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Abstract 

Adoption of Artificial Intelligence (AI) algorithms into the clinical realm will depend on their inherent 

trustworthiness, which is built not only by robust validation studies but is also deeply linked to the 

explainability and interpretability of the algorithms. Most validation studies for medical imaging AI 

report performance of algorithms on study-level labels and lay little emphasis on measuring the 

accuracy of explanations generated by these algorithms in the form of heat maps or bounding boxes, 

especially in true positive cases. We propose a new metric – Explainability Failure Ratio (EFR) – 

derived from Clinical Explainability Failure (CEF) to address this gap in AI evaluation. We define an 

Explainability Failure as a case where the classification generated by an AI algorithm matches with 

study-level ground truth but the explanation output generated by the algorithm is inadequate to 

explain the algorithms output. We measured EFR for two algorithms that automatically detect 

consolidation on chest X-rays to determine the applicability of the metric and observed a lower EFR 

for the model that had lower sensitivity for identifying consolidation on chest X-rays, implying that 

trustworthiness of a model should be determined not only by routine statistical metrics but also by 

novel ‘clinically-oriented’ models. 

Introduction 

While there is no doubt that automated diagnosis of pathologies on medical imaging studies using 

Artificial Intelligence (AI) algorithms will assist physicians in several ways – such as triaging, screening 

and even reporting of cases – the informed adoption of such algorithms relies inherently on their 

‘trustworthiness’. Given the so-called ‘black box’ nature of such algorithms, this trust is built not only 

by conducting robust validation studies but is also deeply tied to the explainability and 

interpretability of the algorithm’s output.   

Classification algorithms for medical imaging are the most common form of AI algorithms found in 

the clinical and research domain, and the most common validation metric for reporting the 

performance of classification algorithms is the Area Under Receiver Operating Curve (AU-ROC), even 

though its fallacies have been extensively reported(1). Most validation studies on the use of 

classification algorithms for medical imaging report the performance of the algorithm using image-

level or study-level labels, the so-called ground truth (GT)(2). Very few studies on such algorithms 

report the performance of algorithms on pixel-level or bounding-box labels(3), since such labels are 

typically reserved for segmentation or lesion detection algorithms.   

One potential flaw with studies reporting the performance of classification algorithms is the 

underlying assumption that in cases where algorithmic output and ground truth match, the 

reasoning (or explanation) behind the algorithmic output and ground truth are also the same. We 

test this assumption and define a novel metric – Explainability Failure Ratio. 
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Results and Discussion 
We define an Explainability Failure as a case where the classification generated by an AI algorithm, 

for the presence or absence of a pathology, matches with study-level ground truth but the 

explanation output generated by the algorithm is inadequate to explain the algorithms output.  

There are two sequential tests for an Explainability Failure. In the first test, the algorithm fails to 

localise the pathology correctly and instead localises some other feature on the image. This can be 

ascertained by comparing the algorithm’s output to bounding boxes or pixel level annotations 

created by radiologists. Subsequently, we move to the second test, where there is no logical 

reasoning for failure in the first test that a domain expert can determine. Hence, an Explainability 

Failure is an instance where even though at study-level a case may be classified as a true positive, 

there is no discernible explanation for the same. This logical reasoning analysis should include both 

deductive (finding observations to prove the explanation) & inductive (seeking explanations from 

the observations) reasoning by a domain expert following the principles of alternative hypothesis. 

We have documented this approach in our previous work, where we reported the performance of a 

domain expert’s logical reasoning analysis to understand the outputs of a lung nodule 

characterization algorithm(4). 

The importance of this sequential two-test approach is best highlighted with an example. Consider a 

validation study of two hypothetical algorithms that can classify brain MRIs into normals and those 

with infarcts. The ground truth contains pixel level annotations of infarcted areas drawn by 

radiologists. Heat maps generated by the first algorithm localise the classification output to infarcted 

areas, whereas maps from the second model localise to an occluded blood vessel. A pure 

comparison based on localisation of the infarcted area would imply that the second model’s output 

is an explainability failure, but an expert who tries to reason through the output would infer that the 

algorithm is in fact localising the occluded blood vessel and hence, is not an explainability failure. On 

the other hand, had the algorithm not offered a logical reason for its “correctness”, the case would 

be dubbed an Explainability Failure. 

The proposed ability of deep learning algorithms to identify features too subtle or undetectable for 

the human eyes to see throws  up a dilemma – is it right to determine the appropriateness of the 

explanation of the of an algorithm based on features that are visible only to humans? Examples of 

such algorithms include those that predict the occurrence of breast cancer and dementia years 

before they become visible to radiologists on medical images(5,6), and those involved in image 

reconstruction from raw data. Recognizing this possibility, we call these failures “Clinical” 

Explainability Failures (CEFs) since the benchmark for explainability of the algorithms is rooted in 

clinical knowledge and science. The ratio of the number of CEFs to the total number of true positives 

in a test dataset can give an indication of the prevalence of such failures and can hence be dubbed 

the Explainability Failure Ratio (EFR). 

In a recent study that evaluated the trustworthiness of saliency maps for localizing abnormalities in 

X-rays, the authors have used localization and explainability interchangeably(7).  We believe it is 

important to make a distinction between explainability & localization especially if the classification 

or characterisation of a detected object (or lesion, in medical imaging) is not possible without the 

knowledge of its environment. A dense lesion in the lungs can sometimes be difficult for a radiologist 

to differentiate from collapse (atelectasis) & consolidation by just localizing the lesion itself. Their 

interpretation may depend on ancillary findings like tracheal shift and volume loss, which help drive 

the decision towards a specific class. Similarly, there is a possibility that neural networks are 

identifying patterns correlated with a pathology class that may not be inherently apparent to human 
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readers. The saliency maps generated might be highlighting patterns and associations learnt from 

the training data which might not localize to the lesion itself. 

Methods - Evaluation 

Models 
We considered two different chest X-ray classification models for this evaluation – a pneumonia 

detection algorithm developed by Cadrin-Chênevert et al(8) and an open-sourced re-

implementation of Stanford’s baseline X-Ray classification model (Modified_CheXNeXt or 

M.CheXNeXt). 

Pneumonia Detection & Classification 
The pneumonia detection algorithm consists of 2 pipelines to detect and classify lung opacities on 

any frontal chest X-ray. The detection pipeline consists of an ensemble of 5 models trained using R-

FCN, Relation Network, and RetinaNet on the various resolutions of images. It outputs bounding 

boxes on located lung opacities with confidence greater than 0.3 by default. The classification 

pipeline classifies a frontal chest X-ray into pneumonia and non-pneumonia.  

M.CheXNeXt 
The M.CheXNeXt model is an open-sourced re-implementation of Stanford’s baseline X-Ray 

classification model which uses DenseNet121 as its backbone architecture. It classifies any X-ray 

(Frontal or Lateral) into 14 different classes. The model was trained with the same configuration as 

described in the CheXNeXt article(9). It also provides heat maps corresponding to each class to 

indicate the confidence of the detected disease using guided GRAD-CAM(10).  

Evaluation 

Dataset 
To evaluate the applicability of the metric, a comparative evaluation of the two models described 

above was performed on a dataset containing 611 frontal chest X-ray studies with study-level 

Ground-Truth (GT) created by a radiologist with 10 years’ experience of thoracic radiology. The 

dataset contained 189 (30.9%) normal X-rays, 157 (25.7%) with consolidation and 265 (43.4%) with 

other pathologies. Images with consolidation had additional bounding box GT to localise the 

pathology on each such image.  

Clinical Explainability Failure Evaluation 
The outputs generated by the two models on the dataset above were first compared to the image-

level GT for consolidation at the model output threshold with highest Mathew’s Correlation 

Coefficient(11). Subsequently, true positive cases were subjected to the two tests for explainability 

failures described before, by comparing the localisation output generated by the models to the 

bounding box GT by the radiologist. To compare the outputs of the two models, the localisation 

outputs generated by the M.CheXNeXt model were converted to bounding boxes in a way such that 

the bounding box covers the heat map completely. 

Estimation of Localisation Accuracy 
Two common metrics for estimating the accuracy of localisation algorithms are DICE Score and 

Jaccard Index (7). When these metrics are reported in aggregate, they tend to normalise the failures 

of individual instances – a significant drawback when clinically validating a localisation algorithm. An 

additional problem is faced when there is a mismatch between the number of ‘locations’ produced 

by an algorithm and pixel-level expert annotations. Hence, we applied a different approach by 

creating a greedy matching algorithm that picks each bounding box GT annotation for each true 
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positive case and matches it to the nearest overlapping model generated bounding box on the X-ray 

image. A match is considered positive when the bounding box GT overlaps with one of the top three 

(as per their probability scores) model-generated bounding box. If one or many model-generated 

bounding boxes are completely enclosed within a single GT bounding box, or vice-versa, a perfect 

match is considered. Once this matching process is completed, cases with unmatched GT bounding 

boxes were evaluated by a radiologist for logical reasoning analysis. Upon failing in the logical 

reasoning process, the case was labelled as a CEF and the model’s EFR calculated. 

Results 
The Pneumonia Detection & Classification algorithm had a sensitivity of 57% at a threshold of 0.28 

correctly classifying 90 of the 157 cases with consolidation. Of these 90 cases only 2 cases of CEF 

were observed giving an EFR of 2.2%. M.CheXNeXt had a sensitivity of 76% at a threshold of 0.06 

correctly classifying 120 of the 157 cases with consolidation. Of these 120 cases, 16 CEFs were 

observed yielding an EFR of 13.3%. Figure 1 shows the complete workflow for performing a CEF 

analysis, along with examples of CEFs from our study. All the images, along with their model 

generated and radiologist-generated bounding boxes are available at this link. 

From these results we can infer that even though the Pneumonia Detection & Classification 

algorithm had a lower sensitivity than M.CheXNeXt, its Explainability Failure Ratio was significantly 

lower, and can hence postulate that the Pneumonia Detection algorithm is the more explainable of 

the two.  

Conclusion  
Standard statistical metrics do not capture this ‘clinical’ nuance, missing out on which can have 

potentially dangerous consequences. It is critical to not only know ‘why’ a machine learning or deep 

learning model is giving a particular output, but also to concretely determine whether it was logical 

in its ‘reasoning’. It would be prudent for all studies reporting the performance of a classification 

algorithm to report such failures – such failures can provide  important insights into the 

trustworthiness of an algorithm especially since, by definition, these cases are a subset of true 

positives and, in our experience, true positives are the most ignored part of a validation study. While 

our previous work on algorithmic auditing recommended diving deep into false positive and false 

negative cases(12), we now additionally recommend diving deep into true positives. True positive 

cases are generally celebrated as a success of such models – we demonstrate that in a significant 

number of such cases, the rationale behind the model’s output is unfathomable to human experts, 

and apparently incorrect. 
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Figure 1 – Clinical Explainability Failure Analysis 
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