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Clinical Contrast-Enhanced
Computed Tomography With
Semi-Automatic Segmentation
Provides Feasible Input for
Computational Models of the
Knee Joint
Computational models can provide information on joint function and risk of tissue failure
related to progression of osteoarthritis (OA). Currently, the joint geometries utilized in
modeling are primarily obtained via manual segmentation, which is time-consuming and
hence impractical for direct clinical application. The aim of this study was to evaluate
the applicability of a previously developed semi-automatic method for segmenting tibial
and femoral cartilage to serve as input geometry for finite element (FE) models. Knee
joints from seven volunteers were first imaged using a clinical computed tomography
(CT) with contrast enhancement and then segmented with semi-automatic and manual
methods. In both segmentations, knee joint models with fibril-reinforced poroviscoelastic
(FRPVE) properties were generated and the mechanical responses of articular cartilage
were computed during physiologically relevant loading. The mean differences in the
absolute values of maximum principal stress, maximum principal strain, and fibril strain
between the models generated from semi-automatic and manual segmentations were <1
MPa, <0.72% and <0.40%, respectively. Furthermore, contact areas, contact forces,
average pore pressures, and average maximum principal strains were not statistically
different between the models (p >0.05). This semi-automatic method speeded up the seg-
mentation process by over 90% and there were only negligible differences in the results
provided by the models utilizing either manual or semi-automatic segmentations. Thus, the
presented CT imaging-based segmentation method represents a novel tool for application
in FE modeling in the clinic when a physician needs to evaluate knee joint function.
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Introduction

Osteoarthritis (OA) is a common joint disease; the prevalence
of knee OA has been estimated to be 3.8% of the world population
[1], burdening the lives of over 260 million people. This painful
and immobilizing joint disease may be initiated and worsened by
abnormal joint loading, i.e., high impact loads [2] or repetitive
joint loads generated during daily physical activities such as walk-
ing or running [3,4]. Unfortunately, the routine diagnostics of OA
has mostly focused on the evaluation of symptoms or anatomic
features, such as chronic pain or the decrease in joint space width,
which are more characteristic of later stages of the disease. There-
fore, if we wish to prevent the progression of the disease or to pre-
dict its onset, it would be advantageous to have more
sophisticated imaging and diagnostic methods.

Biomechanical modeling can be used for the evaluation of joint
mechanics under physiologically relevant loading conditions
[5,6], providing diagnostically valuable information on the func-
tion of the joint in terms of tissue stresses and strains. Computa-
tional finite element (FE) models enable simulation of strains in
the collagen fibrils and assessing progression of damage; these
models have also been used to estimate cell death and changes in
tissue structure around cartilage lesions as well as to predict the
progression of OA [7–15]. Biomechanical analysis techniques are
also relevant for the investigation of other normal and altered
states in a knee joint, not only for investigation of cartilage dam-
age and OA [16,17].

A major obstacle to the clinical application of modeling
approaches and the quantitative analysis of knee joint tissues is
that they demand information on subject-specific joint geometries.
In most cases, the knee joint geometry for computational model-
ing is obtained via manual segmentation of the joint structures
[18], which is a very time-consuming task to perform for each
individual subject. Sophisticated techniques, such as statistical
shape modeling and neural networks, have been exploited in the
development of automatic segmentation methods [19–23]. These
methods have proven to be superior to less complex techniques,
for instance, those based on simple thresholding. Several auto-
matic and semi-automatic segmentation methods have been intro-
duced for segmentation of knee joint connective tissues from
magnetic resonance and computed tomography (CT) images
[20,22–25]. However, the feasibility of these methods has not typ-
ically been tested in computational modeling, possibly due to the
laborious work required in transferring the generated segmenta-
tions into computationally sufficient and compatible forms.

Previously, a semi-automatic method was developed to segment
contrast-enhanced CT images [25]. In contrast-enhanced CT

imaging, contrast agent is administered into the joint space, ena-
bling visualization of articular cartilage [26,27]. The previous
method was designed to segment healthy and degenerated carti-
lage from contrast-enhanced CT images of knee joints. The
method was based on cortical bone determination and subsequent
automatic segmentation of articular cartilage. It was shown that
semi-automatic segmentations of articular cartilage were repro-
ducible and accurate as compared with manual segmentations.
However, the applicability of this method to provide useful geo-
metries for computational FE modeling of the knee joint has not
yet been evaluated. This would be important as automated seg-
mentation of joint tissues from clinical images and FE modeling
of joint biomechanics would ideally enable clinical diagnostics of
joint function to predict the onset and progression of OA.

This study aims to investigate the suitability of a recently devel-
oped semi-automatic segmentation method for contrast-enhanced
CT images [25] in biomechanical FE modeling of knee joint func-
tion. Manually generated segmentations were used for compari-
son. FE model predictions were compared between the models
generated by manual and semi-automatic segmentation methods
during physiologically relevant loading. We hypothesize that the
FE models generated based on the semi-automatic segmentation
method would yield similar values for cartilage stresses and
strains as the FE models generated based on manual
segmentation.

Methods

Imaging and Segmentation. In this study, both manual and
semi-automatic segmentations of femoral and tibial cartilages
were used. The segmentations were based on the contrast-
enhanced CT data (105 mM, HexabrixTM 320, Guerbet, Roissy,
France; diluted to 0.9% saline for intra-articular injection) from
seven patients (Age ¼ 57.765.1 years, BMI ¼ 27.964.9 kg/m2)
with persistent knee pain and arthroscopically confirmed cartilage
degeneration. The knees had International Cartilage Repair Soci-
ety (ICRS) scored lesions (grades 1–3) evaluated by an experi-
enced orthopedic surgeon. The subjects provided written informed
consent, and the study protocol was approved by the Ethical Com-
mittee of the Northern Ostrobothnia Hospital District (Decision
No. 33/2010). Moreover, the study adhered to the Declaration of
Helsinki.

The proximal tibia and distal femur bones were segmented
from the CT images by drawing axial contours sparsely using
Stradwin (v5.2, Department of Engineering, University of Cam-
bridge, UK). 3D surfaces were generated from these contours.
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Subsequently, cortical bone thickness and periosteal and endocort-
ical surfaces, i.e., outer and inner cortical surfaces, were deter-
mined. The optimization method utilizes deconvolution of
intensity profiles perpendicular to cortical surface. The algorithm
captures both periosteal and endocortical surfaces simultaneously.
This was done because optimization of cortical thickness is
required when bone–cartilage interface is obtained accurately
[28]. Regions where cartilage covers bone epiphyses were deter-
mined by registering bone surface templates, which included the
bone-cartilage region information, on the generated periosteal
surfaces of femur and tibia (Matlab, R2015a, MathWorks, Inc.,
Natick, MA). First, surfaces were registered rigidly, and then the
templates were registered affinely to the periosteal bone surfaces.
Subsequently, the articular cartilages were segmented. Intensity
profiles were captured along surface normals for each vertex point
at the bone–cartilage interface to determine the articular cartilage
surface. Due to contrast enhancement, the joint space had high
intensity whereas cartilage had low intensity; these local minima
and maxima were used to determine the cartilage surface. A
detailed explanation of the semi-automatic segmentation method
was presented in a previous study [25].

Since the manual segmentation is widely regarded as the gold
standard method [18,21,29], our models were compared against
models generated by manual segmentation. Cartilages were seg-
mented manually using Seg3D (v2.3, University of Utah, UT).
Finally, all of the stereolithography (STL) surfaces were con-
verted to a solid standard ACIS text format in MATLAB, and these
geometries were meshed in Abaqus (v6.14, Dassault Systèmes,
Providence, RI).

The surface mesh processing differed between semi-automatic
and manual approaches and therefore the effect of the surface
mesh processing was also examined. The surface meshes (STL)
of semi-automatic segmentations were created directly from seg-
mentations in MATLAB [25]. Additionally, the surfaces of semi-
automatic segmentations were postprocessed similarly as those of
the manual segmentations by using MIMICS with customized
parameters (smoothness: 0.6, triangle reduction: 0.1). To analyze
the effect of this specific postprocessing, the results from the FE
models generated from these “modified semi-automatic” segmen-
tations were compared with those generated from manual and
semi-automatic segmentations.

Finite Element Meshes. Finite element meshes were created in
ABAQUS (v6.14, Dassault Systèmes, Providence, RI) using first-
order four-node porous continuum tetrahedral elements (type ¼

C3D4P, one integration point in each element). The global dis-
tance between the nodes was set to 2 mm and 1 mm for the femo-
ral and tibial cartilages, respectively, with a tolerance of 20% in
size using both curvature control and minimum size control. Since
the implemented loading caused high compressive strains, the sta-
bility of the meshes between the master (femoral cartilage) and
slave (tibial cartilage) surfaces was ensured by doubling the den-
sity of the mesh of the slave surface. A sensitivity study was con-
ducted using a mesh with six times the original element density
(Fig. S1, which is available in the Supplemental Materials on the
ASME Digital Collection).

Contact Definitions, Boundary Conditions, and Loading. To
obtain sufficient contact interaction, the femoral cartilage was
defined as a surface and the tibial cartilage was defined as a set of
nodes. The discretization method between the master and slave
surfaces was defined as a “surface-to-surface” contact with finite
sliding; pressure-overclosure was evaluated as hard. Furthermore,
tangential movements were defined as frictionless. Fluid flow was
assumed to be negligible due to the application of high-rate
dynamic loading [30] and hence free fluid flow was not allowed
through the cartilage surfaces. The tibial bone–cartilage interface
was fixed in all directions. The femoral bone–cartilage interface
was coupled with a reference point, which was set in the middle-
central between the medial and lateral epicondyles of the femur,
similarly as in a previous study [7].

Instead of applying a simple axial loading, the simplified gait
loading was applied in the models to enable a more extensive
evaluation of the geometrical differences between the segmenta-
tion approaches. Similarly as in the earlier studies [7,31], joint
motion and loading were run over 0.8 s, which covered one sim-
plified stance phase. Movement determined in literature [32,33]
was controlled using time-dependent boundary conditions. The
force was scaled to match the weight of each subject by adjusting
the maximum force to >2 times body weight. The flexion angle
followed the simplified gait obtained from previous studies
(Fig. 1(c)) [7,31]. Similarly as in those studies, a free varus-valgus

Fig. 1 The workflow of the study: (a) The cartilages were segmented using both semi-automatic [25] and manual methods, (b)
fibril-reinforced poroviscoelastic (FRPVE) material properties were implemented in the geometries of the articular cartilage,
(c) FE modeling was conducted applying physiologically relevant loading from the literature [32,33]. Computational
results, such as maximum principal stresses and strains, were compared between the methods. Additionally, the surfaces of
semi-automatic segmentations were postprocessed similarly as conducted in the manual segmentations. To analyze the effect
of postprocessing, the models generated from “modified semi-automatic” segmentations were also compared with the mod-
els generated from manual and semi-automatic segmentations.
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alignment was allowed to maintain sufficient tibiofemoral contact,
i.e., constant contact at the medial and lateral compartments, dur-
ing the introduced loading. Further motions were fixed:
anterior–posterior and medial–lateral translations due to their
subject-specific variation, and internal–external rotations due to
their nonsystematic behavior between subjects [34,35]. This is a
reasonable assumption, since the aim of this study was to compare
the models generated by two different segmentation techniques.

Material Properties and Collagen Architecture. A previ-
ously validated fibril-reinforced poroviscoelastic (FRPVE) mate-
rial model, which is able to capture tension-compression
nonlinearity, was implemented for articular cartilage [36,37]. The
total stress (rt) of the material comprises the nonfibrillar matrix
stress (rnf), the fibril network stress (rf), and the fluid pressure (p)

rt ¼ rnf þ rf � pI (1)

Table 1 Values of implemented material parameters for the
fibril-reinforced poroviscoelastic (FRPVE) model

FRPVE material parameters [30] Femoral cartilage Tibial cartilage

Em (MPa) 0.215 0.106
�m 0.15 0.15
E0 (MPa) 0.92 0.18
Ee (MPa) 150 23.06
g (MPa s) 1062 1062
k (10�15 m4N�1s�1) 6 18
anf 0.8–0.15 hz 0.8–0.15 hz

Note: Em ¼ nonfibrillar matrix modulus, �m ¼ Poisson’s ratio of the nonfi-
brillar matrix, E0 ¼ initial fibril network modulus, Ee ¼ strain-dependent
fibril network modulus, g ¼ viscoelastic damping coefficient of fibrils, k ¼
permeability, nf ¼ fluid fraction.
aFluid distribution from the surface to the bone-cartilage interface where
hz indicates normalized depth (surface ¼ 0, cartilage-bone interface ¼ 1).

Fig. 2 Distribution of maximum principal stresses in the femoral and tibial condyle surfaces at 25% of the
stance phase (first peak loading). The numerical values in the figure are the peak values of maximum principal
stress (MPa) at the tibial surface. Colored dots indicate the corresponding anterior, posterior, medial, and lateral
directions.
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where I is the unit tensor. The chosen material parameters
(Table 1) are based on an earlier experimental study [30]. The
nonfibrillar matrix was modeled by the non-fibrillar matrix modu-
lus (Em) and Poisson’s ratio (�m) using the neo-Hookean hypere-
lastic model, whereas the fibrillar network (17 fibrils in each
integration point) was modeled by the viscoelastic primary and
secondary fibrils with the initial fibril network modulus (E0),
strain-dependent fibril network modulus (Ee) and viscoelastic
damping coefficient (g). The effect of fluid support during
dynamic loading was considered by Darcy’s law using constant
permeability (k) (see Supplemental Materials on the ASME
Digital Collection for more details).

Based on previous studies [36–39], the primary collagen fibrils
(four fibrils in each integration point) were oriented in specific
split-line orientations, whereas the secondary fibrils (13 fibrils in
each integration point) were randomly oriented. Fibril orientations
for the secondary fibrils were coded directly in the user-defined
material model (UMAT), model subroutine in ABAQUS, whereas
the primary fibril orientations were first calculated in a global
coordinate system separately for each integration point in each
element using a custom MATLAB script and saved into a separate
file. When solving models in ABAQUS, the primary fibril orienta-
tions were read by the UMAT subroutine. The definition for fibril
implementation does not differ whether using hexahedral or tetra-
hedral meshes [15,40]. Since implementation of identical depth-

dependent material properties of cartilage for each model would
require identical tetrahedral element meshes, which was not the
case between all compared models, depth dependency of the col-
lagen fibril orientation was ignored. We wanted to ensure that dif-
ferences between the models would be produced only by the
geometry and not by the implementation of the fibril orientation.
Thus, collagen fibrils were orientated parallel to the surface
throughout the cartilage depth.

Simulations and Statistical Analysis. Model simulations were
run implicitly with the ABAQUS/standard solver using consolidation
analysis including three subsequent steps [31]. The first step
included only an axial translation of femur to ensure an initial
contact between the femoral and tibial cartilages (step duration ¼

0.1 s). The second step included an application of the initial force
and flexion angle matching with the utilized data from the simpli-
fied gait loading (step duration ¼ 0.1 s). The third step included a
gait loading with time-dependent boundary conditions for the flex-
ion angle and forces through the tibiofemoral joint (Fig. 1(c), step
duration ¼ 0.8 s).

Contact force and contact area of the tibiofemoral
cartilage–cartilage contact were obtained from all the models. In
addition, fibril strain, pore pressure, maximum principal strain
(tensile strain), and maximum principal stress (tensile stress)

Fig. 3 Mean maximum principal strains (%) over the contact areas of the tibial compartments along the stance compared
between the models generated from semi-automatic and manual segmentations of all the subjects
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distributions were averaged over the tibiofemoral
cartilage–cartilage contact area (Fig. 1(c)). All these parameters
were then analyzed as a function of the stance.

The three models generated by manual and semi-automatic seg-
mentation methods were compared against each other (manual
versus semi-automatic; manual versus modified semi-automatic;
semi-automatic versus modified semi-automatic). For each pair of
the models, statistical differences of each parameter were exam-
ined over the stance phase by using 1D statistical parametric map-
ping implemented in MATLAB [41]. This method was chosen since
the traditional methods, such as the parametric t-test or nonpara-
metric Wilcoxon signed rank test, do not account for multiple
comparisons on smooth and random 1D trajectories. Due to the
low number of subjects, we used a nonparametric statistical para-
metric mapping approach that corresponds to the two-tailed
dependent-samples Wilcoxon signed rank test. For comparison,
we also conducted traditional Wilcoxon signed-rank tests (IBM

VR

SPSS
VR
Statistics, v21, IBM Corp., Armonk, NY) (see Supplemen-

tal Materials on the ASME Digital Collection).

Results

When the FE models based on manually and semi-
automatically generated segmentations were compared at the first
peak loading, i.e., at �25% of the stance phase, the distributions
of maximum principal stresses were similar between the models
for both the femoral and tibial cartilage surfaces (Fig. 2).

Furthermore, neither of the models displayed systematically
higher maximum stress values than the other; instead, the model
with the highest stress values varied from subject to subject. (Fig.
2). Mean maximum principal strains on the contact area along the
stance phase revealed only small and nonsystematic differences
between the models (Fig. 3).

Differences in contact forces between the manual and semi-
automatic FE models were minor, showing no systematic varia-
tion in the varus-valgus orientation (Fig. 4(a)). On the contrary,
standard deviations (SDs) of contact area differences were rela-
tively high. No statistically significant difference was found in the
contact force or area between the models (p �0.05). However, the
maximum principal stress differed statistically significantly both
in the medial and lateral compartments (Fig. 4(a)).

When the FE models generated from manual and semi-
automatic segmentations were compared, pore pressure was the
parameter, which exhibited the greatest variation (SD �11%).
Nevertheless, the differences pore pressure values were statisti-
cally insignificant in both models (p �0.05) (Fig. 5(a)). Differen-
ces were smallest in maximum principal strain and fibril strain.
There were no significant differences in these parameters
(p �0.05) (Fig. 5(a)).

There was a better agreement when the values of fibril strain
and maximum principal stress were obtained from the models
generated by the manual and semi-automatic segmentations
(Figs. 4(a) and 5(a)) as compared to the comparison of the models
generated by the manual and modified semi-automatic

Fig. 4 Mean (line) and standard deviation (transparent color) of differences between the models generated by
manual, semi-automatic, and modified semi-automatic segmentations; maximum principal stress, contact
area, and contact force were compared in lateral and medial compartments of tibia. Colored lines at the bottom
of each subgraph indicate statistical differences at each time point of the stance.
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segmentations (Figs. 4(b) and 5(b)). Moreover, statistical differen-
ces were detected between the models generated from semi-
automatic and modified semi-automatic segmentations (Fig. 5(c)).

No systematic differences were observed in the parameters
between the manual and semi-automatic approaches in a subject-
wise manner (Fig. 6). These comparisons revealed that differences
in the parameter values between the models were slightly higher
in the medial compartment than in the lateral compartment. When
comparing the models generated by the manual and semi-
automatic segmentations, the mean absolute difference in the con-
tact area was <25 mm2 and <16 N in the contact force. The mean
absolute differences in the maximum principal stress were
<1 MPa and in the pore pressure <1.5 MPa. For the values of
maximum principal strain and fibril strain, the mean absolute dif-
ferences were <0.72% and <0.40%, respectively.

The time required for manual segmentation of femoral cartilage
was approximately 290 min and that of tibial cartilage was about
160 min. semi-automatic segmentation of femoral/tibial cartilage
took approximately 20 min.

Discussion

In this study, we compared FE models generated from manually
and semi-automatically segmented joint geometries of seven
osteoarthritic knees. The semi-automated segmentation method
enabled more rapid FE model generation while still achieving
similar results as those obtained with the more time-consuming
manual method.

There were only minor differences in maximum principal strain
and fibril strain between the models generated from semi-
automatic and manual segmentations. This suggests that cartilage
strains may represent the most useful parameters that can be ana-
lyzed from FE models generated from semi-automatic segmenta-
tion. This would be advantageous in clinical practice since
excessive tissue strains may be risk factors for cell death and pro-
teoglycan loss [9,42,43]. Moreover, collagen fibril strains may be
used in the prediction of collagen failure and the progression of
fibril damage [10,11,44].

Another parameter, maximum principal stress, is often analyzed
from FE models of the knee joint to reflect the point of cartilage
failure [6,45,46] and the initiation and progression of OA [7,8]. In
this study, even though maximum principal stresses showed more
variation between the models when compared to strains, the mean
difference in the absolute values of this parameter was less than 1
MPa. This small difference introduces very little uncertainty in
the estimation of cartilage failure since cartilage failure stress in
tension can vary from approximately �5 MPa to �15 MPa and is
dependent on several factors, such as age, location, strain-rate,
and OA grade of cartilage [7,15,47–50].

There has been a rapid development of automatic segmentation
methods in the past few years. Neural networks, statistical shape
models, and atlas-based methods provide a good basis for deter-
mining the geometries for soft tissues [19–23]. This study utilized
a previously presented segmentation method [25] which reveals
articular cartilage geometries; the method was proven to be accu-
rate in terms of dice similarity coefficient, specificity, and

Fig. 5 Mean (line) and standard deviation (transparent color) of differences between the models generated
from manual, semi-automatic, and modified semi-automatic segmentations; pore pressure, fibril strain, maxi-
mum principal strain were compared in lateral and medial compartments of tibia. Colored lines at the bottom of
each subgraph indicate statistical differences at each time point of the stance.
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sensitivity. The utilized technique has also been shown to enable
an accurate determination of cortical bone thickness from CT
images [28], which is beneficial when evaluating alterations
related to OA. Importantly, articular cartilage surfaces were seg-
mented automatically with the custom MATLAB script, leveraging
the fact that administrated contrast agent provides a high degree
of image contrast. Even though the segmentation method used in
this study was not fully automatic, one important aspect was that
the surfaces were generated in 3D. Most of the previously intro-
duced segmentation methods rely on slice-by-slice 2D segmenta-
tions prior to the 3D construction of surfaces. Furthermore, the
surfaces required no postprocessing for the presented modeling
purposes.

Few semi-automatical segmentation methods have been com-
bined with computational modeling [24,51]. These previously
applied segmentation methods require modifications of the surfa-
ces before they can be implemented into computational models.
Furthermore, in these prior studies, simulations were conducted
with a simple axial loading instead of applying more physiologi-
cally relevant loading conditions. Here, the segmented surface
mesh of cartilage was directly used for both tetrahedral meshing
and then applied in the subsequent steps in the modeling proce-
dure. The semi-automatic segmentation approach to generate FE
models described herein shows promise for analysis of joint func-
tion. However, mesh generation, assignment of boundary and
loading conditions, and model analysis can be time-consuming,
and require substantial domain expertise (i.e., expertise in compu-
tational biomechanics). Thus, future research should focus on
automation of all steps of the FE modeling pipeline to support
clinical application. For instance, automated or template-based FE
meshing could also be included in the procedure [52].

In this study, the segmentation method was utilized for
contrast-enhanced CT images. Since the pathological changes in
OA occur in both bone and cartilage [53,54], contrast-enhanced
CT can provide a comprehensive and quantitative analysis of
these tissues as well as reveal detailed information on the topol-
ogy of the cartilage surface. In future studies, the method could be
tested for magnetic resonance images, which have been acquired
with ultrafast spin-echo sequences that capture signal also from
cortical bone.

Slight differences in cartilage topography, such as some rough-
ness on the surface close to the edges, may explain the differences
in the contact area and maximum principal stress between the
models. For instance, even though the distributions of maximum
principal stress were found to be similar (Fig. 2), some subjects
displayed relatively high differences in the peak values. These dif-
ferences may be reduced by improving the surface smoothing
algorithm in the semi-automated segmentation method. However,
when using the Mimics surface mesh generation, i.e., similar post-
processing of surfaces to that used in manual segmentations, to
produce smoother surfaces (modified semi-automatic versus semi-
automatic segmentation), the results were not really improved
(Figs. 2 and 4). Instead, there were actually greater differences
between the simulation results of the models generated from man-
ual and modified semi-automatic segmentations. This again sug-
gests usefulness of our segmentation method for biomechanical
modeling purposes.

One limitation of this study is that the number of subjects was
rather low which does not allow an extensive comparison of the
models. Furthermore, since subject-specific gait information was
unavailable, a simplified gait loading was implemented based on
the literature [32]. Instead of having hexahedral meshes,

Fig. 6 The differences in contact area, contact force, maximum principal stress, maximum principal strain, pore pressure,
and fibril strain calculated pairwise between the models generated from manual and semi-automatic segmentations (seven
subjects)
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tetrahedral meshes were used since they were more suitable for
assessing irregular segmented articular cartilage structures. The
modeling results were also compared between the models with tet-
rahedral and hexahedral meshes and they were shown to be simi-
lar (Fig. S2 which is available in the Supplemental Materials on
the ASME Digital Collection). Only articular cartilages were
involved in the models since the present segmentation method is
not suitable for handling other tissues, such as menisci. Nonethe-
less, the effect of menisci was evaluated, and it was observed that
differences between the models remained the same whether or not
menisci were included (Fig. S3 which is available in the Supple-
mental Materials on the ASME Digital Collection). Naturally, the
lack of menisci influences the absolute values of the analyzed
mechanical parameters, such as maximum principal stress. How-
ever, it was not necessary to include menisci herein since our pri-
mary objective was to compare cartilage mechanics predicted by
the FE models generated using different segmentation techniques.
Future research could focus on improving the semi-automatic seg-
mentation algorithm to accommodate other soft tissues. Bones
were considered as rigid in the models, which is a reasonable
assumption, since bone is much stiffer than cartilage. Implementa-
tion of bones might slightly change cartilage responses [55]; how-
ever, it should not affect the conclusions of this study because the
same rigid material assumption for bones was used in all of the
models being compared against each other. The motion and forces
through the tibiofemoral joint were generated using the known
joint contact force and flexion angle of simplified gait [7,31], and,
hence, it was not necessary to incorporate ligaments into these
models [56].

In conclusion, a novel semi-automatic segmentation method
was applied to generate geometries for FE modeling of cartilage
biomechanics in the knee. The models generated from manual and
semi-automatic segmentations produced similar results. However,
semi-automatic segmentation was ten times faster. Thus, the
semi-automatic segmentation method described and evaluated
herein shows promise for future computational biomechanics
studies of the knee and possible clinical application where the
model geometry is generated from patient-specific CT arthrogra-
phy scans.
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