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Abstract 

Objectives 

There is poor uptake of prognostic decision support models by clinicians regardless of their accuracy. 

There is evidence that this results from doubts about the basis of the model as the evidence behind 

clinical models is often not clear to anyone other than their developers. In this paper, we propose a 

framework for representing the evidence-base of a Bayesian network decision support model. The aim 

of this evidence framework is to be able to present all the clinical evidence alongside the BN itself. 

The evidence framework is capable of presenting supporting and conflicting evidence, and evidence 

associated with relevant but excluded factors. It also allows the completeness of the evidence to be 

queried. We illustrate this framework using a BN that has been previously developed to predict acute 

traumatic coagulopathy, a potentially fatal disorder of blood clotting, at early stages of trauma care. 

Keywords: Bayesian Networks, Evidence Based Medicine, Prognostic Models, Clinical Decision 

Support, Knowledge Engineering 
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Graphical Abstract: 

	

Highlights: 

• We propose an evidence framework (EF) for clinical Bayesian network (BN) models. 

• Our EF presents relevant clinical evidence alongside the BN itself. 

• Evidence data is organised in a structured ontology, presented in a simple webpage. 

• We illustrate the EF using a BN that has been previously developed for trauma care. 

• Clinicians found the EF useful and practical in a qualitative evaluation session. 
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1 Introduction 

Clinical decision support models are developed for a wide variety of tasks such as making 

recommendations, predictions or assessing cost-effectiveness. In this paper, our focus is on prognostic 

models that aim to predict a clinical outcome for individual patients using their clinical and 

background information (Moons et al., 2009b). Although a large number of prognostic models are 

developed and published, many are not adopted into clinical practice (Altman et al., 2009). Concerns 

about accuracy are considered to be one reason for this. Accuracy alone, however, does not ensure the 

use of a model (Jaspers et al., 2011; Moons et al., 2009a). While some models reporting accurate 

performance have not been adopted in clinical practice, others reporting mediocre performance have 

been widely used (Altman et al., 2009; Wyatt and Altman, 1995). Wyatt and Altman (1995) argue that 

useful prognostic models have 4 properties in common: clinical credibility, accuracy, generalisability, 

and ability to provide useful decision support. In order for a clinician to evaluate properties other than 

accuracy, the evidence supporting a model and the rationale behind its structure must be clear. 

A Bayesian network (BN) is a powerful tool for building prognostic models based on clinical 

evidence (Lucas et al., 2004). The graphical structure of a BN is well suited for representing domain 

knowledge on causal and associational relations, and for combining evidence from publications and 

data (Fenton and Neil, 2012). Despite these advantages, a BN structure cannot present the 

corresponding clinical evidence in adequate detail. It shows only the names of the variables and 

directions of the relations between the variables. Moreover, variable names are often abbreviated and 

ambiguous, and the evidence relevant to the relations and variables are not shown at all. 

Consequently, clinical evidence supporting many BN models is clear only to their developers. 

To improve the take up of BN models for clinical decision support, a method of organising and 

presenting clinical evidence is needed. This paper addresses this gap. We present an evidence 

framework that complements clinical BNs by representing the relevant clinical evidence and 

knowledge. The evidence framework does not aim to replace the representation of BNs; it is proposed 

as a complementary tool to clarify the clinical evidence relevant to different elements of a BN model. 

Our framework is composed of two parts: firstly, an ontology that organises the evidence, and 



5 
 

secondly, a browser that presents the evidence. We illustrate the evidence framework using a case 

study of a clinical BN that we have previously developed (Yet et al., 2014a). This BN accurately 

predicts a potentially fatal physiological disorder, called acute traumatic coagulopathy (ATC), in early 

stages of trauma care. The structure of the BN was built based on clinical knowledge and published 

evidence, and its parameters were defined using a patient dataset. More information on development 

and validation of the ATC BN is described by Yet et al., 2014a, and the clinical evidence relevant to 

the model can be browsed online on the model’s website (ATCBN 2015).  In this paper, we present 

the entire technical structure of the evidence framework and make a qualitative validation with its 

potential users.1 The structure of the evidence framework, and the code for building the evidence 

browser are available in (Yet and Marsh 2015). In the remainder of this paper, Section 2 discusses the 

challenges of developing a clinical evidence framework for BNs. The components of our evidence 

framework are described in Section 3 (ontology) and Section 4 (browser). Section 5 presents a 

qualitative evaluation of the evidence framework. Sections 6 and 7 examine the related work and 

present our conclusions. 

2 Challenges of Developing an Evidence Framework 

In this section we summarise the challenges of organising and presenting clinical evidence relevant to 

a BN model. 

• Organising Evidence: Clinical evidence corresponding to a BN must be recorded in a structured 

way to prevent ambiguities about its relevance, source and type. Below, we examine some issues 

that needs to be addressed in an evidence structure: 

1. The available evidence may be relevant to different parts of a BN: some may be relevant 

to a particular variable or relation whereas others may be relevant to an entire group of 

variables. A useful evidence framework would be able to accommodate all of these 

situations. 

                                                        
1 A preliminary stage of the evidence framework has been briefly described in Yet et al., 2014b. 
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2. Different items of evidence may support different parts of a BN model. For example, a 

part of a BN may be based on data, and another part may be based on a scientific 

publication. The evidence framework must be able to accommodate and distinguish 

multiple items of evidence from different sources. 

3. Conflicting evidence must not be ignored. In order to have a comprehensive evidence-

base, all relevant evidence must be recorded even when it is relevant to excluded or 

conflicting factors.  

4. Definitions of the variables and relations must be explicit.  

5. The framework should allow the completeness of evidence to be queried. For example, it 

should be able to assist the user in identifying the parts of the BN with poor or no 

evidence. 

• Presenting Evidence: Although the evidence framework may require a complex structure to 

organise the evidence, the users do not necessarily need to see the technical details of the structure 

when browsing the evidence. Evidence should be presented in a simple and user-friendly 

environment that is compatible with commonly available software such as web page browsers. 

In order to overcome these challenges, we propose an evidence framework that is composed of 

two elements: 1) an evidence structure for organising the evidence data 2) a web page, which is 

automatically generated from the evidence structure, to present the evidence without showing the 

technical details of the underlying evidence structure. In the following sections, we describe the 

structure (Section 3) and browser (Section 4) parts of the evidence framework.  

3 Evidence Structure 

We use the web ontology language (OWL) (W3C, 2013) framework to model and organise the 

evidence data, and the Protégé software (version 4.3.0) (Knublauch et al., 2004) to create and 

populate the OWL ontologies. In Section 3.1, we give a brief introduction to ontologies. We present 

the structure of the evidence ontology in Section 3.2, illustrate how data is entered to this structure in 

Section 3.3, and show several queries to assess completeness of evidence in Section 3.4. 
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3.1 Overview of Ontologies 

An ontology is a formal definition of the relations among terms (Berners-Lee et al., 2001), and OWL 

is a flexible language for building ontologies (W3C, 2013). Our primary reason for storing the 

evidence data in an ontology is their flexibility in building, modifying and querying a data structure. 

Our aim is to develop a general structure for organising and presenting clinical evidence for BNs but 

we do not assume that our evidence structure will satisfy the needs in all other BN applications. For 

example, some clinical applications may require additional types of evidence to be defined in the 

ontology structure. Ontologies offer a simple and robust framework for making such changes. Making 

similar modifications in relational databases is, however, difficult and time-consuming due to their 

highly structured schema and query system. 

An OWL ontology is composed of individuals, classes, object properties and data properties. 

Individuals represent objects in the domain, and classes represent the sets that individuals belong. 

Properties define the relations between individuals: object properties define the relation between two 

objects, and data properties define the relation between an object and a data value. Throughout this 

paper, individuals are represented by diamonds, classes are represented by circles, object properties 

are represented squares, and data properties are represented by triangles as shown in Figure 1. 

 

Figure 1 Representation of Ontology Elements 

OWL contains many features for defining properties and objects. Members of a class and 

properties of an object can either be defined manually or be inferred from class and property 

characteristics. A thorough description of OWL is, however, beyond the scope of this paper, and the 

readers are referred to Allemang and Hendler (2011), and Segaran et al. (2009) for an introduction to 

ontology modelling and OWL. In the following section, we describe the classes, and properties of the 

evidence ontology. 
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3.2 Evidence Ontology 

Our evidence structure is based on three main classes: BN element, evidence and source (see Figure 

2). The BN element class contains the nodes, edges, fragments and probability distributions that form 

a BN. Each node in a BN represents a variable, and each edge represents a relation. Each node has a 

set of parameters that defines the conditional probability distribution between the node and its parents. 

We use the terms node and variable, edge and relation, and probability distribution and parameters 

interchangeably throughout this paper. The evidence class defines the type and statement of evidence. 

The source class describes the source of evidence; which can be a dataset, a domain expert or a 

scientific publication. Individuals of the evidence class may have multiple sources, for example, a 

relation in the BN structure may have evidence from several publications. In the remainder of this 

section, we describe the subclasses and properties related to the BN element, evidence and source 

classes. 

 

Figure 2 Class Hierarchy of the Evidence Ontology 

3.2.1 BN element 

The BN element class has 4 subclasses: fragment, node, edge and distribution. This section describes 

the object and data properties related to each of these subclasses. 

Fragment 

Several studies used BN substructures to assist BN development and to give a more concise 

summary of a BN model  (Koller and Pfeffer, 1997; Laskey and Mahoney, 1997; Neil et al., 2000). A 
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BN substructure represents a part of the BN that describes an important concept in its domain. Our 

ontology defines BN substructures in a general way as ‘BN fragments’. Any group of variables can be 

defined as a BN fragment in the evidence ontology. The complete structure of the BN is always 

defined as a BN fragment containing all other fragments and nodes in the BN. 

The information about a BN fragment is stored within the fragment class. Figure 3 shows the 

object and data properties related to this class. A BN fragment may contain nodes and other – smaller 

– BN fragments. Members of a fragment can overlap with other fragments. An edge can also be a part 

of a BN fragment but it is not necessary to separately define the edges associated with a fragment as 

they can be inferred through the object properties of the node class (see Figure 5). Description of 

clinical knowledge modelled in the BN fragment, and evidence relevant to the entire BN fragment can 

be stored in the evidence ontology. 

 

Figure 3 Object and Data Properties related to Fragment Class 

Subclasses of the fragment class can be defined if certain type of BN fragments, such as idioms 

(Neil et al., 2000) and object oriented BNs (Koller and Pfeffer, 1997), are used repetitively in the BN. 

In the ATC BN, we use measurement idioms multiple times to define parts of the BN structure (Yet et 

al., 2014a). In order to distinguish the measurement idioms from other BN fragments, we could add a 

class called ‘MeasurementIdiom’ as a subclass of the fragment class (see Figure 4).  
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Figure 4 Subclasses of Fragment Class 

Node 

Individuals of the node class represent the variables in a BN. Knowledge modelled in a BN 

cannot be understood without having a clear understanding of the meaning of its variables. Variable 

names are often short, consisting of only a few letters, so they may not clearly describe the concept 

that is represented by the variable. For example, a BN variable named ‘Heart Rate’ may be sufficient 

to show that this variable represents a measurement of the patient’s heart rate; but this name may not 

be descriptive enough if the time and location of this measurement is important for the use of the BN. 

In order to avoid such ambiguities, the evidence ontology stores a description of each BN variable 

(see Figure 5). Each variable has a conditional probability distribution that defines the relation 

between the variable and its parents. The states, parameters and the evidence for defining the 

probability distribution are defined within the associated distribution class. 

 

 

Figure 5 Object and Data Properties related to Node Class 
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Since the edges of a BN are directed, we have an object property for both the edges that are directed 

to the variable (hasIncomingEdge) and the edges that are directed away from the variable 

(hasOutgoingEdge) (see Figure 5). The hasParent and hasChild properties show the parent – child 

relations between the BN variables. These 4 properties about edge directions and parent – child 

relations are inferred from the object properties related to the edge class described in the remainder of 

this section. The within property shows the BN fragments that contain the variable.  

Different sources can be used to define the parameters of different BN variables as BN parameters 

can be learnt locally. For example, we can use data to define the parameters of some variables, and 

use expert knowledge to elicit the parameters of others. For each variable, we record the source used 

for defining its parameters (see Figure 6). 

Some variables may not be modelled in the BN even when evidence exists that they are relevant 

to the problem domain. For example, the knowledge engineers and domain experts may choose to 

exclude some variables to keep the BN simple. The evidence relevant to the excluded variables and 

relations is also recorded to have a comprehensive evidence base for the BN (see Figure 6).  

 

Figure 6 Object Properties related to Node, Evidence and Source Classes 

Edge 

BNs are directed acyclic graphs, therefore only one directed edge can exist between two variables. 

The variables that an edge connects are defined with two object properties in the evidence ontology: 

pointsTo shows the variable that the edge is directed to, and comesFrom shows the variable that the 

edge is directed away (see Figure 7). 

Node Evidence 
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hasExcludedChild 
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The meaning of a modelled relation is shown by its supporting evidence. In order to include an 

edge in a BN model, the BN developer must have evidence that the relation exist between two 

variables. Therefore, all edges in an evidence-based BN model must have supporting evidence, which 

may come from scientific publications, data or domain experts. An edge does not require a separate 

description like a variable since evidence associated with the edge describes its meaning.  When the 

BN structure is built with domain experts, evidence for the relations often comes from peer-reviewed 

scientific publications or expert knowledge. The justification for including the relation is recorded as 

the statement of evidence. In a purely data-driven BN, the evidence comes from the dataset only. It 

may be difficult to describe knowledge supporting the relations in data-driven models apart from 

saying that the variables were correlated in the data and showing the structure learning algorithm used 

(Daly et al. 2011).  

The relevant score or independence test could also be shown when score or constraint based 

algorithms are used to learn the relation. The results of score-based algorithms can be shown together 

with the scores obtained from alternative learning algorithms, but the scores must be decomposable in 

order to calculate them for individual edges. Constraint-based methods can calculate the p-values for 

missing edges (Spirtes et al. 2000) and the p-value upper bounds (Li and Wang 2009; Tsamardinos 

and Brown 2008) for existing edges. Conflicting evidence may also exist for a relation in the BN. For 

example, one publication may claim that two variables are independent, whereas another publication 

may find correlation between those variables. If these variables are connected by an edge in the BN 

structure, in accordance with the latter publication, the conflicting evidence from the former 

publication must also be recorded in order to have a comprehensive evidence base. 
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Figure 7 Object Properties related to Edge Class 

An edge between two variables is present when those variables are directly dependent. In other 

words, no observation on other variables can make two variables conditionally independent when they 

are directly connected by an edge. However, there may be evidence relevant to two variables that are 

not directly linked in a BN model. For example, there may be evidence about correlation between two 

variables but not about a direct causal relation. In this case, the correlation may be modelled by a path 

between those variables in the BN, however representing the evidence of all paths in the BN could 

make the evidence base increasingly complex especially if the BN structure is large. A simple and 

effective approach to model indirect correlations is to use an ‘excluded relation’ evidence item in the 

evidence base (see Section 3.2.2 for more information on evidence items). For example, if there is 

evidence about correlation between A and B but in the BN model A and B is connected by a long 

path, we can introduce an ‘excluded relation’ evidence item between A and B to record the evidence 

about the correlation.  

Inferred Properties 

In an OWL ontology, class memberships and object properties can either be defined by the user or 

be inferred from other class and property characteristics. Although some inferred properties may be 

redundant, they can be useful when finding associations between different items of evidence or 

presenting the evidence in an online browser (see Section 4). For example, defining the direction of 

edges using the pointsTo and comesFrom properties is sufficient to define an edge but redundant 

properties such as hasParent and hasChild are useful when the BN is presented in the online browser. 
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The ontology can infer these properties from the pointsTo and comesFrom properties. In order to 

define the directed relation A → B between two variables A and B, we define an individual for the 

edge class, e.g. Edge1, and we define that Edge1 pointsTo B and comesFrom A. In our ontology, the 

inverse of the comesFrom property is the hasOutgoingEdge property. By using this, the ontology can 

infer that A hasOutgoingEdge Edge1. The hasChild property can be inferred from the combination of 

the hasOutgoingEdge and pointsTo properties. Since the variable A hasOutgoingEdge Edge 1 and 

Edge1 pointsTo the variable B, the ontology can infer that A hasChild B. Similarly, the ontology can 

infer the hasParent property from the combination of the comesFrom and hasIncomingEdge. 

Distribution 

Each variable in a BN has a probability distribution that defines the relation between the variable 

and its parents. The probability distribution of a variable can be discrete or continuous and it can be 

defined in different formats. If a variable and its parents are discrete, a node probability table (NPT) is 

commonly used to define their conditional probability distribution. If the child variable is continuous, 

using a mathematical expression is a convenient way of defining its probability distribution. Mixture 

distributions of a continuous variable conditioned on discrete variables can be defined with an array 

that contains an expression for every state combination of its parents. We call these arrays partitioned 

expressions. Other formats for defining probability distributions can also be added as subclasses of the 

distribution class. 

The method and resource used to define a probability distribution is recorded as supporting 

evidence for the distribution. A probability distribution can also have conflicting evidence: for 

example, the views of different experts that have conflicting views on the probability distribution of a 

variable can be recorded as conflicting evidence in the ontology.  
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3.2.2 Evidence 

Figure 8 shows the properties related to the evidence class. The evidence class organises the data 

about the type and statement of evidence relevant to the BN elements. There are 3 types of evidence 

in our ontology: 

1. Supporting Evidence: This class contains the statement of evidence that supports the 

elements of a BN model. 

2. Conflicting Evidence: Evidence conflicting with the BN model is recorded in this class. For 

example, two variables that are found to be independent in a scientific study may not be 

modelled as independent in the BN model. In this case, the results of the scientific study must 

be recorded as conflicting evidence in the evidence ontology.  Conflicting expert opinions 

may also be recorded in this category. 

3. Excluded BN Element: Evidence about relevant variables or relations that are not included 

in the BN model is recorded within this class. The statement of evidence relevant to an 

excluded BN element and the justification for not including the element should be recorded. 

The excluded BN element class has 3 subclasses related to the type of the BN element 

excluded. The excluded child and parent classes indicate that a variable in the BN may have 

an effect and cause that is not modelled in the BN. The excluded relation class indicates that a 

direct relation may exist between two variables that are not directly linked in the BN.  
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Each type of evidence is a subclass of the evidence class. The subclasses can be inferred from the 

type of the object property that refers to the evidence. For example, any evidence recorded by the 

hasSupportingEvidence property is inferred as a member of the SupportingEvidence class. Similarly, 

any evidence that is recorded by the hasConflictingEvidence or hasExcludedBNElement properties 

are inferred as the members of the ConflictingEvidence or ExludedBNElement classes respectively. 

 

Figure 8 Object and Data Properties related to Evidence Class 

A BN element can have multiple items of evidence, and an item of evidence can have multiple 

sources. For example, two publications that are stating similar results about a relation in the BN can 

be recorded as a single evidence item with two sources (publications). Two publications that are 

discussing different aspects of a relation can be recorded as two separate items of evidence with one 

source each. More examples about recording evidence and source are shown in Section 3.3. The 

following section describes the ontology class for the source of evidence.  

3.2.3 Source 

The source class contains information about the publication, expert opinion or data providing 

evidence. The subclasses, object and data properties of the source class are shown in Figure 9. The 

source class has three subclasses as shown below: 

1. Publication: The members of this class are scientific publications. Information for referring 

these publications, such as digital object identifier (DOI) and PubMed identification number 
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(PMID), can be stored in this class. A PMID is a unique identifier assigned that makes it 

convenient to find the publications in the PubMed database. 

2. Expert: The domain experts’ credentials and contact information can be recorded in this 

class. 

3. Data: Evidence supporting or conflicting with the model may come from data. The 

individuals of this class contain information about the details of the dataset including the 

sample size and the method of collecting the data. 

 

Figure 9 Object and Data Properties related to Source Class 

3.3 Instantiation of the Evidence Ontology 

In this section, we illustrate an instantiation of the evidence ontology by using a simplified 

version of the ATC BN that has 4 variables and 3 edges (see Figure 10).   

 

Figure 10 Simplified ATC BN 
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3.3.1 Fragment 

The simplified ATC BN in Figure 10 contains a BN fragment called shock measurements. The 

state of the hypoperfusion variable cannot be directly observed in clinical practice; it is estimated by 

several tests and observations including the lactate and pH levels in blood. The shock measurements 

fragment models the relation between hypoperfusion and its measurements.  

Table 1 Defining Shock Fragment 

	

Type:	

		

Object	Properties:	

	

	

	

	 Data	Properties:	

	

	

Table 1 shows the classes, object and data properties related to the shock measurements fragment. 

The structure of the shock measurements fragment is modelled using a pre-defined BN structure 

called measurement idiom (Neil et al., 2000).  We use the object property ‘contains’ to show the 

variables and fragments within this fragment, and ‘within’ to show the larger fragments that contain 

this fragment. A free-text description of the fragment is recorded using a data property. The entire BN 

is also defined as a BN fragment (SimplifiedATCBN) that contains all other variables and fragments 

in the evidence ontology (see Table 2). The aims and scope of the model is recorded using the 

‘description’ data property. The search strategy used for finding the relevant publications is recorded 

as a supporting evidence item for the entire BN model. 

BNElement 
within SimplifiedATCBN 

contains Hypoperfusion 

contains Lactate 

contains pH 

description “This 

part of the model 

estimates…” 

MeasurementIdiom 

Fragment 

ShockMeasurements 
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Table 2 Entire BN model defined as a member of the fragment class 

	

Type:	

		

Object	Properties:	

	

	

	

	

	 Data	Properties:	

	

3.3.2 Variable 

Table 3 shows the data related to the Hypoperfusion variable in the evidence ontology. This 

variable is within the Shock fragment, and it has three children: ATC, Lactate and pH. The probability 

distribution of this variable is defined in the ‘HypoNPT’ individual. The description of the variable is 

recorded by the ‘description’ data property. The edges between the Hypoperfusion variable and its 

children are modelled by the ‘hasOutgoingEdge’ object property that shows the edges that is directed 

away from the Hypoperfusion variable. For example, ‘HypoToLactate’ is a member of the edge class 

that represents the edge Hypoperfusion → Lactate. The evidence supporting the relation between 

Hypoperfusion and Lactate variables is defined under the edge individual. 

Table 3 Defining the Hypoperfusion Variable 

	

Type:	

	

Object	Properties:	

	

	

	

	

	 Data	Properties:	

	

within Shock 

hasChild ATC 

hasChild Lactate 

BNElement 

hasOutgoingEdge HypoToLactate 

Variable 

Hypoperfusion 

hasOutgoingEdge HypoToATC 

description “The degree of 

inadequate oxygen…” 

hasDistribution HypoNPT 

BNElement 

Fragment 

SimplifiedATCBN 

hasChild pH 

hasOutgoingEdge HypoToPH 

contains SimplifiedATCBN 

contains Hypoperfusion 

contains Lactate 

contains pH 

description “The primary aim of 

the ATC BN is to predict…” 

contains ATC 

hasSupportingEvidence SearchStrategy 
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Table 4 Defining the Lactate Variable 

	

Type:	

	

Object	Properties:	

	

	

	

	

Data	Properties:	

	

Table 4 shows the information recorded about the lactate variable. The probability distribution of 

lactate is defined in the ‘LactatePartExpr’ distribution (see Section 3.3.3). There is evidence that some 

factors affecting lactate are not included in this model. This information is recorded in an item of 

evidence named ‘LactateExParEv1’ belonging to the evidence class (see Section 3.3.4). 

3.3.3 Distribution 

The probability distribution of the hypoperfusion variable is shown in Table 5. The dataset and 

method used for defining this distribution is recorded as supporting evidence for this distribution. The 

states of the Hypoperfusion variable is recorded by the ‘DistStates’ data property, and the probability 

distribution of these states are shown in the same order as the states by using the ‘DistParameters’ 

data property. In this example, we use the BIF format for recording the NPTs in the ontology but 

other formats could also be used (Cozman, 1998).  The ‘DistDescription’ data property shows that 

Hypoperfusion is not conditioned on any variables in the simplified ATC BN. 

Table 5 Defining the NPT of Hypoperfusion 

	

Type:	

	

Object	Properties:	

	

Lactate 

BNElement 

Variable 
within Shock 

hasParent Hypoperfusion 

hasIncomingEdge HypoToLactate 

hasExcludedParent LactateExcParEv 

description “The amount of 

lactate in…” 

hasDistribution LactatePartExpr 

HypoNPT 

BNElement 

Distribution 

hasSupportingEvidence ParamEv 

NPT 
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Data	Properties:	

	

	

	

 

Table 6 shows the probability distribution of the Lactate variable. Lactate is a continuous variable 

conditioned on Hypoperfusuion as shown by the ‘DistStates’ and ‘DistDescription’ data properties 

respectively. Lactate has a normal mixture distribution, and the parameters of this distribution are 

recorded by the ‘DistParameters’ property. 

 

Table 6 Defining the Partitioned Expression of Lactate 

	

Type:	

	

Object	Properties:	

	

	 Data	Properties:	

	

	

	

3.3.4 Evidence 

Two publications indicated that lactate is an important marker of the degree of hypoperfusion. We 

recorded this as an item of evidence supporting the edge Hypoperfusion → Lactate in the ATC BN 

(see Table 7). The details of the publications are described under the source class in Section 3.3.5. 

Table 7 Supporting Evidence of Lactate Variable 

	

Type:	

	

Object	Properties:	

	

	

hasSource RixenEtAl2005 

hasSource VanDrommeEtAl2010 

Evidence 

SupportingEvidence 

LactateSuppEv 

DistDescription“P(Hypoperfusion)” 

DistStates“None,Compensated, 

Uncompensated” 

DistParameters“0.74 0.17 0.09” 

LactatePartExpr 

BNElement 

Distribution 

hasSupportingEvidence ParamEv 

DistDescription“ 

P(Lactate|Hypoperfusion)” 

DistStates“Continuous” 

DistParameters“ 

(None) Normal(1.7,3);  

(Compensated) Normal(4.5,1.8);  

(Uncompensated) Normal(8.2,23.2);” 

Partitioned 

Expression 
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Data	Properties:	

The parameters of the conditional probability distribution of the lactate variable were learned 

from the dataset using the Expectation-Maximisation (EM) algorithm. This was noted as a supporting 

evidence for the ‘LactatePartExpr’ distribution object (see Table 8). 

Table 8 Supporting Evidence of Lactate Parameters 

	

Type:	

	

Object	Properties:	

	

Data	Properties:	

	

One publication indicated that several factors, including excessive alcohol use, can affect lactate 

levels independent from the effects of hypoperfusion but these factors were not included in the ATC 

BN. We recorded this as evidence for an excluded parent variable for Hypoperfusion (see Table 9). 

Table 9 Evidence about Excluded Parent 

	

Type:	

	

Object	Properties:	

	

Data	Properties:	

	

	

statement “Lactate is 

produced during anaerobic…” 

statement “…excessive 

alcohol use can increase 

the lactate levels …” 

ParamEv 

Evidence 
hasSource RLHDataset 

statement “Parameters of 

this variable was learned 

from the RLH dataset using 

the EM algorithm…” 

SupportingEvidence 

LactateExcParEv 

Evidence 
hasSource RixenEtAl2005 

ExcludedBNElement 

ExcludedParent 
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Table 10 Search Strategy for Finding the Relevant Publications 

	

Type:	

	

Object	Properties:	

	

Data	Properties:	

	

	

The search strategy, which was used to identify the relevant publications from the clinical 

literature, is recorded as a supporting evidence item associated with the entire BN model (see Table 

10). This item describes the methodology of the search such as the search keywords and exclusion 

criteria that were used. The clinicians who conducted the literature search are recorded as the source 

of this evidence item. 

3.3.5 Source 

Table 11 shows the details of the publication related to the items of evidence in Table 7 and Table 

9. The publication is recorded as a member of the source class with its referencing details and PMID. 

Table 11 Publication Source 

	

Type:	

	

Data	Properties:	

	

	

Table 12 shows the details of the database related to the item of evidence in Table 8. We recorded 

the description, sample size and method of collecting the dataset.  

RixenEtAl2005 

Source 

Publication 

hasPMID 16277731 

hasRefDetails “D. Rixen and 

J. H. Siegel, Critical Care, 

vol. 9, no. 5, p. 441, 2005 

…” 

SearchStrategy 

Evidence 
hasSource ZanePerkins 

SupportingEvidence 

statement “… relevant 

publications were 

identified by an electronic 

search of the EMBASE and 

PUBMED database using 

combinations of the 

terms……” 
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Table 12 Data Source 

	

Type:	

	

Data	Properties:	

	

	

3.4 Completeness Queries using SPARQL Query Language 

The parts of a clinical BN that lack evidence may be interesting to clinicians who review the BN. 

Therefore, an efficient way of assessing the completeness of evidence can be a useful feature for the 

evidence framework. SPARQL is a query language that can retrieve the data stored in an OWL 

ontology. In this section, we show several SPARQL queries to find the BN elements that have or lack 

evidence. It is beyond the focus of this paper to give a comprehensive description of SPARQL, a 

thorough introduction is given by Allemang & Hendler (2010). 

The simplest form of query in SPARQL is the SELECT query, which extracts the data from the 

ontology and presents them in a table format. The SELECT query is followed by the WHERE block 

that limits the query by a question pattern. The DISTINCT keyword to filters out the duplicate results 

from the edges that have multiple items of evidence.  For example, we can get the list of the edges 

that have supporting evidence by using the following query: 

SELECT DISTINCT ?x 

  WHERE { ?x a :Edge. 

     ?x :hasSupportingEvidence ?evidence. } 

 

The BN elements without evidence can be retrieved by using the MINUS keyword within the 

WHERE construct. The UNSAID keyword can be used as an alternative to MINUS keyword in 

SPARQL 1.1. The following SPARQL query can be used to find the edges that do not have 

supporting evidence. 

RLHDataset 

Source 

Data 

datasetInfo “A dataset of 

600 patients who were 

treated at the…” 

dataCollection “Prospective 

Observational” 

sampleSize 600 
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SELECT DISTINCT ?x 

 WHERE { ?x a :Edge. 

    MINUS { ?x :hasSupportingEvidence ?evidence . }} 

The BN elements that are not covered by any fragment can also be retrieved by using the MINUS 

keyword. The following SPARQL query shows the nodes that are not covered by any fragment. 

SELECT DISTINCT ?x 

 WHERE { ?x a :Node. 

    MINUS { ?fragment :contains ?x . }} 

4 Browsing Evidence 

The evidence ontology is well suited for organising and querying evidence but it is not a 

convenient tool for browsing evidence especially when the user is not proficient with the ontology 

language. Therefore, our ontology framework automatically prepares a web page (HTML files) for 

browsing evidence after the data is entered to the evidence ontology (a Protégé OWL file). 

The web page generator is not specific to a particular BN; it can generate a web page for any BN 

model given that evidence is entered to Protégé OWL using the structure presented in Section 3.2. In 

the remainder of this section, we use the complete version of the ATC BN (ATC BN 2015; Yet et al., 

2014a) as a case study to demonstrate a web page generated from the evidence ontology. We call this 

web page the evidence browser for the ATC BN (ATCBN 2015). An instantiation of the evidence 

browser for the Asia BN is also available in (Yet and Marsh 2015). 
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Figure 11 ATC BN fragment shown in the Evidence Browser 

The ATC BN has 7 fragments in total (see Figure 11): 

• The entire BN structure (‘ATCBN’) 

• The mortality, injury, coagulopathy and shock fragments.  

• Two measurement idioms that models the relation between the latent variables and their 

measurements (‘ShockMeasurements’ and ‘ATCMeasurements’). These measurement idiom 

fragments exist within the shock and coagulopathy fragments. 

Figure 11 is the presentation of the ATC BN fragment – the entire BN structure – in the evidence 

browser. The link to the development methodology of the model and the description of the search 

strategy used for identifying relevant published evidence is shown at this page. This page also 

contains the links to the fragments and variables within the ATC BN. Figure 12 shows the 

presentation of the Hypoperfusion variable in the evidence browser. The browser shows the 
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description of the variable, its states and relevant evidence. In this example, there is evidence of 

excluded child variables of this variable. The ‘Hypoperfusion ↛ Respiratory Rate’ item shows that the 

degree of Hypoperfusion can be also be measured with other markers that are not included in the ATC 

BN. These markers could be added as a child of the hypoperfusion variable. The reason for not 

including these variables is also described.  

 

Figure 12 Hypoperfusion variable shown in the evidence browser 

A link to the conditional probability distribution (HypoNPT) of the hypoperfusion variable is also 

shown in Figure 12. When the user clicks to this link, the parameters of this conditional probability 

distribution are shown (see Figure 13). The evidence supporting the definition of the states and 

parameters of these variables is also shown in this page. 

The variables that are directly related to the hypoperfusion variable, as its child or parent, are also 

listed in Figure 12. Each variable in this list is linked to a page showing the evidence about the 
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relation. For example, when the user clicks to the Hypoperfusion ⟶  ATC link in the ‘relations’ 

section in Figure 12, the evidence related to this relation is shown (see Figure 14). 

 

Figure 13 Conditional Probability Distribution of Hypoperfusion shown in Evidence-Browser 

There are 4 items of evidence relevant to the Hypoperfusion ⟶  ATC relation (see Figure 14). 

The user can click any of the references in Figure 14 to examine the source of the evidence 

statements.  For example, if the user clicks to ‘BrohiEtAl2007a’, the browser shows the details of this 

publication by connecting to the PubMed database (see Figure 15). The browser uses the PMID stored 

in the evidence ontology to find the publication in the PubMed database. If the source is a domain 

expert or a dataset, the browser shows the related information such as the institution and credentials of 

the expert or the description of the dataset. 
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Figure 14 Relation between Hypoperfusion and ATC shown in the Evidence Browser 

 

Figure 15 A Referred Publication shown in the Evidence Browser 
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5 Qualitative Evaluation 

We conducted a qualitative evaluation session to examine the opinions of clinicians about the 

practical use and potential contributions of the evidence framework. The aims of this session were to 

examine 1) a clinician’s confidence in using models with clear and understandable evidence-base 2) 

the practical usefulness of the evidence framework. In the remainder of this section we describe the 

methodology and results of the qualitative evaluation session. 

5.1 Methodology 

The evaluation session took place in the Royal London Hospital, UK.  Since the ATC BN is 

designed to be used at early stages of trauma care, the potential users of the model have different 

clinical specialties. The evaluation session was purposely conducted at a regular trauma meeting 

where clinicians from a wide variety of specialties attend. The clinicians, who were involved in 

development of the ATC BN, did not participate in this session. The total duration of the trauma 

meeting was 1 hour. The session was composed of two parts, each part lasted 30 minutes. In the first 

part, we presented a tutorial about BN models, and illustrated the main differences between an 

evidence-based BN model and other commonly used modelling approaches such as regression 

models. This was followed by a demonstration of the evidence browser using the ATC BN as a case 

study. We showed the items of evidence supporting different parts of the ATC BN using the online 

browser. The evidence framework was available online during the session, and the website address 

was given to the participants in case they would like to test the use of the framework. One-to-one 

tutorials were not given due to time limitation. In the second part, we collected qualitative data by 

using a questionnaire composed of 18 multiple-choice questions. Each question had a statement and a 

5 level agreement scale, ranging from 1 “strongly disagree” to 5 “strongly agree”. Participants marked 

the scale representing their degree of agreement with the corresponding statement. Figure 16 shows an 

example question. There was also one open-ended question for participants to comment and give 

suggestions for improving the evidence framework. We stayed with the participants to clarify any 

unclear points while they answered the questionnaire. Participants were asked to specify their clinical 
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specialisation and invited to leave their email addresses in case they were interested in participating 

further evaluations.  

Questionnaire	Item	

Scale	
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The	evidence	framework	could	be	used	in	practice.	 1	 2	 3	 4	 5	

Figure 16 A sample statement from the questionnaire 

5.2 Results 

Sixteen participants attended the evaluation session, 15 of 16 (94%) participants answered all 18 

questions and 1 (6%) participant answered 13 of 18 (72%) questions. Of the participants, 15 (94%) 

participants were clinicians and 1 (6%) was an occupational therapist doing research on trauma 

models and outcomes. Among the participating clinicians, 5 (33%) were emergency medicine 

specialists, 5 (33%) were anaesthesia specialists, 2 (13%) were general surgeons, 1 (6%) was a trauma 

surgeon, and 1 (6%) was an orthopaedic surgeon. These specialties are considered to be the primary 

users of the ATC BN. 

Both clarity of supporting evidence and published predictive accuracy was considered to be 

essential factors for practical use of a prognostic model. All participants indicated that they prefer 

models that make sense clinically and are compatible with the best available evidence. Similarly, all 

participants indicated that they are more likely to use models that have high predictive performance. 

A way to review the evidence-base of a model is also seen as an attractive feature. All participants 

agree that a way to review the evidence-base of a prognostic model is needed, and over 80% of them 

think that a way to suggest modifications following new evidence would be useful. Figure 16 shows 

the mean and standard deviation of the response for these questions as black points and errors bars 

respectively.  
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Figure 17. Questionnaire response relevant to individual importance of different factors 

Since the questions about performance and clarity of evidence may be leading when asked 

individually, we assessed the relative importance of these factors to each other. We asked whether 

accuracy would be an important factor for clinical use when evidence-base is not clear or, in other 

words, the model is developed by a ‘black-box’ approach. In this case, the majority of the participants 

(75%) indicated that they are not likely to use such models in practice even when its published 

performance is good. Moreover, 85% of the participants indicated that they are not likely to models 

with high predictive performance if they contain variables that are not aligned with the best available 

clinical evidence. In other words, predictive accuracy alone is not enough for the majority of the 

clinicians to use a model especially if its evidence-base is not clear (see Figure 17).  

 

Figure 18 Questionnaire response relevant to individual and relative importance of predictive accuracy 

Finally, the evidence framework was considered to be a useful and practical tool for clinical 

models. Over 85% of the participants indicated that our evidence framework improves the current 

practice in prognostic models, and over 90% thinks that this tool could be used in practice.  
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6 Related Work 

Several other frameworks have been proposed to describe knowledge behind a BN model. Antal 

et al. (2001) initially propose annotated BNs as a tool to describe background knowledge for each 

node, edge, state and fragment of BNs. However, the structure of annotated BNs is not described in 

detail by Antal et al. (2001). In a following paper, Antal et al. (2004) simplify annotated BNs and 

define it as “a directed, acyclic graph whose nodes are annotated with local probabilistic models (as in 

standard Bayesian networks) and with textual attributes”. In other words, they use annotations for 

only variables. They primarily use annotated BNs for automated learning of BNs from textual 

information in medical literature (Antal et al., 2004). Helsper and van Der Gaag (2007) use ontologies 

to clarify the elicited knowledge used for building a BN. They use a semi-formal ontology language 

that includes tables, figures and natural language descriptions. Their ontology documents expert 

knowledge from static, dynamic and definitional perspectives. Causal and temporal relations are 

described using Rieger and Grinberg's representation (1977). Helsper and van der Gaag (2002) also 

propose a methodology to derive a BN structure from this ontology however the method was not used 

to develop the model in their case-study since the ontology is prepared retrospectively from an 

existing BN. Van der Gaag and Tabachneck-Schijf (2010) extend Helsper and van Der Gaag's 

ontology framework (2007) for describing BNs that are built for similar tasks. 

Both Helsper and van Der Gaag's ontologies (2007) and Antal et al.’s annotated BNs (2001) aim 

to clarify knowledge behind BNs but these frameworks do not aim to show the link between the 

model and evidence. Helsper and van Der Gaag (2007) focus on describing knowledge elicited from 

experts in more detail. For example, their ontology has numerous types of causal and temporal 

relations that can distinguish between continuous and one-shot causal events. However, Helsper and 

van der Gaag do not show the link between the model and evidence. Knowledge for their ontology is 

elicited from experts. Evidence from publications or conflicting expert opinions is not shown. 

Although the aims of the initial version of annotated BNs (Antal et al., 2001) are similar to our 

evidence framework, it lacks the structure to store information about the type and source of evidence, 

and excluded factors. These features are crucial for clarity and completeness of evidence. Moreover 
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the structure of the initial version is not described thoroughly in the paper. The final version of 

annotated BNs (Antal et al., 2004) can only store textual information relevant to variables as it is 

primarily designed to learn BN structure from textual information. The information relevant to edges 

or fragments is not supported. Several studies have developed methodologies to use existing 

ontologies for automated construction of BNs. Devitt et al. (2006) propose a methodology for 

automated construction of a BN from ontologies in the telecommunication networks domain. In this 

method, an ontology specific to the BN is derived from a more general ontology, and the BN is 

automatically generated from the specific ontology. Similarly, Sadeghi et al. (2005) build an ontology 

that is more specific to the problem domain using the concepts from the unified medical language 

system (UMLS) (Bodenreider, 2004) and they learn a BN based on this specific ontology. UMLS is a 

complex medical terminology system but it lacks information about the causal relations between 

clinical factors. Ishak et al. (2011) presents a set of rules that transform an ontology into a preliminary 

OOBN structure. Bucci et al. (2011) uses ontologies to build BNs on a predefined hierarchical 

structure in medical diagnosis domain. Fenz (2012) uses a semi-automated methodology to generate 

BNs from ontologies. In their methodology, the experts review an ontology and identify the nodes and 

states of a BN using the classes and individuals in the ontology. Afterwards they identify the edges in 

the BN using the object properties in the ontology. Fenz proposes a technique that uses the weights 

defined in the ontology to parameterise conditional probability tables in a similar approach to the 

parameterisation of ranked nodes (Fenton et al., 2007). An evidence-based BN requires justification 

for the relations modelled in the BN. Each edge in the BN should be supported with clinical studies, 

expert opinion or data. Many clinical ontologies are defined as clinical terminologies therefore they 

do not contain detailed information about causal and associational relations, and about medical 

publications and datasets relevant to those relations. Therefore, the reviewed studies about automated 

BN construction from ontologies are not aligned with the aims of our evidence framework. 

Another active field of research that combines probabilistic models and ontologies focuses on 

extending ontologies with BNs and similar probabilistic models to represent uncertain knowledge in 

an ontology. Studies in this field use probabilistic models as a supporting reasoning mechanism for 
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the ontology. Ding and Peng (2004) propose additional mark-ups to OWL to represent probabilistic 

information. They present a set of rules that transforms an ontology into a BN. Similarly, Yang and 

Calmet (2005) present a BN extension to OWL that is also able to cope with multinomial variables. 

Costa et al. (2008) extend OWL to express uncertainty using multi entity BNs (Laskey and Costa, 

2005) which is a combination of first-order logic and Bayesian reasoning. Kuo et al. (2013) builds 

BNs on ontologies to reason with undefined properties. Richardson and Domingos (2006) combines 

first-order logic and probabilistic models in Markov Logic Networks to represent uncertain 

knowledge. Zheng et al. (2008) propose mark-ups to transform an ontology representing clinical 

concepts into a BN. The aims of these studies are different from the aims of our evidence framework. 

These studies extend ontology languages, such as OWL, so that the ontologies are able to cope with 

uncertainties about class membership, object properties and their other features. The evidence 

framework uses the ontology as a complementary tool to clarify knowledge and evidence behind a 

decision support model, and it does not require the ontology to deal with uncertainty. 

7 Conclusion 

This paper proposed an evidence framework that complements clinical BNs by representing 

relevant clinical evidence and knowledge. The proposed framework is composed of two parts: an 

ontology that organises evidence relevant to different elements of a BN, and a browser that presents 

the BN and evidence to clinicians. To illustrate the evidence framework, we used a BN that was 

previously developed to predict a potentially fatal physiological disorder called ATC. We also 

conducted a qualitative validation session with 16 clinical consultants, registrars and researchers to 

examine the practical usefulness of evidence-based BN models and our evidence framework.  

Our evidence framework is able to organise and present clinical evidence with more detail than it 

is possible with the existing BN representation or previously proposed annotation techniques. The 

evidence framework can store various types of evidence including evidence supporting or conflicting 

with the BN, as well as evidence justifying the exclusion of variables and relations from the BN. 

Although the evidence is stored within a complicated ontology structure, users can browse the 
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evidence in a web page that is automatically generated from the ontology, without dealing with any of 

the underlying technical details. 

All clinicians who participated to our qualitative evaluation session indicated that clarity of 

evidence is an essential factor for the clinical use of prognostic models. Over 85% of the clinicians 

found the evidence framework a useful contribution to the current practice in prognostic models, and 

over 90% stated that it could be used in practice. As a next step, we plan to make a more 

comprehensive evaluation of the evidence framework that includes tutorials and interviews with a 

larger number of participants. 

As further research, the evidence framework could be expanded to receive comments and 

suggestions from clinicians browsing the BN. A tool for auditing evidence using SPARQL could be 

implemented in the website generated from the ontology. This would allow clinicians from different 

institutions to criticise the model and suggest modifications based on clinical evidence. The evidence 

framework could be extended to show the strengths of evidence according to the existing evidence 

hierarchies (Harbour and Miller, 2001).   

The evidence ontology could be proposed as a standardised format for recording BN models.  

Another option could be to extend the currently available XML formats for representing predictive 

models, such as XMLBIF (Cozman, 1998), ProbModelXML (Arias et al., 2012) and PMML 

(Guazzelli et al., 2009), to include information about evidence using the structure presented in this 

paper. The evidence-framework could also be extended to be compatible with graphical models that 

has bidirectional or unidirectional edges such as maximal ancestral graphs (Richardson and Spirtes 

2002) or structural equation models (Pearl 2000). Such extension would offer a more flexible 

modelling tool for expert-driven models as the difference between causal and associational relations, 

and the confounding variables could be explicitly modelled. 

Although clarity of evidence-base offer a potential to improve practical use of prognostic models, 

several other technological barriers need to be addressed to make prognostic models a part of daily 

clinical practice. In a recent systematic review about the impact of clinical decision support systems 

(CDSS), Jaspers et al. (Jaspers et al., 2011) shows that the time and effort spent for data-entry should 
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be minimised in order to increase the practical adoption of CDSS. In a similar review, Kawamoto et 

al. (Kawamoto et al., 2005) shows that CDSS should be integrated into clinical workflow and provide 

decision support at the time and location of decision making. Both of these factors could be achieved 

by integrating prognostic models into relevant clinical devices so that prognostic models could 

automatically extract the necessary input data from the clinical device and provide real-time 

predictions to clinicians. 
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