preterm gestations, in which amniotic fluid concentrations of
sRAGE and esRAGE were elevated in patients with intra-amniotic inflammation [85].

It is possible that a lower amniotic concentration of sRAGE observed herein reflects a
different relationship between HMGB1 and sRAGE in women at term. A similar
observation in sRAGE in synovial fluid and blood has been reported in patients with
rheumatoid arthritis [150]. The increased HMGB1 concentration in these patients may be
responsible, in part, for the concentration of sRAGE in the amniotic fluid of patients with
clinical chorioamnionitis at term by stimulating RAGE receptor production. Consistent with
this hypothesis, amniotic fluid concentrations of HMGB1 were correlated with sRAGE. This
relationship was observed in IAI only at term, not preterm gestations. Similarly, amniotic
fluid concentrations of HMGB1 also correlated with IL-6 in intra-amniotic inflammation
only at term, but not in preterm gestations. Thus, HMGB1 and sRAGE may modulate the
inflammatory response differently in term and preterm gestations. Future studies are
required to elucidate the factors responsible for the differential response to intra-amniotic
inflammation at different gestational ages.

Advancing gestational age or parturition at term did not change amniotic fluid
concentrations of HMGB1

Amniotic fluid concentrations of HMGB1 did not change with advancing gestational age or
with the presence of spontaneous labor at term without intra-amniotic fluid infection. In
contrast, in our previous study, sRAGE increased with advancing gestational age and
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decreased with parturition at term [85]. The difference in behavior of HMGB1 and sRAGE
could be explained, in part, by the multi-ligand nature of both proteins [37,39]. sRAGE may
modulate the physiologic inflammatory response of labor at term through different ligands
other than HMGB1.

Strengths and limitations
This is the first study to evaluate amniotic fluid concentrations of HMGB1, an alarmin, in
patients with clinical chorioamnionitis at term, a condition associated with short- and long-
term adverse neonatal outcomes. Moreover, amniotic fluid concentrations of its soluble
receptors, sRAGE and esRAGE, were also determined. However, due to the cross-sectional
nature of the study, a temporal relationship of this alarmin as well as its soluble receptors
and clinical chorioamnionitis at term could not be established.

Conclusion
A substantial increase in the amniotic fluid concentration of HMGB1 and a decrease in
sRAGE were observed in clinical chorioamnionitis at term. This is evidence that an alarmin
system (a “danger signal”), HMGB1, and one of its receptors, sRAGE, are operative in
clinical chorioamnionitis at term. These observations are different from those made in
preterm gestations with intra-amniotic fluid infection/inflammation. It is possible that
HMGB1 and sRAGE may have different roles in the regulation of inflammatory responses
in term and preterm gestations.
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Figure 1. Amniotic fluid concentrations of high-mobility group box-1 (HMGB1) in women at
term with and without labor and patients with clinical chorioamnionitis
Patients with clinical chorioamnionitis at term had a significantly higher median amniotic
fluid HMGB1 concentration than women at term with and without labor (clinical
chorioamnionitis: median 3.8 ng/mL; range: 0–37.4 ng/mL vs. term without labor: median
1.1 ng/mL; range: 0–8.8 ng/mL; p=0.007; vs. term with labor: median 1.8 ng/mL; range: 0–
21.5 ng/mL; p=0.003).
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Figure 2. Amniotic fluid concentrations of soluble receptor for advanced glycation end products
(sRAGE) in women at term with and without labor and patients with clinical chorioamnionitis
Patients with clinical chorioamnionitis at term had a lower median sRAGE concentration
than those without chorioamnionitis regardless of labor status (clinical chorioamnionitis:
median 9.3 ng/mL; range: 0–29.3 ng/mL vs. term not in labor: median 28.4 ng/mL; range:
1.1–56.8 ng/mL; p<0.001; vs. term in labor: median 18.6 ng/mL; range: 0–79.8 ng/mL;
p=0.001).
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Figure 3. Amniotic fluid concentrations of endogenous secretory RAGE (esRAGE) in women at
term with and without labor and patients with clinical chorioamnionitis
There were no significant difference in the median amniotic fluid concentration of esRAGE
between patients with clinical chorioamnionitis at term and patients at term with and without
labor (clinical chorioamnionitis: median: 5.4 ng/mL; range: 0–18.1 ng/mL vs. term not in
labor median: 9.5 ng/mL; range: 0–22.6 ng/mL; p=0.06; vs. term in labor median: 6.1 ng/
mL; range: 0–15.1 ng/mL; p=0.9).
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Figure 4. Amniotic fluid concentrations of high-mobility group box-1 (HMGB1) in women in the
mid-trimester and those at term not in labor
There was no significant difference in the median amniotic fluid concentration of HMGB1
between patients in the mid-trimester and those at term not in labor (mid-trimester median:
1.5 ng/mL; range: 0–8 ng/mL vs. term not in labor median: 1.1 ng/mL; range: 0–8.8 ng/mL;
p=0.2).
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TABLE I

Clinical and obstetrical characteristics of women in the mid-trimester and those at term no labor

Mid-trimester
n=45

Term no labor
n=22

p

Maternal age
(years)

37
(24–42)

28
(17–40)

<0.001

GA at amniocentesis
(weeks)

16
(14–18)

39.8
(38–42)

<0.001

GA at delivery
(weeks)

39
(37–41)

39.8
(38–42)

0.4

Birthweight
(grams)

3345
(2809–4180)

3405
(2810–4530)

0.9

GA: Gestational age Values are expressed as median (range)
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