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Original Article

Clinical Pertinence Metric Enables
Hypothesis-Independent Genome-Phenome
Analysis for Neurologic Diagnosis

Michael M. Segal, MD, PhD1, Mostafa Abdellateef2, Ayman W. El-Hattab, MD3,
Brian S. Hilbush, PhD4, Francisco M. De La Vega, PhD4,5, Gerard Tromp, PhD6,
Marc S. Williams, MD6, Rebecca A. Betensky, PhD7, and Joseph Gleeson, MD2

Abstract
We describe an ‘‘integrated genome-phenome analysis’’ that combines both genomic sequence data and clinical information for
genomic diagnosis. It is novel in that it uses robust diagnostic decision support and combines the clinical differential diagnosis
and the genomic variants using a ‘‘pertinence’’ metric. This allows the analysis to be hypothesis-independent, not requiring
assumptions about mode of inheritance, number of genes involved, or which clinical findings are most relevant. Using 20 geno-
mic trios with neurologic disease, we find that pertinence scores averaging 99.9% identify the causative variant under conditions
in which a genomic trio is analyzed and family-aware variant calling is done. The analysis takes seconds, and pertinence scores
can be improved by clinicians adding more findings. The core conclusion is that automated genome-phenome analysis can be
accurate, rapid, and efficient. We also conclude that an automated process offers a methodology for quality improvement of
many components of genomic analysis.
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Much of the clinical application of whole exome and whole

genome analysis has been in neurogenetic diagnosis.

Although such analysis has much potential for improving

diagnosis, a widespread concern is that we will have a

$1000 genome with a $100 000 interpretation.1 Even though

interpretation technologies have been improving, the costs

and time of analysis are regularly cited as the major bottle-

neck in genomic analysis,2 putting severe demands on the

time of scarce professionals with genomic experience. We

report here on the analytical approach that defined the bottom

limit of the analysis times reported in the CLARITY genome

interpretation contest2 by using a hypothesis-independent

approach. When, in the past, this clinical correlation has been

automated, it has used rudimentary decision support consist-

ing of lists of findings, lacking the information about disease

incidence, frequency of findings, and onset age and disap-

pearance age of findings, that is key to neurologic diagnoses.3

In addition, these approaches have required hypotheses about

the mode of inheritance, the number of genes involved, and

which clinical findings are most relevant.

We describe here on an integrated genome-phenome anal-

ysis that incorporates a robust clinical diagnostic decision

support program that analyzes genomic variants in seconds,

and does the genome-phenome correlation using a metric of

pertinence of genes to the clinical picture, tying together the

genome and phenome in a way that prioritizes genes of inter-

est, and identifies the variants in each gene that can plausibly

be involved.

We now provide the first detailed description and validation

of this integrated genome-phenome analysis and its pertinence
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metric used to identify causative genes, using 20 exome trios

with neurologic diagnoses. We also describe in detail our anal-

ysis of the 2 CLARITY cases2 for which causative genes were

identified, previously discussed in preliminary form.4

Methods

The integrated genome-phenome analysis is based on the SimulConsult

diagnostic decision support system, which has been shown to increase

accuracy and reduce costs in clinical diagnosis.3 The decision support uses

a detailed quantitative approach that takes into account incidence and

treatability of each disease, and uses family history in a hypothesis-

independent way.5 At the time of the analysis, the software included a

curated database of 4912 diseases and 2734 genes, including all genes with

a convincing human germline phenotype. There were 104 231 data points,

with each data point describing a different finding in a different disease,

and specifying the frequency of the finding in the disease, and the distri-

bution of onset age and disappearance age. All these data are viewable

from within the SimulConsult software.6

Genome analysis was integrated into the decision support by import-

ing a ‘‘variant table’’ of tens of thousands of variants, and for each var-

iant computing both monoallelic and biallelic severity scores, varying

from 0 to 4, displayed to the user7 along with details of the severity

score assignment. The variant severity scores were based on the type

of mutation and other annotations such as variant frequency in a popu-

lation, conservation scores (GERP, Grantham, Phat, and PHAST) and a

functional score (PolyPhen), as detailed in the SimulConsult variant file

format.8 For some analyses, a population-specific ‘‘variome’’ was used

based on *1400 Middle Eastern genomes that included not only

population-specific variant frequencies but also data about counts of

instances in which a variant was shared in a homozygous or heterozy-

gous way in that population. Variant severity scores were decreased

based on these share counts, resulting in lower numbers of variants with

nonzero severity scores when the variome was used. Monoallelic var-

iant severity scores differed from biallelic variant severity scores in

being decreased by 1 for population frequency >1%, and when the var-

iome was used, monoallelic and biallelic variant severity scores were

decremented differently as a result of the homozygous and heterozy-

gous shares. Variant severity scores were adjusted on the basis of the

number of de novo variants in the trio; when <20 de novo variants were

found with raw severity score >0, the severity of de novo variants was

increased by 1. Variant severity scores were decreased by 1 in trios with

de novo variants >100 and 2 if >1000, resulting in different numbers of

variants with severity >0 in probands and trios.

Using novelty and compound heterozygosity analysis, the severity

scores for variants were combined to compute a unified severity score

for each possible zygosity of each gene.7 The gene severity scores

were used to adjust the degree to which the decision support software

treated the abnormality in the gene as incidental versus important in

affecting the probability of diagnoses.7

The output (as displayed in Segal et al4) includes a list of diseases

in order of probability, and a list of zygosities found for genes for

which there is a convincing human germline phenotype, in order of

gene pertinence. The gene pertinence metric7 reflects the degree to

which the differential diagnosis would be different if the finding (clin-

ical or gene abnormality of the indicated zygosity) were not present, a

retrospective analysis that is similar to the prospective measure of use-

fulness described by Segal.9 For genes, the pertinence for the indicated

zygosity of a gene is given as its percentage of all pertinence assigned

to genes. Rank scores in gene pertinence and disease probability lists

were noted, with any rank over 100 coded as 101 to limit the effect of

outliers. Ranks were not capped for gene discovery metrics.

The 20 trios were previously sequenced and analyzed manually as

part of ongoing studies in the Gleeson lab, using non-family-aware

(Genome Analysis Toolkit [GATK]) variant calling. The 20 trios were

reanalyzed using family-aware variant calling.10 Gene variants judged

to be causative were confirmed with Sanger sequencing in all 20 trios.

In the gene-discovery mode, genes with no recognized human phe-

notype were displayed, as well as genes in which the zygosity found

did not match the known human phenotype. The zygosities for each

gene were displayed, ranked by gene severity scores, after the same

novelty and compound heterozygosity analysis used in the genome-

phenome analysis.

Proband analyses were simulated using the trios by deleting the

maternal and paternal variants from the trio variant table.8 All proband

analysis was done using the non-family-aware data, because the qual-

ity scores in the family-aware variant calling data reflected parental

data, and thus would not provide an appropriate simulation of the sit-

uation of analyzing just a proband.

A ‘‘nonvariant’’ table was simulated for 2 trios. This simulation

assumed that all gene zygosities with known human phenotypes

that were not abnormal in the variant table were both properly read

and were normal, as opposed to the standard model in which such

genes were left as unspecified. These gene zygosities were marked

as absent, in addition to the usual marking of variants found as present.

Clinical descriptions, including family history, were entered into

the decision support software by nurse practitioners in the Gleeson lab,

using clinical summaries provided by referring clinicians. An average

of 6.6 positive findings and 0.7 negative (absent) findings were used

per case; negative findings were used in 4 of 20 cases. The software

includes the ability to enter age of onset for each finding and include

pertinent negative findings but often such detail was not available and

onsets were used for 12 of 20 trios. All patients were Middle Eastern,

and consanguinity (first to third cousins) was present in 16 of 20 cases.

Results and Discussion

In all 20 cases, a genetic neurologic diagnosis had been deter-

mined previously by the Gleeson group using manual methods.

For 14 of the 20 trios (probandþmotherþ father), the causal gene

was one previously described in the literature, allowing a blinded

test of the integrated genome-phenome analysis. The diagnoses

were biallelic disorders of the following genes: AHI1 (3 trios),

C5orf42, CC2D2A, CEP290, INPP5E, POMGNT1, RPGRIP1

L, TCTN3, TMEM231, TMEM237 (2 trios), and WDR62, with

only CC2D2A being a compound heterozygote (of different var-

iants found in the third cousin parents). Although many of the cau-

sal genes were homozygous, as would be expected from the

consanguinity in many cases, the genome-phenome analysis is

done without any specification of inheritance mechanism to be

considered or the number of genes involved; the results instead

emerged in a hypothesis-independent way based on the data.

For these 14 cases with a phenotype in the medical literature,

the results from the genome-phenome analysis were obtained by

importing and analyzing the exome variant tables in the context

of the clinical findings. The findings were entered using the stan-

dard version of the diagnostic decision support software3 by

nurse practitioners from narrative material sent by referring

physicians. The analysis results include gene pertinence scores,

882 Journal of Child Neurology 30(7)



representing the question of how much the differential diagnosis

would be changed if the variants had not been present. Results

from these 14 trios are shown in Table 1. With trios for which

family-aware variant calling was done and the Middle Eastern

variome was used (left-most column), the gene variants resulted

in an average of 807 genes with nonzero severity scores. Com-

pound heterozygote analysis (and novelty analysis for trios)

reduced the average number of genes after these comparisons

to 89. Of these, an average of 13 had a zygosity that fit a known

human phenotype. Of these genes, the automated genome-

phenome analysis picked the correct gene in all cases (gene rank

of diagnosis ¼ 1.0). The gene pertinence score averaged 99.9%
(Table 1 and Figure 1) and in all cases was �99%.

Without family-aware variant calling, the number of genes

after comparisons was approximately double, yet the perti-

nence scores remained high enough that the average number

of genes to examine to reach the correct diagnosis was 1.1, with

the #1 listed gene being causal in 93% of cases (Table 1).

For a proband only, results were similar to the trios.

Although the number of genes after comparisons was higher

than for trios by 4- to 8-fold (depending on whether family-

aware variant calling was used), the average number of genes

to examine to reach the correct diagnosis was 1.2, with perti-

nence scores similar to those for the comparable trios (3 left-

most columns in Table 1).

When 1000 Genome frequencies were used instead of the

variome, all diagnostic measures were degraded (Table 1).

However, in 12 of 14 cases with only a proband and with

1000 Genome frequencies, the causal gene was still ranked

#1 (Table 1 and Figure 2).

Comparison of Genome-Phenome Analysis to Filtering
Using a Key Finding

To assess the importance of genome-phenome analysis versus

hypothesis-dependent filtering based on a key finding, we

compared the rank of causative genes in these 2 approaches

in the 14 cases with known diagnoses (Table 2). For the key

finding approach, typically used in hypothesis-dependent

approaches such as gene panels, all gene zygosities found were

assessed for association with a disease in which a particular

finding in the patient was present, and the gene zygosities

were put in order of their severity scores. The analysis was

done using probands, the most challenging of the analyses

(Table 1), with an average of 92 variants for genes with known

clinical phenotypes (using the Middle Eastern variome).

For the genome-phenome analysis, the average gene rank

was 1.2 (Tables 1 and 2). This was equal to or better than the

best rank for any of the individual findings, the best of which

had an average rank of 1.4 (Table 2). These differences in rank

are of similar magnitude to the rank changes produced by trios

versus probands (Table 1).

The key finding approach was hypothesis–dependent in that

it required a judgment of which finding was key. Many of the

Table 1. Identifying Pertinent Genes Beginning With Variants (Averages for n ¼ 14).a

Trio with family-aware calling Trio Proband only

Frequency data Variome Variome Variome 1000G

Variants 9461 7126 7126 7126
Genes with severity >0 807 981 1050 1398
Genes after comparisonsb 89 206 798 1335
Known genesc 13 27 92 147
Gene rank of diagnosisd 1.0 1.1 1.2 1.4
Pertinence for no. 1 diagnosis 99.9% 90.8% 89.3% 81.6%
Correct gene pertinente 100% 79% 79% 64%
No. 1 gene ¼ causal 100% 93% 93% 86%

aThe analysis includes the 14 cases in which a causal gene variant was identified that corresponded to a published human germline phenotype.
bGenes after compound heterozygosity comparisons (and novelty analysis for trio).
cGenes for which the zygosity found corresponded to a known human phenotype.
dGenes with known phenotype to be evaluated manually to reach diagnosis.
ePertinence �99%.

Figure 1. Pertinent genes using trios with family-aware variant calling
with variome and clinical information; n ¼ 14 (dotted lines are cases
with artifactual numbers of de novo variants).

Segal et al 883



findings (31%) resulted in errors, missing the correct gene

since that finding was not associated with the gene (Table 2):

if one had chosen one of these as a key finding in the

hypothesis-dependent approach, one would have missed the

relevant gene. Ignoring those misses, the average rank for the

findings was 3.3, but in practice, missed genes would result

in many more genes being examined since no suitable gene

would be in the list. We did not perform an ‘‘AND’’ analysis

combining several key findings since the high percent of misses

would result in many false negatives.

Analysis in More Diverse Cases

Reflecting the case mix in the Gleeson lab, these 14 cases were

from families in which there was known consanguinity in 11

families, and homozygotes were found in 13 of 14 cases.

Although the genome-phenome analysis did not assume an

inheritance mode, and many compound heterozygotic, monoal-

lelic, and X-linked zygosities were in the outputs, we used our

access to the CLARITY cases to do a similar analysis of the key

finding approach in the 2 consanguineous cases for which

pathogenic genes were identified.2,4

One was a case of a patient with myopathy, ptosis, response

to cholinesterase inhibitors, and deafness. In this case, it was

particularly difficult to have confidence in the key finding

approach because the case was consistent with a centronuclear

myopathy plus deafness, congenital myasthenia plus deafness,

or mitochondrial illness explaining both muscle findings and

deafness. Our analysis identifies the 2 consensus genes, for

TTN-dependent myopathy and GJB2-dependent deafness.2,4

Both disorders were compound heterozygotic with outbred par-

ents. The GJB2 diagnosis was missed by most groups, but using

a trio (without family-aware variant calling), the genome-

phenome analysis ranking of these genes was #1 and #2, mak-

ing the identification of the second gene straightforward using

the approach that was hypothesis-independent as to the number

of genes involved. Using a proband only, the diagnoses were #1

and #7 in the pertinence-ranked gene list using the genome-

phenome analysis, better in each case than the best of the key

finding approaches (Table 2).

In a second CLARITY case, there was consensus that an

autosomal dominant TRPM4 variant was pathogenic, although

it accounted for only the arrhythmia part of the phenotype and

not the cardiac structural abnormalities. Our analysis identified

genes for each component as #1 and #2 in both trio and pro-

band, ranks that were better than the key finding approach for

both genes (Table 2).

Effect of Family-Aware Variant Calling on Number of
De Novo Variants

The effect of family-aware variant calling is associated with

large reductions in false de novo variant calls. For 15 of the

trios, de novo variants using family-aware variant calling with

raw severity score >0 ranged from 0 to 15 (average 3.2). For the

other 5 trios, de novo variants ranged from 301 to 1117 (aver-

age 734); these included all trios in which family member DNA

was run on different plates (4 trios) and the only trio with aver-

age coverage <70 (coverage 61 in one trio). For the 15 trios

without such artifactual increases in de novo variant calls, the

number of de novo calls without family-aware calling was

Figure 2. Pertinent genes using proband-only with 1000 Genome and
clinical information; n ¼ 14 (dotted lines are cases with artifactual
numbers of de novo variants).

Table 2. Comparison of Genome-Phenome Analysis to Filtering
Using a Key Finding.a

Gene rank of diagnosis
using 1 finding

Gene
Genome-phenome

analysis rank
Best
rank

Average rank
(of nonmisses) % misses

TCTN3 1.0 1.5 5.8 37.5
AHI1 1.0 1.0 2.3 38.5
TMEM237 1.0 1.0 1.5 60.0
AHI1 4.0 5.0 5.5 66.7
AHI1 1.0 1.0 1.4 0.0
C5orf42 1.0 1.0 1.8 40.0
TMEM237 1.0 1.0 2.1 50.0
POMGNT1 1.0 1.0 1.8 25.0
TMEM231 1.0 1.0 5.0 33.3
CC2D2A 1.0 2.0 10.2 0.0
INPP5E 1.0 1.0 5.7 0.0
CEP290 1.0 1.0 1.0 40.0
RPGRIP1L 1.0 1.0 1.0 20.0
WDR62 1.0 1.0 1.2 25.0

AVERAGE 1.2 1.4 3.3 31.1

CLARITY 1
TTN 1.0 2.0 9.1 28.6
GJB2 7.0 9.0 9.0 85.7

CLARITY 2
TRPM4 2.0 4.0 4.0 50.0
GJA1 1.0 4.0 6.0 0.0

aAnalyses are using proband only, and for the non-CLARITY cases, the Middle
Eastern variome.
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143 (difference from 3.2 significant at (P < .0001; Wilcoxon

signed rank test). The cases with artifactually high de novo var-

iant counts are shown with dotted lines in Figures 1 and 2.

Despite the numbers of variant genes in those cases being arti-

factually increased, the genome-phenome analysis still ranked

the correct diagnosis highest in each of those cases.

Comparing Different Analysis Components

The rapid and automated nature of the analysis allowed quan-

titation of the effect of functional and conservation scores on

the interpretation. The effects are shown in Table 3, illustrating

one condition with enhanced processing (trio with family-

aware variant calling and use of the variome) and one with base

processing (proband and 1000 Genome data). In both condi-

tions, the effects on pertinence and rank of the causal gene were

minor, although in one case the conservation scores prevented

one variant from being ignored entirely in the analysis.

For disease phenotypes, the rank scores showed improve-

ment with the same analysis components assessed above for

effects on gene rankings (family-aware variant calling, trios,

and clinical information; Table 4), although the disease prob-

ability rankings were not as close to 1.0 as the gene pertinence

rankings. Phenotype ranks greater than 1 were seen for diag-

noses such as Joubert syndrome, for which there are multiple

genes and phenotypes, each listed separately in the software.

In 2 of 14 trios, a different subtype of the same disease ranked

higher than the one for which a gene had been found, because

of a better match of the patient’s clinical findings that were

entered into the genome-phenome analyzer with the curated

description of the disease. The default analysis was to list gene

variants as findings that were present but not to list as negative

findings genes in which no variants were found. We simulated

the ability to include ‘‘nonvariant’’ gene zygosities as well. We

did so by modeling deleterious abnormalities of relevant zygos-

ity of all other genes of known phenotype as being absent. This

resulted in all other phenotypes of the correct disease moving

below the correct phenotype of the correct disease, an improve-

ment in these 2 cases quantitated for its effect on the total of 14

cases in Table 4. These differences from the ideal value of 1.0

and are of similar magnitude to the rank changes produced by

trios versus probands.

Gene Discovery

Six of the 20 trios were ones in which no gene with a published

human phenotype of the zygosity found was determined to be

causative (Gleeson et al, in preparation). For these cases, the

pertinence score of the top gene in the genome-phenome anal-

ysis for the condition with family-aware calling and the var-

iome was 74.1%, significantly different from 99.9% for

causative genes with known phenotypes in the other 14 cases

(P ¼ .0002; Wilcoxon rank sum test).

The ability of the automated analysis to contribute to gene

discovery was measured using the 15 cases without the artifac-

tual increase in de novo variant calls (Table 5, using data with

the variome). For trios, family-aware variant calling resulted in

a 92% drop in monoallelic gene discovery candidates (P ¼
.001; Wilcoxon signed rank test) but only a 31% drop in bial-

lelic gene discovery candidates (P ¼ .001; Wilcoxon signed

rank test). When compared to probands, the reductions for trios

with family-aware variant calling were 99.1% for monoallelic

gene discovery candidates (P ¼ .0007; Wilcoxon signed rank

test) but only 61.1% for biallelic (P ¼ .0007; Wilcoxon signed

rank test).

For the 3 of the 6 gene discovery cases without artifactual

numbers of de novo variants, the rank of the causal gene was

compared using different conditions (Table 6). The average

number of genes that needed to be examined to find the causal

gene was 6.7 for a trio with family-aware variant calling and

the variome. Without family-aware variant calling, without a

trio, and without the variome, the number of genes to examine

in gene discovery mode was far higher (Table 6).

Discussion

The integrated genome-phenome analysis combined clinical

findings and a genomic variant table to generate a metric of

gene pertinence that was highly useful in identifying the causal

gene variant. The patients studied here had neurologic diag-

noses; such diagnoses are among the most numerous in cases

undergoing genomic analysis, and among the most difficult.

The methods described here are generally applicable to geno-

mic diagnosis, and the database included all genes known to

have convincing human germline phenotypes. Because the

analysis is hypothesis–independent and can be done in seconds,

one advantage is speed and low cost of analysis. Another

advantage is that the automated process allows quality-

improvement studies that analyze the importance of various

components of the analysis, as done here.

Table 3. Effects of Functional and Conservation Scores (Averages for
n ¼ 14).

Enhanced processinga Base processinga

Pertinence (%) Rank Pertinence (%) Rank

Both used 99.9 1.0 81.6 1.4
Functional off 99.9 1.0 81.5 1.6
Conservation off 92.7 8.1 80.0 1.6
Neither used 99.8 1.0 77.7 1.6

aEnhanced processing includes a trio with family-aware variant calling and use of
the variome. In base processing, a proband and 1000 Genome data were used.

Table 4. Phenotype Rankings Using Clinical Information and the
Variome (Averages for n ¼ 14).

Genomes Trio Trio Proband None
Family aware calling Yes No No N/A

Rank 1.2 1.5 1.6 13.4
Rank with nonvariants 1.1 1.4 1.4 13.4

Segal et al 885



Although 19 of the 20 causal variants from the Gleeson lab

cases were homozygous, as expected from the parental con-

sanguinity in 16 of the cases, the analysis was done in a

hypothesis-independent way and no filtering was done to

enrich the variants in homozygotes. In the CLARITY cases,2,4

none of the families had consanguinity and our use of the same

hypothesis-independent analysis found the relevant variants

that included both compound heterozygotes and monoallelic

variants.

The results of this study highlight 4 key competencies for

using genomic sequencing for clinical diagnosis.

Automated Genome-Phenome Analysis and the Power of
a Metric of Gene Pertinence

The pertinence metric allows rapid identification of the causal

genes, providing a quantitative score that serves as a measure

of confidence that a gene known to be associated with human

disease is causal in a particular patient (Table 1; Figures 1 and

2). A high pertinence score (�99%) provides a good measure

of confidence that the gene and zygosity identified are causal.

The pertinence calculation is hypothesis–independent in 3

senses. It is hypothesis–independent as to the mechanism of

inheritance, as evidenced by detecting homozygous, compound

heterozygous, and autosomal dominant mechanisms of inheri-

tance without a need to filter by a hypothesis about mechanism

of inheritance. It is also hypothesis–independent as to the find-

ings that are most key, as shown in Table 2, and as best exem-

plified by the ability to approach a case in which myopathy,

mitochondrial, myasthenia or deafness panels could reasonably

have been ordered. It is hypothesis–independent as to the num-

ber of genes involved, as shown by the CLARITY cases, result-

ing in identification of secondary genes missed by many

groups, an issue for which its importance is indicated by a

recent study in which 4 of 62 such children undergoing

whole-exome sequencing had dual diagnoses.11

For the special case in which both diagnoses are genetic and

all the patient’s genes have been analyzed, the pertinence

measure we describe and validate here provides a solution to

the ‘‘2 diagnosis problem’’ that has long been seen as a weak-

ness in diagnostic decision support.12 By ranking both genes

high in the gene pertinence list, even though one of the 2 com-

ponent diseases was not as high in the disease rankings, the per-

tinence metric is able to use the imperfect fit of 2 diseases with

the differential diagnosis of the joint phenotype and highlight

the underlying genes. Furthermore, because the genome-

phenome analysis incorporates data about diseases for which

no gene is known to be causal, the pertinence metric also serves

to minimize errors that result from failure to consider diseases

not currently known to be genetic.

The importance of the automated genome-phenome

approach is greatest in situations in which the analysis is done

on a proband, or more than 1 gene may be involved, or there is

no reliable key finding and more than 1 finding is available.

The speed and hypothesis-independent nature of the genome-

phenome analysis will also become more important as more

of the human disease phenotypes are defined.

Cases available to labs aiming to discover new genes for

well-defined clinical phenotypes, such as the Gleeson lab cases

used here, can be skewed toward situations in which a key find-

ing is available. In contrast, cases used in a previous study of

this diagnostic decision support3 and the CLARITY cases2 can

be closer to clinical situations in which whole-exome sequen-

cing will be preferred over a genomic panel. Future studies

should take into account such case mix in choosing cases to

analyze.

The current study did not provide a good test of the impor-

tance of onset information in diagnosis because onset informa-

tion was typically not available in the clinical information

provided by the referring clinicians. However, such onset infor-

mation was crucial in clinical cases used in a previous study of

this clinical diagnostic decision support software.3 Future stud-

ies would benefit from efforts underway to have onset informa-

tion provided directly by the clinicians as a result of integration

of the decision support into electronic health records13 (Segal

and Williams, 2014).

Implementing genomic analysis using diagnostic decision

support software in clinical use allows those requesting or ana-

lyzing genomic data to follow up after the genomic analysis by

highlighting other findings most useful in the diagnosis9 based

on not only the clinical findings but also the genome results.

This provides an opportunity not only for a clinical assessment

of the genomic results but also to add to an initial set of clinical

findings that could have been deficient, as in the chart review

modeled in this study. Furthermore, the continued clinical

involvement in interpreting the case demonstrates to the

Table 6. Gene Discovery Ranking of the Causal Variant (Averages for
n ¼ 3).

Trio with
family-aware calling Trio Proband only

Frequency data Variome Variome Variome 1000G

Rank 6.7 30.7 198.0 392.7

Table 5. Gene Discovery Candidates of Monoallelic and Biallelic Zygosity (Averages for n ¼ 15).

Trio with
family-aware calling

Trio without
family-aware calling

Reduction with
family-aware calling

Proband
only

Reduction with
family-aware calling

Total monoallelic 5.1 62.8 92% 554.2 99.1%
Total biallelic 40.1 57.9 31% 103.1 61.1%
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clinicians the importance of documenting detailed clinical

information so as to get solid results from genomic testing,3,14

further improving the process.

Use of Trios and Family-Aware Variant Calling

For cases in which the phenotype has previously been

described in the literature, using a proband alone was quite

effective for a set of diagnoses that were autosomal recessive

(Table 1). The key effect of family-aware variant calling was

to decrease false de novo variant calls, but even for the autoso-

mal recessive cases analyzed here, success rates and pertinence

scores improved using a trio and using family-aware variant

calling. The effect of the trio and family-aware variant calling

for dominant inheritance is evident in the large reductions in

excess candidates in gene discovery analysis (Tables 5 and

6), most striking for monoallelic zygosity.

Assessing Pathogenicity of Particular Variants

The population-specific frequencies and homozygous and het-

erozygous shares information in the Middle Eastern variome

reduced the number of genes to be considered and improved the

pertinence scores (Table 1). Similarly, knowledge of specific

variants demonstrated to be pathogenic is also crucial, but was

not examined here, and no information from the Human Gene

Mutation Database or other databases of pathogenicity of indi-

vidual variants was input in the fields for such information in

the variant tables.8 In contrast, the effect of functional and con-

servation scores appears to be much less important (Table 3).

Coverage of all Clinically Relevant DNA Sequences

The capability to sequence all portions of genes potentially

involved in known diseases is a key competence needed to

avoid missing a causal genetic abnormality. The information

gleaned from this process should be not only a ‘‘variant table’’

of abnormalities that were found but also a ‘‘nonvariant table’’

that reports the genes that were well sequenced but found to

have no important variants. As demonstrated here by simulat-

ing such a nonvariant table, clinical analysis would be

improved if labs generated not only a variant table but also a

nonvariant table.
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