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Abstract 

Background:  Myotonic dystrophy type 1 (DM1) is an incurable multisystem disease caused by a CTG-repeat expan-
sion in the DM1 protein kinase (DMPK) gene. The OPTIMISTIC clinical trial demonstrated positive and heterogenous 
effects of cognitive behavioral therapy (CBT) on the capacity for activity and social participations in DM1 patients. 
Through a process of reverse engineering, this study aims to identify druggable molecular biomarkers associated with 
the clinical improvement in the OPTIMISTIC cohort.

Methods:  Based on full blood samples collected during OPTIMISTIC, we performed paired mRNA sequencing for 
27 patients before and after the CBT intervention. Linear mixed effect models were used to identify biomarkers 
associated with the disease-causing CTG expansion and the mean clinical improvement across all clinical outcome 
measures.

Results:  We identified 608 genes for which their expression was significantly associated with the CTG-repeat expan-
sion, as well as 1176 genes significantly associated with the average clinical response towards the intervention. 
Remarkably, all 97 genes associated with both returned to more normal levels in patients who benefited the most 
from CBT. This main finding has been replicated based on an external dataset of mRNA data of DM1 patients and 
controls, singling these genes out as candidate biomarkers for therapy response. Among these candidate genes were 
DNAJB12, HDAC5, and TRIM8, each belonging to a protein family that is being studied in the context of neurologi-
cal disorders or muscular dystrophies. Across the different gene sets, gene pathway enrichment analysis revealed 
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Background
Myotonic dystrophy type 1 (DM1) is a neuromuscular 
disease with a worldwide average prevalence of around 1 
in 8000 people and a high unmet clinical need [1]. DM1 
is considered the most frequently occurring adult-onset 
form of muscular dystrophy. This degenerative multisys-
tem disease is characterized by a wide range of symptoms 
including myotonia, muscle weakness and dystrophy, 
fatigue, apathy, cataracts, obesity, and insulin resistance. 
Next to a severe decrease of life quality, DM1 patients 
suffer from a reduced life expectancy mostly due to prob-
lems with cardiac and respiratory function. Currently, no 
curative therapy exists.

DM1 is caused by the expansion of a CTG trinucleo-
tide microsatellite repeat in the 3′ UTR of the DM1 pro-
tein kinase (DMPK) gene [2–4]. Unaffected individuals 
carry up to approximately 37 CTG triplets in DMPK, 
while in DM1 patients this ranges from 50 to even a few 
thousand repetitions. Depending on the inherited repeat 
length, DM1 can become manifest at birth or early in 
life but more frequently becomes apparent in adulthood 
[1]. In general, the disease manifestation is earlier and 
more severe with longer repeat expansions. Interruption 
of the CTG repeat by variants such as CCG or CGG is 
associated with milder symptoms [5]. The expanded CTG 
repeat is thought to cause disease mainly via an mRNA 
gain-of-function mechanism, in which aberrant hair-
pin structures formed by long CUG repeats are central 
[6–9]. Directly or indirectly, these hairpin structures dys-
regulate the function of RNA binding proteins from the 
muscleblind-like (MBNL) and CUGBP Elav-like (CELF) 
families, leading to widespread disturbed RNA process-
ing and consequently altered functions of various pro-
teins [10–12]. Although proven to be the disease-causing 
mutation, clinical symptoms of DM1 are only moderately 
associated with the CTG repeat or the dysregulation of 
specific proteins which suggests an involvement of other 
mechanisms in symptom expression [13–16].

While there are many promising therapeutic oligo-
nucleotides, small molecule drugs, and gene thera-
pies in the (pre) clinical pipeline for some of the signs 
and symptoms of DM1, none is expected to reach 

widespread clinical application soon. Physical training 
and increasing activity are currently being applied to 
relieve DM1 symptoms with marked improvements in 
relatively mildly affected DM1 patients [17, 18], which 
has furthermore shown to induce biochemical responses 
in DM1 mouse models [19, 20].

The to-date largest clinical trial in DM1 was OPTIMIS-
TIC: Observational Prolonged Trial In Myotonic dystro-
phy type 1 to Improve Quality of Life-Standards, a Target 
Identification Collaboration [18]. The OPTIMISTIC clin-
ical trial included over 250 well-characterized DM1 
patients from four centers in Europe, where the effects of 
cognitive behavioral therapy (CBT) and optional graded 
exercise therapy were closely monitored over 16 months 
via more than twenty outcome measures. Notably, the 
CBT intervention was tailored towards the specific 
needs of the patient in a shared decision-making process 
between the patient and the psychotherapist, allowing for 
a personalized intervention. The trial has shown signifi-
cant, yet heterogenous improvements for various signs 
and symptoms, as well as the capacity for social activity 
and participation in DM1 [21].

Here, we set out to find molecular profiles associ-
ated with the disease-causing CTG repeat and therapy 
response based on full blood mRNA sequencing before 
and after the CBT intervention of 27 patients from the 
OPTIMISTIC cohort. Given the accessibility of periph-
eral blood, it has increasingly been used for the success-
ful identification of disease biomarkers for a variety of 
neurological and psychiatric disorders such as Duchenne 
muscular dystrophy (DMD), Huntington’s disease, major 
depressive disorder, and DM1 [22–25]. Furthermore, the 
multisystem nature of DM1 is known to be reflected by 
various laboratory abnormalities of blood samples, sup-
porting the relevance of peripheral blood for the identifi-
cation of disease-relevant information [26]. We analyzed 
gene expression levels as a function of CTG repeat size 
(as a proxy for disease load/severity) and of the therapy 
response. Next, we combined these findings and com-
pared the results to various previously published data-
sets. We were able to identify 608 genes significantly 
associated with the CTG repeat and further illustrate that 

disease-relevant impaired signaling in, among others, insulin-, metabolism-, and immune-related pathways. Further-
more, evidence for shared dysregulations with another neuromuscular disease, Duchenne muscular dystrophy, was 
found, suggesting a partial overlap in blood-based gene dysregulation.

Conclusions:  DM1-relevant disease signatures can be identified on a molecular level in peripheral blood, opening 
new avenues for drug discovery and therapy efficacy assessments.

Keywords:  Myotonic dystrophy type 1, Biomarker, RNA-seq, Peripheral blood, Therapeutic Response, Lifestyle 
intervention
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97 of these genes returned towards more normal expres-
sion levels in clinical CBT responders.

Methods
The cognitive behavioral therapy intervention
Patients of the OPTIMISTIC intervention arm were 
treated with a personalized form of CBT. The customi-
zation of the intervention was based on a selection of 
different treatment modules: regulating sleep-wake pat-
terns, compensating for the reduced patient initiative, 
formulating helpful beliefs about fatigue and myotonic 
dystrophy type 1, optimizing social interactions, and 
coping with pain [18]. The individual module selection 
was made based on a shared decision-making process 

between experienced and specifically trained CBT ther-
apists and patients.

Sample source and patient sampling
Samples and metadata used for this study were all gath-
ered during the OPTIMISTIC clinical trial [18]. At the 
different time points in the trial, blood was drawn and a 
wide range of clinical outcome measures were recorded. 
Figure  1 has been generated to illustrate the heteroge-
neity in changes across all grouped outcome measures, 
with annotation of all individual outcome measures in 
the legend. In order to maximize the generalizability 
of the study findings, the goal of the patient sampling 
was to obtain a balanced subset of the OPTIMISTIC 

Fig. 1  Distribution of changes in outcome measures per patient. Per outcome measure, changes between baseline and 10 months of CBT were 
scaled by the root mean square. Additionally, for some outcome measures, a sign adjustment was performed so that an increased score is always 
associated with improved health status. All outcome measures are shown per patient, where patients were ordered along the y-axis by their change 
in DM1-Activ-c scores (purple squares). Boxes enclose the 25th to 75th percentiles, divided by a thick line that represents the mean compound 
response score. The whiskers represent the lowest/highest value no further than 1.5 times the interquartile range. Quality of life (red): Myotonic 
Dystrophy Health Index, Individualized Neuromuscular Quality of Life Questionnaire, Adult Social Behavioural Questionnaire, Illness Management 
Questionnaire, Checklist individual strength — Subscale activity. Physical assessments (blue): Six-Minute Walk Test, BORG Scale, accelometery 
measures. Fatigue scores (black): Fatigue and Daytime Sleepiness Scale, Checklist Individual Strength — Subscale fatigue, Jacobsen Fatigue 
Catastrophizing Scale. Cognition and other (gray): Trail Making Test, Stroop Color-Word Interference Test, McGill Pain Questionnaire, Beck Depression 
Inventory — Fast Screen, Social Support — Discrepancies and Negative Interactions, Apathy Evaluation Scale — Clinical version, Self-Efficacy Scale 28
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intervention group (n=128). Additionally, by capturing 
the whole range of therapy responses in a continuous 
uniform distribution, as assessed by the primary clinical 
trial outcome DM1-Activ-c [27], strong linear associa-
tions between non-responders and responders could be 
studied. To promote future research, the sampling was 
furthermore done on the most completely character-
ized patients. To achieve this, several filter steps have 
been applied before the random sampling. Patients were 
selected for which the DM1-Activ-c questionnaire results 
were available at each time point (n=104), with less than 
20% missing values for other outcome measures (n=81) 
and without a variant CTG repeat (n=74). Homogeneity 
of baseline disease severity was accounted for by select-
ing patients that were within one interquartile range 
(IQR) of the mean for the baseline variables DM1-Activ-
c, 6MWT, and CTG-repeat length (n=45). One patient 
was excluded because of polypharmacy (n=44). One 
patient was excluded because of a drop of 57 points of the 
DM1-Activ-c score between the baseline and 5-month 
assessments with a subsequent increase of 55 points 
between the 5- and 10-month assessments (n=43).

The distribution of these 43 patients over the clinical 
sites A, B, C, and D was A12, B11, C16, and D4. Therefore, 
all patients from site D were selected. For the remaining 
sites, a stratified random sampling approach was imple-
mented, where patients were randomly sampled from the 
different sites and a maximum of two patients with the 
same change in DM1-Activ-c were selected. This pro-
cess of random selection was repeated until a reasonable 
site and delta-DM1-Activ-c distribution was achieved, 
defined as more than 7 patients for sites A, B, and C, 
resulting in the final selection of 30 patients. Due to the 
unavailability of samples and unsuccessful RNA sequenc-
ing, three patients were later excluded (n=27). The final 
selection featured a site distribution of 5 times center 
A, 8 B, 10 C, 4 D, and 22 unique changes DM1-Activ-c 
scores, with no change in the DM1-Activ-c score being 
present more than twice.

RNA sequencing
Blood drawn during the OPTIMISTIC trial was col-
lected in Tempus tubes and centrally stored at the 
New Castle MRC Centre for Rare & Neuromuscu-
lar Diseases biobank with strict SOPs and tempera-
ture control (−80°C). RNA was locally isolated in 
Nijmegen using the Tempus Spin RNA Isolation Kit 
(Applied Biosystems/Thermo Fisher Scientific) accord-
ing to the manufacturer’s instructions. The concentra-
tion and RNA Integrity Number (RIN) were checked 
using Fragment Analyzer (Thermo Fisher Scien-
tific). The mean RIN value was 8.9 and all were > 7.5. 

Hemoglobin mRNA was depleted using the Globin-
clear kit (Thermo Fisher Scientific). Libraries were 
prepared using NEBNext Ultra II Directional RNA 
Library Prep Kit (Illumina) according to the manufac-
turer’s instructions for a polyA mRNA workflow using 
UMI-indexed adapters. The size distribution (between 
300 and 500 bp) was confirmed using Fragment Ana-
lyzer. A total of 150-bp paired end sequencing was 
performed with a NovaSeq6000 machine (Illumina) 
at a library concentration of 1.1 nM, generating > 30 
M read pairs per sample. All raw sequencing data and 
associated genotype/phenotype/experimental infor-
mation is stored in the European Genome-phenome 
Archive (EGA) under controlled access with Dataset 
ID EGAS00001005830 [28].

RNA‑sequencing primary data analysis
Adapter sequences and low-quality base calls were 
removed from fastq files using cutadapt 3.4 via TrimGa-
lore 0.6.6 at no other default parameters than the --paired 
flag [29]. Trimmed fastq files were mapped to the human 
genome version hg38.95 using STAR 2.7.0 at default 
parameters and --outSAMtype BAM SortedByCoordi-
nate [30]. After indexing using samtools [31] at default 
parameters, PCR duplicates were removed from the bam 
files using umi-tools dedup with the flags --spliced-is-
unique, --paired and --output-stats (Additional file  1: 
Table  S1) [32]. Strandedness was verified via RSeQC’s 
infer_experiment [33]. After indexing the deduplicated 
bam files, reads were counted for overlap with hg38.95 
genes via HTSeq with parameters --format bam --order 
pos and --stranded=yes [34]. EPIC, quanTIseq, and xCell 
algorithms were applied to the count tables to verify 
that the cell type compositions were similar at the two 
time points [35–37]. GATK HaplotypeCaller and Picard 
GenotypeConcordance were used to check the correct 
matching of samples from the same patient [38, 39].

Splice analysis was performed using rMATS v4.1.0 [40] 
via the same gtf as for STAR/HTSeq with the parameters 
and flags: -t paired --readLength 150 --variable-read-
length --novelSS --libType fr-firststrand --statoff.

Comparative DM1 datasets
In order to validate our findings, we obtained several 
external DM1 gene expression datasets of different tissue 
types (tibialis muscle [11, 41], heart [15, 42], brain [12, 
43], and peripheral blood [25, 44]). Additionally, table S5 
from Wang et  al. was directly obtained from the publi-
cation [11]. The dataset EV10 from Signorelli et  al. was 
obtained for the association between gene expression 
(logFC) and body or performance test in DMD patients 
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[22]. To compare DM1 samples to controls, a two-sided 
two-sample Wilcoxon test was performed using row_wil-
coxon_twosample in matrixTests R package on normal-
ized, log-transformed gene counts [45].

Statistical analysis
All statistical analyses were carried out in R [46]. For 
gene expression analysis, firstly, genes with low read 
counts before and after CBT were filtered using edgeR 
filterByExpr with group = before/after CBT and min.
count = 50 [47]. Following, normalized logCPM val-
ues and weights were calculated from the filtered read 
counts with Voom in Limma [48].

To achieve an overarching measure for CBT response, 
first, the changes for each outcome measure were cal-
culated per patient by subtracting the value after 10 
months of CBT from that at baseline. Where applica-
ble, outcome measures were multiplied by −1 in order 
to always associate positive changes with an improved 
health status. Using R base scale, the changes per out-
come measure were then scaled without centering to 
account for the different scales of the outcome measures. 
Finally, for each patient, a “Compound Response” score 
was calculated based on the mean of all scaled outcome 
measures. Individual contributions towards this com-
pound response score were visualized (Fig. 1). L5ENMO, 
the mean activity during rest, was a control parameter in 
OPTIMISTIC and was excluded from this analysis.

We first set out to explore differential gene expres-
sion before and after the CBT intervention. Gene 
expression values from Voom (in logCPM) were sepa-
rately modeled using mixed effect models with before/
after CBT (categorical) as fixed effect and patient 
identity as random effect (1). Gene weights were also 
carried over from Voom. This analysis has been imple-
mented using lme in the lme4-wrapper lmerTest [49, 
50]. lmerTest estimates a p-value for the contribution 
of fixed effects to the model via Satterthwaite’s degrees 
of freedom method. Parameters of the fits were 
extracted with R base summary and p-values were FDR 

corrected via the Benjamini and Hochberg method 
with stats p.adjust [51].

In order to study the cohort heterogeneity of gene 
expression changes, we calculated the logCPM-based 
difference in gene expression between before and after 
the intervention for each patient for the 560 genes sig-
nificantly associated with the CBT predictor of (1) 
(adjusted p < 0.05). Patients and genes with similar 
expression changes were clustered using the R pack-
age heatmap3 based on the complete linkage method 
for hierarchical clustering, with gene expression values 
being centered and scaled per gene [52]. Changes in 
clinical response (DM1-Activ-c, Six-Minute Walk Test 
(6MWT), and compound response) were visualized 
using the corrplot function and added to the heatmap 
[53]. The changes in DM1-Activ-c and 6MWT were 
scaled using R base scale without centering to account 
for the different scales.

Next, using the same methodology as for the CBT 
intervention effect, we set out to explore the associa-
tions of the different clinical outcome measures and 
CTG-repeat length with gene expression. For this pur-
pose, we separately modeled gene expression values 
with either one of the outcome measures or the CTG-
repeat length (at the trial start, (2) as fixed effect and 
patient identity as random effect. The categorical CBT 
covariate (before/after) was included for each fit to cor-
rect for differences between the two time points.

Analogous to the methodology described for the 
CTG-repeat association analyses, genes associated with 
overarching clinical response were identified by fit-
ting separate mixed effect models for each gene with 
the two fixed effects CBT (categorical) and compound 
response, as well as patient identity as random effect 
(3). Notably, the compound response variable has only 
been fitted for gene expression after the CBT interven-
tion (zero at baseline). As such, the compound response 
predictor reflects the difference between the two time 
points that can be attributed towards therapy respon-
siveness, while accounting for non-therapy-specific dif-
ferences by including the categorical CBT predictor.

Potential biomarker candidates were discovered by 
intersecting the genes significantly associated with the 

(1)
Gene expression = CBT (0/1)+ (1|Patient), gene weights

(2)
Gene expression = CBT (0/1)+ CTG_repeat ∗ +(1|Patient), gene weights

∗ Same repeat length fitted for both T0 and T10M

(3)
Gene expression = CBT (0/1)+ Compound_Response(0/cont.) ∗ +(1|Patient), gene weights

∗ Compound_Response is zero at T0 and continuous at T10M



Page 6 of 17van Cruchten et al. BMC Medicine          (2022) 20:395 

CTG_repeat predictor from model (2) and the Com-
pound_Response predictor from model (3). Pearson cor-
relation coefficients and the associated nominal p-values 
were calculated between the change in gene expression 
and the change in clinical score (compound response, 
delta-DM1-Activ-c) for these potential biomarkers using 
the corr.test function of the R package “psych” [54].

For the splicing analysis, the PSI values for splice exclu-
sion (SE) events were extracted from the rMATS out-
put and fitted in linear models similar to those for gene 
expression. Splice events were filtered by excluding exons 
from the analysis with less than three mapping reads and 
one junction spanning read in at least 14 samples.

The R package ggplot2 was used for representation in 
volcano and scatter plots [55]. The R package VennDia-
gram was used to generate the Venn diagram [56].

Gene set enrichment analysis
Gene set enrichment analyses have been independently 
implemented for the gene sets associated with CBT, 
CTG-repeat length, compound response scores, and 
the genes significantly associated with both CTG-repeat 
length and compound response using gProfiler [57]. For 
the CBT, CTG-repeat length, and compound response-
associated genes, the 500 genes with the lowest nomi-
nal p-values were ordered (decreasing) based on their 
absolute regression coefficients. Subsequent enrichment 
analyses were implemented using the R client of gPro-
filer with the parameter orderd_querey = TRUE against 
a custom background of 10,292 genes expressed in our 
samples. Multiple testing correction was based on the 
default setting “g_SCS.” We tested for enrichment (one-
sided) pathways within the WikiPathway database. The 
gene set associated with both CTG-repeat length and 
compound response was based on an FDR threshold of 
10% for the respective regression coefficients, resulting 
in a gene set of 311 genes. A regular, non-order weighted 
ORA (over-representation analysis) analysis was run for 
this gene set with ordered_quere = FALSE. Similar to 
the other analyses, one-sided (enrichment) pathway dis-
covery was based on the WikiPathway database with the 
default setting “g_SCS” to correct for multiple testing. 
For all enrichment analyses, only significant pathways 
(p-adjusted < 0.05) are reported.

The exact scripts and the resulting datasets of the sta-
tistical analyses are available via https://​github.​com/​
cmbi/​DM1_​blood_​RNAseq

Results
Patient sampling, procedure, and analysis of outcome 
measures
For the identification of blood biomarkers that are associ-
ated with the clinical response to the CBT intervention, 

27 patients from the OPTIMISTIC cohort were selected 
based on a random stratified sampling procedure. These 
patients reflected a uniform continuous distribution of 
therapy responses as assessed by the primary trial out-
come, the DM1-Activ-c questionnaire.

The sampled set consisted of 14 females and 13 males 
aged 19–63 years and represented a wide range of CTG-
repeat lengths (Additional file  2: Fig. S1). All sampled 
patients received CBT, and mRNA-sequencing profiles 
were obtained at baseline and after 10 months of CBT, 
the primary endpoint of the OPTIMISTIC trial. Large 
clinical heterogeneity of clinical responses after CBT was 
observed across all of the different outcome measures. 
Figure  1 highlights the scaled differences across these 
outcome measures, color coded into five different groups 
(cognition and other, DM1-Activ-c, fatigue scores, physi-
cal assessments, and quality of life). Because of the large 
heterogeneity, we defined a compound response score. 
The compound response score is the mean of all scaled 
outcome measures (Fig. 1).

Marked changes in gene expression after CBT
We first studied the molecular changes that occurred 
after the CBT intervention by comparing the mRNA 
expression levels in blood before and after the CBT inter-
vention. We found that 560 genes were significantly up- 
or downregulated after CBT (277 genes down, 283 up, 
fold changes ranging between 0.64 and 2.35, Fig.  2A). 
Hierarchical clustering of patients based on the changes 
in these 560 genes revealed substantial molecular hetero-
geneity within this 10-month timeframe. There was no 
evident concordance between the clustering of samples 
based on changes in gene expression and the changes 
in DM1-Activ-c, 6MWT, or compound response score 
(Fig.  2B). The four genes with the lowest p-values were 
GGCX, ZNF16, SERBP1, and SLC39A8 (Fig.  2C). Bio-
logical pathways significantly associated with these genes 
were limited to an immunological pathway and an elec-
tron transport chain in mitochondria (Table  1). DMPK 
expression did not significantly change over the course 
of the study, nor was it associated with the CTG-repeat 
length (Additional file 2: Fig. S2).

CTG‑repeat length associations reflect molecular 
dysregulation in blood across different studies
Having a readily accessible fingerprint reflecting the 
molecular dysregulations associated with DM1 is poten-
tially of high value for both clinical and research settings. 
To this end, we studied the correlations of blood-based 
gene expression with the disease-causing CTG-repeat 
length assessed at the start of the trial. The assessments 
were based on small pool PCR, Acil digestion, and South-
ern blot, as opposed to (estimations) of CTG-repeat 

https://github.com/cmbi/DM1_blood_RNAseq
https://github.com/cmbi/DM1_blood_RNAseq
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length at birth or disease onset. This was done to mini-
mize potential confounding effects related to the pro-
gressive nature of the disease and to assure homogeneity 
in the measurement methodology.

Based on this approach, we identified 608 genes signifi-
cantly associated with the CTG repeat at an FDR cutoff 
of 5% (474 positively, 134 negatively, fold changes ranging 
between 0.76 and 1.23 per 100 CTGs, Fig. 3A). The four 
genes with the lowest p-values RNF170, IRS2, NDE1, and 

PRIMPOL showed a clear linear relationship between 
the CTG-repeat length at baseline and expression val-
ues, both before and following the intervention (Fig. 3B). 
Most enriched pathways were related to immunological 
processes (IL-3, IL-4, IL-5 signaling; chemokine signal-
ing pathway), yet also pathways related to adipogenesis, 
hepatocyte signaling, and AGE/RAGE were discovered. 
Interestingly, the gene MMP9 was among several of the 
CTG-repeat-associated pathways.

Fig. 2  Changes in gene expression after cognitive behavioral therapy. A linear mixed effect model was fitted for each gene, estimating the 
fixed effect of CBT while accounting for random effects of the individual. The p-values for the fixed effect were estimated via Satterthwaite’s 
degrees of freedom method and FDR corrected. A Volcano plot of significance (−log10 of the nominal p-value) and the effect size for changed 
expression after 10 months of CBT. Genes for which the effect size of CBT is significant (FDR < 0.05) are visualized in black. B Heatmap of changes in 
normalized logCPM values between the baseline and the 10-month assessment for the 560 genes significantly associated with the CBT effect size 
(scores ranging from −3 (dark red) to +3 (dark blue)). Patients and genes were clustered based on the complete linkage method for hierarchical 
clustering, and values were centered and scaled per gene. For each patient, changes in DM1-Activ-c (delta-DM1-Activ-c) and Six-Minute Walk Test 
(delta-6MWT) as well as the compound response score were added (scores ranging from −1.6 (dark red) to +2.76 (dark blue)). Delta-DM1-Activ-c 
and delta-6MWT were scaled by their root mean square. C Expression values (logCPM) at baseline (blue) and after CBT (red) of the four genes with 
the lowest nominal p-values from panel A including their Pearson correlations
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To replicate and validate that these findings are disease 
relevant, we compared the CTG-repeat length effect size 
with effect sizes reflecting the differences in gene expres-
sion between DM1 and controls in various published 
datasets (Additional file  2: Fig. S3). We found a strong 
correlation with a study that performed mRNA sequenc-
ing on DM1 and control blood samples (Pearson rho: 0.59, 
Additional file  2: Fig. S3A [25]). However, similar corre-
lations were not observed for studies profiling DM1 and 

control tissues other than blood (heart [15], brain [12], 
and muscle [11], Additional file 2: Fig. S3B-S3D). Neither 
were correlations observed with inferred MBNL activity 
or muscle strength measures from another study (Addi-
tional file 2: Fig. S3E-S3F [11]). Although no correlations 
were found with the effect size of blood-based physical 
test assessments in DMD (Additional file 2: Fig. S3G), the 
CTG-repeat effect size did correlate well with the effect 
size of blood-based DMD body measures (Pearson rho: 

Table 1  Gene set enrichment analysis

*Query refers to the gene sets used. CBT: 560 genes differentially expressed after the intervention; CTG: 608 genes associated with the CTG repeat; CTG_CR: 97 genes 
associated with both CTG repeat and compound response; ORA over-representation analysis

**p-values associated with the finding after correction for multiple testing

***Number of genes in the identified pathway

****Number of genes in the provided gene set overlapping with the pathway

Query* Adjusted 
p-value**

Term size*** Intersection 
size****

Term ID Term name Intersection with WikiPathway

CBT_ORA 0.014 49 5 WP:WP5039 SARS-CoV-2 innate immunity evasion 
and cell-specific immune response

CXCL1,PPBP,PF4,CXCR2,CXCL5

CBT_ORA 0.037 91 8 WP:WP111 Electron transport chain (OXPHOS 
system in mitochondria)

MT-ND3,ATP5F1E,MT-ND1,MT-ATP6,MT-
CO2,MT-CO3,MT-ND4,MT-CO1

CTG_ORA <0.001 46 10 WP:WP286 IL-3 signaling pathway FOS,CSF2RB,GAB2,HCK,LYN,MAPK3,RAF1,
STAT3,STAT5B,PIK3CD

CTG_ORA 0.001 49 10 WP:WP395 IL-4 signaling pathway FOS,IRS2,CEBPB,GAB2,NFIL3,MAPK3,STAT
6,STAT3,STAT5B,PIK3CD

CTG_ORA 0.002 26 3 WP:WP4564 Neural crest cell migration during 
development

MMP9,EPHB4,FOS

CTG_ORA 0.003 28 3 WP:WP4565 Neural crest cell migration in cancer MMP9,EPHB4,FOS

CTG_ORA 0.004 29 7 WP:WP3972 PDGFR-beta pathway FOS,MAPK3,RAF1,MAP2K4,STAT6,STAT3
,STAT5B

CTG_ORA 0.006 29 2 WP:WP4808 Endochondral ossification with 
skeletal dysplasias

MMP9,ALPL

CTG_ORA 0.006 29 2 WP:WP474 Endochondral osssification MMP9,ALPL

CTG_ORA 0.006 56 2 WP:WP2324 AGE/RAGE pathway MMP9,ALPL

CTG_ORA 0.008 48 10 WP:WP304 Kit receptor signaling pathway FOS,GAB2,SH2B2,LYN,MAPK3,RAF1,STAT3,
STAT5B,CRK,RPS6KA1

CTG_ORA 0.011 37 8 WP:WP127 IL-5 signaling pathway FOS,CSF2RB,LYN,MAPK3,RAF1,STAT3,STA
T5B,RPS6KA1

CTG_ORA 0.013 31 7 WP:WP313 Signaling of hepatocyte growth fac-
tor receptor

FOS,PTEN,MAPK3,RAF1,STAT3,CRK,PXN

CTG_ORA 0.015 110 16 WP:WP3929 Chemokine signaling pathway CXCR2,TIAM2,HCK,NCF1,LYN,ARRB2,GNB
2,PREX1,MAPK3,RAF1,STAT3,STAT5B,CRK,
WAS,PXN,PIK3CD

CTG_ORA 0.031 15 3 WP:WP3599 Transcription factor regulation in 
adipogenesis

IRS2,CEBPD,CEBPB

CTG_CR_ORA 0.002 110 13 WP:WP3929 Chemokine signaling pathway WAS,PXN,HCK,MAPK3,PREX1,ARRB2,PIK3R
5,VAV1,NCF1,CXCL16,PIK3CD,GNB2,GRB2

CTG_CR_ORA 0.006 46 8 WP:WP286 IL-3 signaling pathway GAB2,CSF2RB,HCK,MAPK3,PTPN6,VAV1,P
IK3CD,GRB2

CTG_CR_ORA 0.009 48 8 WP:WP304 Kit receptor signaling pathway GAB2,MAPK3,PTPN6,RPS6KA1,VAV1,SH2B
2,JUNB,GRB2

CTG_CR_ORA 0.016 115 12 WP:WP306 Focal adhesion ACTN1,PXN,HCK,MAPK3,CCND2,VASP,TLN
1,VAV1,ZYX,ITGA5,PIK3CD,GRB2

CTG_CR_ORA 0.032 31 6 WP:WP3937 Microglia pathogen phagocytosis 
pathway

HCK,PTPN6,VAV1,NCF1,ITGB2,PIK3CD
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0.41, Additional file 2: Fig. S3H) [22]. In the latter study, 
comparisons with physical tests and body measures were 
independently based on the first principal component of 
a set of different clinical assessments of DMD patients. 
Thus, while DM1-related molecular dysregulations in 

blood can be validated in other studies, even from other 
neuromuscular disorders, they do not necessarily reflect 
expression dysregulation observed in other tissues.

Since DM1 is known as a splicing disease, we also 
studied the association of the CTG-repeat length with 

Fig. 3  Gene expression levels associated with CTG-repeat length. For each gene, a mixed effect model was fitted with before/after CBT and 
CTG-repeat length as fixed effects, while accounting for (random) effects of the individual. The p-values for the fixed effects were estimated 
via Satterthwaite’s freedom method and FDR corrected. A Volcano plot of significance (−log10 of the nominal p-value) and effect size of the 
CTG-repeat length (per 100 CTGs) on gene expression. Genes for which the effect of CTG-repeat is significant (FDR < 0.05) are visualized in black. B 
For the four genes with the lowest nominal p-values from panel A, the gene expression values (logCPM) are plotted against the CTG-repeat length. 
Blue dots represent baseline expression values, and red dots expression values after CBT. The regression line is fitted over all values, independent 
of the time point. The Pearson correlation coefficients for the association between CTG-repeat length and gene expression are displayed for each 
gene
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alternative splicing events. Here, four events in three 
genes (RBM39, FLNA, and CTSZ) reached an FDR 
threshold of <5% (Additional file  2: Fig. S4). Given the 
limited and small effects observed, we did not further 
explore these associations.

Non‑significant associations between gene expression 
and individual clinical outcome measures
Next, we studied phenotype-genotype relationships by 
estimating the associations of gene expression values 
with individual clinical outcome measures used in the 
OPTIMISTIC trial. Here, we found virtually no signifi-
cant associations between gene expression and clinical 
outcomes. No significant associations after multiple test-
ing correction were found for the DM1-Activ-c question-
naire (Additional file 2: Fig. S5). The four genes with the 
lowest nominal p-values were SREBF2, ZNF283, SF3B3, 
and GSKIP.

Significant associations with average clinical response
To account for the heterogenic changes in individual 
outcome measures, we calculated a compound CBT 
response score that reflects the average scaled therapy 
response of all outcome measures used in OPTIMIS-
TIC (Fig.  1). Noteworthy, similar ranges of change are 
observed for the variety of outcome measures due to 
the applied scaling. As such, each outcome measure 
contributes similarly to the compound response score. 
The compound response score can be interpreted as an 
estimate of an overall difference in capacity between 
the end and the start of the intervention. We were able 
to identify 1176 genes significantly (FDR < 0.05) associ-
ated with the compound response score (384 positive, 
792 negative, Fig.  4A). The four hits with the lowest 
p-values (PPP1R9B, CSNK1G2, PPP6R1, FBXO48) show a 
clear linear relationship between changes in gene expres-
sion during the trial and the compound response score 
(Fig.  4B). No enriched pathways were identified for this 
gene set.

Clinical improvement linked to the reversal 
of disease‑induced gene expression
Since we were able to identify genes significantly asso-
ciated with both the CTG-repeat length as well as the 
average clinical response, we were interested in their 
intersection. Among the significant hits of both analy-
ses, we found an overlap of 97 genes (Fig. 5A). To further 
investigate this relationship, we plotted the effect size of 
the compound response score against the effect size of 
the CTG-repeat length for each expressed gene (Fig. 5B). 
For the 97 genes significantly associated with both pre-
dictors, a remarkable pattern emerged: genes that were 
lower expressed in patients with a long CTG repeat 

showed an increase in expression levels in the patients 
with a good clinical response and vice versa. This anti-
correlation pattern was confirmed by analyzing an earlier 
dataset comparing gene expression in DM1 and control 
blood samples [25]. Here, the 97 genes showed a similar 
association with the DM1 phenotype as has been found 
with the CTG length in our study, confirming that the 
gene expression of patients with a good CBT response 
changed into the direction of the levels observed in 
healthy controls (Fig.  5C). This remarkable relation-
ship could not be explained by possible confounding 
between CTG-repeat length and compound response, 
as the compound response effect size is only slightly 
affected by first regressing out the CTG-repeat length 
effect (Additional file 2: Fig. S6). The four genes with the 
lowest p-values with both the CTG-repeat length as well 
as the compound response score (either FDR < 0.025) 
were DNAJB12 (CTG Pearson rho=0.49; CRS Pearson 
rho=−0.43), HDAC5 (CTG rho=0.65; CRS rho=−0.46), 
TRIM8 (CTG rho=0.59; CRS rho=−0.59), and ZNF22 
(CTG rho=−0.52; CRS rho=0.52). For 81 of the 97 can-
didate biomarkers, the Pearson correlations were nomi-
nally significant for the change in gene expression and the 
compound response score. Yet, only 2 of the 97 Pearson 
correlations were nominally significant for the change in 
gene expression and the change in DM1-Activ-c scores. 
Enrichment analysis for these 97 genes resulted in mostly 
immunological pathways (chemokine and IL-3 signaling, 
microglia pathogen phagocytosis pathway; Table 1).

In summary, these results suggest that for a subset of 
genes significantly associated with the biochemical phe-
notype caused by the CTG-repeat expansion a reversal 
of disease-induced gene expression occurred in clinical 
responders. The association with both molecular dysreg-
ulation and clinical response makes this subset of genes 
highly relevant for the discovery of novel therapeutic 
targets.

Discussion
The purpose of this study was the identification of 
DM1-specific therapeutic biomarkers in peripheral 
blood. The multisystem nature of DM1 is known to 
be reflected by laboratory abnormalities of peripheral 
blood, making it together with its accessibility a prom-
ising tissue for biomarker studies in this disease [26]. 
Hence, we used blood samples of 27 DM1 patients 
from the OPTIMISTIC cohort to study the associations 
of gene expression with disease severity as well as the 
response towards the CBT intervention. In an effort 
to fairly represent the whole OPTIMISTIC cohort and 
to facilitate the generalizability of the study findings, 
a stratified random sampling procedure was imple-
mented which resulted in a balanced patient cohort 
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with respect to age, CTG-repeat length, sex, therapy 
response, and clinical site distributions. Patients with 
an interrupted CTG repeat were excluded in order to 
limit molecular heterogeneity induced by slower dis-
ease progression rates [5]. Nonetheless, we identi-
fied substantial heterogeneity in molecular expression 

profile changes after the 10-month CBT intervention. 
Furthermore, we identified gene sets that were signifi-
cantly associated with the disease-causing CTG repeat 
as well as with the average response towards the CBT 
intervention across different clinical outcome meas-
ures. Most interestingly, an overlap of 97 genes among 

Fig. 4  Gene expression association with compound response scores. For each gene, a mixed effect model was fitted with before/after CBT and 
compound response scores as fixed effects, while accounting for (random) effects of the individual. Compound response scores were fitted for 
gene expression values after CBT and set to be zero at baseline; the effect size of this covariate therefore expresses changes in gene expression 
compared to the baseline values that are associated with clinical response. The p-values for the fixed effects were estimated via Satterthwaite’s 
freedom method and FDR corrected. A Volcano plot of significance (−log10 of the nominal p-value) and the effect size of the compound response 
score on gene expression. Genes for which the effect size of compound response is significant (FDR < 0.05) are visualized in black. B For the four 
genes with the lowest nominal p-values from panel A, the changes in gene expression (delta logCPM after-before CBT) are plotted against the 
compound response scores, including Pearson correlations
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these latter two gene sets has been identified, showing a 
clear trend of more normal expression levels in clinical 
responders. Based on these different gene sets, several 
biological pathways associated with DM1 have been 
discovered, as well as specific genes/gene families with 
ties to neuro(-muscular) disorders.

The OPTIMISTIC study has shown that DM1 patients 
significantly improve in their capacity for activity and 
social participation after the CBT intervention [18]. It 

was furthermore hypothesized that CBT may directly or 
indirectly improve other biological systems affected by 
the disease. This hypothesis has been confirmed for mus-
cles of the lower extremity, showing an increase in cross-
sectional area as a result of the intervention [58]. Here, 
we set out to further explore this hypothesis by investi-
gating changes on the molecular level. These changes 
may be the result of increased physical activity, which has 
been linked to differences in gene expression in previous 

Fig. 5  Clinical improvement is linked to normalization of expression of CTG-repeat-associated genes. Linear mixed effect models were fitted for 
each expressed gene, with CBT as a fixed effect, patient as a random effect, and either CTG repeat or compound response as the predictor. p-values 
for the regression coefficients were estimated via Satterthwaite’s degrees of freedom and considered significant for values smaller than 0.05 after 
FDR correction. Furthermore, differences in gene expression of blood samples from DM1 patients and controls were calculated based on an 
external study using a Wilcoxon signed-rank test on normalized, log-transformed gene counts. A Venn diagram illustrating the number of significant 
genes associated with CTG-repeat length and compound response, as well as their overlap (disease-relevant changes). B For all expressed genes, 
the regression coefficients of the compound response scores are plotted against the regression coefficients of the CTG-repeat lengths, including 
their Pearson correlation. For illustrative purposes, the regression coefficients of the CTG repeat have been multiplied by 100. Furthermore, the 
x-axis has been scaled between −0.25 and 0.25, removing 12 outliers from the figure. Colored in purple are the genes for which both regression 
coefficients were significant (FDR < 0.05). C For all expressed genes, the compound response effect size is plotted against the DM1 effect size based 
on an external study comparing blood expression profiles from DM1 patients and controls, including their Pearson correlation [25]. For illustrative 
purposes, the x-axis has been scaled between −1.5 and 1.5, removing 6 outliers from the figure. Colored in purple are the same 97 genes as in 
panel B 
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studies [59], but may also be a more direct effect of the 
psychotherapeutic CBT intervention [60].

In line with the results of an earlier study, we have illus-
trated that the clinical response towards the CBT inter-
vention was rather heterogenous [21]. A novel addition 
to this finding was the illustration that this heterogene-
ity extends towards changes in molecular profiles within 
a 10-month timeframe. Importantly, this heterogeneity 
could not be explained by changes in the cellular com-
position of the blood samples between the two time 
points, as the similarity of cell type composition has been 
verified. Additionally, this heterogeneity could not be 
explained by changes of different outcome measures such 
as the DM1-Activ-c, 6MWT, or compound response. 
While the CBT intervention likely played a part in this 
heterogeneity, the magnitude of this contribution could 
not be assessed due to the lack of a control group. Other 
factors, such as aging or seasonal effects, may also have 
contributed to this finding.

Across the different gene sets identified in this study, 
several of the genes with the lowest p-values (SLC39A8, 
IRS2, FBXO48) and one WikiPathway (transcription fac-
tor regulation in adipogenesis) were associated with 
insulin signaling or more broadly related to metabolism/
adipogenesis [61–63]. Dysregulation of insulin signal-
ing has been linked to clinical features of DM1 and is 
an actively ongoing field of investigation [64]. Aberrant 
insulin signaling has also been found in other diseases 
of the nervous system such as depression, with indirect 
improvements being observed after CBT [65]. Interest-
ingly, the anti-diabetic drug metformin has been shown 
to improve the mobility of DM1 patients with effect 
sizes of the 6MWT comparable to those observed in the 
OPTIMISTIC study [66]. With increasing therapeutic 
interest in this area, our findings suggest that disease-
relevant insulin signaling can be studied on a molecular 
level in blood samples, highlighting the utility of periph-
eral blood in this setting.

Similarly, across most of the gene sets, we identified 
several WikiPathways associated with immunological 
functions (cell-specific immune response, chemokine 
signaling pathway, IL-3, 4, and 5 signaling). While this 
may be in part due to a bias introduced by the profiled 
tissue, the immune system likely plays a role in the DM1 
pathophysiology like for many other chronic diseases 
[67]. As such, blood sample-based immunology studies 
may be an interesting field of future investigation.

The intersection of the genes significantly associated 
with the disease-causing CTG repeat, as well as the aver-
age CBT response across different outcome measures, 
revealed a subset of 97 genes. These genes are of par-
ticular interest for the identification of therapeutic bio-
markers, as their disease association has been confirmed 

in an external dataset and they showed normalization 
of expression levels in clinical responders. Among the 
genes with the lowest p-values associated to both CTG-
repeat length as well as CBT response were HDAC5, 
DNAJB12, and TRIM8. In total, the subset of 97 genes 
consisted of two HDACs (histone deacetylases, HDAC5, 
HDAC7). HDACs play an important role in transcrip-
tional regulation and compounds that inhibit HDAC 
enzymes are being studied for their potential effect on 
a range of human diseases, including neurological dis-
orders [68]. The DNAJB12 protein is a member of the 
heat shock protein family, with some evidence support-
ing positive effects of their induction for muscular dys-
trophy and other muscle wasting conditions [69]. The 
TRIM family protein TRIM72 has been shown to be an 
essential component of the cellular membrane repair in 
muscles, with evidence supporting some positive effects 
in mouse models of muscular dystrophy [70]. Authors of 
the same study suggest the potential of other TRIM fam-
ily members as potential targets in similar disease states, 
which may support the further investigation of TRIM8 in 
DM1. Although mostly associated with therapy response, 
RARA​ and RXRA were also among the overlapping 97 
genes. Stimulating retinoic acid signaling has been linked 
to muscle regeneration in mouse models via increased 
proliferation of fibro/adipogenic progenitor cells, high-
lighting the relevance of this pathway as another poten-
tially DM1-relevant drug target [71]. Taken together, 
these findings confirm the value of whole blood-based 
expression profiling for the discovery of therapeutic bio-
markers in DM1.

Interestingly, the genes significantly associated with 
the CTG repeat showed a moderate correlation with the 
genes associated with DMD body measurements of an 
external study. We hypothesize that these body meas-
ures are likely also correlated with age, which in turn 
reflects disease progression. This suggests that some of 
our results may therefore not be DM1 specific, but rather 
reflect non-specific molecular dysregulations shared 
across different (neuromuscular) disorders. This hypoth-
esis is supported by the significant association between 
the CTG repeat with MMP9, which is known to be a non-
specific biomarker that has for instance been linked to 
cardiac remodeling after myocardial infarction, inflam-
mation, and DMD [72, 73]. We therefore deem further 
exploration of shared dysregulations as highly valuable, 
as this may lead to the discovery of therapeutic targets 
relevant to a variety of diseases.

Although DM1 is known as an alternative splicing dis-
ease, only four splice events have been significantly linked 
to the disease-causing CTG repeat in this study. This 
may be the result of relatively low DMPK expression in 
blood [74] and is in line with the absence of strong splice 
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aberrations in blood from DM1 patients compared to 
controls [25]. DMPK’s low expression in blood cells may 
also explain the lack of concordance between our disease 
severity-associated gene expression differences observed 
in blood with gene expression differences observed in 
the muscle and brain. So, while whole blood-based tran-
scription profiling can identify disease-relevant molecu-
lar dysregulations, these dysregulations do likely not fully 
reflect the dysregulations observed in other tissue types. 
Yet, we found a high correlation of the CTG-repeat effect 
size with the DM1 phenotype effect size of a different 
blood-based study, as well as with a principal compo-
nent derived body measure association of a DMD-based 
study. While the former validates our findings, the latter 
suggests the possibility of shared, disease-relevant, dys-
regulations across different neuro(muscular) disorders 
detectable in peripheral blood. If true, associated path-
ways might reveal highly interesting targets for drug dis-
covery, as they may have a positive influence on multiple 
diseases.

Limitations of this study
To find disease-relevant gene expression in blood, we 
searched for linear associations with the disease-caus-
ing CTG-repeat length. While the CTG-repeat length is 
thought to be the main driver of molecular dysregula-
tion, associations between the progenitor allele length of 
the CTG repeat with several clinical outcome measures, 
including DM1-Activ-c and 6MWT, have been found to 
be only weak-moderate [13]. In line with the previously 
published challenges to directly relate gene expression 
to clinical phenotypes, we were not able to find signifi-
cant, direct associations between clinical outcome meas-
ures and gene expression. Still, among the genes with 
the lowest p-values for the DM1-Activ-c questionnaire 
was GSKIP, a gene encoding for an inhibitor protein of 
the known DM1 drug target GSK3-β [75–77]. Given the 
biological relevance of this finding, we deem it likely that 
the current study design was underpowered to study the 
association of gene expression with individual clinical 
outcome measures, especially when taking clinical and 
molecular heterogeneity into account.

The clinical heterogeneity in therapy response may in 
part be explained by the personalized nature of the CBT 
intervention, with therapy foci being tailored towards the 
needs and wishes of the individual patient. As a conse-
quence, one might expect different outcome measures 
to be more appropriate for CBT efficacy assessments 
for different patients. Yet, the identification of molecu-
lar signatures associated with therapy response necessi-
tates the use of the same clinical outcome measure. For 
this reason, and to average out some of the uncertainty 
inherently associated with the recording of the different 

outcome measures, we settled on the use of the com-
pound response score. While the scaling assured a more 
or less equal contribution of each outcome measure 
to this score, we acknowledge that this combined score 
is biased by the outcome measures that were used in 
OPTIMISTIC.

Even though we statistically corrected for non-specific 
molecular changes between the two time points, the lack 
of RNA-seq profiles from the OPTIMISTIC control arm 
makes it difficult to state with certainty that the observed 
molecular changes are due to the therapy itself. However, 
this does not discount their value as potential therapeu-
tic targets, as they are, regardless of the mediation fac-
tor, significantly associated with improved clinical status. 
Moreover, for this reason, we deemed studying the RNA-
seq profiles of the OPTIMISTIC control arm to be less 
valuable, as these patients did not significantly clinically 
declined over the 10-month timeframe [18].

Conclusions
Starting from DM1-specific disease determinants, the 
OPTIMISTIC study has shown that patient-tailored 
CBT can increase the health status of DM1 patients by 
improving social participation and activity. It was fur-
thermore hypothesized that the CBT intervention posi-
tively challenges the biological system, which has already 
been confirmed by increased cross-sectional area for 
muscles of the lower extremities. Making use of the 
clinical heterogeneity in therapy response, we here addi-
tionally confirmed disease-relevant molecular changes 
in peripheral blood. Not only do our results highlight 
the utility of peripheral blood to study the multisystem 
nature of the disease, but also generated the foundation 
for an upcoming, multi-omics-based drug repurposing 
study.
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DM1-Activ-c score after the intervention versus before, as expressed in 
Delta DM1-Activ-c scores, separated by sex. Figure S2. DMPK expres-
sion. Panel A shows the expression values of DMPK in logCPM before and 
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after the CBT intervention for all 27 patients. Panel B shows the association 
between the CTG repeat length and the change in DMPK expression, as 
calculated by expression levels after the intervention minus the expres-
sion levels at the start of the trial. In addition, the Pearson correlation of 
this association is shown. Figure S3. Comparison of gene expression 
associated to DM1 in other studies with that to the CTG repeat in this 
study. The mean differences in normalized gene counts were calculated 
between DM1 and control samples for four studies comparing blood 
(A (25, 44)), heart (B (15, 42)), brain (C (12, 43)) and tibialis muscle (D, (11, 
41)) and plotted against the effect sizes for the CTG-repeat in this study 
(ReCognitION) for genes that were measured in both studies. In E and F, 
the correlation of expression to the inferred MBNL activity and muscle 
strength(11), was compared to our effects for the CTG-repeat. In G and 
H, gene expression associations in blood of the results of physical tests 
and several body measurements for Duchenne muscular dystrophy (DMD) 
patients (22) are compared to CTG-repeat associations from our study. In 
(22), associations with physical tests and body measurements were based 
on the first principal component over associated measures, each reflect-
ing respectively 78% and 70% of the associated measurements variances. 
Depicted on the top left in each graph is the Pearson correlation coeffi-
cient for the plotted values with the associated p-values. Figure S4. Splice 
exclusion and CTG-repeat length. PSI values for splice exclusion events 
were determined using rMATS [. For each of the PSI values a linear mixed 
effect model was fitted with the modal CTG repeat length as covariate 
and patient as random effect. A) Volcano plot of significance (-log 10 of 
the nominal p-values of the modal CTG effect size) and the CTG effect 
size for the PSI values. Significant results after FDR correction (p < 0.05) 
are marked in black. B) For the four PSI values with the lowest nominal 
p-values from A, the PSI values are plotted against the modal CTG repeat 
lengths before (blue) and after the CBT intervention (red) including the 
Pearson correlation coefficients. Figure S5. Gene expression association 
with DM1-Activ-c. For each gene a mixed effect model was fitted with 
before/after CBT and DM1-Activ-c scores as fixed effects, while account-
ing for (random) effects of the individual. The p-values for the fixed 
effects were estimated via Satterthwaite’s freedom method and FDR cor-
rected. A) Volcano plot of the significance (-10log of the nominal p-value) 
and effect size of the DM1-Activ-c scores on gene expression. B) For the 
four genes with the lowest nominal p-values from panel A, the DM1-Activ-
c scores are plotted against the gene expression values (logCPM). Blue 
dots represent baseline values, red dots values after CBT. The regression 
line indicates the linear association independent of the timepoints. Simi-
larly, the Pearson correlation coefficients shown are independent of the 
timepoints. Figure S6. Shared explained variance among CTG-repeat and 
Compound Response predictors. To assess the overlap in gene expression 
level variance explained by the CTG-repeat length and the Compound 
Response score, the Compound Response score was fitted on the residu-
als of the CTG-repeat length as fixed effect, while accounting for random 
effects of the patient. A) The effect sizes of the Compound Response 
score as estimated on the CTG-repeat model residuals are plotted against 
the effect sizes Compound Response scores as presented in this study. 
The Rho score reflects the Pearson correlation coefficient. B) Analogous 
to Figure 5B, the Compound Response score effect size as estimated on 
the CTG-repeat model residuals are plotted against the CTG repeat effect 
size size as estimated on the CTG-repeat model residuals are plotted 
against the CTG repeat effect size scaled between -0.25 and 0.25, resulting 
in the removal of 12 outliers. Colored in purple are the same 97 genes as 
in Figure 5B.
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