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Summary
Objectives: This survey aimed to review aspects of clinical 
decision support (CDS) that contribute to burnout and identify key 
themes for improving the acceptability of CDS to clinicians, with 
the goal of decreasing said burnout.
Methods: We performed a survey of relevant articles from 2018-
2019 addressing CDS and aspects of clinician burnout from 
PubMed and Web of ScienceTM. Themes were manually extracted 
from publications that met inclusion criteria. 
Results: Eighty-nine articles met inclusion criteria, including 12 
review articles. Review articles were either prescriptive, describing 
how CDS should work, or analytic, describing how current CDS 
tools are deployed. The non-review articles largely demonstrated 
poor relevance and acceptability of current tools, and few studies 
showed benefits in terms of efficiency or patient outcomes from 
implemented CDS. Encouragingly, multiple studies highlighted 
steps that succeeded in improving both acceptability and rele-
vance of CDS. 
Conclusions: CDS can contribute to clinician frustration and 
burnout. Using the techniques of improving relevance, soliciting 
feedback, customization, measurement of outcomes and metrics, 
and iteration, the effects of CDS on burnout can be ameliorated.
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1   Introduction
The Health Information Technology for Eco-
nomic and Clinical Health (HITECH) Act 
of 2009 resulted in the rapid incorporation 
of electronic health records (EHRs) into 
hospitals and clinics, with the promise of 
improving healthcare quality and efficiency 
[1]. Unintentionally, the EHR has created 
frustrating workflow interruptions, hours of 
documentation at home, clerical data entry for 
reimbursement and regulations, cumbersome 
security requirements, and an interrupted 
clinician-patient relationship [2]. In one study, 
70% of physician EHR users reported stress 
related to healthcare information technology, 
almost two-thirds felt that EHRs added to their 
daily frustrations, and almost half disagreed 
with the sentiment that EHRs improved patient 
care [3]. Although superior in many ways to 
the paper charts they replaced, EHRs’ F-grade 
usability [1] has become a significant driver of 
burnout in clinicians [1, 2, 4, 5]. 

Burnout is a serious issue affecting 
healthcare professionals. It is characterized 
as a syndrome of emotional exhaustion, de-
personalization, and a low sense of personal 
accomplishment. The causes of burnout 
are multifactorial, but include workload 
pressures, inefficiencies, and moral distress 
from ethically undesirable situations [2]. 
Currently, it is estimated that 35-60% of cli-
nicians experience symptoms of burnout [2], 
though one large study of medical interns in 
the United States found rates of up to 79% 
in subscales of the Maslach Burnout Inven-
tory [6]. These rates are higher than in other 
professions [7], suggesting factors intrinsic 
to medicine drive burnout. Importantly, 
burnout is a consequence of employment and 
not a mental health disorder [2]. 

Burnout affects not only the health of 
clinicians but also that of patients and the 
healthcare system overall. As studied in phy-
sicians, burnout is associated with increased 
risks of depression, substance abuse, occu-
pational injury, and suicide [2, 7]. Patients 
also suffer when clinicians are burned out. 
Increases in medical errors, recovery times, 
and patient mortality, as well as decreased 
patient satisfaction, have been associated 
with healthcare team burnout [2, 7]. From the 
point of view of the healthcare system, burn-
out is costly. Physician burnout is associated 
with decreased productivity, absenteeism, 
intent to leave one’s practice or medicine 
altogether, and increased malpractice claims 
[2, 7]. Physician burnout is estimated to cost 
over $4 billion annually [2]. 

There is no single cause of burnout in 
healthcare providers. The National Academy 
of Medicine in 2019 released a 333-page 
report on clinician burnout [2] that identified 
contributors such as long work hours; low 
nurse-to-patient ratios; patient messaging 
portals; ethical tensions between serving 
individual patients, the patient population, 
and the healthcare system; excessive docu-
mentation; threats of harm; and the tendency 
to always place patient needs above one’s 
own. The report also identified administra-
tive burdens, such as those related to EHRs, 
as “the most prominent current complaint 
by clinicians about their workplaces,” and 
specifically highlighted how poor usability 
of healthcare technology contributes to cli-
nician burnout. 

Clinical decision support (CDS) is an 
important aspect of modern EHRs, with 
the potential to limit patient care errors and 
improve adherence to evidence-based med-
icine. For example, CDS alerts can identify 
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if a patient is allergic to a prescription or if 
they are due for a flu shot. However, although 
CDS systems can reduce some errors, they 
can also be the cause of others, such as 
treatment delays [8]. CDS has had several 
impacts on clinicians, including changes 
in workflow, more or new kinds of work, 
alert/alarm fatigue, spillover of work into 
personal time, loss of autonomy, and anxiety 
about the medico-legal ramifications of CDS 
suggestions [2,7–9]. Concerns about these 
changes are not new [10], and many were 
highlighted in the Ten Commandments for 
Effective Clinical Decision Support: Making 
the Practice of Evidence-based Medicine a 
Reality, published in 2003 [11]. Nonetheless, 
it remains unclear whether factors that affect 
clinician burnout are being considered and 
used to inform CDS design and deployment 
in vivo. For this reason, we undertook a 
survey of two years of publications on CDS 
and clinician burnout, in order to identify 
current trends and synthesize evidence-based 
standards for consideration in any CDS 
implementation project. 

2   Methods
Two databases, PubMed and Web of Sci-
enceTM (WoS), were queried for relevant 
studies in English published between 
January 1st, 2018 and December 31st, 
2019, yielding 189 total results, which 
was narrowed to 150 articles when dupli-
cates were excluded (Figure 1). To capture 
CDS, terms including “cognitive aid,” “user 
interface,” “expert system,” “decision sup-
port systems,” “cds,” “clinical reminder,” 
“best practice advisory,” “best practice 
alert,” “decision support,” “Decision 
Support Systems, Clinical” [MeSH], and 
“Decision Support Systems, Management” 
[MeSH] were included in the search terms. 
To capture burnout concepts, the terms 
“burnout,” “Stress, Psychological”[MeSH], 
“pain point,” “workaround,” “psychology,” 
“stress,” “stressful,” “fatigue,” “alarm fa-
tigue,” “alert fatigue,” “provider resistance,” 
and “provider satisfaction” were used. The 
general terms “alarm,” “alert,” and “human 
factors” were not included as the search 
results were too broad. 

Articles were excluded if their relevance 
could not be determined (e.g., abstract was 
not available), if the CDS was not related 
to technology (e.g., a paper worksheet), if 
the CDS was not aimed at clinicians, or if 
the tool was used exclusively for teaching. 
After applying the exclusion criteria, the 
remaining articles were evaluated for their 
themes and study design, whether the 
evaluation of factors that could contribute 
to burnout was actively incorporated into 
the design of the CDS tool, and which 
metrics, if any, were used to evaluate CDS 
tools. Study design was categorized from 
each paper’s methods section and adapted 
to research hierarchies [12–14]. Metrics 
and themes were considered relevant if 
they addressed aspects of usability, user 
preferences or frustrations, burden, user 
efficiency at tasks, or other concepts relat-
ed to burnout and wellness as described in 
section 3.2, even if the term “burnout” was 
not used explicitly. If these metrics could 
not be ascertained from the abstract, the 
whole paper was reviewed, which was the 
case for the majority of papers. 

3   Results
Of the 89 articles that met inclusion crite-
ria, 12 were identified as review articles, of 
which seven were systematic reviews. Two 
were editorials. Five described randomized 
controlled trials (RCTs). Seventeen studies 
included a comparator group, such as pre-
post or cohort designs. Five publications 
were pre-trial descriptions of intended 
studies. The remaining 48 publications were 
descriptive, including cross-sectional and 
case study designs (Table 1). Themes and 
features of review articles and non-review 
articles were considered separately. 

3.1   The Big Picture – Review 
Articles
The 12 review articles that met inclusion 
criteria in this literature survey can be 
broadly categorized as either prescriptive or 
analytic. The prescriptive reviews offered a 
perspective on how CDS should work. For 
example, Marcial et al. proposed that CDS 

 

 

PubMed Search WoSTM Search 

125 Articles 
39 Duplicates 

removed 

150 Articles examined 61 Excluded for not 
meeting inclusion criteria 

89 Articles included in the 
study 

64 Articles 

Fig. 1   Flowchart describing the literature search from January 1st, 2018 to December 31st, 2019
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should support individual patients as well as 
their clinical care teams and emphasized the 
previously-established “CDS Five Rights” 
[15]: the right information at the right 
time, given to the right people, in the right 
format, via the right channel [16]. Other 
articles argued that nurse practitioners, as 
stakeholders in CDS, should be involved in 
design, implementation, and optimization 
[17, 18]. Wilbanks and McMullen reviewed 
cognitive workload associated with EHRs 
and generally found that it is hard to measure 
with validity. Specifically regarding CDS, 
they proposed that the related concepts of 
alarm fatigue and desensitization were the 
most pressing for patient safety and they 
suggested minimizing within-patient iden-
tical alerts to ameliorate the negative effects 
on cognitive load [19]. Finally, Tolley et al. 
systematically reviewed CDS literature from 
2007-2014 to identify areas of improvement. 
They suggested that sensitivity and specifici-
ty of alerts should always be considered, with 
an emphasis on high specificity to decrease 
alert fatigue. They also proposed tiering of 
alerts to improve acceptance and consider-
ation of human factors in CDS design [20]

The analytic reviews analyzed the fea-
tures of previously implemented CDS 
tools. Several reviews examined alert use, 
generally finding acceptance rates to be low 
[21] and override rates to be high [22–24]. 
Hussain et al. delved into why alerts are so 
commonly overridden and found that al-
though interruptive alerts are the most com-
mon design, they are also the least accepted. 
The authors also found that role-tailoring 

alerts to pharmacists instead of physicians 
had improved acceptance [21]. Carli et al. 
undertook a systematic review of positive 
predictive values (PPVs) of CDS alerts as a 
proxy for clinical relevance, finding massive 
PPV variations from 0% to 97%, with most 
in the 20%-40% range. PPVs were higher 
when the contextual information of the 
individual patient was considered in CDS, 
so the authors concluded that incorporating 
as much specific patient data as possible to 
improve PPV is more important than using 
a large database of knowledge that may gen-
erate many false positives and thus promote 
alert fatigue [24]. In a systematic review to 
understand CDS for drug allergies, Légat et 
al. found that significant inaccuracies in the 
EHR due to the difficulty of structured doc-
umentation of allergies, the lack of standard 
allergy terminology, and irregular updating 
of allergy databases resulted in poor specific-
ity and overall performance of CDS allergy 
alerts, along with override rates of up to 90%. 
The authors emphasized that clinicians and 
programmers should review CDS at regular 
intervals post-implementation to ensure 
that the allergy rules are up-to-date and to 
minimize alert fatigue [23]. 

Finally, Powers et al. evaluated 32 articles 
on “hard stop” CDS in which the clinician 
could not proceed without third-party over-
ride, if at all, and the effects on healthcare 
delivery. The majority of studies showed 
improvement in process outcomes and four 
of eight that reported patient outcomes 
found improvements. Only two studies 
pre-specified patient health outcomes, with 

one finding no adverse effect and the other 
being stopped early due to treatment delays 
from the hard stop alert. In evaluating the 
user experience, the authors found that CDS 
for which the end users were involved in de-
sign and iteration were the most acceptable. 
Hard stops for documentation purposes were 
poorly received [25]. 

3.2   How and How Much – 
Methods and Metrics
The 75 non-review, non-opinion articles 
used a variety of metrics to evaluate the 
usability and acceptability of their CDS 
tools, with many using more than one 
metric. The most common evaluation was 
via interviews (n=29) [26–54], followed by 
surveys or questionnaires (n=16) [27, 29, 
50, 53, 55–66]. Other qualitative feedback 
responses were obtained by focus groups or 
workshops (n=5) [43, 57, 61, 67, 68]. The 
alert firing rate (n=12) [43, 55, 62, 69–77] 
and alert acceptance rate (n=15) [27, 29, 43, 
58, 61, 62, 69, 74, 78–84] were also common 
metrics used to understand alarm fatigue and 
acceptability. Although metrics of relevance 
such as sensitivity, specificity, and positive 
predictive value (PPV) were referenced 
several times [77, 84–88], only one study 
evaluated these metrics as pre-specified 
outcomes [49]. Tools for capturing clinician 
burnout, stress, or satisfaction after using a 
CDS tool were used in nine studies [26, 44, 
78, 80, 82, 89–92]. Psychometric measures 
of the user interface, such as mouse clicks, 
eye movement tracking, time spent on the 
page, errors using the tool, or direct obser-
vation were captured in seven studies [29, 49, 
54, 59, 82, 89, 93]. Efficiency metrics of task 
completion time or clinic appointment time 
were obtained in seven studies [29, 44, 60, 
61, 89, 91, 94]. How often a non-mandatory 
CDS tool was used, a proxy of whether cli-
nicians found the tool useful and acceptable, 
was studied in five publications [27, 53, 56, 
93, 95]. Whether or not a CDS tool made 
a difference in patient outcomes, such as 
cardiovascular events [48], A1c [46], or 
mortality [80], was evaluated in 11 studies 
[28, 43, 47, 48, 77, 80–82, 90, 96, 97]. Only 
one study considered the economic cost of a 
CDS system [48]. 

Table 1   Categorization of the design of each publication from the results of the literature survey

Study type

Systematic Review or Meta-Analysis

Review

Randomized Controlled Trial

Controlled Studies

Descriptive Studies

Opinion or Editorial

Pre-Trial Study Proposal

Manuscripts

18,20,21,23–25,108

16,17,19,22,109

78,80,82,92,97

27,46,49,51,55,56,69,72,73,76,79,81,85,89,91,93,94

26,28–41,43–45,47,50,52,53,57–68,70,71, 74,75,77,
83,84,87,90,95,96,98,99,104

102,110

42,48,54,86,88
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3.3   Personalized Medicine (Alerts) 
–The Relevance of CDS Prompts
Similar to the review articles, the rel-
evance of alerts to patients featured 
prominently in studies of CDS systems. 
As one article put it: “high PPV is criti-
cal for successful deployment of clinical 
decision support interventions” [49]. 
Irrelevant alerts fail to improve patient 
care, contribute to alarm fatigue, and 
interrupt workflow, all of which have neg-
ative effects on clinician wellbeing and 
that of patients. For example, one study 
found that their sepsis alert had a PPV 
of only 14.6% and was associated with 
a 66.6% override rate, which the authors 
felt negatively impacted the ability of the 
CDS to improve patient outcomes [49]. In 
another case, CDS for a precision-med-
icine genotype test to detect patients at 
risk of a drug toxicity yielded 71% normal 
status and no case of complete deficiency 
in tested patients. Dosing was adjusted in 
only three patients after 500 alerts [96]. 
Kizzier-Carnahan et al. point out, “the 
average clinician must deal with both 
the inappropriate presence as well as the 
inappropriate absence of alerts,” [98] and 
targeting alerts to those who stand most 
to improve would improve clinician trust 
in the CDS system [97]. 

Relevance could also be captured 
indirectly by measuring alert acceptance 
rates, with the caution that some studies 
found alerts were accepted just to silence 
an annoying alert [49], or that alarm fa-
tigue could cause even appropriate alerts 
to be dismissed [69, 72]. Nonetheless, a 
cross-sectional study of medication CDS 
alerts examined the appropriateness of 
overrides, finding that overall 60% of over-
rides were appropriate and, in subgroup 
analysis, >95% of duplicate drug and 
patient allergy alerts were appropriately 
overridden [57]. In an example of success-
ful CDS, Wasylewicz et al. describe how 
relevance was improved in patients with 
hypokalemia when pharmacists were only 
alerted if there was no potassium repletion 
order. Doctors were no longer called about 
lab results they had already acted upon and 
their acceptance rate of this targeted alert 
was 88% [81].

To better capture relevance of CDS to 
clinicians, one study parlayed “number 
needed to treat” into “number needed to 
remind,” a measure of the number of CDS 
alerts the clinician sees before the desired 
intervention is undertaken. For the inter-
vention in question, the “number needed 
to remind” was approximately 83 [45]. An-
other way of understanding CDS relevance 
was by directly soliciting feedback from 
users, for example using a Likert scale. A 
study of an antibiotic susceptibility CDS 
found that clinicians using a Likert scale 
felt that fewer than 30% of alerts were 
relevant [84]. Improved CDS relevance to 
individual patients was also high on the 
wish-lists of clinicians giving feedback 
on CDS alerts [29, 97]. 

3.4   Drowning in Information       
– Alarm Fatigue 
In addition to relevance, one of the major 
themes across studies was the burden of 
CDS tools. Even with perfect PPV, a thou-
sand daily alerts would soon become over-
whelming. There is currently no consensus 
on how to use CDS without causing alert 
fatigue [64]. Worries about alert fatigue 
and the burden of CDS were common in 
qualitative studies on CDS tools [29, 31, 
34, 83, 93, 99], which is perhaps unsur-
prising given that one study estimated the 
average ICU clinician is subjected to over 
900 active and passive alerts per day [98]. 
Alarm fatigue can lead to important alerts 
being overlooked [29]. When one hospital 
switched from a legacy EHR to a commer-
cial one, the alert burden increased six-fold 
but the alert acceptance rate plummeted 
nearly twelve-fold, from 100% to 8.4% for 
high-severity alerts [69]. This drop suggests 
that poor relevance or simply alarm fatigue 
can have a disproportionate effect on CDS 
burden. One RCT determined that their 
CDS generated approximately 14,400 alerts 
during the study period, almost 95% of 
which were dismissed [80]. Another study 
described alert rates 51 per 100 orders at 
one hospital, indicating that an alert was 
generated for every other order. Over 90% 
of these alerts were dismissed [72]. 

3.5   Make it Easy – Workflow, 
Efficiency, and Integration 
The burden of CDS tools is not only an ex-
cessive number of alerts, but also how the 
clinician interacts with CDS. Usability of the 
tool itself is one example. Encouragingly, 
several studies emphasized developing tools 
that incorporated user-centered design, such 
as clean, concise, and intuitive interfaces 
[26, 30, 50, 67]. However, several studies 
cited the need for an improved CDS user 
interface, such as limiting mouse-clicks or 
not having the pop-up window block access 
to the chart [35,93,99]. Usability was mea-
sured directly in several studies, including by 
observation or tracking of eye movements, 
click counts, and use errors. Interestingly, 
users sometimes had differing opinions on 
design elements [63,64]. 

The ability to use CDS tools efficiently 
can limit excessive documentation burden 
and improve efficiency. Relatedly, how CDS 
incorporated into clinician workflow was 
commonly addressed. For example, one 
study found that a large number of antibiotic 
susceptibility alerts were already addressed 
by standard workflow (e.g., the clinician 
reviewing new culture results and adjusting 
empiric antibiotics appropriately), so early 
alerts just contributed to alert burden [84]. 
Another study noted the pharmacists using a 
tool for antibiotic stewardship were frustrat-
ed by automatic log-offs [33]. Additionally, 
a CDS tool for screening for pregnancy 
complications in Ghana was criticized by 
clinicians for adding up to 30 minutes to an 
antenatal visit [38]. Positively, some studies 
were specifically targeted at improving 
workflow, such as early work using natural 
language processing to pre-populate imaging 
orders based on clinicians’ notes [87]. 

One major theme in the usability of 
CDS addressed in the recent papers was 
integration. Prior studies have shown that 
CDS needs to be minimally-interruptive to 
workflow [100], and literature in this survey 
emphasizes that this goal is better accom-
plished by integrating it into the existing 
EHR. Needing to reference an external 
database is a deterrent to CDS use [27]. 
The inability of CDS to understand records 
from outside the hospital system, such as 
scanned lab results, can lead to misfiring 
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of CDS alerts [96]. The lack of integration 
of CDS into EHRs leads to needing to “do 
work twice” – once to satisfy the CDS alert 
and then again, for example, to actually place 
the order in the EHR [99]. Better integration 
of CDS into the EHR was identified as a 
key change that would improve acceptance 
of decision support systems [34,78,83,85]. 
For example, automatic documentation of 
patient vital signs that feed into CDS sys-
tems decreased both clinician workload and 
frustration [91]. 

3.6   Ends Justify the Means           
– Measuring Outcomes
Given the potential negative effects on 
workflow and the risks of alarm fatigue, 
with the associated burnout-related sequel-
ae, it is important to establish that CDS is 
accomplishing its patient-centered goals. 
Prior meta-analyses evaluating RCTs of 
CDS found only weak evidence, if any, of 
improved patient outcomes [100, 101]. Only 
a minority of surveyed studies here explicitly 
evaluated the effectiveness of the CDS tools. 
Some studies identified the importance but 
did not undertake evaluation of effectiveness 
[36]. One study of a CDS tool for deprescrib-
ing found that only 1.2% of alerts resulted 
in medication discontinuation, which was 
overall branded ineffective [45]. Another 
study compared interruptive vs. non-inter-
ruptive alerts for ACE inhibitor prescription, 
finding that the non-interruptive alerts were 
less annoying but less seen [51]. Unintended 
consequences should be assessed in addition 
to expected outcomes [59]. In one case, CDS 
did not change pre-specified outcomes relat-
ing to clinician confidence but was preferred 
by the users anyway [92]. 

Studies evaluating the effects of CDS on 
clinically relevant patient outcomes were 
uncommon. A CDS tool to point clinicians 
away from prescribing fluoroquinolone an-
tibiotics showed decreased fluoroquinolone 
prescription rates but did not examine if 
patients had fewer adverse events or if their 
infections resolved appropriately [76]. A 
hard-stop best practice advisory to promote 
intensification of blood pressure control in 
patients with diabetes was successful in in-
creasing treatment, but control of hyperten-

sion in the population was not assessed [79]. 
An evaluation of patient outcomes based on 
whether the physician accepted or declined 
CDS found no difference in A1c but statis-
tically significant improvements in blood 
pressure and low-density lipoprotein (LDL) 
[46]. As mentioned earlier, a sepsis alert 
with poor PPV did not change length of stay 
or mortality [49]. One RCT of CDS found 
no difference in length of stay or mortality, 
though a modest increase in alert resolution 
[80]. Another RCT of a CDS system to assist 
in the management of patients with cardio-
vascular risk showed a 2.24% improvement 
in the surrogate outcome of annual change 
in predicted 10-year cardiovascular risk 
[82]. Of the 11 studies that examined CDS 
effects on end-users as well as patient health 
outcomes, only two [46, 82] showed benefit 
in some domains. 

3.7   I’m a Believer – Clinician Buy-in
Multiple authors posited that for a CDS 
tool to be accepted and used by healthcare 
professionals, they must be convinced that 
the tool solves a meaningful clinical problem 
[31, 47, 92, 102], building on previous work 
on the importance of clinician buy-in for 
CDS uptake [103]. An investigation into why 
clinician adoption of a CDS tool was only 
4-14% identified lack of buy-in as one of 
the factors deterring use [93]. Some studies 
noted concerns that CDS threatened clini-
cian autonomy [67] or that CDS use would 
be monitored for punitive reasons [33]. For 
example, users were offended by the CDS 
prompt to use basal-bolus insulin when 
only sliding scale insulin had been ordered 
[67], demonstrating that even when CDS is 
supporting the evidence-based regimen the 
prompt needs to be palatable to clinicians. 
Accordingly, another study proposed in-
creasing buy-in by framing CDS positively 
instead of negatively and making users feel 
recognized for their efforts [28]. From the 
surveyed literature, for there to be optimal 
clinician buy-in, a CDS system must foster 
the clinician’s belief that a worthwhile prob-
lem is being addressed, that CDS can solve 
the problem (patient outcomes), that it is 
targeting the correct patients (sensitivity and 
specificity, trust), that the alerts are relevant 

(PPV and alert burden), and that workflow 
interruptions are worth the benefits, all while 
using language that lifts up instead of deni-
grating the clinician. The need for clinician 
buy-in for CDS success is so significant that 
Kawamanto et al. state that there should be 
“a requirement that proposed CDS is actually 
desired by intended recipients” [75].

3.8   Fix It – Improving CDS 
The surveyed studies on CDS and clinician 
burnout explored how CDS tools could 
become more acceptable to users. As a par-
ticipant in one study put it: “[Not having an] 
alert is better than a poorly designed alert” 
[65]. The most important theme in improv-
ing CDS was iteration, meaning evaluating 
a tool, revising it, and then evaluating the 
revised tool. Multiple studies used iterative 
designs to fine-tune their CDS [26, 34, 42, 
68, 74]. Mann et al. provided a description 
of the development of a CDS tool for anti-
biotic prescriptions: (i) Pre-deployment, the 
CDS team collected qualitative feedback 
during “think aloud” sessions on the draft 
versions of the tool, (ii) Post-deployment, 
they solicited feedback in group interviews 
and measured utilization rates as well as 
antibiotic prescription rates. Their CDS tool 
was based on a previous version developed 
via user-centered iteration that had nearly 
two-thirds utilization; however, one year af-
ter implementation, the utilization of the new 
tool was 4-14% across sites. Their inability 
to replicate a previous tool’s utilization 
success demonstrates that even intensive 
feedback and iteration may not be able to 
overcome factors that dissuade clinicians 
from CDS use, such as the fact that alert 
fatigue for clinicians had increased since the 
earlier version [93]. 

In contrast to the intensive qualitative 
evaluations of user perceptions undertaken 
by Mann et al., Yoshida et al. described 
an automated approach of CDS monitor-
ing. Using this approach, the CDS team 
monitored for changes in firing rates or 
patterns indefinitely post-implementation. 
In addition to automated monitoring, the 
team undertook targeted monitoring of silent 
alert firing patterns for two weeks prior to 
roll-out, including chart review to capture 
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false positives and negatives, post-imple-
mentation monitoring and chart review, and 
ad hoc monitoring whenever users reported 
problems. Their automatic monitoring 
system identified 128 issues with the CDS 
system over two years, of which 24 were 
false positives [60].

In a story of successful CDS improvement, 
Kawamanto et al. described the establishment 
of a CDS governance that involved a CDS 
committee, CDS for desired outcomes only, 
data analytics to monitor alert frequency, a 
push to switch alerts to other areas of the 
EHR, and experimental designs to improve 
effectiveness, resulting in a greater than 
50% reduction in alerts [75]. In another ex-
ample of improvement of CDS, Bubp et al. 
described the multi-phased development of a 
drug-disease alert system. In the first phase, 
pharmacists and physicians scored alerts 
from a database based on clinical utility and 
the scores were validated by a survey. During 
the second phase, alerts fired silently, and alert 
burden was evaluated. Finally, the alert system 
was rolled out, and post-implementation anal-
ysis showed decreased alert burden and the 
second-highest acceptance rate of any alert 
type at nearly 22%, behind dose alerts [62]. 

Similar to Bubp et al., expert panels 
were used in several studies to improve the 
relevance of CDS [62, 71, 88]. Expert panels 
can be advantageous over stock alerts. For 
example, one study found only 18% con-
cordance on high severity alerts amongst 
four drug interaction compendia, whereas 
an expert panel was able to reach consensus 
on the relevance of 12/13 alerts [104]. A 
downside of expert panels is that they do not 
scale well given time limitations [85, 104]. 

Customizability was another factor that 
could improve user experience with CDS. 
Customizability can be at the scale of the 
hospital or clinic [69, 73] or by the end-user 
altering, for example, which alerts are seen 
[44]. Additionally, role-tailoring, in which 
CDS is targeted to users by role such as 
nurse, pharmacist, physician, etc., was also 
seen as a way to reduce burnout and increase 
acceptability in CDS [21,51]. In one study, 
non-physician care-coordinators were re-
sponsible for data entry to support CDS [46]. 
In another, nurses rooming patients triggered 
the CDS [82]. Alerts tailored by role could 
also be used in cases where the ownership of 

an alert would otherwise be ambiguous, such 
as results of a genomic test [37]. Separate 
from role-tailoring, CDS that “nudges” [26] 
could be used to combat concerns about loss 
of autonomy [67]. Relevance could also be 
improved by tiering of alerts [20, 22]. For ex-
ample, when one hospital disabled the least 
severe drug interaction alerts, alert burden 
fell by over 50% [69]. Another hospital was 
able to decrease “major” alerts by 62% via 
customization of the stock alerts [73]. 

Finally, multiple publications discussed 
the importance of end-user feedback 
throughout the design, implementation, and 
modification process. Several publications 
noted that nurses and nurse practitioners are 
also stakeholders who should be involved in 
CDS design [17, 18, 27]. Feedback before 
iteration was emphasized in multiple studies 
[42, 47, 68, 74, 93] and “the importance of 
listening to user experience” was explicitly 
highlighted [36]. Also important was the 
idea that implementation does not end with 
roll-out, but that CDS is an ongoing process 
of monitoring, feedback, and iteration [52, 
60, 62, 65, 72]. 

4   Discussion
The rapid and widespread implementation 
of EHRs has contributed to a crisis of clini-
cian dissatisfaction [105]. Clinical decision 
support is an important aspect of EHRs 
that is “not merely the use of technology; 
it is using technology to find meaningful 
information to make clinical decisions and 
provide the best possible patient care” [18]. 
As described above, how CDS is designed 
and implemented can have signif icant 
impacts on clinician users. Alarm fatigue 
from both a high volume of alerts and alerts 
of poor relevance, such as low PPV, were 
commonly described problems, leading to 
high rates of alert overrides or avoidance of 
CDS. Although the ideal PPVs, number of 
alerts, or alert override rates have not been 
established, this review identifies that gen-
erally poor performance of many CDS tools 
has been reported. Overrides, avoidance, and 
workarounds decrease effectiveness of CDS 
[95] in implementing behavioral change, 
though few studies directly evaluated the 

effectiveness of CDS on changing health-re-
lated patient outcomes. Studies also identi-
fied that CDS tools need to have clinician 
buy-in, which is partly achieved by fostering 
trust that the CDS is relevant to their patients 
but also by utilizing user-centered interfaces 
with integration into the workflow and EHR. 

There were many suggestions on how to 
improve CDS tools in the surveyed literature, 
however it is not clear that they are being con-
sistently implemented, perhaps because of a 
lack of randomized trials to guide design [106, 
107]. Aspects of CDS that were found to be 
most helpful and harmful to clinician burnout 
in the recent RCTs and systematic reviews are 
highlighted in Table 2. As the meta-analysis 
by West et al. demonstrated, structural and or-
ganizational changes can result in meaningful 
reductions in burnout [107], so organizations 
designing and implementing CDS could po-
tentially play a significant role in the wellness 
of front-line clinicians.

Based on our survey of the recent litera-
ture, we have consolidated recurrent ideas into 
key factors that should be considered when 
designing and implementing CDS in order 
to minimize the effects on clinician burnout: 
1. Be relevant. CDS should solve problems 

that clinicians feel need to be solved. 
CDS alerts should incorporate as much 
patient-specific information as possible to 
maximize PPV and minimize the number 
needed to remind. 

2. Solicit feedback. End-users should be 
involved in all aspects of design, pre-test-
ing, and implementation. 

3. Customize. Whether allowing expert 
panels to tier alerts or clinicians to 
choose how and when to see CDS tools, 
customization can minimize alert burden 
and improve relevance as well as clinician 
satisfaction.

4. Measure outcomes. The effects on 
alert burden, override rates, workflow, 
efficiency, burnout, satisfaction, patient 
outcomes, etc. must be evaluated. Tools 
should either improve efficiency, patient 
outcomes, or both. Tools that do neither 
should be abandoned, especially if they 
add to alert burden or burnout. 

5. Iterate. CDS requires ongoing mainte-
nance based on feedback and outcomes, 
as well as updates to clinical practice 
standards. 
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Using these principles, future CDS tools can 
minimize their impacts on the multifactorial 
problem that is clinician burnout. 

A strength of this study is that it included 
a wide array of healthcare professionals’ 
experiences including physicians [37, 62], 
advanced practice providers [17, 18, 63], 
nurses [90, 92], pharmacists [29, 33], mid-
wives [38], and paramedics [59]. We also 
surveyed a heterogenous mix of publication 
types including systematic reviews, random-
ized trials, quality improvement initiatives, 
and opinion pieces. A limitation is that 
manual review of articles was undertaken 
by one individual and some relevant articles, 
study designs, or themes may have been 
misclassified or overlooked. 

5   Conclusion
Clinical decision support tools can con-
tribute to clinician frustration and burnout. 
Using the techniques of improving rele-
vance, soliciting feedback, customization, 
measurement of outcomes and metrics, and 
iteration, the effects of CDS on burnout can 
be ameliorated. 
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