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ABSTRACT 

Predicting the onset of psychosis in individuals at-risk is based on robust prognostic 

model building methods including a priori clinical knowledge (also termed clinical-

learning) to preselect predictors or machine-learning methods to select predictors 

automatically. To date, there is no empirical research comparing the prognostic 

accuracy of these two methods for the prediction of psychosis onset. In a first 

experiment, no improved performance was observed when machine-learning methods 

(LASSO and RIDGE) were applied - using the same predictors - to an individualized, 

transdiagnostic, clinically-based, risk calculator previously developed on the basis of 

clinical-learning (predictors: age, gender, age by gender, ethnicity, ICD-10 diagnostic 

spectrum), and externally validated twice. In a second experiment, two refined versions 

of the published model which expanded the granularity of the ICD-10 diagnosis were 

introduced: ICD-10 diagnostic categories and ICD-10 diagnostic subdivisions. 

Although these refined versions showed an increase in apparent performance, their 

external performance was similar to the original model. In a third experiment, the three 

refined models were analysed under machine-learning and clinical-learning with a 

variable event per variable ratio (EPV). The best performing model under low EPVs 

was obtained through machine-learning approaches. The development of prognostic 

models on the basis of a priori clinical knowledge, large samples and adequate events 

per variable is a robust clinical prediction method to forecast psychosis onset in patients 

at-risk, and is comparable to machine-learning methods, which are more difficult to 

interpret and implement. Machine-learning methods should be preferred for high 

dimensional data when no a priori knowledge is available.  

 
Keywords: machine-learning, psychosis, schizophrenia, prognosis, prediction, 
biostatistics. 



INTRODUCTION  

Under standard care, outcomes of psychosis are poor (1). While early interventions at 

the time of a first psychotic episode are associated with some clinical benefits (2), they 

are not effective at preventing relapses (2) or reducing the duration of untreated 

psychosis (DUP) (3); preventive interventions in individuals at clinical high risk for 

psychosis (CHR-P) (4) may be an effective complementary strategy. According to the 

World Health Organization, preventive strategies for mental disorders are based on the 

classification of the prevention of physical illness as universal, selective or indicated 

(targeted at the general public, those with risk factors, and those with minimal signs or 

symptoms of mental disorders respectively, as described by by Gordon et al) and on the 

classic public health classification as primary, secondary or tertiary (seeking to prevent 

the onset of a mental disorder, lower the rate of established disorder or reduce disability 

and relapses respectively (5)). Universal, selective and indicated preventive 

interventions are “included within primary prevention in the public health classification” 

(page 17 in (5)). Since CHR-P individuals show attenuated symptoms of psychosis 

coupled with help-seeking behavior (6) and functional impairments (7), interventions 

in these individuals are defined as indicated primary prevention of psychosis. The 

conceptual and operational framework that characterises the CHR-P paradigm has been 

reviewed elsewhere (8, 9). The empirical success of the CHR-P paradigm is determined 

by the concurrent integration of three core components: efficient detection of cases at-

risk, accurate prognosis and effective preventive treatment (10, 11). The underpinning 

methodology for each of these components is based on risk-prediction models (12). 

Unfortunately, a recent methodological review concluded that most of the CHR-P 

prediction modelling studies are of low quality, largely because they employ stepwise 

variable selection without proper internal and external validation (13). These 

approaches overfit the data (i.e. the model learns the noise instead of accurately 



predicting unseen data (14)), inflate the estimated prediction performance on new cases 

and produce biased prognostic models that result in poor clinical utility (14). Beyond 

stepwise model selection, overfitting can also occur when the number of events (e.g. 

number of at-risk patients who will develop psychosis over time) per variable (e.g. 

degree of freedoms of predictors of psychosis onset in at-risk patients) is low (event-

per-variable, EPV less than 20 (14),(15)). Low EPVs are frequently encountered in the 

CHR-P literature because the onset of psychosis in these samples is an infrequent, 

heterogeneous event (cumulating to 20% at 2-years, (eTable 4 in (16); depending on 

the sampling strategies)(17-20).  

 

A first approach to overcome these caveats is to use a priori clinical-learning or 

knowledge to identify a few robust predictors to be used in risk-prediction models (13): 

it may be possible to use umbrella reviews (i.e. reviews of meta-analyses and systematic 

reviews that incorporate a stratification of the evidence (21)) on epidemiological 

risk/protective factors for psychosis (22)). Because the selection of predictors would be 

limited in number (preserving the EPV(14)) and independent of the data on which the 

model is then tested, overfitting issues would be minimized (13). For example, a recent 

risk estimation model has used a priori clinical-learning to select a few predictors of 

psychosis onset in CHR-P individuals (23). The prognostic model developed was 

robust and has already received several independent external replications (24). A 

second, increasingly popular approach is to bypass any clinical reasoning and instead 

use machine-learning procedures to select the predictors automatically (25): machine-

learning studies have developed and internally validated models to stratify risk 

enrichment in individuals undergoing CHR-P assessment (18) and functional outcomes 

in CHR-P samples (26). Machine-learning methods promise much to the CHR-P field 

because of their potential to assess a large number of predictors and to better capture 



non-linearities and interactions in data; there is great confidence that they will 

outperform model-building based on clinical learning (25). Yet, modern machine-

learning methods may not a panacea (27), particularly because of the lack of empirical 

research comparing machine-learning vs clinical-learning theory-driven methods for 

the prediction of psychosis. The current manuscript advances knowledge by filling this 

gap.  

 

Here we use a transdiagnostic, prognostic model that has been developed by our group 

using a priori meta-analytical clinical knowledge (hereafter clinical-learning) (28). The 

predictors used were collected as part of the clinical routine: age, gender, ethnicity, age 

by gender and ICD-10 index diagnostic spectrum. The model is cheap and 

“transdiagnostic” (29) because it can be applied at scale across several ICD-10 index 

diagnoses to automatically screen mental health trusts. This prognostic model has been 

externally validated twice (28, 30), and is under pilot testing for real-world clinical use 

(11).  

In the first experiment, we apply a machine-learning method to the same 

transdiagnostic individualised prognostic model and test the hypothesis that machine-

learning methods produce models with better prediction accuracy than clinical-learning 

approach when the EPV is adequate. In the second experiment, we expand the 

granularity of the ICD-10 index diagnosis predictor and test the hypothesis that the use 

of more specific diagnostic specifications improves prognostic performance. In the 

third experiment, we test the hypothesis that machine-learning delivers better predicting 

prognostic models than clinical-learning under different models’ specifications, and in 

the specific scenario of low EPVs. Overall, this study provides much needed empirical 

research to guide prediction modelling strategies in early psychosis. 

 



MATERIALS AND METHODS 

Data source 

Clinical register-based cohort selected through a Clinical Record Interactive Search 

(CRIS) tool (31). 

 

Study population 

All individuals accessing South London and Maudsley (SLaM) services in the period 

1st January 2008 to 31st December 2015, and who received a first ICD-10 index primary 

diagnosis of any non-organic and non-psychotic mental disorder (with the exception of 

Acute and Transient Psychotic Disorders, ATPDs) or a CHR-P designation (which is 

available in the whole SLaM through the Outreach And Support In South-London -

OASIS- CHR-P service (32)), were initially considered eligible. The ATPD group is 

diagnostically (33) and prognostically (34) similar to the Brief Limited Intermittent 

Psychotic Symptom (BLIPS) subgroup of the ARMS construct and to the Brief Limited 

Psychotic Symptoms (BIPS) subgroup of the Structured Interview for the Psychosis-

Risk Syndrome (SIPS; for details on these competing operationalisation see eTable 1 

published in (34)) and previous publications on the diagnostic and prognostic 

significance of short-lived psychotic disorders (33, 35, 36). 

Those who developed psychosis in the three months immediately following the first 

index diagnosis were excluded. As previously detailed, this lag period was chosen to 

allow patients sufficient time after their index diagnosis to meet the ICD-10 duration 

criterion for ATPDs. Since we did not employ a structured assessment at baseline (see 

limitation), this lag period was also used to be conservative and exclude individuals 

who were underreporting psychotic symptoms at baseline (false transition to psychosis). 

Ethical approval for the study was granted (31).  

 



Study measures  

The outcome (risk of developing any ICD-10 non-organic psychotic disorder), 

predictors (index ICD-10 diagnostic spectrum, age, gender, ethnicity, and age by 

gender), and time to event were automatically extracted using CRIS (31).  

 

Statistical analyses 

The original study was conducted according to the REporting of studies Conducted 

using Observational Routinely-collected health Data (RECORD) Statement (37).  

 

Experiment 1: Machine-learning vs clinical-learning with adequate EPV for the 

prediction of psychosis 

Development and validation of the original model (M1, diagnostic spectra) followed 

the guidelines of Royston et al., (38) Steyerberg et al. (39) and the Transparent 

Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis 

(TRIPOD)(40). The details of model development and external validation have been 

presented previously (28). Briefly, predictors (ICD-10 diagnostic spectrum, age, gender, 

ethnicity, and age by gender interaction) were preselected on the basis of meta-

analytical clinical knowledge (41) as recommended (13). The ICD-10 diagnostic 

spectrum was defined by all of the ten ICD-10 blocks (acute and transient psychotic 

disorders, substance abuse disorders, bipolar mood disorders, non-bipolar mood 

disorders, anxiety disorders, personality disorders, developmental disorders, 

childhood/adolescence onset disorders, physiological syndromes and mental 

retardation (28)), with the exclusion of psychotic and organic mental disorders,  and by 

CHR-P designation (8). Accordingly, the diagnostic predictor of M1 encompassed 11 

different levels. All other predictors together contributed 7 degrees of freedom, for a 

total of 18 degrees of freedom. Cox proportional hazards multivariable complete-case 



analyses were used to evaluate the effects of preselected predictors on the development 

of non-organic ICD-10 psychotic disorders, and time to development of psychosis. 

Non-random split-sample by geographical location was used to create a development 

and external validation dataset (40). Performance diagnostics of individual predictor 

variables in the derivation dataset were explored with Harrell’s C-index (38), which 

can be interpreted as a summary measure of the areas under the time-dependent ROC 

curve (42). A value of C=0.5 corresponds to a purely random prediction whereas C=1 

corresponds to perfect prediction. The model was then externally validated in the 

independent database from SLaM (28), and subsequently in another NHS Trust 

(Camden and Islington)(30). In the SLaM derivation database there were 1001 events 

(EPV 1001/18 =55.61), and in the SLaM validation database there were 1010 events, 

both of which exceed the cut-off of 100 events required for reliable external validation 

studies (43). 

In experiment 1, we tested the hypothesis that even when EPVs are above the 

recommended threshold and predictors are the same, machine-learning would 

outperform clinical-learning methods. Machine learning methods automate model 

building by learning from data with minimal human intervention (44); the best model 

is typically selected by assessing the prediction accuracy of unseen (hold-out) data for 

example using cross-validation methods (45). This is a key difference from classical 

statistical inferential methods, where the quality of a model is assessed by the sample 

used to estimate the model. Machine-learning methods typically introduce a 

regularization term into the model to avoid overfitting, and this term usually imposes a 

penalty on complex models to reduce sample variance (45).  

In our study we used regularized regression methods (also called penalized or shrinkage 

regression methods) as relatively simple, but often powerful machine learning methods 

which compare competitively to more complex machine learning methods like random 



forest or support vector machines (46-48). We chose regularized regression methods to 

enhance interpretability of the final model, in particular compared to models developed 

through clinical learning. It is important for clinicians to interpret prognostic models to 

gain knowledge and to detect their potential biases and limitations in real-world use 

(49). Regularized regression fits generalized linear models, for which the sizes of the 

coefficients are constrained to reduce overfitting. Two common regularized regression 

approaches to be considered in this study are RIDGE (50) and LASSO (51). The 

primary difference between RIDGE and LASSO is that RIDGE regression constrains 

the sum of squares of the coefficients, whereas LASSO constrains the sum of absolute 

values of the coefficients (45). Unlike RIDGE, LASSO shrinks the coefficient to zero 

and thus performs an automatic selection of predictors. The degree of constraint (or 

penalty) is determined by automated computer-intensive grid searches of tuning 

parameters. Because constraints depend on the magnitude of each variable, it is 

necessary to standardize variables.  The final tuning parameter is chosen as the one 

which maximizes a measure of prediction accuracy of unseen (hold-out) data using, for 

example, cross-validation methods (45).  

Therefore, in experiment 1, we applied RIDGE and LASSO to the original 

unregularized Cox regression model in the same database to estimate their apparent and 

external performance (Harrell’s C) in the derivation and validation datasets respectively. 

Their difference was then used to estimate the model’s optimism. 

 

Experiment 2: Diagnostic subdivisions vs diagnostic categories vs diagnostic spectra 

for the prediction of psychosis 

We developed two refined prognostic models, M2 and M3, which differed from the 

original M1 model (diagnostic spectra, e.g. F30-F39 Mood [affective] disorders) by 

employing two expanded definitions of the predictor ICD-10 index diagnosis (the 



strongest predictor of the model (28),(30)). The model M2 (diagnostic categories) 

expanded the M1 model by adopting the 62 ICD-10 diagnostic categories - excluding 

psychotic and organic mental disorders - rather than the broader spectra (e.g. F30 manic 

episode, F31 Bipolar affective disorders etc.). The model M3 (diagnostic subdivisions) 

further expanded the M2 model by including all of the 383 specific ICD-10 diagnostic 

subdivisions of non-organic and non-psychotic mental disorder (e.g. F30.0 hypomania, 

F30.1 mania without psychotic symptoms, F30.2 mania with psychotic symptoms, 

F30.8 other manic episodes, F30.9 manic episode unspecified). From a clinical point of 

view, these refined models reflect the potential utility of specific vs block vs spectrum 

diagnostic formulations for the prediction of psychosis onset in at-risk individuals. The 

two previous independent replications of the original M1 model confirmed that the 

clinicians’ pattern recognition of key diagnostic spectra is useful from a clinical 

prediction point of view. Thus, experiment 2a tested the clinical hypothesis that the use 

of more granular and specific ICD-10 index diagnoses would eventually improve the 

performance of the initial M1 model. The performance of the M1, M2 and M3 models 

was first reported in the derivation and validation dataset. In a subsequent stage, the 

model’s performance (Harrell’s C) was compared across each pair within the external 

validation dataset.  

 

Experiment 3a and 3b. Machine-learning vs clinical-learning under variable EPVs.  

From a statistical point of view, increasing the number of levels of the ICD-10 

diagnoses from M1 (n=10) to M2 (n=62) to M3 (N=383) (plus the CHR designation), 

decreases the EPV from M1 to M2 to M3 respectively, increasing the risk of overfitting 

in unregularized regression models (in particular when the EPV is lower than 20 (52)).  

During experiment 3a, we tested the hypothesis that machine-learning would 

increasingly outperform clinician learning methods with decreasing EPVs. First, we 



compared the apparent performance of M1, M2, M3 in the whole dataset using RIDGE 

and LASSO versus unregularized Cox regression. Second, we compared the internal 

performance of M1, M2 and M3 in the whole dataset using ten-fold cross-validation 

repeated 100 times and taking the median Harrell’s C across the 100 repetitions, again 

using RIDGE, LASSO versus unregularized Cox regression. We used the whole dataset 

because the refined M2 and M3 models have adopted different specifications of the 

ICD-10 diagnoses that were not always present in both derivation and validation 

datasets (in which case it would not have been possible to test the same model). In the 

light of the decreased EPVs we expected RIDGE and LASSO to perform better for M3 

than for M2 than for M1 respectively (45).  

In experiment 3b, we further assessed the impact of varied sample size and degree of 

EPV on the prognostic performance of the model M1 under machine-learning vs 

clinical-learning, without the confounding effect of including more potentially 

informative predictors. We randomly selected samples of different sizes from the 

derivation dataset and then fitted the machine-learning vs clinical-learning approaches 

to these samples. We then assessed the prediction accuracy in the external validation 

dataset. For each sample size, the results of ten repetitions with different random 

samples were averaged, and the median Harrell’s C reported for both the derivation 

(apparent) and validation datasets. Samples sizes were 500, 1000, 2000 and 5000. 

 

All analyses were conducted in STATA 14 and R 3.3.0. using the user-written R 

packages “Coxnet” for the regularized Cox regression models and “Hmisc” to calculate 

Harrell’s C. The difference between two C’s were calculated using the STATA package 

“Somersd” and the R package “Rms”. Compute code is available from the authors (DS) 

upon request. 

 



RESULTS 

Sociodemographic and clinical characteristics of the sample 

91199 patients receiving a first index diagnosis of non-organic and non-psychotic 

mental disorder within SLaM in the period 2008-2015 fulfilled the study inclusion 

criteria and were included in the derivation (33820) or validation (54716) datasets. The 

baseline characteristics of the study population, as well as the derivation and validation 

datasets, are presented in Table 1 (28). The mean follow-up was 1588 days (95% CI 

1582-1595) with no significant differences between the derivation and validation 

datasets.  

 

*** TABLE 1 ABOUT HERE *** 

 

Experiment 1: Machine-learning vs clinical-learning and adequate EPV for the 

prediction of psychosis 

The first analysis compared M1 model performance developed with clinician learning 

(a priori knowledge) against RIDGE and LASSO in both the derivation and validation 

dataset. Harrell's C on derivation set was virtually the same for all three methods on 

both derivation (~ 0.8) and external validation data sets (~ 0.79, Table 2).  

 

*** TABLE 2 ABOUT HERE *** 

 

Experiment 2: Diagnostic subdivisions vs diagnostic categories vs diagnostic 

spectra for the prediction of psychosis 

The database included the majority of the non-organic and non-psychotic ICD-10 

diagnostic categories (57 out of 62, 92% in M2), and diagnostic subdivisions (353 out 

of 383, 92% in M2).  



In the derivation dataset (apparent performance (14)), the M3 model (Harrell’s C 0.833) 

seemed to perform better, than the M2 model (Harrell’s C 0.811) and better than the 

original M1 model (Harrell’s C 0.8). However, this was due to overfitting of the M3 to 

the derivation data, as confirmed by the external validation. In fact, in the validation 

dataset, using all of the ICD-10 diagnostic subdivisions (M3) yielded a comparable 

model performance (about 0.79) to M1 and comparable to the model with the diagnostic 

categories (M2). The latter model (M2) showed statistically significant, superior 

performance compared to M1. However, the magnitude of the improvement of the 

Harrell’s C of 0.007 was too small to be associated with meaningful clinical benefits 

(see Table 3).  

 

*** TABLE 3 ABOUT HERE *** 

 

Experiment 3a and 3b. Prognostic performance using machine-learning vs 

clinical-learning under variable EPVs.  

The results from experiment 3a showed that the clinical-learning and machine-learning 

methods delivered similar apparent prognostic performance (Table 4). After internal 

validation, Harrell’s C slightly decreased, and M1, M2 and M3 models were all similar 

(approximately 0.8). There were again small differences between clinical-learning and 

machine-learning methods, which were more marked as EPV decreased.  

In experiment 3b, Harrell’s C for M1 in the derivation dataset increased with decreasing 

sample size. The increase was larger for clinical-learning (unregularized regression: 

from 0.8 to 0.9), and smaller for machine-learning (RIDGE and LASSO:  0.79 to 0.83, 

Figure 1). The opposite pattern was then seen in the external validation dataset, where 

Harrell’s C for M1 decreased with decreasing sample size. Hence, optimism (the 

difference between Harrell’s C in the apparent sample and with internal validation) 



increased with smaller sizes. As sample size decreased, Harrell’s C decreased slightly 

more when using clinical-learning (unregularized regression: from 0.79 to 0.67 if 

N=500) than when using machine-learning (RIDGE regression: from 0.79 to 0.70 and 

LASSO regression: from 0.79 to 0.69).  

 

*** TABLE 4 and Figure 1 ABOUT HERE *** 

 

DISCUSSION  

This study compared clinical-learning vs machine-learning methods for the prediction 

of individuals at-risk for psychosis. The first experiment indicated that clinical-learning 

methods with a priori selection of predictors and adequate EPV produce robust 

prognostic models that are comparable to those obtained through regularized regression 

machine-learning methods. The second experiment indicated that there is no 

improvement in prognostic accuracy when specific ICD-10 diagnoses are employed 

instead of broad diagnostic spectra. The third experiment indicated that machine 

learning methods can deliver more robust prognostic models that clinical-learning 

methods when the sample size is small and the EPV low, although the benefits are 

modest in magnitude.  

 

The first hypothesis of the current study was that machine-learning methods would 

generally outperform clinical-learning methods using the same set of predictors. This 

was not verified in our study, because when RIDGE and LASSO methods were applied 

to the previously published transdiagnostic individualised risk estimation model, there 

was no substantial difference in prognostic performance. This suggests that when a 

prognostic model is built on strong clinical knowledge, has a large sample and an 

adequate EPV (in this case it was 56), the model can perform very well without the use 



of machine-learning methods. Machine-learning methods are not always necessary to 

obtain an accurate prediction of psychosis onset and do not necessarily improve the 

performance of prognostic models developed on a priori clinical knowledge. For 

example, a recently published supervised machine-learning study failed to demonstrate 

improved prediction of transition to psychosis when using baseline clinical information 

with no a priori knowledge (53), suggesting that a priori clinical knowledge remains 

very important for developing good prognostic models. Given a comparable accuracy, 

models developed through clinical-learning tend to be more straightforward and thus 

more likely to be interpreted, assessed and accepted, and implemented in clinical care 

(see below).  

Our second hypothesis was that adding more information to the model by expanding 

the granularity of the ICD-10 index diagnosis would improve prognostic performance. 

The results showed no prognostic benefit to using specific ICD-10 diagnoses compared 

to broad diagnostic spectra for the prediction of psychosis in secondary mental health 

care. The diagnostic spectra employed by the original version of the transdiagnostic 

individualised risk calculator (28) are robust because they originate in prototypical 

descriptions containing a core phenomenological structure (gestalt) of the disorder and 

its polysymptomatic manifestations (29). Examination of overlaps of etiological factors 

between disorders confirms that higher level broad diagnostic constructs may be more 

valid and clinically useful categories than specific diagnostic categories (54). The 

prognostic utility of the ICD-10 diagnostic spectra is also in line with recent meta-

analytical findings indicating that diagnostic spectra (e.g. psychosis) are relatively 

stable at the time of a first episode of psychosis (55). These diagnostic spectra are 

certainly not optimal, yet they do not present an insuperable barrier to scientific 

progress (56), and in terms of scalability in secondary mental health care (57) have yet 

to be beaten by other predictors of psychosis onset. Conversely, available clinical 



evidence indicates that the specific ICD-10 diagnoses are unreliable and unstable, and 

this may explain why their use is associated with overfitting problems and lack of 

prognostic benefits (55). It is also possible that the small number of cases observed in 

some specific diagnostic categories may interfere with the efficacy of machine learning 

approaches.  

The third hypothesis was that LASSO and RIDGE would perform better in the presence 

of either unstable (such as the specific ICD-10 diagnoses) or redundant predictors, or 

infrequent events (low EPV); RIDGE is generally better with a small number of 

unstable predictors, and LASSO with a large number. This hypothesis was confirmed: 

the best performing model under low EPV and unstable predictors was obtained 

through machine-learning approaches (13). However, the improvement in prognostic 

performance was modest, indicating that if strong predictors are known in advance 

through clinical-learning, it may be difficult to improve the model by adding many 

other variables which are more likely to be interpreted as noise, even when using 

penalized regression machine-learning methods. Notably, our study tested only two 

simple machine learning methods (RIDGE and LASSO), so we cannot exclude the 

possibility that prognostic improvements may have been larger if more complex 

machine learning methods (such as random forest or support vector machines for 

survival) have been used (58, 59). However, Ploeg, Austin, and Steyerberg 

demonstrated that the development of robust models by machine-learning methods 

requires more cases-per-candidate predictors than traditional statistical methods when 

the dimensionality is not extremely high(27). Interestingly, even if large data sets are 

available, complex machine learning methods (i.e. random forests) only showed only 

minor improvement (at the expense of reduced interpretability and no automatic 

variable selection) over simple statistical models (27). This view was pragmatically 

supported by a recent systematic review which compared random forests, artificial 



neural networks, and support vector machines models to logistic regression. Across 282 

comparisons, there was no evidence of superior performance of machine-over clinical-

learning for clinical prediction modelling (60).  

Not surprisingly,  the prognostic tools used to date in the real world clinical routine of 

CHR-P services are still based on clinical-learning (23, 28). However, in the current 

study, we could not test whether the addition of new multimodal predictors - beyond 

the clinical and sociodemographic ones - would improve the prognostic accuracy of 

psychosis onset. Some studies have suggested that the combination of clinical 

information with structural neuroimaging measures (such as gyrification and 

subcortical volumes) could improve prognostic accuracy (61). However, available 

studies failed to provide convincing evidence that multimodal predictors under machine 

learning can substantially improve prognostic accuracy for predicting psychosis onset 

in patients at risk (62, 63). Furthermore, complex models based on multimodal domains 

are constrained by logistical and financial challenges that can impede the ability to 

implement and scale these models in the real world. A potentially promising solution 

may be to adopt a sequential testing assessment to enrich the risk in a stepped 

framework, as demonstrated by our group with a simulation meta-analysis (64). 

Interestingly, a recent machine-learning study on patients at-risk for psychosis 

confirmed that adding neuroimaging predictors to clinical predictors produced a 1.9-

fold increase in prognostic certainty in uncertain cases of patients at-risk for psychosis 

(26).  

Our study provides some conceptual and broad implications; although machine 

learning methods have attracted high expectations in the field (25, 65, 66), the 

enthusiasm may not be entirely substantiated in the field of psychosis. First, we have 

demonstrated that if robust a priori clinical knowledge is available, and if there are 



large sample sizes and EPVs, clinical-learning is a valid method to develop robust 

prognostic models. Clearly, a priori clinical knowledge may not always be available, 

and high dimensional databases with large sample sizes or strong signal to noise ratio 

may be needed to address the complexity of mental disorders. Under those 

circumstances, machine-learning methods can produce more robust prognostic models. 

Our study also provides support for this situation where detailed clinical information is 

not available; machine learning methods were able to identify models of similar 

prediction accuracy.  

 

Second, the methodological, empirical and conceptual limitations of machine learning 

in psychiatry have not been completely addressed. Overoptimistic views, excessive 

faith in technology (67) and lack of knowledge of limitations of a specific methodology 

can lead to unrealizable promises (68). While machine learning methods can potentially 

achieve good predictive accuracy in high dimensional data when there is poor a priori 

knowledge, they tend to deliver ‘black-box’ classifiers that provide very limited 

explanatory insights into psychosis onset (69). This is a fundamental limitation: without 

direct interpretability of a prognostic procedure, implementation in clinical practice 

may be limited (68). To have high impact and be adopted on a broader scale, a 

prognostic model must be accepted and understood by clinicians. Prediction models 

developed through clinical-learning are traditionally better understood by clinicians 

than machine learning models (70), while machine-learning models are challenging to 

evaluate and apply without a basic understanding of the underlying logic on which they 

are based (71). A partial solution may be to incorporate a priori knowledge into 

machine-learning approaches(72). Because of these issues, some authors argue that 

clinical-learning and reasoning will become even more critical to distil machine-

learning and data-driven knowledge (73), and preliminary studies suggest that the 



combined use of theory-driven and machine learning approaches can be advantageous 

(74). There is a trend towards converting “big data” into “smart data” through 

contextual and personalised processing, allowing clinicians and stakeholders to make 

better decisions; our study supports such an approach (75).  

 

Third, an additional pragmatic limitation is that for prediction models to ultimately 

prove useful, they must demonstrate impact (76) - their use must generate better patient 

outcomes (70). Impact studies for machine-learning approaches in patients at-risk for 

psychosis are lacking. Rigorous tests on independent cohorts are critical requirements 

for the translation of machine-learning research to clinical applications (77). To our 

knowledge, the only study that has estimated the potential clinical benefit associated 

with the use of a prognostic model in secondary mental health care is our 

transdiagnostic individualised risk calculator analysis, which was based on clinical-

learning (28). A recent review observed that although there are thousands of papers 

applying machine-learning algorithms to medical data, very few have contributed 

meaningfully to clinical care (78). Another recent empirical study focusing on the 

clinical impact of machine-learning in early psychosis concluded that the current 

evidence for the diagnostic value of these methods and structural neuroimaging should 

be reconsidered toward a more cautious interpretation(79). 

 

 

CONCLUSIONS 

Developing prognostic models on the basis of a priori clinical knowledge, large 

samples and adequate events per variable is a robust clinical prediction method for 

forecasting psychosis onset in patients at-risk. Under these circumstances, the 

prognostic accuracy is comparable to that obtained through machine-learning methods, 



which are more difficult to interpret and may present additional implementation 

challenges. The use of diagnostic spectra for transdiagnostic prediction of psychosis in 

secondary mental health care offers superior prognostic accuracy than the use of more 

specific diagnostic categories. Machine-learning methods should be considered in cases 

of high dimensional data when no a priori knowledge is available.  
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Table 1. Sociodemographic characteristics of the study population, including the derivation and validation dataset(28) 

     

Derivation dataset 
(Lambeth and 

Southwark, n=33820) 

Validation dataset 
(Croydon and 

Lewisham, n=54716)  

      Mean SD Mean SD   

Age (years)(a)   34.4 18.92 31.98 18.54   

      Count % Count %   

Gender         

 Male   17303 48.81 27302 49.9   

 Female   16507 51.16 27398 50.07   

 Missing   10 0.03 16 0.03   

Ethnicity         

 Black   6879 20.34 7023 12.84   

 White   18627 55.08 35392 64.68   

 Asian   1129 3.34 2608 4.77   

 Mixed   1306 3.86 1957 3.58   

 Other   3466 10.25 2084 3.81   

 Missing   2413 7.13 5652 10.33   

ICD-10 Index spectrum diagnosis          

 CHR-P (a)    314 0.93 50 0.09   

 

Acute and transient psychotic 
disorders   553 1.64 725 1.33   

 Substance use disorders   7149 21.14 6507 11.89   

 Bipolar mood disorders   950 2.81 1526 2.79   

 Non-bipolar mood disorders   6302 18.63 8841 16.16   

 Anxiety disorders   8235 24.35 15960 29.17   

 Personality disorders   1286 3.8 2116 3.87   

 Developmental disorders   1412 4.18 3706 6.77   

 

Childhood/adolescence onset 
disorders   4200 12.42 9629 17.6   

 Physiological syndromes   2555 7.55 4424 8.09   



 Mental retardation   864 2.55 1232 2.25   
(a) Not an ICD-10 Index spectrum diagnosis 



Table 2. Experiment 1: Prognostic accuracy (Harrell’s C) for the original model (M1, diagnostic spectra) developed through Clinical-
learning (a priori clinical knowledge) vs machine learning (LASSO and RIDGE). The EPV is >20 (55.6). 
  
METHOD DERIVATION DATA SET 

(N=33,820) 

VALIDATION DATA SET 

(N=54,716) 

OPTIMIS

M 

 Harrell’s C SE 95% C.I. Harrell’s 
C 

SE 95% C.I.   

UNREGULARIZED  0.800 0.008 0.784 - 0.816 0.791 0.008 0.775 - 
0.807 

0.009 

LASSO 0.798 0.008 0.782 - 0.814 0.789 0.008 0.773 - 
0.805 

0.009 

RIDGE 0.810 0.008 0.794 - 0.826 0.788 0.008 0.772 - 
0.804 

0.022 



Table 3. Experiment 2: Prognostic performance of the revised models in the 
derivation dataset and the validation dataset, and their comparative performance.   
Model Type of clustering of 

ICD-10 index 
diagnoses 

Harrell's C SE 95%CI 

Derivation dataset 

M1 Diagnostic spectra  0.800 0.008 0.784 0.816 

M2 Diagnostic categories 0.811 0.008 0.795 0.824 

M3 Diagnostic subdivisions 0.833 0.008 0.821 0.847 

Validation dataset 

M1 Diagnostic spectra  0.791 0.008 0.776 0.807 

M2 Diagnostic categories 0.797 0.008 0.782 0.812 

M3 Diagnostic subdivisions  0.792 0.008 0.776 0.808 

M2-M1  0.006 0.003 0.001 0.012 

M3-M1  0.001 0.005 -0.009 0.011 

M3-M2   -0.005 0.005 -0.015 0.004 

All models include age, gender, age by gender, ethnicity and ICD-10 index 
diagnosis (refined as specified in the methods)  



Table 4 Experiment 3a. Prognostic performance using machine-learning vs clinical-learning under variable EPVs. Upper part of the table: 
apparent performance of M1-M3 models in the whole dataset. Bottom part of the table: internal performance in the whole dataset using nested 
10-fold CV and taking median values with 100 repetitions.  
Apparent 

performance M1 (diagnostic spectra) M2 (diagnostic categories) M3 (diagnostic subdivisions) 

  
Unregularized 
Cox Regression LASSO RIDGE 

Unregularized 
Cox Regression LASSO RIDGE 

Unregularized 
Cox Regression LASSO RIDGE 

C index 0.800 0.793 0.790 0.811 0.799 0.803 0.827 0.812 0.813 

SE 0.005 0.005 0.006 0.005 0.005 0.005 0.005 0.005 0.005 

 

Internal validation 
performance M1 (diagnostic spectra) M2 (diagnostic categories) M3 (diagnostic subdivisions) 

  
Unregularized 
Cox Regression LASSO RIDGE 

Unregularized 
Cox Regression LASSO RIDGE 

Unregularized 
Cox Regression LASSO RIDGE 

C index 0.799 0.794 0.790 0.804 0.795 0.795 0.805 0.793 0.797 

SE 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 

Events 2011 2011 2011 
Degrees of freedom of 
predictors 18 63 226 

EPV 111.7 31.9 8.9 

EPV, Events Per Variables, calculated as the number of transitions to psychosis over the degrees of freedom of predictors. Categorical 
predictors are counted as the number of indicator categories they consist of (i.e. number of categories - 1). 
 
  

 



Figure 1. Experiment 3b. Clinical-learning (unregularized regression) vs machine learning (LASSO and RIDGE) for the original model M1 
with random sampling of varying sample sizes and decreasing EPV.  

 


