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BACKGROUND. Iron bioavailability has been identified as a factor that influences cellular

hypoxia sensing, putatively via an action on the hypoxia-inducible factor (HIF) pathway. We

therefore hypothesized that clinical iron deficiency would disturb integrated human

responses to hypoxia.

METHODS. We performed a prospective, controlled, observational study of the effects of

iron status on hypoxic pulmonary hypertension. Individuals with absolute iron deficiency

(ID) and an iron-replete (IR) control group were exposed to two 6-hour periods of isocapnic

hypoxia. The second hypoxic exposure was preceded by i.v. infusion of iron. Pulmonary

artery systolic pressure (PASP) was serially assessed with Doppler echocardiography.

RESULTS. Thirteen ID individuals completed the study and were age- and sex-matched

with controls. PASP did not differ by group or study day before each hypoxic exposure.

During the first 6-hour hypoxic exposure, the rise in PASP was 6.2 mmHg greater in the ID

group (absolute rises 16.1 and 10.7 mmHg, respectively; 95% CI for difference, 2.7–9.7

mmHg, P = 0.001). Intravenous iron attenuated the PASP rise in both groups; however, the

effect was greater in ID participants than in controls (absolute reductions 11.1 and 6.8

mmHg, respectively; 95% CI for […]
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Introduction
Cellular and integrated physiological responses to variations in 

oxygen availability are regulated in metazoan organisms by tran-

scription factors known as hypoxia-inducible factors (HIFs) (1, 2). 

HIF is active as a transcription factor when in a heterodimeric form 

consisting of 1 HIF-α and 1 HIF-β subunit (3). These heterodimers 

bind to hypoxia-response elements (HREs) in the genome and 

control the expression of many hundreds of genes, including those 

central to the regulation of erythropoiesis (4), angiogenesis (5), and 

metabolism (6). The consequences of targeted genetic disruption 

of the HIF pathway in animal models demonstrate the importance 

of HIF in regulating these processes, and also indicate that HIF is 

a key regulator of pulmonary vascular and respiratory physiology 

(7–13). Spontaneously occurring mutations in humans confirm this 

to be the case, with genetic upregulation of the pathway resulting 

in polycythemia, pulmonary arterial hypertension, abnormal ven-

tilatory drive, and impaired skeletal muscle oxidative phosphory-

lation (14–18). Additionally, in some human populations resident 

for thousands of years at high altitude, there is evidence for natural 

selection of HIF pathway gene variants associated with downregu-

lation of hypoxia sensing (19–21).

BACKGROUND. Iron bioavailability has been identified as a factor that influences cellular hypoxia sensing, putatively via an 

action on the hypoxia-inducible factor (HIF) pathway. We therefore hypothesized that clinical iron deficiency would disturb 

integrated human responses to hypoxia.

METHODS. We performed a prospective, controlled, observational study of the effects of iron status on hypoxic pulmonary 

hypertension. Individuals with absolute iron deficiency (ID) and an iron-replete (IR) control group were exposed to two 6-hour 

periods of isocapnic hypoxia. The second hypoxic exposure was preceded by i.v. infusion of iron. Pulmonary artery systolic 
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greater in the ID group (absolute rises 16.1 and 10.7 mmHg, respectively; 95% CI for difference, 2.7–9.7 mmHg, P = 0.001). 
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(absolute reductions 11.1 and 6.8 mmHg, respectively; 95% CI for difference in change, –8.3 to –0.3 mmHg, P = 0.035). Serum 

erythropoietin responses to hypoxia also differed between groups.
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hypertension that is reversed by subsequent iron administration. Disturbed hypoxia sensing and signaling provides a 

mechanism through which iron deficiency may be detrimental to human health.
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Results
Baseline characteristics of iron-deficient and iron-replete groups. 

Thirteen age- and sex-matched pairs of iron-deficient (ID) and 

iron-replete (IR) healthy individuals were identified as illustrated 

in Figure 1. Characteristics of these participants are given in Table 

1. There were no significant differences in BMI or spirometric 

parameters between groups. Mean ferritin in the ID group was 6.4 

μg/l and transferrin saturation 8.4%, indicating profound abso-

lute iron deficiency. Corresponding values for the IR group were 

66.9 μg/l and 29.2%, respectively, consistent with physiologically 

normal iron stores. Plasma soluble transferrin receptor (sTfR) was 

significantly higher in the ID group; the mean exceeded the upper 

limit of normal of 28.1 nmol/l for the healthy population (49), 

implying a significant unmet tissue iron demand. None of the IR 

group had an elevated sTfR. Hepcidin, a peptide hormone central 

to iron homeostasis, was very heavily suppressed in the ID group 

compared with their IR counterparts.

Hypoxic pulmonary hypertension. Figure 2 illustrates hypoxic 

PASP responses for both groups. PASP prior to each hypoxic expo-

sure did not differ across group or study day (ID vs. IR: mean 27.3 

vs. 26.3 mmHg, on first day; 27.2 vs. 26.6 mmHg, on second day;  

P = 0.59 for group; P = 0.79 for study day; P = 0.75 for interaction). 

After 6 hours of hypoxia on the first day, the ID group reached a 

mean PASP of 44.2 mmHg compared with 37.0 mmHg in the IR 

group. Hypoxia-induced pulmonary hypertension was therefore 

6.2 mmHg greater in the ID group (95% CI, 2.7–9.7 mmHg, P = 

0.001) (Figure 2A). On the second day, following i.v. iron, the 

PASP increase diminished in both groups (Figure 2B). At 6 hours, 

the mean in the ID group was 33.1 mmHg and in the IR group 

30.5 mmHg, representing absolute reductions in the rise during 

hypoxia of 11.1 and 6.8 mmHg, respectively (Figure 2C). The mag-

nitude of the absolute reduction seen in the ID group was signifi-

cantly greater than that in the IR group (–4.3 mmHg, 95% CI, –8.3 

to –0.3 mmHg, P = 0.035). After 30 minutes of euoxia following 

cessation of hypoxia on the first day, euoxic PASP was elevated in 

both groups compared with values prior to hypoxia (mean increase 

in euoxic PASP: ID, 5.4 mmHg; IR, 4.2 mmHg; P < 0.001 for both 

groups), reflecting acclimatization of the pulmonary vasculature 

(Figure 2A). On the second day, with i.v. iron, an increase in euoxic 

PASP 30 minutes after hypoxia was no longer evident (Figure 2B). 

The difference between study days was significant (reduction in 

euoxic PASP at 30 minutes after hypoxia compared with first day: 

ID, –4.5 mmHg; IR, –3.6 mmHg; P < 0.001 for both groups).

Hypoxic ventilatory responses and peripheral oxyhemoglobin sat-

uration. The starting end-tidal partial pressure of carbon dioxide 

(P
ET

CO
2
) did not differ between the ID and IR groups on either 

study day, nor on the different days within groups (35.9 vs. 35.4 

mmHg, respectively, on the first day; 35.5 vs. 34.9 mmHg, respec-

tively, on the second day; P = 0.45 for group; P = 0.052 for study 

day; P = 0.77 for interaction). Figure 3 shows the end-tidal and 

inspired partial pressures of gases, as well as the peripheral oxy-

hemoglobin saturation (SpO
2
), in both groups for each study day. 

The mean end-tidal partial pressure of oxygen (P
ET

O
2
) during the 

hypoxic exposures did not vary between groups or study days  

(P = 0.96 for group; P = 0.22 for study day; P = 0.74 for interaction), 

confirming that uniform hypoxic stimuli were delivered. Similarly, 

the mean SpO
2
 during the hypoxic exposures did not vary between 

The basis for the oxygen-sensitivity of the pathway is that the 

HIF-α subunit can undergo hydroxylation at 3 amino acid resi-

dues by a group of enzymes called HIF hydroxylases (22). HIF-α 

may be hydroxylated at 2 specific proline residues by prolyl-hy-

droxylase domain enzymes (PHDs). Hydroxylation at either site 

marks HIF-α for polyubiquitination and proteasomal degrada-

tion (23–25). Hydroxylation at a single asparagine residue, by an 

enzyme known as factor inhibiting HIF (FIH), does not promote 

HIF-α degradation but instead blocks recruitment of coactivators 

of transcription to the HIF-HRE complex (26–28). These hydroxy-

lation reactions absolutely require dioxygen, such that as oxygen 

tension falls, the rate of HIF-α hydroxylation is slowed. HIF-α thus 

accumulates, leading to greater abundance of HIF heterodimers, 

which are able to recruit transcriptional coactivators and control 

HRE-regulated genes. The HIF-β subunit, in contrast, is constitu-

tively expressed and is not oxygen-regulated.

The PHDs and FIH are members of a superfamily of 2-oxog-

lutarate–dependent dioxygenases, which includes members with 

diverse biological roles, from collagen synthesis to histone demeth-

ylation (29). These enzymes all share the requirement for a single 

ion of ferrous iron at their active sites, which is involved in electron 

transfer (30), giving rise to the possibility that HIF hydroxylase 

activity might be sensitive to intracellular iron availability (31, 32). 

Indeed, prior to the characterization of the HIF hydroxylases, both 

sensitivity to iron chelation with desferrioxamine (DFO) and sen-

sitivity to Fe2+ substitution with Ni2+ or Co2+ ions were used as indi-

cators of whether a pathway may be regulated by HIF (31, 33). Cell 

culture experiments have subsequently confirmed an effect of iron 

availability on HIF via altered HIF hydroxylase function (34–37).

An unusual aspect of human iron homeostasis is that there 

is no regulated mechanism for the excretion of excess iron (38). 

An apparently paradoxical consequence is that iron deficiency is 

extremely common (39), since iron uptake must be tightly regu-

lated to prevent excess iron accumulation. Additionally, a state 

of iron sequestration may exist as a result of inflammation in 

the setting of chronic disease, even in individuals with adequate 

total body iron stores (40, 41). It is at present unknown, however, 

whether these clinical variations in iron status have an effect on 

HIF hydroxylase activity that translates into significant conse-

quences for the pathobiology of human oxygen sensing. This 

question is of very considerable importance for human health and 

disease because conditions in which hypoxia plays a key role are 

very common global causes of morbidity and mortality (2, 42), 

and iron deficiency affects more individuals worldwide than any 

other medical condition (43).

In the present study, we set out to determine whether there 

exists a direct effect of clinical iron deficiency in modulating 

responses to hypoxia in humans. We focused on the pulmonary 

circulation as a model system for investigating the interaction 

between iron and oxygen sensing and signaling, because acute 

manipulation of iron bioavailability has been shown markedly 

to affect the hypoxic behavior of the pulmonary vasculature (44, 

45). In contrast to the systemic circulation, the response of the 

pulmonary vasculature to hypoxia is to vasoconstrict (46), and the 

magnitude of this response during global alveolar hypoxia can be 

determined from the consequent rise in pulmonary artery systolic 

pressure (PASP) (47, 48).
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Cardiac output responses to hypoxia. Starting euoxic cardiac 

output (CO) did not differ between the ID and IR groups on either 

study day, nor on the different days within groups (mean 5.6 vs. 

5.3 l/min, respectively, on first study day; 5.6 vs. 5.1 l/min, respec-

tively, on second study day; P = 0.45 for group; P = 0.48 for study 

day; P = 0.57 for interaction). CO increased during hypoxia in 

both groups on both days (first study day 1.1 and 0.8 l/min, respec-

tively; second study day 0.8 and 1.0 l/min, respectively; P < 0.001 

groups or study days (P = 0.78 for group; P = 0.33 for study day; 

P = 0.83 for interaction). The inspired partial pressure of carbon 

dioxide (P
I
CO

2
) — an index of ventilation when P

ET
CO

2
 is clamped 

to maintain eucapnic conditions — did not differ between groups 

or study days at 30 minutes (approximating to the acute hypoxic 

ventilatory response) (P = 0.94 for group; P = 0.61 for study day;  

P = 0.50 for interaction) or at 6 hours (P = 0.67 for group; P = 0.08 

for study day; P = 0.51 for interaction).

Figure 1. Study recruitment flow diagram. During the period of recruitment there were 25 expressions of interest from deferred blood donors and 126 

responses to advertisements for healthy volunteers. In total, 16 participants were enrolled to the IR group and 15 to the ID group. Two female participants 

in the ID group were withdrawn during the first hypoxic exposure. The first developed headache and nausea consistent with altitude sickness. The second 

experienced vasovagal syncope. Both recovered promptly without sequelae on return to air. One participant in the IR group had echocardiographic data 

during hypoxia that precluded accurate measurement of PASP, despite a successful screening visit. No suitable ID participants presented themselves as 

matches for 2 young males recruited to the IR group early in the course of the study; data for these individuals were not analyzed. Thus, 13 ID individuals 

completed the study and were matched with an equal number of IR controls in the per-protocol analysis; there were no missing data.
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Plasma hepcidin was lower before the hypoxic exposure in the 

ID than in the IR group at the start of both study days (ID vs. IR: 

mean 4.5 vs. 20.1 μg/l, on first day; 3.2 vs. 18.9 μg/l, on second day; 

P = 0.005 for group; P = 0.63 for study day; P = 0.97 for interac-

tion). Exposure to hypoxia significantly increased plasma hepcidin 

on the first study day; however, the effect was attenuated in the ID 

group. On the second day, the magnitude of the rise in plasma hep-

cidin during hypoxia was significantly increased following i.v. iron, 

but the size of this effect was similarly attenuated in the ID group.

Serum IL-6 prior to each hypoxic exposure did not differ 

by group or study day (ID vs. IR: mean 0.6 vs. 1.1 ng/l, on first 

day; 0.7 vs. 0.9 ng/l, on second day; P = 0.21 for group; P = 0.81 

for study day; P = 0.53 for interaction). Serum IL-6 significantly 

increased during exposure to hypoxia on the first study day, but 

there was no difference in the rise between groups. Findings on 

the second day were similar.

Discussion
In recent years, considerable evidence has emerged of the harm 

associated with iron deficiency in cardiopulmonary diseases and 

of a benefit from administering i.v. iron in these conditions. Iron 

deficiency appears to be particularly important in pulmonary vas-

cular disease (50–53) but has also been linked to poorer outcomes 

in chronic heart failure (54–56), acute heart failure (57), and 

chronic obstructive pulmonary disease (58). Historically, ane-

mia has been considered to be the most significant consequence 

of iron deficiency (38). Although iron-deficient, the patients in 

these recent studies were not necessarily anemic; iron deficiency 

was an independent risk factor for poor outcome. Equally, though 

hemoglobin did not invariably rise with the provision of iron, it 

was clear that treatment had significant clinical benefits (55, 56, 

59). These studies are remarkable for the absence of any clear 

mechanistic explanation for the profound effects of iron defi-

ciency and supplementation.

The hypothesis of the present study was that iron deficiency 

would act significantly to alter human responses to hypoxia. This 

hypothesis was founded not simply on an understanding of the 

molecular biology of the HIF pathway, but on the observed effects 

of iron chelation in cell culture and intact humans. First, iron 

chelation with DFO was shown to induce HIF activity and erythro-

poietin mRNA expression in vitro with a time course very similar 

to that of hypoxia (60). Subsequently, infusion of DFO was found 

to elevate PASP (47) and circulating erythropoietin levels (61) in 

healthy humans breathing air, and also to augment the PASP rise 

seen in response to a brief hypoxic challenge (45). Conversely, 

acute i.v. iron loading attenuated both the rise in PASP during pro-

longed hypoxia (62) and the augmented hypoxic pulmonary vaso-

constriction usually seen afterward (45). Lacking, however, has 

been any demonstration of the effects of clinical iron deficiency 

on hypoxia-sensing and signaling mechanisms.

A major difficulty in extrapolating the findings of work using 

iron chelation is that acute infusion of DFO is very different indeed 

from the insidious development of iron deficiency seen in clinical 

practice. DFO permeates cell membranes slowly, preferentially 

depletes hepatic and reticuloendothelial iron, and cannot effectively 

chelate iron bound to circulating transferrin (63); thus the pattern of 

tissue iron depletion from an acute infusion of DFO is likely to differ 

for each group, each day). In contrast to PASP, the CO response 

to hypoxia did not differ between groups or study days, and there 

was no differential effect of i.v. iron between groups (P = 0.29 for 

group; P = 0.91 for study day; P = 0.25 for interaction).

Iron and oxygen-sensing and signaling pathways. Table 2 gives 

measurements of serum erythropoietin, plasma hepcidin, and 

serum IL-6 made in each group at the start of both study days 

(immediately prior to each infusion), and at the conclusion of each 

6-hour hypoxic exposure. In all 3 cases, there were no significant 

within-group differences in mean starting values between the first 

and second study days.

Serum erythropoietin was higher before the hypoxic exposure 

in the ID than in the IR group at the start of both study days (ID vs. 

IR: mean 25.4 vs. 7.5 mIU/ml, on first day; 20.1 vs. 6.8 mIU/ml, on 

second day; P = 0.018 for group; P = 0.08 for study day; P = 0.16 

for interaction). In the ID group, euoxic serum erythropoietin on 

the first study day correlated strongly with both serum ferritin 

and hemoglobin concentration (Spearman’s ρ = –0.69, P = 0.009 

for both relationships); these latter 2 variables also correlated 

with one another (ρ = 0.65, P = 0.02). In contrast, euoxic serum 

erythropoietin in the IR group on the first study day showed no 

correlation with either serum ferritin (ρ = 0.02, P = 0.92) or hemo-

globin concentration (ρ = –0.165, P = 0.58), though these latter 2 

variables did correlate with one another (ρ = 0.64, P = 0.02), as in 

the ID group. Exposure to hypoxia significantly increased serum 

erythropoietin on the first study day irrespective of iron status; 

however, the effect was greater in the ID group. Findings on the 

second day were similar.

Table 1. Baseline participant characteristics

Characteristic ID group  
(n = 13)

IR group  
(n = 13)

P value

Female sex, no. (%) 9 (69) 9 (69)

Age, years 37.5 ± 11.5 36.7 ± 13.2 0.86

BMI,A kg/m2 24.2 ± 3.7 23.5 ± 3.2 0.65

Smoking status, current/ex/never 1:3:9 0:4:9 0.56B

Resting peripheral oxyhemoglobin 
saturation, %

97.8 ± 1.0 97.7 ± 1.0 0.70

Systolic blood pressure, mmHg 126 ± 16 122 ± 16 0.59

Diastolic blood pressure, mmHg 80 ± 12 76 ± 11 0.38

Forced expiratory volume in 1 
second, % predicted

105 ± 11 106 ± 15 0.90

Serum ferritin, μg/l 6.4 ± 3.9 66.9 ± 52.1

Serum transferrin saturation, % 8.4 ± 3.6 29.2 ± 5.7

Serum iron, μmol/l 6.9 ± 3.0 18.7 ± 4.6 <0.001

Serum transferrin, g/l 3.8 ± 0.6 2.9 ± 0.5 <0.001

Plasma soluble transferrin 
receptor, nmol/l

29.3 ± 8.3 19.5 ± 4.2 <0.001

Plasma hepcidin, μg/l median 
(interquartile range)

1.8 (0.8–5.0) 22.1 (18.5–29.1) <0.001C

Hemoglobin concentration, g/l 
median (interquartile range)

120 (111–131) 139 (135–154) 0.001C

Plus-minus values are means ± SD, and statistical comparisons are by 

Student’s t test, unless otherwise stated. AThe BMI is the weight in 

kilograms divided by the square of the height in meters. Bχ-squared test; 
CMann-Whitney U test.
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tude residents with pulmonary hypertension secondary to chronic 

hypobaric hypoxia quickly brings about a fall in PASP and pulmo-

nary vascular resistance (68, 69). Thirdly, in patients with severe 

chronic hypoxemic lung disease, gradual reduction of [Hb] by 

repeated small-volume venesection results in a significant fall in 

mean pulmonary artery pressure and pulmonary vascular resis-

tance (70). Taking these observations together, it is very difficult 

indeed to see how a lower [Hb] could account for the much greater 

hypoxic PASP rise seen in the ID group, since any influence appears 

to act in entirely the opposite direction. Indeed, some investigators 

argue that in examining the behavior of the pulmonary circulation 

during hypoxia, a correction should be applied for this attenuating 

effect on hypoxic pulmonary vasoconstriction of a lower [Hb] (71).

The causative nature of the relationship between the iron defi-

ciency itself and exaggerated hypoxic pulmonary vasoconstriction is 

further attested by the significantly greater attenuation, by i.v. iron, 

of hypoxic pulmonary hypertension in the ID group. Again, it should 

be considered whether the lower [Hb] contributes, by increasing in 

some way the action of iron on the pulmonary vasculature. Radio-

active isotope studies, however, indicate that when infused into pro-

foundly ID individuals, iron is directed rapidly toward erythropoiesis 

(72). Thus the expected effect is to constrain iron availability for the 

pulmonary vasculature in the ID group, not increase it.

considerably from that seen in naturally occurring iron deficiency. 

Moreover, DFO has actions aside from iron chelation; it participates 

in oxidation and reduction reactions, and has free-radical scaveng-

ing properties (64). ROS are implicated in many hypoxia-sensing 

and signaling pathways (65), so DFO may interfere directly with 

human responses to hypoxia independent of any effect on iron. The 

present study overcomes these problems and moves from short-

term experimental manipulation of iron bioavailability, to demon-

strating that the predicted effects of iron deficiency on responses to 

hypoxia are significant for human health.

We found striking exaggeration of hypoxic pulmonary hyper-

tension in healthy individuals with iron deficiency. After only 6 

hours of moderate alveolar hypoxia, the ID group showed a mean 

rise in PASP that was in excess of 50% greater than that seen in IR 

controls. The hemoglobin concentration ([Hb]) in the ID group 

was, as expected, somewhat lower than that in the IR group, and 

it must be considered whether this difference could have contrib-

uted to the findings. Experimental evidence from a range of set-

tings indicates that a lower [Hb] acts to attenuate hypoxic pulmo-

nary vasoconstriction, rather than to augment it. First, detailed 

animal experiments using perfused rabbit lungs (66) and intact 

dogs (67) indicate that a lower [Hb] impairs hypoxic pulmonary 

vasoconstriction. Second, isovolemic hemodilution of high-alti-

Figure 2. PASP responses to hypoxia. (A) First study day (saline infusion). 

(B) Second study day (iron infusion). (C) Difference in response between 

study days. Responses for the ID group are shown in red, and those for the 

IR group are shown in blue (data are means ± SEM; n = 13 in each group). 

Solid black bars indicate the 6-hour periods of eucapnic hypoxia. Contin-

uous lines represent responses during hypoxia. Broken lines indicate the 

change in air-breathing PASP induced by the 6-hour period of hypoxia, 

which reflects the degree of acclimatization of the pulmonary vasculature. 

On the first study day, the increase in PASP during hypoxia was significantly 

greater in the ID group. On the second study day, following iron infusion, 

the increase in PASP was significantly attenuated in both groups. Euoxic 

PASP was significantly elevated following exposure to 6 hours of hypoxia 

in both groups on the first study day, but this effect was abolished by prior 

administration of i.v. iron on the second day. Panel C illustrates that the 

effect on PASP of prior iron administration was minimal for the first 2 hours 

of hypoxia. Thereafter, iron administration attenuated hypoxic pulmonary 

hypertension to a greater extent in the ID group. Asterisks indicate signifi-

cance of comparisons between or within groups: *P < 0.05; **P < 0.01;  

***P < 0.001; NS, not significant (mixed-effects model).
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There is good reason to believe that the effects of iron defi-

ciency on PASP are mediated by HIF. A collection of animal (7–10) 

and human (16, 18, 19) studies have confirmed the centrality of 

the HIF pathway in coordinating pulmonary vascular responses to 

hypoxia. In healthy humans, the time course of the rise in PASP seen 

during alveolar hypoxia is biphasic; an acute rise is seen rapidly and 

becomes maximal within minutes (48, 73) — a response too brisk 

to be mediated by a transcription factor pathway such as HIF. Sub-

sequently, a second phase begins after approximately 40 minutes, 

continuing for several hours before plateauing (48, 74). During the 

second phase, PASP does not immediately fall back to baseline with 

euoxia, and a subsequent hypoxic stimulus will cause more marked 

hypoxic pulmonary vasoconstriction (45, 74). These are the hall-

marks of pulmonary vascular acclimatization to hypoxia (75).

That the second phase of hypoxic pulmonary vasoconstriction 

brings with it a transient change in the properties of the pulmo-

nary circulation suggests that hypoxia-regulated gene expression 

underlies the effect (76). In support of this conclusion, prolonged 

Figure 3. Peripheral oxyhemoglobin saturation and partial pressures of oxygen and carbon dioxide on each study day. Left, first study day (circles); 

right, second study day (squares). Top panel, peripheral oxyhemoglobin saturation (SpO
2
); middle panel, end-tidal partial pressure of oxygen (P

ET
O

2
) and 

carbon dioxide (P
ET

CO
2
); bottom panel, inspired partial pressure of oxygen (P

I
O

2
) and carbon dioxide (P

I
CO

2
). Data for the ID group are shown in red and for 

the IR group in blue (n = 13 in each group); data are means ± SD based on time-averaged continuous recordings.
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hypoxia in humans leads to pulmonary vascular remodeling (77), 

but in rodents with heterozygous deficiency of either HIF-1α (9) or 

HIF-2α (10) this phenomenon is greatly attenuated. Additionally, 

air-breathing rats fed an iron-restricted diet rapidly develop pul-

monary arterial hypertension and right ventricular hypertrophy 

(78), in association with increased lung expression of HIF-1α and 

HIF-2α. Finally, the effect of i.v. iron to attenuate PASP elevation 

during hypoxia was evident in the present study during the sec-

ond phase of hypoxic pulmonary vasoconstriction but not the first 

(Figure 2C); this is consistent with iron acting on hypoxia-regu-

lated gene expression but not on those processes underlying acute 

hypoxic pulmonary vasoconstriction.

The hypoxic exposure on the first day induced a degree of 

acclimatization (Figure 2A). Experiments using similar sustained 

hypoxic exposures indicate that after return to euoxia for 3 hours, 

it is possible to demonstrate some residual PASP elevation and 

augmented hypoxic pulmonary vasoconstriction in response to a 

further acute hypoxic challenge (74). If a week of euoxia is allowed 

to pass, however, no elevation in euoxic PASP remains, and the 

magnitude of hypoxic pulmonary vasoconstriction returns com-

pletely to normal (45, 79). Thus, in the present study, an interval 

of a week or more was imposed between experimental days to 

ensure the hypoxic exposure on the first day would not affect find-

ings during the second. Acute i.v. iron loading does not alter the 

first phase of hypoxic pulmonary vasoconstriction (62), so within 

each group, the near-identical euoxic PASPs and very similar acute 

PASP responses to hypoxia, on the second experimental day com-

pared with the first, provide further evidence that 1 week was suf-

ficient for any acclimatization to resolve.

Following i.v. iron, both groups exhibited a peak in PASP after 

2 hours of hypoxia, after which PASP declined. In a previous study 

using a similar duration of hypoxia, this secondary decline was not 

observed (62). Instead, PASP was stable from 1 hour onward. In 

that study, the i.v. iron was administered as 200 mg iron sucrose 

over 105 minutes prior to hypoxia. This contrasts with the present 

study, in which up to 1000 mg ferric carboxymaltose was adminis-

tered over 15 minutes before the exposure. Iron sucrose is cleared 

from the circulation into the tissues more rapidly than ferric car-

boxymaltose (72, 80). Thus the likely explanation for the differ-

ence between our findings and those of the previous study is that 

the ferric carboxymaltose, even at the higher dose, had less time 

to downregulate the mechanisms underlying the second phase 

of hypoxic pulmonary vasoconstriction, before the hypoxia was 

introduced. Thus in our study the second phase of hypoxic pul-

monary vasoconstriction is evident in both groups on the second 

experimental day, before the effect of i.v. iron supervenes.

The technique used to determine PASP relies on the presence 

of a systolic tricuspid regurgitant jet. Advances in echocardiog-

raphy reveal that most healthy individuals have physiological tri-

cuspid regurgitation (TR), which is not considered a reflection of 

underlying pathology (81–83). Invasive measurements of pulmo-

nary artery pressure correlate very well in a wide range of clini-

cal settings with those obtained using echocardiography (84–88), 

and this holds true for healthy individuals rendered hypoxic (89). 

It is of interest whether healthy individuals without demonstra-

ble TR are biologically different in some way. The prevalence of 

detectable TR has risen markedly with technological advances 

in echocardiography, without any accompanying change in the 

mean measured PASP (83, 90). This implies that the absence of 

TR does not simply reflect lower pressures in the pulmonary circu-

lation. Furthermore, mortality is no different in individuals with 

and without TR sufficient to determine PASP (91), so if there are 

biological differences, their clinical significance is questionable. 

Associations between echocardiographic TR and characteristics 

of the left heart have been reported, including left atrial size, left 

ventricular end-diastolic diameter, and ejection fraction, though 

the size of the differences is small, and the direction of reported 

effects is not consistent (83, 90). Taking all this together, we can-

not completely discount the possibly that pulmonary vascular 

behavior during hypoxia might differ, in some small way, in the 

minority of healthy individuals who do not have TR sufficient to 

measure PASP echocardiographically.

In addition to the pulmonary vasculature, we investigated the 

serum erythropoietin response to hypoxia. Interstitial fibroblasts 

in the renal cortex are responsible for secreting erythropoietin to 

regulate red cell production (92) but cannot detect [Hb] directly, 

and instead rely on the HIF pathway to sense local oxygen tension 

(93). Increased renal perfusion results in increased renal oxygen 

consumption due to the work of tubular reabsorption; thus renal 

tissue oxygen tension is largely independent of renal perfusion, 

Table 2. Influence of iron status on erythropoietin, hepcidin, and IL-6 responses to hypoxia

ID group (n = 13) IR group (n = 13) P value for fixed effects

Start End Start End Hypoxia Iron status Interactions

Hypoxia & iron 
status

i.v. iron, hypoxia, & 
iron status

Erythropoietin (mIU/ml) Day 1 25.4 ± 7.0 37.4 ± 9.5 7.5 ± 0.6 13.7 ± 1.2 <0.001 0.018 0.048 0.47

Day 2 20.1 ± 4.4 36.4 ± 9.9 6.8 ± 0.8 14.6 ± 1.6

Hepcidin (μg/l) Day 1 4.5 ± 1.6 6.0 ± 2.8 20.1 ± 4.8 36.5 ± 8.8 0.015 0.005 0.039 <0.001

Day 2 3.2 ± 1.2 9.5 ± 4.6 18.9 ± 4.3 78.1 ± 10.5

IL-6 (ng/l) Day 1 0.6 ± 0.2 2.0 ± 0.4 1.1 ± 0.3 2.6 ± 0.7 0.001 0.21 0.76 0.58

Day 2 0.7 ± 0.1 2.1 ± 0.4 0.9 ± 0.2 2.0 ± 0.5

In none was there a significant difference in within-group mean starting values between the first and second study days. Saline was infused on day 1 and 

i.v. iron given on day 2. Data are means ± SEM.
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Hepcidin expression is suppressed indirectly by hypoxia via 

stimulation of erythropoiesis (103). This mechanism does not 

depend on a fall in serum iron from increased erythrocyte uptake 

(104) but depends instead on a putative factor named erythrofer-

rone produced by the bone marrow (105). Interestingly, we found 

that hepcidin rose in both groups on both study days during each 

6-hour hypoxic exposure. Over longer periods hypoxia clearly sup-

presses hepcidin (95), but an early transient rise in hepcidin during 

hypoxia was also suggested in a previous study (104). Given that 

IL-6 rose slightly during hypoxia, to a similar extent in both groups 

on both days, it may be that acute hypoxia generates an inflamma-

tory signal that drives hepcidin expression over hours, before the 

suppressive effect of erythropoietic drive and erythroferrone pro-

duction supervenes. If so, this has implications for diseases char-

acterized by intermittent as opposed to chronic hypoxia. Interest-

ingly, iron sequestration driven by elevated hepcidin has recently 

been reported in obstructive sleep apnea (106, 107), one example 

of such a condition.

The magnitude of the rise in hepcidin was much more substan-

tial in the IR group, presumably because of a potent suppressive 

effect of low serum iron on hepcidin secretion in the ID partici-

pants. When i.v. iron was given, hepcidin levels rose more mark-

edly, as expected, in response to hyperferremia. The rise was again 

constrained in the ID group, suggesting that existing tissue iron 

depletion still acts as a strong negative regulatory signal even when 

serum iron levels are acutely elevated. With this in mind, it is inter-

esting to note that in Ethiopian highlanders with elevated [Hb], 

hepcidin is not heavily suppressed despite exposure to chronic 

steady-state hypoxia; iron demand and body iron stores instead 

appear to be the primary regulators of circulating hepcidin in this 

setting (108). Equally, venesection of Peruvian high-altitude resi-

dents suffering from chronic mountain sickness — a condition in 

which polycythemia, hypoxemia, and pulmonary hypertension are 

features (109) — brings about a very rapid fall in circulating hep-

cidin levels, consistent with an erythroid regulator signaling the 

tension between erythropoietic drive and iron supply (110).

Studies of high-altitude populations also demonstrate that 

polycythemia is not an inevitable consequence of chronic expo-

sure to hypobaric hypoxia. For example, Tibetans resident at 

4000 m show a similar [Hb] to those of US sea-level residents 

(111). This group is also remarkable for exhibiting relatively nor-

mal pulmonary artery pressures at altitude, and very modest 

hypoxic pulmonary vasoconstriction in response to a further fall 

in ambient oxygen tension (112), despite showing very marked 

ventilatory responses to hypoxia (113). As already discussed, it 

may be that some of this protection against high-altitude hypoxic 

pulmonary hypertension is explained by the lower [Hb] itself, and 

conversely that much of the pulmonary hypertension seen in indi-

viduals in whom chronic mountain sickness develops is driven by 

polycythemia (109). Putting aside these complexities, it is nota-

ble that different high-altitude populations display very different 

combinations of traits, which include metabolic, cerebrovascular, 

and reproductive characteristics in addition to the pulmonary vas-

cular, ventilatory, and hematological features already discussed 

(114). Evidence increasingly implicates differences in genes 

encoding proteins involved in oxygen and iron homeostasis, par-

ticularly those of the HIF pathway (19–21, 115–117).

and instead is mainly determined by blood oxygen content (94). 

This in turn is primarily a reflection of [Hb]. In this way, the kid-

ney uses an oxygen-sensing pathway to sense [Hb]. As a conse-

quence, a fall in blood oxygen content due to hypoxemia without 

any change in [Hb], as occurs acutely at high altitude (95), acts to 

stimulate erythropoietin production.

In the present study, both euoxic serum erythropoietin and 

the absolute rise in levels seen during sustained hypoxia were 

greater in the ID group, though the relative rises were not dissimi-

lar. The marginally lower mean [Hb] in the ID group, coupled with 

multiple collinearity of serum ferritin, [Hb], and erythropoietin, 

precludes definite conclusions about causation. The differences 

observed are, though, certainly compatible with a direct effect of 

iron deficiency, and fit well with the observation that erythropoie-

tin levels are considerably higher for a given [Hb] in the setting of 

iron deficiency anemia than anemias of other etiologies (96, 97). 

A direct action on erythropoietin secretion would also provide an 

explanation for observations from animal studies that, while poly-

cythemia induced by transfusion attenuates hypoxic erythropoi-

etin production, polycythemia induced by previous exposure to 

hypoxia — which will tend to cause iron deficiency because of the 

iron demand for erythropoiesis (95) — has the opposite effect (98).

In humans, HIF-2α is the predominant paralog controlling 

erythropoietin expression (93). The regulation of HIF-2α mRNA 

activity differs from that of HIF-1α mRNA; the former contains an 

iron-responsive element (IRE) whereas the latter does not. This 

IRE represses the translation of HIF-2α under conditions where 

iron is scarce; its importance is illustrated by mice deficient in iron 

regulatory protein 1, which develop polycythemia that is paradox-

ically stimulated by iron deficiency (8). These animals also exhibit 

spontaneous pulmonary hypertension. From the perspective of 

serum erythropoietin responses to hypoxia, there exists a tension 

between the effects of iron deficiency on HIF hydroxylase activity 

and those on HIF-2α mRNA translation, which may go some way 

to explaining the absence of a marked effect of acute iron loading 

on erythropoietin behavior in the present study.

Hepcidin is recognized as the major hormone regulating iron 

homeostasis. It acts to lower serum iron levels by promoting the 

degradation of ferroportin, the only mammalian cellular iron export 

protein so far identified (99). A rise in serum iron is signaled via a 

mechanism involving transferrin receptors on the surface of hepa-

tocytes (100). Hepcidin secreted in response impairs the ability of 

cells of the reticuloendothelial system and duodenal enterocytes to 

export iron. Hepcidin is not only regulated by serum iron levels; ery-

thropoietic drive and the innate immune system are other impor-

tant factors (101). The gene encoding hepcidin is transcriptionally 

regulated by IL-6; thus inflammatory stimuli lead to hypoferremia 

(102) and reduced iron availability for pathogens. Unfortunately, 

this contributes to iron sequestration in chronic inflammatory con-

ditions and the anemia of chronic disease (40). The complex inter-

play between iron homeostasis, hypoxia, and inflammation makes 

it challenging to establish causation, so we sought to study pro-

foundly iron-deficient but otherwise healthy individuals to provide 

mechanistic clarity. The iron deficiency seen in our participants was 

naturally occurring absolute iron deficiency — due to factors such as 

blood donation, diet, and menstrual blood loss — confirmed by the 

profoundly suppressed hepcidin level in the ID group.
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for controls. Volunteers attended a screening visit conducted by a 

physician including medical history, examination, spirometry (Micro-

Lab, CareFusion, UK), transthoracic echocardiography (Vivid-q, GE 

Healthcare), venous blood sampling, and a brief hypoxic exposure, to 

establish eligibility and familiarize participants with the study proce-

dures. Before data analysis, ID and IR participants were matched in 

pairs according to sex and age, since both may affect pulmonary vas-

cular physiology (83, 121–123).

Exposure to hypoxia. Each study day entailed a 6-hour eucapnic 

hypoxic exposure (oxygen end-tidal partial pressure 55 mmHg) in a 

normobaric chamber. The apparatus (124) included a computerized 

system for continuously monitoring end-tidal gases via a nasal can-

nula. Continuous electrocardiography and pulse oximetry were per-

formed, and ventilation monitored by computerized analysis of gas 

entrained from the nasal cannula. Nitrogen, CO
2
, and oxygen were 

introduced via a rapid fan-mixing system, and CO
2
 removed by pass-

ing of ambient gas through a soda-lime filtration system, permitting 

inspired gas concentrations to be controlled tightly. Participants were 

provided with light refreshment ad libitum, and were able to move 

around, enjoy audiovisual entertainment, and leave the chamber 

briefly to use the lavatory if required.

Blood sampling and infusions. On the first study day, immediately 

before commencement of the hypoxic exposure, 0.9% saline was 

administered i.v., and on the second, 15 mg/kg (maximum 1 g) ferric 

carboxymaltose (Ferinject, Vifor Pharma) was added to an appropriate 

volume of 0.9% saline; each infusion was of 250 ml total volume and 

given over 15 minutes at a rate of 16.7 ml/min. Infusion of 0.9% saline 

in healthy individuals at rates and volumes very considerably in excess 

of this does not produce significant effects on echocardiographic 

measurements of pulmonary or systemic circulatory hemodynamics 

(125). Though it was not possible to randomize the order of infusions, 

participants were blindfolded during administration and not told that 

the infusions would follow a consistent order. Venous blood was sam-

pled before each infusion and at 6 hours. Routine assays were per-

formed by a university hospital laboratory. Serum and plasma were 

obtained by centrifugation and frozen at –80°C. Erythropoietin, sTfR, 

IL-6 (all Quantikine, R&D Systems), and hepcidin (Hepcidin-25 EIA 

kit, Bachem, Peninsula Laboratories) were measured in triplicate by 

ELISA in accordance with the manufacturer’s instructions.

Doppler echocardiography. Throughout each hypoxic exposure, 

PASP and CO were measured echocardiographically (81–89). Par-

ticipants rested comfortably on a customized couch in the left lat-

eral position facing the operator while the maximum systolic pres-

sure across the tricuspid valve (ΔPmax) was determined from an 

apical 4-chamber view of the heart using continuous wave Doppler. 

Stroke volume (SV) was measured from the velocity-time integral of 

left ventricular outflow tract (LVOT) blood flow using pulsed-wave 

Doppler in an apical 5-chamber view, the LVOT diameter having 

been determined from a parasternal long-axis view. CO was deter-

mined by multiplication of SV and heart rate. PASP was calculated 

by addition of 5 mmHg, as an estimate of right atrial pressure, to 

ΔPmax (44, 45, 62, 75).

Statistics. The prespecified primary outcome measure was rise in 

PASP over the initial 6-hour hypoxic exposure in ID compared with 

IR participants. The study was designed to have 80% power to detect 

a difference in the rise in PASP between groups of 4 mmHg with a 

2-sided significance level of 0.05. Data were analyzed using SPSS (ver-

In the present study, no differences were seen in ventilation 

between the groups, nor was a discernible acute effect of i.v. iron 

supplementation on ventilation evident. These findings mirror 

those of a previous study in which acute iron chelation did not 

affect ventilation (61). As with the kidney, the apparent insensitiv-

ity of the carotid body to chronic differences in iron bioavailabil-

ity and acute iron loading may be explained by different relative 

contributions from the multiple HIF paralogs (2, 22) or perhaps 

differences in iron transport mechanisms compared with the pul-

monary vasculature.

In conclusion, our study provides the first evidence, to our 

knowledge, of a clinically meaningful effect of iron deficiency on 

pulmonary vascular biology. It implies that iron status modulates 

the HIF pathway in vivo in a significant way, and it confirms the 

potential of manipulation of iron homeostasis as a tool to treat dis-

eases in which hypoxia plays a role. This is particularly the case 

for conditions in which pulmonary arterial hypertension is a fea-

ture, including both congestive cardiac failure (118) and chronic 

lung disease (119), but is by no means limited to such conditions; 

hypoxia-sensitive pathways are also central to angiogenesis, neo-

plasia, and human reproduction. Given the extensive operation of 

HIF hydroxylase pathways in human biology, and the abundance 

and pleiotropic actions of other iron- and 2-oxoglutatrate–depen-

dent dioxygenases, our findings raise the possibility that altera-

tions in oxygen sensing and signaling could underlie deleterious 

effects of iron deficiency in a wide range of situations.

Methods
This was a prospective, nonrandomized controlled clinical study with 

participants blinded to intervention order. We recruited otherwise 

healthy adults with absolute iron deficiency. Iron-replete age-matched 

(to within a decade) and sex-matched volunteers served as controls. 

Participants were studied on 2 occasions, a week or more apart, during 

a sustained hypoxic exposure.

Eligibility criteria. Inclusion criteria were: ability to give informed 

consent; aged at least 18 years; and presence of detectable TR on 

transthoracic Doppler echocardiography enabling measurement of 

PASP. For recruitment to the ID group, both a serum ferritin ≤ 15 μg/l 

and a transferrin saturation less than 16% were required. For IR vol-

unteers, these values were ≥ 20 μg/l and ≥ 20%, respectively. These 

values were not intended to reflect a universally accepted definition 

of iron deficiency, since there is none (39); their primary function 

was to generate 2 groups differing significantly in iron status. Exclu-

sion criteria were: hemoglobin less than 80 g/l; hemoglobinopathy; 

serum ferritin greater than 300 μg/l; SpO
2
 less than 94%; iron sup-

plementation or blood transfusion within 6 weeks; pregnancy or 

breastfeeding; and any significant comorbidity potentially affecting 

hematinics, pulmonary vascular responses to hypoxia, or ventilation 

(including inflammatory conditions and those causing intermittent 

hypoxia, such as obstructive sleep apnea). Volunteers were also 

excluded if recently exposed to altitude greater than 2,500 m or air 

travel longer than 4 hours.

Participant recruitment and matching. During the period of 

recruitment between February 2013 and April 2014, blood donors in 

Oxfordshire, UK, were offered information about the study if below 

the hemoglobin threshold to donate, since such individuals frequently 

have iron deficiency (120). Advertisements were placed concurrently 
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