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Abstract

The availability of genome sequences obtained using
next-generation sequencing (NGS) has revolutionized
the field of infectious diseases. Indeed, more than
38,000 bacterial and 5,000 viral genomes have been
sequenced to date, including representatives of all
significant human pathogens. These tremendous
amounts of data have not only enabled advances in
fundamental biology, helping to understand the
pathogenesis of microorganisms and their genomic
evolution, but have also had implications for clinical
microbiology. Here, we first review the current
achievements of genomics in the development of
improved diagnostic tools, including those that are
now available in the clinic, such as the design of PCR
assays for the detection of microbial pathogens,
virulence factors or antibiotic-resistance determinants,
or the design of optimized culture media for
‘unculturable’ pathogens. We then review the
applications of genomics to the investigation of
outbreaks, either through the design of genotyping
assays or the direct sequencing of the causative
strains. Finally, we discuss how genomics might
change clinical microbiology in the future.

The impact of next-generation sequencing in
infectious disease diagnostics
Infectious diseases are one of the leading causes of human

mortality worldwide [1]. Therefore, accurate diagnostic

methods are required to optimize the clinical management

of infected patients. However, the gold standard for the

diagnosis of infectious diseases has long been the cul-

ture in growth-supporting media, including the isola-

tion, identification and antibiotic-susceptibility testing
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of the causative microorganism. Currently, this diagnos-

tic scheme takes a minimum of 24 hours. The introduc-

tion of the polymerase chain reaction (PCR) [2] method

in the 1980s resulted in the development of a multitude

of diagnostic tools that helped improve the efficiency of

diagnostics and the characterization of infectious-

disease agents by detecting and identifying their DNA.

However, the design of these assays remained mostly

empirical, being notably based on the use of the 16S

rRNA gene [3], until bacterial genome sequencing be-

came a reality in the mid-1990s [4]. Microbial genomics,

enabling a rational design of most molecular assays by

selecting molecular targets according to their objective,

has now had a major impact on the diagnosis and pre-

vention of infectious diseases, with detection and identi-

fication of pathogens being directly performed within

specimens without the need for culture [5].

Since 2005, the development of next-generation sequen-

cing (NGS), together with decreasing costs for sequencers

and reagents, has democratized genomics (Table 1) [6]. Cur-

rently, a bacterial genome sequence can be obtained within

a few days for less than US$500 [6], and more than 38,000

genome sequences are available in public databases [7].

NGS has had many applications in medical microbiology,

including the design of diagnostic and genotyping tools, the

identification of virulence and antibiotic-resistance mecha-

nisms and the development of specific culture media [8-12].

Here, we review the most relevant applications of gen-

omics to the fields of molecular detection, identification

and genotyping of infectious-disease agents, detection of

virulence and antibiotic-resistance markers, design of

culture media and investigation of outbreaks (Table 2;

Figure 1), including those that are already available in

clinical microbiology laboratories, and we offer our

thoughts on how genomics might change clinical micro-

biology in the future.

Detection of pathogens in clinical specimens
Rapid detection and identification of infectious agents in

clinical specimens are mandatory in order to implement
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appropriate therapeutic measures. Therefore, an ideal de-

tection assay should both be sensitive, specific and rapid

to maximize the chances of patient recovery and be able

to minimize the occurrence of clinical complications.

Since its development in 1983, PCR remained the

most widely used molecular method in clinical micro-

biology, notably for detection of microorganisms in clin-

ical specimens, until 1996 when real-time PCR (RT-

PCR) was developed. In contrast to long-established

culture-based diagnostic methods, PCR enabled identifi-

cation of microorganisms regardless of their culturability

and was, therefore, especially valuable in patients who

had received antibiotics before sampling or those in-

fected by fastidious microorganisms - that is, microor-

ganisms that do not grow in the usual culture conditions

[3]. However, early PCR assays were empirically designed

and often targeted a gene common to all bacteria, thus

allowing the detection of any species (for example, the

rRNA operon or the groEL gene). Although these broad-

range PCR assays enabled the discovery of many human

pathogens [13], they suffered from various drawbacks, in

particular a lack of sensitivity, specificity and discrimin-

atory power among bacterial species [14]. By contrast,

RT-PCR, targeting shorter fragments and using a fluor-

escent probe, greatly improved the speed, sensitivity and

specificity of detection, in particular when coupled to

the rational selection of PCR targets in genomic se-

quences according to the experimental objective and the

degree of specificity required (genus-, species-,

subspecies-, strain- or gene-specific) [15-17]. As the

genomes from more than 37,000 bacterial strains are

currently available, including those of all major human

pathogens, it is now possible for clinical microbiologists

to design specific PCR assays according to their needs

by using the available tools. As examples, Marshall de-

veloped ‘PerlPrimer’, a software enabling the design of

target-specific PCR or RT-PCR primers [15], Pritchard

and colleagues proposed an alignment-free method for

designing strain-specific primers for Escherichia coli

O104:H4 [18], and Hung and associates designed a step-

wise computational approach mixing several publicly

available softwares to identify species-specific signatures

in whole-genome sequences [17]. Using Streptococcus

pyogenes as a model, Hung and colleagues designed and

tested the validity of 15-signature-derived primer sets,

including nine that were highly species-specific in vitro

[17]. In addition, RT-PCR made possible the develop-

ment of syndrome-driven molecular diagnosis in which

assays detecting the most common etiological agents of

a given syndrome are tested concomitantly [19]. In a re-

cent study, Sokhna and colleagues described the use of a

syndrome-driven strategy for the point-of-care diagnosis

of febrile illness [20]. This type of diagnostic method has

the advantage of testing, in a short time and a limited

number of specimens, the most common causative

agents of a given syndrome and can be especially valu-

able, for example, in the diagnosis of meningitis,

pneumonia, endocarditis, pericarditis or sexually transmit-

ted diseases. Thus, it enables a more efficient management

of patients by enabling an earlier commencement of

Table 1 Technology, platforms and features of the currently available sequencing methods

Sequencing
technology

Platform Mb/runa Time/run Read length
(bp)

Limits Applications

Sanger di-deoxy
nucleotide sequencing

Capillary sequencers,
for example, Life
Technologies ABI3730

0.44 7 hours 650-800 Cost, need for high DNA
amounts, cloning step

De novo sequencing

Pyrosequencing Roche (454) GS-FLX 700 24 hours 700 Difficulty in disambiguating
repeat regions, misincorporation
of excess nucleotides

De novo sequencing

Roche (454) GS Junior 35 4 hours 250

Sequencing by
synthesis

Illumina Genome
Analyzer II

95 × 103 14 days 2 × 150 Limited paired-end and
targeted sequencing

Resequencing

Illumina Hi Seq2500 6 × 105 11 days 2 × 100 Resequencing

Illumina MiSeq 15 × 103 56 hours 2 × 300 De novo sequencing,
resequencing

Ligation-based
sequencing

Life Technologies
SOLID 5500

32 × 103 15 days 50 + 35 Specific sequence format,
difficult sequence assembly

Resequencing

Semiconductor
sequencing

Ion Torrent PGM 200 4 hours 200-400 Artificial insertions or deletions in
mononucleotide repeats

Resequencing

Ion Torrent Proton 2.5 × 103 4 hours 100-200 Resequencing

SMRT technology Pacific Biosciences
PacBio RSII

0.5-1 × 103 4 hours 103-104 Substitution errors De novo sequencing
and genome structure

Ionic current sensing Oxford Nanopore
Technologies

NA No fixed
run-time

104-5 × 104 NA De novo sequencing

MinION
aAbbreviations: NA, data not available.

Fournier et al. Genome Medicine 2014, 6:114 Page 2 of 15

http://genomemedicine.com/content/6/11/114



appropriate antibiotic therapy. Furthermore, genomics has

also allowed the design of multiplex PCR assays enabling

simultaneous detection and discrimination of various mi-

croorganisms, as has been the case for members of the

Mycobacterium tuberculosis complex and Mycobacterium

canettii [8]. This is also true for microarrays, some of

which can enable the detection and identification of more

than 2,000 viral and 900 bacterial species at once [21]. Nso-

for recently reviewed the applications of microarrays to the

syndrome-based diagnosis of infectious diseases, some of

which, such as the ResPlex II Panel v2.0 (Qiagen, Hilden,

Germany) and the FilmArray Respiratory Panel (BioMerieux,

Marcy L’Etoile, France) for respiratory infections, are com-

mercially available [22].

In addition to the development of highly specific PCR

assays, the study of genomic sequences enabled the

optimization of the sensitivity of detection, either by

selecting a gene or fragment of noncoding DNA present

as several copies in the genome [23] or by designing

nested PCR assays targeting previously unused genomic

fragments [24]. Fenollar and colleagues identified a

seven-copy fragment in the genome from the bacterium

Tropheryma whipplei and demonstrated that a RT-PCR

assay targeting this repeated fragment was significantly

more sensitive than assays targeting a single-copy frag-

ment [23]. By contrast, Drancourt and colleagues devel-

oped a strategy named 'suicide PCR' that is based on

nested-PCR assays targeting genome fragments that had

never been used as PCR targets previously and that will

be targeted only once with single-use primers [25].

These authors also demonstrated a higher sensitivity of

their method over regular PCR. Targeting multicopy

fragments was demonstrated to be highly sensitive for

the detection of Q fever, Whipple’s disease, brucellosis,

Table 2 Current applications of high-throughput genome sequencing in clinical microbiology

Objective Methods Applicationsa Examples [references]

Pathogen detection Identification of target fragments and PCR primer design Mycobacterium
paratuberculosis [15]

Streptococcus pyogenes [17]

Syndrome-based detection RT-PCR Febrile illness [20]

Multiplex RT-PCR Tuberculosis [8]

Microarray Pneumonia [22]

Highly sensitive molecular detection PCR targeting multi-copy
targets

Whipple’s disease [23]

Suicide PCR Rickettsioses [24]

Genotyping DNA banding methods Pulsed-field gel electrophoresis,
PCR-RFLP

Yersinia pestis [9]

Presence/absence of genes RT-PCR Acinetobacter baumannii [29]

Presence/absence of repeats MLVA Mycobacterium tuberculosis [32]

Presence/absence of point mutations SNP detection Bacillus anthracis [35]

Whole-genome typing Microarray Escherichia coli [44]

Genome sequencing Staphylococcus aureus [61]

Multiple gene sequencing MLST Escherichia coli [49]

Multiple non-coding fragment sequencing MST Rickettsia species [56]

Detection of virulence
markers

Comparison of virulent/avirulent strains Yersinia pestis [10]

Identification of lateral gene transfer Salmonella Enterica [73]

Search for known virulence factors in public databases Campylobacter species [77]

Detection of antibiotic
resistance

Comparison of resistant/susceptible strains Streptococcus pneumoniae [96]

Detection of antibiotic resistance markers in clinical
isolates and specimens

RT-PCR Staphylococcus aureus [100]

Culture medium design Detection of defective metabolic pathways Design of specific culture media Tropheryma whipplei [12]

Outbreak investigation Genome comparison WGS Escherichia coli [118]
aAbbreviations: bp, base pair; Mb, megabase; MLST, multi-locus sequence typing; MLVA, multiple variable number tandem repeat analysis; MST, multi-spacer

typing; RFLP, restriction fragment length polymorphism; RT-PCR, real-time polymerase chain reaction; SNP, single nucleotide polymorphism; WGS,

whole-genome sequencing.
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and infections caused by Mycoplasma pneumoniae or

Neisseria meningitidis, whereas ‘suicide PCR’ was suc-

cessful in detecting Yersinia pestis from dental speci-

mens of ancient plague outbreaks and Rickettsia spp. in

various arthropod-borne diseases [24,25].

To date, several genome-based PCR tests have become

commercially available. These include the LightCycler

SeptiFast (Roche, Mannheim, Germany) and GeneXpert

(Cepheid, Sunnyvale, CA, USA) systems that offer multi-

plexed detection of the various pathogens potentially in-

volved in a given infectious syndrome. The latter system

also enables simultaneous discrimination of M.

tuberculosis complex species and detection of rifampicin

resistance. Alternative assays are based on various detec-

tion methods for PCR products, as is the case for the

ResPlex II Panel (Qiagen, Hilden, Germany) and Film

Array (BioMerieux), in which PCR amplicons are hy-

bridized to a microarray for the syndrome-based detec-

tion of pathogens, the GenoType MTBDRplus assay

(Hain Lifescience, Nehren, Germany) that combines

PCR and hybridization to a strip to detect antibiotic re-

sistance in M. tuberculosis, and the PLEX-ID (Abbott,

Abbott Park, IL, USA), in which broad-range and clade-

specific PCR products are identified through using

Figure 1 Applications of bacterial genomics to the management of infectious diseases. Genome sequence analysis has enabled the
development of various clinical-microbiology tools for pathogen detection, identification or genotyping by identification of sequence fragments
specific at distinct taxonomic levels (genus, species, strain, clone), for the detection of genes associated with antibiotic resistance or virulence and
for the identification of deficient metabolisms to aid the development of optimized culture media. However, whole-genome sequencing, by
giving access to the full genetic repertoire of an isolate, has demonstrated an undisputed discriminatory power for deciphering outbreaks of
infectious diseases.
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electro-spray ionization-mass spectrometry. The latter

system enables screening human specimens for bacteria,

viruses, fungi, protozoa and several antibiotic-resistance-

associated genes [26].

However, although PCR and, more recently, RT-PCR

have revolutionized the diagnosis of infectious diseases

by reducing the time to diagnosis and increasing the de-

tection sensitivity, several challenges remain, including

the spectrum of detected agents, which is limited by the

specificity of the assays used. However, thanks to their

decreasing cost, the development of syndrome-based

multiplex PCR assays or microarrays is likely to increase

in the coming years. Alternatively, NGS, already known

to be used for genotyping purposes in clinical microbiol-

ogy, might also be increasingly used for clinical detec-

tion of pathogens, as was recently described for the

diagnosis of a case of neuroleptospirosis [27].

Genotyping
In situations when understanding the source and spread of

microorganisms is crucial, as is the case for outbreaks

caused by multidrug-resistant or hypervirulent bacteria

and nosocomial or pandemic infections, a higher discrim-

inatory power is needed to be able to trace pathogens at

the strain level. Identifying bacteria at the strain level - or

bacterial strain typing - is particularly important for epi-

demiological surveillance of infections. Strain typing also

has applications in studying bacterial population dynamics.

Over the past three decades, molecular typing (or molecu-

lar fingerprinting) methods have largely superseded pheno-

typic methods, including the morphology of colonies on

various culture media, biochemical tests, serology, killer

toxin susceptibility and pathogenicity, which exhibit insuf-

ficient discriminatory power, inability to quantify genetic

relationships between isolates, limited reagent availability,

poor intra- and inter-laboratory reproducibility and diffi-

culties in comparing results obtained in different laborator-

ies. In a similar fashion as described for PCR assay design,

genomic sequences can be a source of genotyping targets.

Molecular typing methods can be classified as non-

sequence-based and sequence-based genotyping methods,

depending on their design (Figure 2). Non-sequence-based

genotyping methods include pulsed-field gel electrophor-

esis (PFGE), PCR-restriction fragment length polymorph-

ism (PCR-RFLP), multiple-locus variable-number tandem-

repeat analysis (MLVA), single-nucleotide polymorphisms

(SNPs) and microarrays. Sequence-based genotyping

methods include multilocus sequence typing (MLST), mul-

tispacer sequence typing (MST) and whole-genome se-

quence typing. The choice of genotyping method should

be made according to the population structure of the in-

vestigated microorganism. This is particularly crucial for

clonal bacteria, such as M. tuberculosis or Bacillus anthra-

cis, for which structural genes are poorly polymorphic and

PCR-RFLP or MLSTare inadequate, whereas MLVA is able

to discriminate among strains [28].

Non-sequence-based genotyping methods

PFGE and PCR-RFLP have long been considered as 'gold

standard' genotyping methods. These methods are DNA-

banding-pattern-based methods that compare the electro-

phoretic profiles of restriction-enzyme-cut genomes or

PCR-amplified genes from various strains. Initially, these

methods relied on uncharacterized genomic differences or

empirically selected target genes. By contrast, genome se-

quences, as was the case for M. tuberculosis or Y. pestis [9],

can be used to rationally improve the sensitivity and

specificity of PFGE or PCR-RFLP by enabling the ‘in

silico’ prediction of the most appropriate restriction pro-

files of rare-cutter enzymes for a given bacterium.

In an alternative approach, Yang and colleagues have

used genomics to design the ‘Pan-PCR’ software, dedi-

cated to the identification of strain-specific PCR targets

in genome sequences in a ‘presence/absence’ mode, that

is, the amplification of a series of unrelated genes that

were differentially present in the genomes from the stud-

ied strains [29]. As an example, in Acinetobacter bau-

mannii, the presence or absence of six genetic loci, as

determined by six locus-specific PCR assays, discrimi-

nated 29 tested strains [29]. Such a method is rapid, easy

to perform and only requires a real-time thermal cycler,

but it might not be adapted to species with highly con-

served genomes such as B. anthracis in which the gene

content does not vary among strains.

Another non-sequence-based genotyping method that

benefited from the availability of genome sequences is

MLVA. This method is based on the determination of

the number and length of variable number of tandem re-

peats (VNTRs) present in a genome and is applicable to

a variety of pathogens [30,31]. Currently, MLVA is a ref-

erence genotyping method for many bacteria, such as M.

tuberculosis [28,32], and has also been used to investi-

gate outbreaks of infections, as was demonstrated by

Paranthaman and colleagues, who accurately identified

the source of a multidrug-resistant Salmonella enterica

serovar Typhimurium outbreak that occurred in England

in 2011 [31]. MLVA is a rapid, easy-to-perform, afford-

able and reproducible genotyping method with high dis-

criminatory power, but it has been demonstrated to be

non-adaptable for some species, such as Mycoplasma

hyopneumoniae, which lacks tandem repeats [33], and in

long-term epidemiology for Mycobacterium leprae in

which variations in the VNTR pattern were observed

not only between isolates but also between specimens

from the same patient [16].

The detection of single nucleotide polymorphisms

(SNPs), another widely used typing method for bacteria,

has also been improved through using genome sequences.
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Figure 2 (See legend on next page.)
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This method, based on point-nucleotide changes between

strains of a given species, has enabled the genotyping of

several bacterial pathogens [9,34-39], including Coxiella

burnetii [40]. Using SNP genotyping, Huijsmans and col-

leagues identified five genotypes of C. burnetii that were

involved in the large outbreak of Q fever that occurred in

the Netherlands between 2007 and 2012 [40]. By compari-

son with other genotyping methods, SNP-based methods

are rapid, sensitive, easy to perform and unambiguous in

result interpretation. However, it should be noted that

interpreting SNP genotyping data is highly dependent on

the algorithm, the reference sequence and the sequencing

platform used, which highlights a need for standardization

of the methods used.

Genome-based DNA microarrays, an intermediate be-

tween non-sequence-based and sequence-based methods,

contain probes specific for some or all genes present in a

genome [41]. This method enables simultaneous strain

comparisons at a whole-genome level. It can be automated

and is a fast, sensitive and high-throughput genotyping

tool [16,42]. Genome-based DNA microarrays were devel-

oped to genotype a number of human pathogens, includ-

ing Escherichia coli [43], for which Geue and colleagues

were able to discriminate 446 Shiga-toxin-producing E.

coli [44]. DNA microarrays can also be used to detect and

identify microorganisms in complex floras [30,45]. How-

ever, although highly discriminatory, microarray-based

methods suffer from the major drawback that they cannot

identify genetic fragments for which no probe is used.

Sequence-based genotyping methods

By comparison with non-sequence-based methods, sequence-

based genotyping has the major advantage of being highly

reproducible because the sequence fragments on which it

is based are stored in public databases. Sequence-based

genotyping methods can rely on the selection of one or

several genomic targets or on the whole genome sequence.

Single-locus sequence-typing methods require the in silico

identification of a highly variable gene, such as the

coagulase- and protein-A-encoding genes that are the gen-

omic targets of coa or spa typing, respectively, two broadly

used tools for Staphylococcus aureus [46,47].

MLST, developed in 1998, is one of the most frequently

used sequence-based genotyping methods. It is based on

the combination of genotypes obtained from several indi-

vidual genes, usually housekeeping genes, for characteriz-

ing bacterial strains [48]. Genome-sequence-designed

MLST assays have been useful for typing pathogens that

have highly variable genomes among strains, such as E.

coli, N. meningitidis or S. aureus [30,49,50], but they dem-

onstrated limited discriminatory power among those bac-

teria with highly conserved genomes such as B. anthracis

[30]. In 2012, rMLST, based on a combination of 53 ribo-

somal protein subunits, was demonstrated to discriminate

strains within the genus Neisseria [51]. However, whole-

genome MLST, incorporating more than 500 loci, was able

to identify bacteria at the clone level [52]. This method is

especially valuable when implemented with the BIGSdb

platform that enables standardization of data [53]. In a

similar fashion, multi-spacer typing (MST), based on the

assumption that intergenic spacers are more variable than

genes owing to a lower selection pressure, combines se-

quences from the most variable intergenic spacers between

aligned genomes of bacterial strains instead of genes [54].

First developed for Y. pestis [54], MST has also been effi-

cient at typing strains from various other bacteria, includ-

ing C. burnetii [30,55-57]. Glazunova and colleagues, by

using a combination of 10 intergenic spacer sequences,

were able to classify 159 C. burnetii isolates within 30 dis-

tinct genotypes [55]. MST was demonstrated to be more

discriminatory than MLST for R. conorii strains [56].

However, bacterial whole-genome sequencing (WGS)

using NGS, by giving access to the whole genetic con-

tent of a strain, is the ultimate discriminatory sequence-

based genotyping method and has already demonstrated

its usefulness for epidemiological investigations, showing

the rapid global transmission of infectious diseases

[38,58,59] (Table 3). WGS was used to compare 86 hu-

man M. tuberculosis isolates from a German outbreak

and has demonstrated its superiority over other genotyp-

ing methods for tracing and investigating micro-

epidemics [60,61]. In 2010, WGS was used to study 63

strains of methicillin-resistant Staphylococcus aureus

(MRSA) from various countries and enabled reconstruc-

tion of intercontinental transmissions over four decades

as well as the potential transmission within a hospital

environment [38]. WGS was also used to investigate the

cholera outbreak in Haiti that occurred in 2010 [58,59],

revealing that Haitian strains were closely related to strains

from Nepal. These pioneering studies demonstrated the

potential of WGS for retrospective genotyping. The major

challenge is to make WGS a genotyping tool during the

course of outbreaks, and for this it will be necessary to

facilitate access to sequencing platforms.

(See figure on previous page.)
Figure 2 Principles of genome-based genotyping methods. By genomic comparison, investigators can identify specific sequence signatures
that can be used in non-sequence-based methods (DNA banding-pattern-, PCR- or hybridization-based methods) or sequence-based methods
(partial or complete genome sequencing). MLST, multi-locus sequence typing; MLVA, multiple locus variable number tandem repeat analysis; MST,
muti-spacer sequence typing; PCR-RFLP, PCR-restriction fragment length polymorphism; PFGE, pulsed-field gel electrophoresis; RFLP, restriction
fragment length polymorphism; SNP, single nucleotide polymorphism.
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Detection of virulence factors
In addition to identifying bacteria at various taxonomic

levels, WGS offers the opportunity to detect various

genetic markers, such as virulence factors or antibiotic

resistance-associated genes. Identifying and characteriz-

ing the virulence factors of pathogens are crucial for un-

derstanding the pathogenesis of the diseases that they

cause and for developing dedicated molecular tools to

detect specific virulence markers. However, among the

currently known virulence markers, only toxins are

important for optimizing the management of patients, as

these agents are able to cause hospital outbreaks of se-

vere infections with high mortality rates, such as the hy-

pervirulent ribotype O27 Clostridium difficile [62], or

because the administration of antibiotics can have a sig-

nificant impact on the outcome. This is notably the case

for S. aureus, in which the secretion of the Panton-

Valentine leukocidin is induced by oxacillin or depressed

by clindamycin [63,64], for the Shiga-toxin production

in E. coli that is stimulated by β-lactams, sulfonamides

Table 3 Examples of infectious disease outbreaks for which next-generation sequencing has been used

Causative agent Date of
outbreaka

Country Setting NGS platform Impact on disease control and/or findings Reference

Multi-drug resistant
Acinetobacter baumannii

2009 UK Hospital Roche GS-FLX Proof of patient-to-patient transmission [114]

Bordetella pertussis 2012 USA Community PacBio RS Identification of several concomitant clones [131]

Clostridium difficile 2007-2011 UK Hospital and
community

Illumina Only one-third of cases were acquired from
symptomatic patients

[132]

Carbapenem-resistant
Enterobacter cloacae

2008-2009 UK Hospital Illumina MiSeq Retrospective identification of two distinct strains [133]

Vancomycin-resistant
Enterococcus faecium

NA UK Hospital Illumina MiSeq Retrospective identification of the clonality of the
causative strain

[133]

Escherichia coli O104:H4 2011 Germany Community Ion Torrent
PGM, PacBio
RS

Identification of the source of infection [134,135]

Francisella tularensis
holarctica

2010 Sweden Community Ion Torrent
PGM, PacBio
RS

Retrospective identification of several clones [136]

Carbapenemase-producing
Klebsiella pneumoniae

2012 Nepal Hospital PacBio RS,
Illumina HiSeq

Identification of a clone responsible for three
distinct outbreaks

[137]

Legionella pneumophila 2012 Canada Community Illumina MiSeq Identification of the source of infection [138]

Listeria monocytogenes 2008 Canada Community Roche GS-FLX Retrospective identification of three clones
responsible for a nationwide outbreak

[139]

Mycobacterium abscessus 2007-2011 UK Cystic fibrosis
center

Illumina HiSeq Proof of patient-to- patient transmission [140]

Mycobacterium tuberculosis 2006-2008 Canada Hospital Illumina
Genome
Analyzer II

Retrospective identification of two concomitant
outbreaks

[141]

Mycobacterium tuberculosis 2010 UK Community Illumina MiSeq Identification and treatment of contact patients [119]

Neisseria meningitidis 1997 UK Hospital Illumina
Genome
Analyzer II

Retrospective identification of the causative clone [142]

Salmonella Newport 2011 Europe Community Illumina HiSeq Confirmation of watermelons as source of
international spread of a Salmonella newport clone

[143]

Salmonella Enteritidis 2010-2012 USA Hospital IonTorrent
PGM

Retrospective and prospective identification of a
single clone responsible for the outbreak

[144]

Methicillin-resistant
Staphylococcus aureus

2009 USA Pediatric
hospital

Illumina MiSeq Retrospective identification of the causative clone
and its resistome

[61]

Methicillin-resistant
Staphylococcus aureus

2011 UK Hospital Illumina HiSeq Identification of carriage by a staff member [145]

Staphylococcus aureus 2011 USA Hospital Illumina HiSeq Proof of absence of patient-to-patient transmission [146]

Vibrio cholerae 2010 Haiti Community PacBio RS Identification of the source of the causative clone [59]

Vibrio cholerae 2012 Guinea Community Illumina MiSeq Identification of the source of the causative clone [147]
aAbbreviations: NA, data not available.
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and fluoroquinolones [65], and for Rickettsia conorii, in

which fluoroquinolones upregulate a toxin-antitoxin

module [66]. Therefore, determining the toxinic reper-

toire of strains of selected bacterial species can be cru-

cial for effective clinical management.

Genomics has played an important role in the identifi-

cation of virulence factors in bacteria. Three main strat-

egies are used to identify virulence-factor-encoding

genes in genomes [67]: first, comparison of genomes

from strains or species exhibiting diverse degrees of

virulence; second, identification of laterally transferred

genomic islands, assuming that virulence genes are often

acquired by this mechanism [67]; and, third, running the

genome against databases of known virulence markers.

The first approach was used in studies between Y. pestis,

the causative agent of plague, and the less-virulent but

closely related species Y. pseudotuberculosis [10], be-

tween a pathogenic strain of E. coli O157:H7 and a non-

pathogenic laboratory strain of E. coli K-12 [68,69], be-

tween a highly virulent Staphylococcus epidermidis caus-

ing community-acquired endocarditis and commensal

strains [70], and between Klebsiella pneumoniae strains

[71]. The second strategy enabled the identification of

pathogenicity islands in various species [72-75], such as

E. coli or S. aureus. The third method enabled identifica-

tion of virulence genes in a variety of species [76-87],

notably Listeria monocytogenes and M. tuberculosis. All

three strategies are complementary but cannot replace

functional studies for confirmation of the real role of the

identified virulence factors in pathogenesis.

Paradoxically, genomic comparisons have also ques-

tioned the paradigm of virulence by gene acquisition. In

many genera, genome reduction, rather than acquisition

of additional genetic material, can be associated with in-

creased virulence, as many of the most virulent bacterial

pathogens have smaller genomes than closely related

species [88]. The comparison of rickettsial genomes

showed that Rickettsia prowazekii, the agent of epidemic

typhus, the deadliest rickettsiosis, had the smallest gen-

ome in this genus (Figure 2) [89]. Similar findings were

reported for Mycobacterium ulcerans [90]. In addition,

the presence of ‘non-virulence’ genes was described as

discriminating Shigella dysenteriae from E. coli or Y. pes-

tis from Y. pseudotuberculosis [88]. In Y. pestis, for ex-

ample, the loss of the rcsA and nghA genes, which

encode a repressor of biofilm synthesis and an inhibitor

of biofilm formation, respectively, might have contrib-

uted to a more efficient flea-borne transmission [91].

Therefore, the pathogenic repertoire of a bacterium

should not only take into account the presence or ab-

sence of virulence factors but also of ‘non-virulence’

genes.

However, it should be noted that the virulence of a

bacterial strain might not systematically be predicted

from its genome sequence, in particular when the identi-

fied virulence markers are not expressed. Indeed, Priest

and colleagues could overcome this limitation by using

systems biology to predict virulence in S. aureus [92].

Briefly, these authors not only considered the presence

of virulence genes but also took into account the known

regulatory networks of these genes.

Detection of antibiotic resistance
Currently, antimicrobial resistance is a major public

health concern worldwide, especially as some pathogenic

multidrug-resistant bacteria are already resistant to all

antibiotics in use in the clinic [93]. Detection of bacterial

resistance determinants, and identification of new ar-

rangements of known resistance genes, as well as new

putative resistance markers can be achieved with WGS.

This might help predict the resistance phenotype, set up

enhanced in-hospital infection-control measures, adapt a

specific therapy and enable the identification of

resistance-causing genes or mutations that could be de-

tected by PCR from clinical isolates or specimens and

serve as targets for routine detection tools [94]. The

strategies for identifying resistance markers are very

similar to those aimed at identifying virulence genes [6].

However, as incomplete data link genotype to phenotype

in terms of drug resistance, WGS genomic-based detec-

tion is particularly suited for antibiotics for which

resistance-associated mutations or genes are known and

notably for fastidious bacteria such as M. tuberculosis

[95].

Genomic comparisons of phenotypically resistant and

susceptible strains has enabled investigation of the resis-

tome - that is, the repertoire of genetic markers associ-

ated with antibiotic resistance of multidrug-resistant

strains of Enterococcus faecium [11] and S. pneumoniae

[96]. Genome sequencing has also enabled identification

of resistance mechanisms in fastidious bacteria that ex-

press few phenotypic characteristics, as was the case for

T. whipplei, the causative agent of Whipple’s disease,

that is resistant to fluoroquinolones owing to mutations

in the gyrA and parC genes [97], Rickettsia felis, which

expresses a β-lactamase activity that was first found in

the genome [98], and M. tuberculosis, in which a puta-

tive rRNA methyltransferase might explain its resistance

to macrolide antibiotic drugs [95].

Several PCR assays used in clinical practice derive

from genomic sequences. The recent discovery of the

mecC gene - a homolog of the mecA gene encoding

methicillin resistance, responsible for false susceptibility

testing results - in the genome of a methicillin-resistant

S. aureus [99] elicited the design of specific PCR assays

[100]. The spread of carbapenemase-producing entero-

bacteriaceae also prompted the sequencing of genomes

from various MDR strains, including an NDM-1-producing
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E. coli strain [101] and a blaKPC2-producing K. pneumoniae

[102], which in turn enabled the development of dedicated

PCR assays [103]. Therefore, although many genome-based

molecular tests facilitating the management of infections

have already been developed to date, there is no doubt

that WGS data will be used extensively in future assay

design.

Culturing unculturable pathogens
Despite the breakthrough of molecular methods, culture

remains the cornerstone of routine microbiology as it

provides insight into their ecology and pathogenicity.

However, a majority of microorganisms in nature are

not cultivable using standard techniques. Many fastidi-

ous bacteria grow poorly on commonly used media, and

others are considered uncultivable on axenic media, pos-

sibly owing to deficient or partial metabolic pathways.

Thus, genome sequences might enable identification of

incomplete metabolic pathways [104] and the essential

nutrients that a bacterium is unable to produce [105],

which could then be incorporated into a specifically de-

signed culture medium. T. whipplei, causing Whipple’s

disease, was the first ‘unculturable’ human pathogen

[106,107] to benefit from such an in silico design of a

culture medium. An axenic culture medium specifically

designed to contain the nine amino acids that this bac-

terium was unable to synthesize enabled its axenic

growth [12]. A similar approach was used for Xyllela fas-

tidiosa [108], Leptospirillum ferrodiazotrophum [109]

and C. burnetii [110]. Alternatively, genomics might help

improve culture media, as was the case for E. coli and

M. pneumoniae [111,112]. However, this strategy might

not be efficient for just any bacterium, as was the

case for M. leprae. Despite the many important meta-

bolic activities missing in the genome [113] of this bac-

terium, no specifically complemented axenic medium

has enabled any growth to date. However, although it

is important to improve culture methods for fastidious

microorganisms, the investigation of unusual infec-

tions or outbreaks needs rapid and informative methods

that may help influence the management of patients

and course of the outbreaks. Such progress is now

made possible by NGS.

Real-time genomics for the diagnosis of infections
or the investigation of outbreaks
The development of NGS bench-top sequencers such as

the MiSeq (Illumina) and Ion Torrent Personal Genome

Sequencer (PGM; Life Technologies) has made genome

sequencing compatible with the routine clinical-

microbiology workflow [6]. Such a strategy enables,

within a few hours, exhaustive access to the genotype

[39], virulence markers and antibiotic-resistance reper-

toire. Real-time genomics has notably been used to

investigate several nosocomial [70,114] or community-

acquired infections [115-118] (Table 3). Sherry and col-

leagues used PGM sequencing of four MDR E. coli

strains to confirm that the nosocomial outbreak that had

occurred in a neonatal unit in Melbourne, Australia, had

been caused by a unique clone and to characterize the

resistance genes for this outbreak strain [118]. In

Germany, Mellmann and colleagues compared the ge-

nomes from two E. coli O104:H4 strains from two

hemolytic uremic syndrome outbreaks and concluded

that the strains had diverged from a common ancestor

and that NGS was suitable for the characterization of a

pathogen in the early stages of an outbreak [115]. In

both cases, genome sequences were obtained in a few

days (five and three days, respectively). These findings

demonstrated how rapid and precise genomic sequen-

cing, although limited to a few clinical-microbiology la-

boratories currently, could transform patient

management or improve hospital infection control in

routine clinical practice.

Although only a few studies to date have described a

turnaround time sufficiently short to enable WGS data

to influence the course of outbreaks [119], the increasing

number of teams using WGS for epidemiological pur-

poses (Table 3) leaves little doubt as to the likelihood of

its systematic use as a first-line tool to track and under-

stand epidemics in the near future.

How will next-generation sequencing change clin-
ical microbiology?
NGS has the potential to change clinical microbiology in

several ways. First, the increasing number of genome se-

quences will enable the development of new and im-

proved pathogen-specific or syndrome-based single or

multiplexed RT-PCR assays and will aid the refinement

of DNA targets, primers and probes used in existing

tests [120]. Second, the increase in speed, decreasing

costs and discriminatory power of NGS make it an ideal

tool for routine use in diagnostic microbiology laboratories.

NGS has the potential to replace several existing tests

performed on the same isolate, notably identification of

antibiotic-resistance mechanisms, virulence determinants

and genotype, in particular for microorganisms that are

difficult to grow. As such, it is especially well suited for in-

fection control. In addition, NGS without the need for cul-

ture, in particular single-cell sequencing, might be relevant

for the routine characterization of unculturable bacteria.

Third, NGS has proven its usefulness to decipher complex

microbiotas in various metagenomic studies [121]. Recent

studies have demonstrated its ability not only to discrimin-

ate among microorganisms present in human specimens,

and thus possibly detect co-infections, but also uncover

unexpected or new pathogens [122-124].
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However, several challenges remain, the most important

being a facilitated and rapid access of clinical microbiology

laboratories to sequencing platforms, and a need for stan-

dardized and fully automated sequence interpretation that

would ideally be independent of both the sequencing plat-

form and the exact species of microorganism [125-127].

Also needed is the ability to translate the data into rele-

vant information enabling microbiologists, clinicians and

public-health epidemiologists to implement control mea-

sures in real-time and alter the course of outbreaks. This

implies a constant update and curation of public databases

as well as the development of systems-biology-based soft-

wares that will enable prediction of virulence and antibiotic

resistance from genome sequences.

Conclusions and perspectives
The expansion of genomics, giving access to the ge-

nomes of virtually all human pathogens, has greatly

changed our approach regarding management of infec-

tious diseases by shedding light on their genetic diver-

sity, pathogenesis, evolution, detection and treatment.

With access to the full genetic content of microorgan-

isms, rational selection of DNA fragments has enabled

creation of a wide array of detection and typing methods

as well as specialized tools for the identification of genes

encoding factors affecting virulence or antibiotic resist-

ance. In addition, NGS methods have reached a point,

both in terms of cost and speed, where they might enter

the routine microbiology laboratory and be used rou-

tinely for the rapid sequencing of microorganisms that

exhibit unusual pathogenicity, are antibiotic-resistant or

cause outbreaks. However, the major challenge in order

to include genome sequencing in the routine workflow

of the clinical-microbiology laboratory, in addition to a

need for a multiplication of sequencing platforms, is a

clear need for improved sequence analysis, both in terms

of numbers and data handling of bioinformatic facilities,

and storage capacity, as well as homogenized gene-

function assignment.

It is likely that NGS, by permitting genome sequencing

from single cells or single colonies, will also constitute a

major step forward in the comprehension of bacterial

genome dynamics [128]. This strategy has the advantage

over other sequencing methods in that it is applicable

to microorganisms that are unculturable and/or part of

complex floras [129,130]. However, single-cell genom-

ics also currently suffers from several limitations, which

include genome amplification biases, chimeric DNA re-

arrangements and a need for the improved de novo as-

sembly of DNA sequences of previously non-sequenced

microorganisms.
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