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Abstract 

Background: This retrospective study aimed to develop and validate a combined model based  [18F]FDG PET/CT radi-
omics and clinical parameters for predicting recurrence in high-risk pediatric neuroblastoma patients.

Methods: Eighty-four high-risk neuroblastoma patients were retrospectively enrolled and divided into training and 
test sets according to the ratio of 3:2.  [18F]FDG PET/CT images of the tumor were segmented by 3D Slicer software 
and the radiomics features were extracted. The effective features were selected by the least absolute shrinkage and 
selection operator to construct the radiomics score (Rad_score). And the radiomics model (R_model) was constructed 
based on Rad_score for prediction of recurrence. Then, univariate and multivariate analyses were used to screen out 
the independent clinical risk parameters and construct the clinical model (C_model). A combined model (RC_model) 
was developed based on the Rad_score and independent clinical risk parameters and presented as radiomics nomo-
gram. The performance of the above three models was assessed by the area under the receiver operating characteris-
tic curve (AUC) and decision curve analysis (DCA).

Results: Seven radiomics features were selected for building the R_model. The AUCs of the C_model in training 
and test sets were 0.744 (95% confidence interval [CI], 0.595–0.874) and 0.750 (95% CI, 0.577–0.904), respectively. 
The R_model yielded AUCs of 0.813 (95% CI, 0.685–0.916) and 0.869 (95% CI, 0.715–0.985) in the training and test 
sets, respectively. The RC_model demonstrated the largest AUCs of 0.889 (95% CI, 0.794–0.963) and 0.892 (95% CI, 
0.758–0.992) in the training and test sets, respectively. DCA demonstrated that RC_model added more net benefits 
than either the C_model or the R_model for predicting recurrence in high-risk pediatric neuroblastoma.

Conclusions: The combined model performed well for predicting recurrence in high-risk pediatric neuroblastoma, 
which can facilitate disease follow-up and management in clinical practice.
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Background
Neuroblastoma is one of the most common pediatric 
cancers, accounting for approximately 10% of all child-
hood malignant diseases [1]. Patients are stratified 
by age, stage, and molecular pathology into low-risk, 
intermediate-risk, and high-risk groups [2]. High-risk 
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neuroblastoma requires systemic therapy (including 
induction chemotherapy, high-dose chemotherapy, and 
immunotherapy) and local therapy (surgery and radio-
therapy). About 25% of high-risk neuroblastoma patients 
respond poorly to induction chemotherapy, may recur-
rence after initial therapy, and require alternative new 
treatment protocol before high-dose chemotherapy. 
These cases were considered refractory neuroblastoma 
patients. Other about 75% of high-risk patients may 
respond well initially, but recurrence before or after 
high-dose chemotherapy. These patients were considered 
recurrence patients [3]. Moreover, the 5-year event-free 
survival in high-risk patients was less than 50%. The sur-
vival ratio of patients with recurrence neuroblastoma is 
very low. Although the standard treatment protocol in 
these recurrence patients has not yet been established, 
multidisciplinary therapy is necessary [4]. Prevention of 
neuroblastoma recurrence is particularly difficult in high-
risk patients. At present, neuroblastoma recurrence is 
diagnosed by imaging methods and cytological examina-
tions [5]. However, tumor growth is generally advanced 
at this point. At this stage, the treatment protocol is very 
limited. Therefore, there is thus a great need to identify 
novel and effective biomarkers to predict neuroblastoma 
recurrence in these high-risk patients.

[18F]FDG PET/CT shows tumor glucose metabolic 
activity in the majority of neuroblastoma, though 
 [123I]-metaiodobenzylguanidine (MIBG) scintigraphy 
remains the dominant disease-specific imaging method 
for this disease [6]. Currently,  [18F]FDG PET/CT is 
selectively applied in some countries or centers because 
of MIBG availability, and  [18F]FDG PET/CT is used for 
non-MIBG-avid neuroblastoma [7].  [18F]FDG PET/CT 
shows high per-patient sensitivity for lesion diagnosis in 
high-risk neuroblastoma patients [8].

Radiomics is a new quantitative imaging method that 
allows a thorough analysis of medical images data and 
attracted more and more attention in the field of medi-
cine in recent years. Radiomics extracts numerous and 
quantitative information from medical images, includ-
ing CT, MRI and PET, with high throughput to facilitate 
clinical decision-making [9]. The goals of radiomics are 
to improve decision support and reliability of prediction 
inexpensively and non-invasively [10]. Non-invasiveness 
is very crucial for pediatric patients. Radiomics also can 
provide a new angle for differential diagnosis, preci-
sion therapy, prediction of metastasis potential, therapy 
response [11] and prediction of tumor prognosis [12]. 
The value of radiomics based on  [18F]FDG PET/CT in 
predicting recurrence has been demonstrated in previ-
ous studies [13–15]. However, radiomics based on  [18F]
FDG PET/CT in predicting recurrence in neuroblas-
toma, especially in the high-risk subgroups, has not been 

reported previously. Therefore, the present study inves-
tigated the value of radiomics based on  [18F]FDG PET/
CT in the prediction of recurrence of high-risk neuro-
blastoma patients. The final goal of the research aimed to 
develop and validate a combined model based  [18F]FDG 
PET/CT radiomics and clinical parameters, which can 
predict the recurrence with good performance in high-
risk neuroblastoma patients.

Materials and methods
Patients
The Institutional Review Board of Beijing Friendship 
Hospital, Capital Medical University approved this ret-
rospective study and waived the requirement for written 
informed consent (Approval No.:2020-P2-091-02).

A total of 84 high-risk neuroblastoma patients were 
recruited between March 2018 and November 2019. 
The inclusion criteria of neuroblastoma were as fol-
lows: (1) pathologically confirmed neuroblastoma; (2) 
age ≤ 18 years at diagnosis; (3) complete  [18F]FDG PET/
CT imaging data; (4) complete clinical information; (5) 
without cancer-related therapy before PET/CT imaging; 
(6) complete laboratory and genetic data. High-risk neu-
roblastoma was defined according to (1) age older than 
18 months and stage IV disease according to the Inter-
national Neuroblastoma Staging System; or (2) any age 
and stage II–IV disease with MYCN amplification. All 
patients had received multidisciplinary treatment and 
then started maintenance treatment. These patients were 
monitored and evaluated throughout maintenance treat-
ment, with follow-up ending on 31 October 2021. These 
patients were randomly divided into training and test sets 
with a ratio of 3:2.

Determination of recurrence in high‑risk neuroblastoma
Upon initial diagnosis, bone marrow biopsies and/
or aspirates were performed, followed by microscopic 
examination to the identification of neuroblastoma cells. 
Serum levels of tumor markers [including neuron-spe-
cific enolase (NSE), serum ferritin and lactate dehydro-
genase (LDH)] and urine vanillylmandelic acid (VMA) 
and homovanillic acid (HVA) were quantified. After mul-
tidisciplinary treatment, the therapeutic response was 
determined by quantification of serum tumor markers, 
urine VMA and HVA, microscopic examination of bone 
marrow,  [123I]MIBG scanning, ultrasound, and com-
puted tomography. Quantification of serum tumor mark-
ers, urine VMA and HVA, microscopic examination of 
bone marrow, and imaging tests were performed every 3 
months, and  [123I]MIBG scanning was performed every 
6 months [1]. According to the Response Evaluation Cri-
teria in Solid Tumors criteria, the response was classified 
as complete remission (CR), partial remission (PR), stable 



Page 3 of 9Feng et al. BMC Medical Imaging          (2022) 22:102  

disease (SD), and progressive disease (PD). Patients with 
CR, PR, or SD received maintenance treatment. Patients 
with PD were considered as recurrence.

[18F]FDG PET/CT imaging
All patients underwent PET/CT examinations on Sie-
mens Biograph mCT-64 PET/CT following European 
Association of Nuclear Medicine guidelines [16, 17]. 
They were instructed to fast for at least 6 h and decrease 
intense exercises for at least 24  h before the examina-
tions. 0.10–0.15MBq/kg of  [18F]FDG was injected intra-
venously 40–60  min before the PET/CT scan. Firstly, 
the low-dose CT scan was performed for anatomical 
reference and attenuation correction, with 120 keV tube 
voltage and automatic modulated tube current. The 
CT image parameters were as follows: resolution 0.586 
mm × 0.586 mm, 2 mm slice thickness, and matrix size 
512 × 512. The PET scan was carried out with 2 min per 
bed position immediately after the whole-body CT scan. 
PET images were reconstructed using the ordered sub-
sets-expectation maximization algorithm with time-of-
flight. Attenuation corrections were applied during the 
reconstruction and a gaussian filter of 5 mm in full width 
at half-maximum was applied to the PET images. The 
PET image parameters were as follows: resolution 4.07 
mm × 4.07  mm, 3  mm slice thickness, and matrix size 
200 × 200.

The regions of interest (ROI) of the primary tumor 
were semi-automatically segmented using 3D Slicer 
(version 4.10.1), which was delineated along the edge 
of neuroblastoma on CT images, including the entire 
tumor. The tumor size in our study was 1.7  cm–20  cm. 

The process may be variable and cause bias in the evalu-
ation of derived radiomics features [18]. Therefore, the 
ROIs segmentation of each tumor was performed by two 
nuclear medicine physicians. To map the ROIs to the 
PET images, the PET images were resampled based on 
B-spline interpolation to ensure that they had the same 
voxel spacing as the CT images. Our study flow diagram 
is shown in Fig. 1.

Feature extraction and selection
Radiomics features from CT and PET images were 
extracted separately using pyradiomics [19], an open-
source python package for the extraction of radiom-
ics features from medical imaging. At first, the PET/CT 
imaging and their ROIs were resampled based on linear 
interpolation to make them isotropic and improve the 
features’ repeatability. The voxel of the up-resampled 
PET imaging became 3 mm×3 mm×3 mm, and the voxel 
of CT imaging became 2 mm × 2 mm × 2 mm through 
down-resampling. PET and CT images were discretized 
by equal width bins with a standardized uptake value of 
0.3 and 25 CT values (HU) [20, 21], respectively. First 
order features, shape features, gray level co-occurrence 
matrix (GLCM) features, gray level run length matrix 
(GLRLM) features, gray level size zone matrix (GLSZM) 
features, neighboring gray tone difference matrix 
(NGTDM) features, and gray level dependence matrix 
(GLDM) features were extracted from the original and 
the pre-processed images. The following methods were 
used in the imaging pre-processing: wavelet, square, 
square root, logarithm, exponential, and gradient filter-
ing. The intraclass correlation coefficient (ICC) obtained 

Fig. 1 Workflow of the steps in our study. First, tumors were semi-automatically segmented by 3D Slicer. Second, radiomics features were extracted 
and selected by LASSO regression for further analysis. Finally, the combined model was developed based on the results of multivariate logistic 
regression in the training set, and the performance of the model was assessed by the ROC curve, calibration curve, and decision curve analysis
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based on the features extracted from the ROIs deline-
ated by the two nuclear medicine physicians were used 
to assess the reliability of the variables, the features with 
ICC > 0.8 were maintained for further analysis. Then, the 
independent t-test or Mann-Whitney U test was used for 
univariate analysis, and the features with P < 0.05 were 
retained. Finally, the least absolute shrinkage and selec-
tion operator (LASSO) regression was applied for fea-
tures selection and regularization in the training set.

Model construction
The radiomics score (Rad_score) for each patient was 
calculated by using a linear combination of the selected 
features weighted by their respective coefficients, and 
the R_model was constructed based on Rad_score. The 
clinical parameters for predicting recurrence in high-
risk neuroblastoma were screened by univariate and 
multivariate analysis and were selected as parameters 
to construct the C_model. RC_model was constructed 
by combining the Rad_score and the predictors in the 
C_model. All models were built and trained in the train-
ing set, and the prediction performance was evaluated in 
the training and test sets. The performance of each model 
was assessed by the area under the receiver operating 
characteristic (ROC) curve (AUC). The calibration of the 
RC_model was assessed with calibration curves. Decision 
curve analysis (DCA) was used to estimate the clinical 
utility of the RC_model, R_model, and C_model.

Statistical analysis
Statistical analyses were performed with Python (version 
3.7.8, www. python. org) and R (version 4.0.3, www.r- proje 
ct. org). Univariate analysis was used to compare differ-
ences in the clinical parameters between the training and 
test sets, using the independent t-test or Mann-Whitney 
U test for quantitative data, and the chi-squared test for 
categorical variables. The Python package of “sklearn” 
was used for LASSO regression and the ROC curve. The 
nomogram and calibration curve were depicted using the 
“rms (R)” package. DCA was performed using the “rmda 
(R)” package. Two-sided P < 0.05 indicated statistical 
significance.

Results
Clinical parameters of patients
All clinical parameters of the patients between the train-
ing and test sets were compared, including gender, age, 
NSE, serum ferritin, LDH, urine VMA and HVA. The 
NSE, serum ferritin, LDH, urine VMA and HVA were 
acquired within two weeks before therapy. No significant 

difference was shown in all these clinical parameters 
between training and test sets (Table 1).

Predictive model construction
A total of 2632 radiomics features were extracted 
from PET/CT images using pyradiomics. After assess-
ing the robustness, 1016 out of 2632 features were 
retained for model building, with ICC > 0.8. Thirty-
one features were retained after independent t-test or 
Mann-Whitney U test univariate analysis. Eventually, 7 
features were extracted by LASSO regression. These 7 
features (PET_original_gldm_LargeDependenceHigh-
GrayLevelEmphasis, PET_wavelet-HLL_glcm_Imc1, 
PET_wavelet-LHL_firstorder_Median, PET_wavelet-
HHH_glcm_Contrast, PET_wavelet-LLH_gldm_Low-
GrayLevelEmphasis, PET_wavelet-LLL_glcm_MCC, 
CT_wavelet-HLL_glszm_SmallAreaEmphasis) were 
used to build the R_model and calculate the Rad_score. 
Among these features, six were from PET images and one 
from CT images. The Rad_score for each patient was cal-
culated by the following formula:

Rad_score = −0.97572 − 0.00042 × PET_origi-
nal_gldm_LargeDependenceHighGrayLevelEmphasis + 
20.38846 × PET_wavelet-HLL_glcm_Imc1 + 34.07874 ×  
PET_wavelet-LHL_firstorder_Median + 59.78913 × PET_ 
wavelet-HHH_glcm_Contrast − 15.62000 × PET_wavelet-
LLH_gldm_LowGrayLevelEmphasis − 13.32169 × PET_ 
wavelet-LLL_glcm_MCC − 6.07790 × CT_wavelet-HLL_ 
glszm_SmallAreaEmphasis

All clinical parameters were compared between recur-
rence and non-recurrence groups (Table 2). Three clini-
cal parameters (age, urine VMA and HVA) were then 
selected by multivariate analysis, which was used to 

Table 1 Comparison of clinical parameters of the patients 
between the training and test sets

Factors Training set Test set P

Gender 0.082

  Female 30 (58.8%) 13 (39.4%)

  Male 21 (41.2%) 20 (60.6%)

Recurrence 0.987

  Yes 31 (60.8%) 20 (60.6%)

  No 20 (39.2%) 13 (39.4%)

Age (years) 3.4 (1.9–4.7) 3.6 (2.8–5.3) 0.104

NSE (ng/mL) 297.6 (129.9–722.2) 511.0 (178.6–750.0) 0.357

Ferritin (ng/mL) 162.6 (69.9–351.5) 223.2 (118.3–342.2) 0.262

LDH (U/L) 605.0 (380.5–1114.0) 828.0 (545.0–1258.0) 0.234

VMA (µmol/L) 197.5 (57.4–674.6) 255.3 (87.5–620.2) 0.780

HVA (µmol/L) 52.9 (19.5–113.8) 91.0 (32.9–182.3) 0.189

NSE Neuron-specific enolase, LDH Lactate dehydrogenase, VMA Vanil-
lylmandelic acid, HVA Homovanillic acid

http://www.python.org
http://www.r-project.org
http://www.r-project.org
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construct the C_model. The RC_model was constructed 
by the three clinical parameters and Rad_score (Table 3). 
And the RC_model was presented as the nomogram 
based on the training set, which represented individual-
ized prediction and visualized the proportion of each fac-
tor (Fig. 2).

Model performance
The performance, including sensitivity, specificity, accu-
racy, and AUCs of different models were shown in 
Table 4. And the ROC curves of all models in both train-
ing and test sets were displayed in Fig. 3. The RC_model 
for recurrence prediction had the greatest performance 
in the training and test sets, with an AUC of 0.889 in the 
training set and an AUC of 0.892 in the test set. The cali-
bration curves of the RC_model in the training and test 
sets were depicted in Fig. 4. It demonstrated that the RC_
model has a good agreement in predicting recurrence in 
both the training and test sets. The DCA results for the 
RC_model, R_model, and C_model in the training and 
test sets were presented in Fig. 5. DCA showed that the 
RC_model added more net benefits for predicting recur-
rence in high-risk pediatric neuroblastoma than either 
the R_model or the C_model.

Discussion
Although there are highly effective salvage therapies for 
patients with low-risk and intermediate-risk diseases 
who have a local recurrence, recurrence disease in high-
risk neuroblastoma patients remains a clinical challenge. 
Therefore, accurate, non-invasive, and early recognition 
of high-risk neuroblastoma patients who had the possi-
bility of recurrence is very important for clinical manage-
ment. The present study demonstrated that the C_model 
and R_model had moderate power for predicting recur-
rence in the training and test sets. The RC_model showed 
a strong power for predicting recurrence in high-risk 
pediatric neuroblastoma, with sensitivity, specificity, 
accuracy, AUCs of 0.806, 0.800, 0.804, and 0.889 in the 
training set and 0.900, 0.769, 0.848, and 0.892 in the test 
set. The predictive ability of the RC_model was better 
than the C_model and R_model.

Table 2 Comparison of clinical parameters and Rad_score of the 
patients between recurrence and non-recurrence group

Factors Recurrence Non‑recurrence P

Gender 0.066

  Female 22 (43.1%) 21 (63.6%)

  Male 29 (56.9%) 12 (36.4%)

Age (years) 4.0 (2.8–5.7) 2.9 (2.1–4.3) 0.041

NSE (ng/mL) 430.0 (213.1–782.8) 275.0 (100.0–674.0) 0.093

Ferritin (ng/mL) 255.0 (120.8–366.6) 123.7 (63.7–251.9) 0.017

LDH (U/L) 727.0 (521.5–1122.5) 605.0 (359.0–1435.0) 0.731

VMA (µmol/L) 537.0 (188.1–716.0) 78.6 (28.9–194.6) < 0.001

HVA (µmol/L) 92.8 (32.6–182.3) 45.5 (13.9–59.2) 0.002

Rad_score 0.75 (0.21–1.76) −0.83 (−1.27–0.03) < 0.001

HVA Homovanillic acid, LDH Lactate dehydrogenase, NSE Neuron-
specific enolase, VMA Vanillylmandelic acid

Table 3 Multivariate analysis of the factors used to build the 
RC_model

Parameters OR (95% CI) P

Rad_score 5.456 (1.693–17.586) 0.004

Age 1.654 (1.056–2.911) 0.045

VMA 1.004 (1.001–1.006) 0.017

HVA 1.004 (1.001–1.007) 0.013

HVA Homovanillic acid, VMA Vanillylmandelic acid, OR Odds ratio, CI 
Confidence interval

Fig. 2 The radiomics nomogram incorporated age, VMA, HVA, and the Rad_score
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Table 4 Prediction performance of C_model, R_model, and RC_model in the training and test sets

Set Model Sensitivity (95%CI) Specificity (95%CI) Accuracy (95%CI) AUC (95%CI)

Training C_model 0.645 (0.454–0.808) 0.700 (0.457–0.881) 0.667 (0.521–0.792) 0.744 (0.595–0.874)

R_model 0.774 (0.589–0.904) 0.700 (0.457–0.881) 0.745 (0.604–0.857) 0.813 (0.685–0.916)

RC_model 0.806 (0.625–0.925) 0.800 (0.563–0.943) 0.804 (0.669–0.902) 0.889 (0.794–0.963)

Test C_model 0.700 (0.457–0.881) 0.692 (0.386–0.909) 0.697 (0.513–0.844) 0.750 (0.577–0.904)

R_model 0.800 (0.563–0.943) 0.769 (0.462–0.950) 0.788 (0.611–0.910) 0.869 (0.715–0.985)

RC_model 0.900 (0.683–0.988) 0.769 (0.462–0.950) 0.848 (0.681–0.949) 0.892 (0.758–0.992)

AUC  Area under the curve, CI Confidence interval

Fig. 3 ROC curves for the RC_model, R_model and C_model in the training (a) and test sets (b)

Fig. 4 Calibration curves of the RC_model in the training (a) and test sets (b)
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Among the clinical parameters, three clinical parame-
ters were used to construct a prediction model, including 
age, urine VMA and HVA. Age is an important risk strat-
ification or prognostic index in neuroblastoma. Interna-
tional Neuroblastoma Pathology Classification is defined 
by multiple factors, including age at diagnosis [22]. The 
risk stratification schema proposed by the  Children’s 
Oncology Group is defined by several factors, including 
age, ploidy, histology, et al. [23]. VMA and HVA levels in 
urine, the serum levels of serum ferritin, NSE, and LDH 
are considered characteristic tumor markers of neuro-
blastoma. These parameters are helpful at the initial diag-
nosis, response assessment, and monitoring recurrence 
of neuroblastoma [24]. At diagnosis, abnormal results 
were found in 92% for VMA and HVA of urine. Abnormal 
results at recurrence or progression were demonstrated 
in 54% for HVA and VMA of urine. The sensitivity of 
these markers was higher for metastasis compared with 
local recurrence [24]. However, the predictive efficacy of 
the C_model is not very high with AUCs of 0.744 in the 
training set, and 0.750 in the test set.

The value of  [18F]FDG PET/CT in high-risk neuro-
blastoma patients has been investigated previously. 
 [18F]FDG PET/CT and bone marrow sampling may suf-
fice for disease monitoring in high-risk neuroblastoma 
[25].  [18F]FDG PET/CT based on visual analysis has 
significant implications for prognostic assessment in 
these patients [8]. The maximum standardized uptake 
value representing the metabolic activity of the tumor 
was identified as poor prognostic factors associated 
with decreased survival.  [18F]FDG uptake may assist in 
the identification of patients with poor prognoses [26]. 
However, the images of  [18F]FDG PET/CT were ana-
lyzed visually and semi-quantitatively in above these 
studies. These analytical methods were influenced by 

many factors, including physician experience, inter-
val time between  [18F]FDG injection and scan, blood 
glucose serum, and so on. Therefore, more objective 
and accurate analytical methods of  [18F]FDG PET/CT 
images were needed in neuroblastoma patients, espe-
cially in high-risk sub-group patients. Radiomics trans-
forms medical images into quantitative indexes through 
high-throughput extraction by data-assessment algo-
rithms for predicting important clinical outcomes [27]. 
After this research, the R_model showed a moderate 
power for predicting recurrence, with AUCs of 0.813 
in the training set and 0.869 in the test set. Seven radi-
omics features were selected for R_model construction 
including six wavelet features. Wavelet transform was 
applied to feature extraction given the fact that wave-
let transform-based features showed good capability in 
tumor classification and prognosis. The original image 
was decomposed into eight categories by performing 
wavelet transformation on three axes. On each axis, the 
signal of the image was decomposed into the high-fre-
quency and low-frequency components by the wavelet 
transform, including “LLL_,” “LLH_,” “LHL,” “LHH_,” 
“HLL_,” “HLH_,” “HHL_,” and “HHH_”. The wavelet-
based features are generally considered useful for radi-
omics studies [28, 29]. In the present study, one GLDM 
feature was used to build a predictive model. GLDM 
as one of the texture features quantifies gray level 
dependencies in an image, which is defined as the num-
ber of connected voxels within a specific distance that 
is dependent on the center voxel. Texture can reveal 
tumor heterogeneity, which is relevant to the underly-
ing biology, and radiomics analysis provides a feasible 
method to unlock the buried information beyond the 
perception of the human eyes [30].

Fig. 5 DCA for the RC_model, R_model and C_model in the training (a) and test sets (b)
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In the present study, to achieve a more holistic model, 
we incorporated clinical parameters with radiomics fea-
tures, leading to a significantly improved prediction effi-
cacy of the RC_model than the C_model and R_model 
for predicting recurrence in high-risk neuroblastoma 
patients. This finding is noteworthy because the predic-
tive efficacy of the C_model and R_model is moderate. 
To minimize potential limitations of a R_model including 
overfitting and poor reliability, we applied the standard-
ized image prepossessing and multi-step feature selection 
to build the R_model with nonredundant, reliable, and 
informative features. Additionally, DCA demonstrated 
the RC_model added more net benefits for predicting 
recurrence in high-risk pediatric neuroblastoma than 
either the R_model or the C_model.

The potential clinical significance of the present study 
included: (1) RC_model based on radiomics features and 
clinical parameters provides an accurate method in a 
non-invasive way for predicting recurrence of high-risk 
neuroblastoma; (2) The early prediction of recurrence in 
high-risk neuroblastoma can help clinicians following-up 
these patients, guiding further management in these sub-
group patients.

This study had several limitations. Firstly, this was a 
retrospective study with relatively small sample size, 
particularly in the test set, which might have selection 
bias and influence the robustness and generalizability 
of our predictive model. And we randomly divided the 
patients into training and test sets in the ratio of 3:2, 
which may lead to the poor stability of our results. We 
will try other methods, such as using the k-fold cross-
validation strategy to divide the training and test sets 
to improve the stability of our results in future stud-
ies. Secondly, to ensure better accuracy, we semi-auto-
matically delineated the primary tumor, however, it 
was labor-intensive, time-consuming, and subject to 
inter-and intra-observer variability. Moreover, it pro-
duced poorly reproducible results. Therefore, in future 
studies, we will try to overcome these issues using 
automatic segmentation methods to improve the repro-
ducibility of radiomics studies. And we segmented 
the primary tumor on the CT images only, anatomical 
information often does not match metabolic informa-
tion at all though we resampled PET images based on 
B-spline interpolation to ensure that they had the same 
voxel spacing as the CT images. Therefore, we will try 
to use a proper method to segment the ROI on PET 
images in future studies, and segment both CT and 
PET images to make our results more accurate. Finally, 
we only performed internal validation. Therefore, it is 
necessary to validate the results in large, multicentric 
cohorts and improve the reliability of models for pre-
dicting the recurrence of high-risk neuroblastoma.

Conclusions
Our combined model integrating clinical parameters 
with the Rad_score from  [18F]FDG PET/CT images could 
predict recurrence in high-risk neuroblastoma with high 
discriminatory ability. The predictive model could serve 
as a potential decision support tool for both clinicians 
and radiologists, and help guide appropriate manage-
ment for high-risk neuroblastoma patients.
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