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Abstract

MicroRNAs (miRNAs) are small non-coding RNA molecules that play criti-
cal roles in human disease. Several miRnome profiling studies have identified
miRNAs deregulated in cancer and infectious diseases and miRNAs are also
involved in regulation of the host response to infection. Thereby, the usage of
miRNAs as biomarkers and potential treatments for both human and infec-
tious diseases is under development. This review will provide insights into
the contribution of miRNAs to pathogenesis and disease development and
will present a general outline of the potential use of miRNAs as therapeutic
tools.

Keywords: micro-RNA, cancer, infectious diseases, parasites, Toxoplasma,
Plasmodium, Theileria.

Molecular and Cellular Therapies, Vol. 8_1, 1–18.
doi: 10.13052/mct2052-8426.811
This is an Open Access publication. c© 2020 the Author(s). All rights reserved.



2 M. Haidar and G. Langsley

Introduction

Non-coding RNAs (ncRNAs) are functional RNAs transcribed from DNA,
but not translated into protein, which play a role in regulating gene expression
at the transcriptional and post-transcriptional levels. The best- [1–3] charac-
terized short ncRNAs are the 18 to 25 nucleotide long microRNAs (miRNAs),
first discovered in 1993 by Ambros et al. when they found the genetic locus of
lin-4 in Caenorhabditis elegans and described its antisense complementarity
to lin-14 [4]. This discovery led to a milestone in the research of small RNA
biology and altered significantly longstanding dogmas that previously defined
gene regulation.

miRNAs are transcribed by RNA polymerase II into primary miRNAs
(pri-miRNA), which get processed in two steps by Drosha and Dicer into
70 nt precursor miRNAs (pre-miRNA), then into a 20 nt miRNA duplex,
respectively. The first step takes place in the nucleus after which the pri-
miRNA is transported by exportin-5 into the cytoplasm. One of the two
strands of the 20 nt long miRNA duplex binds to the argonaute (AGO) and
TNRC6 proteins to form the miRNA-loaded RNA-induced silencing complex
(miRISC) (Figure 1). This complex is capable of silencing mRNAs bearing
complete or partially similar complementary sequence to the miRNA seed
region. The seed region of a miRNA is a 6–8 nt long sequence present at the
5′-region of the miRNA. This region defines miRNA targets, as any mRNA
with a complete or partially complementarity sequence present, mostly, in the
3′-untranslated region (UTR) of the mRNA. After binding to its target, the
miRISC complex provokes mRNA degradation through a variety of meth-
ods including mRNA deadenylation, cleavage and translation repression [5].
However, recent studies report that this class of non-coding RNAs can also
play a role in positive regulation of the target mRNAs through transcript
stabilization [6], promoting transcription [7], or translation stimulation [8].

miRNAs are key regulators in several biological processes ranging from
development and metabolism to apoptosis and signalling pathways [9, 10].
Indeed, their profiles are altered in many human diseases and particularly in
cancer [11, 12], making them attractive drug targets for disease treatment.
Moreover, miRNAs are key mediators of the host response to infection,
predominantly by regulating proteins involved in innate and adaptive immune
pathways. The role of miRNAs in bacterial [13, 14], viral [15] and proto-
zoan [16] infections is now well established. In this review, we synthesize our
current understanding of the roles of miRNA in human cancer and infectious
diseases with emphasis on their potential clinical applications.
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Figure 1 miRNA biosynthesis pathway. miRNA biogenesis begins with the generation of
the primary transcript (pri-miRNA) by polymerase II/III. Pri-miRNA is then processed in the
nucleus into precursor miRNA (pre-miRNA) by RNase III (Drosha) and DiGeorge critical
region gene 8 (DGCR8). The pre-miRNA is exported to the cytoplasm by Exportin5 and
cleaved by RNase III called Dicer together with its catalytic partner TAR-binding protein
(TRBP) to produce the mature miRNA duplex. Finally, one strand of the mature miRNA
duplex (either the 5p or 3p strands) is loaded into the Argonaute (AGO) proteins to form
a miRNA-induced silencing complex (miRISC), which binds to target mRNAs to induce
cleavage or translation inhibition.

miRNA and Cancer

Increasing evidence supports a role for miRNAs dysregulation in the
occurrence of multiple human diseases, particularly cancer [17–21]. Many
miRNAs have been found altered in various cancers [22] and can function
either as oncogenes, or tumour suppressors. miR-21 is one of the earliest
identified oncogenic miRs and the most frequently up-regulated in tumours.
It is highly expressed in a number of malignancies such as glioblastomas,
breast, colon and pancreatic cancer [23]. miR-21 targets PTEN [24], pro-
moting invasion and migration, as well as tumorigenesis by inhibiting the
negative regulators of the Ras/MEK/ERK pathway [24]. Moreover, the
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miR-17-92 cluster promotes tumours in different human cancers such as
breast, lung, colon, stomach, and pancreatic cancers [23, 25]. In addition,
miR-155 was found associated with the majority of solid and hematopoietic
malignancies [26, 27]. miR-155 gene is overexpressed in several solid tumour
such as breast cancer [28, 29], pancreatic ductal adenocarcinoma [30] and
lung cancer [31], where it is considered a marker of poor prognosis.

Even though some miRNAs are increased in cancer, many others are
repressed and are therefore considered as tumour suppressor. For exam-
ple, miR-15a and miR-16-1 are lost in Chronic Lymphocytic Leukaemia
(CLL) and multiple myeloma, and let-7 is lost in lung and breast can-
cers [29]. miR-34 is a p53 responsive miRNA family that is down-regulated
in several tumours such as non-small cell lung cancers [32] and pancre-
atic cancers [33]. In myelodysplastic syndrome, miR-146a and miR-145
were downregulated [34]. Many of miR-200 family members (miR-200a,
miR-200b, miR-200c, miR-141, and miR-429) are downregulated in human
cancer cell lines and tumours, and they play an important role in the sup-
pression of epithelial-to-mesenchymal transition (EMT) and tumour cell
adhesion, migration, invasion, and metastasis by repressing the expression
of key mRNAs (ZEB1 and ZEB2, β-catenin) involved in EMT [35].

The role of microRNAs in cancer depends on the mRNA that’s targeted,
and whether the transcripts when translated or not act as oncogenes or
tumour suppressors. Interestingly, some miRNAs may have dual functions
as both tumour suppressors and oncogenes [36] depending on the cellular
context. For example, miR-29a has been described to function as a tumour
suppressor in CLL and lung cancer, and as an oncogene in breast cancer [36].
Also, miR-125b can have both oncogenic and tumour suppressive effects.
miR-125b can target mRNAs encoding anti-apoptotic, pro-apoptotic and pro-
proliferative factors, metastasis promoters and metastasis inhibitors [37, 38].
Therefore, the balance of expression of different miR-125b targets determines
the function fulfilled (oncogene/tumour suppressor) by miR-125b within an
individual tumour.

All the above evidence clearly highlights the involvement of miRNA in
various cancers, and underscores how identification of specific regulators of
miRNAs will be important in developing new anti-cancer therapeutic agents.

miRNA and Infectious Diseases

Many studies have documented the role of miRNAs in infection and immu-
nity. For example, let-7 was identified as a modulator of the macrophage
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immune response to infection with Mycobacterium tuberculosis via targeting
the NF-κB inhibitor A20 [39]. miR-146b, miR-16, let-7a1, miR-145, and
miR-155 expression were significantly altered following Listeria monocyto-
genes infection in epithelial cells [40]. Pseudomonas aeruginosa infection
enhanced miR-762 and miR-155 expression to downregulate expression of
immune response genes [41, 42]. Besides the role of miRNAs in bacte-
rial infectious diseases, many studies have demonstrated the importance
of miRNAs in viral infections. It is known that DNA viruses can encode
miRNAs that regulate their replication and pathogenesis through targeting
of host, as well as viral mRNAs [15]. Viruses can additionally manipu-
late host cell miRNA levels either by increasing the expression of host
miRNAs that favour viral replication, or by expressing proteins that antag-
onize host miRNAs, which play a role in host immunity [43]. For instance,
numerous host miRNAs such as miR-196, miR-296, miR-351, miR-431 and
miR-448 are dysregulated in hepatitis C virus (HCV)-infected hepatocytes,
as a result of type I interferon (IFNα/β) production [44]. Furthermore,
miRNAs can also play a key role in parasite infection. A large body of
work has demonstrated that parasites promote modifications in the cell host
miRnome, underscoring the importance of miRNAs in parasite-host inter-
actions. For instance, Toxoplasma gondii specifically modulates expression
of important host miRNAs during infection [45] with around 14% of host
miRNAs in primary human foreskin fibroblasts found to be altered 24 h
after infection [46]. NF-κB signalling and transactivation by STAT3 binding
was demonstrated to regulate a subset of miRNAs (miR-30c-1, miR-125b-2,
miR-23b-27b-24-1, and miR-17∼92 cluster genes) that were induced fol-
lowing T. gondii infection of human macrophages. These miRNAs are
mainly involved in regulating an anti-apoptosis response following T. gondii
infection [47]. Another study highlighted two immune-modulatory miRNAs,
miR-146a and miR-155, important for the infected host cell response to T.
gondii challenge. Both miRNAs were co-induced in the brains of mice chal-
lenged in a strain-specific manner with Toxoplasma. Mice challenged with
the T. gondii cystogenic (type II) strain showed an exclusive and significant
induction of miR-146a partly mediated by the rhoptry kinase ROP16 [48].
miR-146a deficiency led to better control of parasite burden in the gut and
most likely also early parasite dissemination into brain tissue, resulting in the
long-term survival of mice. By contrast to T. gondii, the Plasmodium falci-
parum genome lacks orthologues of Dicer and Argonaute, crucial enzymes
in miRNAs biogenesis [49, 50]. Moreover, sequencing and bioinformatics
analysis of small RNA libraries from P. falciparum-infected erythrocytes



6 M. Haidar and G. Langsley

did not identify parasite-specific miRNAs [51]. However, in haemoglobin S
(HbS) erythrocytes a role for host miRNAs in the resistance of these mutant
red blood cells to infection provoked malaria has been reported [16]. This
study provided the first data on human miRNAs regulating Plasmodium
gene expression and suggested the possibility of miRNAs being able to
translocate into malaria parasites. Around 100 different human miRNAs were
taken up by the parasite with a particular enrichment of miR-451 and let-7i
in parasitized HbAS and HbSS erythrocytes. Integration of miR-451 into
transcripts of the P. falciparum regulatory subunit of cAMP-dependent kinase
Protein Kinase A (PKA-R) was shown. The gene coding for Plasmodium
PKA-R is crucial to parasite survival [52] and suppression of its expression
mediated by miR-451 was related to an increased number of gametocytes
(the sexual forms infectious to mosquitoes). Furthermore, LaMonte et al.
confirmed that human miRNA transferred into the parasite formed chimeric
fusions with P. falciparum mRNA via impaired ribosomal loading, resulting
in translational inhibition, eventually impairing parasite biology and sur-
vival. However, it’s not yet known what determines the specific enrichment
of a particular miRNA, or its incorporation into specific parasite mRNAs
[50, 51, 53]. Moreover, Extracellular Vesicles (EVs) derived from P. falci-
parum-infected red blood cells (iRBC) contain miRNAs that can modulate
target gene expression in recipient host cells and multiple miRNA species
in EVs were identified bound to AGO2 forming functional complexes [54].
Furthermore, P. falciparum can take up micro-vesicles containing AGO2 and
miRNA from infected RBC [55]. In addition, a recent study investigated
alterations in plasma miRNA levels mediated by P. vivax showing down-
regulation in the levels of miR-451 and miR-16 in P. vivax malaria patients
[56]. The expression profiles of miRNAs have also been studied in mod-
els of experimental malaria. Changes in liver miRNAs were investigated
in mice infected with P. chabaudi [57], and a recent study reported an
infection-induced significant up-regulation of miR-155 in liver infected with
Genetically Attenuated Parasites (GAP) [58]. miR-155 plays a crucial role in
Plasmodium-infected liver, as ectopic administration of miR-155 (AAV-155)
reduced the number of GAP injections necessary to immunize mice against
P. chabuadi malaria.

A role for miR-155 in the virulence of Theileria annulata-transformed
leukocytes has been described to involve miR-155-mediated suppression
of De-Etiolated Homolog 1 expression that diminishes c-Jun ubiquitina-
tion [59]. An increase in c-Jun levels led to an augmentation in BIC
transcripts that contain miR-155, explaining how a positive feedback-loop
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contributes to the growth and survival of Theileria-infected leukocytes [59].
Further, a recent study characterized the cargo of extracellular vesicles (EV)
from a control non-infected bovine lymphosarcoma cell line (BL20) and
BL20 infected with T. annulata (TBL20) by comparative mass spectrometry
and microRNA (miRNA) profiling. The study revealed an enrichment of
infection−associated proteins essential to migration and extracellular matrix
digestion in EV from TBL20 cells compared with BL20 controls. They
proposed that EV and their miRNA cargo play an important role in the
manipulation of the host cell phenotype and the pathobiology of Theileria
infection [60]. Furthermore, we have shown that infection of macrophages
with T. annulata induced upregulation of miR-126-5p levels to directly target
and suppress a cytosolic scaffold protein called JNK-Interacting Protein-2
(JIP-2), so liberating JNK1 to enter the nucleus and phosphorylate c-Jun [61].
This activates AP-1-driven transcription of the gene (mmp9) coding for
Matrix Metallo-Proteinase 9 that promotes tumour dissemination. In addition,
we showed that variation in miR-126-5p levels depends on the tyrosine
phosphorylation status of AGO2, which is regulated by Grb2-recruitment of
PTP1B [61].

Taken altogether, the above demonstrates the importance of miRNAs in
the host response to pathogen infection and strongly argues that a repro-
gramming of miRNA expression could have a regulatory function in the
pathogenesis of various infectious diseases and this could potentially generate
a new therapeutic approach.

Clinical Relevance and Therapy

miRNAs levels were found to be dysregulated and associated with various
infectious and human diseases. Numerous studies have shown altered miRNA
profiles in multiple cancer types [62–65]. In view of these data miRNAs have
been proposed as candidate biomarkers of different types of cancer [66–71].
As an example, increased miR-126 levels can predict patient survival, espe-
cially for patients with digestive or respiratory system cancers [72]. More-
over, miRNAs are considered very attractive in terms of drug development, as
they possess unique characteristics i.e. they are small with known sequences
and are often conserved among species. This has led to their use as therapeutic
agents [73, 74]. miRNA-based therapeutics is divided into miRNA mimics
and inhibitors of miRNAs (also known as antimiRs). Different strategies are
currently applied in preclinical development to restore the tumour suppressive
function of miRNAs (using miRNA mimics), or to suppress oncomiRs (using
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antimiRs). miRNA mimics are synthetically derived oligonucleotide duplexes
that mimic the function of a naturally occurring miRNA counterpart [75].
By contrast, antimiRs are chemically modified antisense oligonucleotides,
which sequester the mature miRNA inhibiting their binding to their cellular
target mRNAs leading to de-repression of direct targets [76]. Several miRNA-
targeted therapeutics have reached clinical development. For instance, the
mimic of miR-34 has reached phase I clinical trials (NCT01829971) for
treating cancer. Administration of lipid nanoparticle-encapsulated miR-34
mimics showed promising activity in mouse models of liver [77], prostate
[78] and lung [79] cancer. In addition to miR-34, other miRNAs have shown
exploitable clinical relevance. For example, miR-26a expression is highly
reduced in patients with HCC compared to the normal controls. Importantly,
adeno-associated virus-mediated expression of miR-26a in murine models
with HCC resulted in significant tumour reduction [80]. miR-200c has been
also tested in preclinical studies. In a xenograft model of lung cancer,
administration of liposomal nanoparticles loaded with miR-200c increased
the sensibility of lung cancer cells to radiation and markedly longer survival
compared with controls [81]. Moreover, a role of miR-15a and miR-16-1 in
therapeutic development for CLL has been described [82]. Overexpression
of the miR-15/16 cluster using viral vectors in a MEG-01 subcutaneous
model of leukaemia reduced significantly tumour volume and growth [82].
Further, miR-10b appears to be a promising anti-metastasis agent. Silencing
of miR-10b by a miR antagonist in mice bearing highly metastatic cells
significantly suppressed formation of lung metastases [83]. Cholesterol-anti-
miR-221 has been demonstrated to be an efficient therapeutic agent for
patients with advanced HCC. Intravenous administration of chol-anti-miR-
221 in an orthotopic mouse model blocked HCC and promoted mouse
survival [84]. Nanoliposomes carrying anti-miR-630 in a xerograph model
of ovarian cancer reduced considerably tumour growth and metastasis [85].

Additionally to the role of miRNAs in cancer, many studies have shown
their implication in the host response to infection raising the potential for
new miRNA-based diagnostics [86] and therapies [87] for infectious dis-
eases. For instance, miR-122 is known to upregulate the replication of the
hepatitis C virus (HCV) RNA genome promoting its stability [88]. The
systematic administration of 16-nt, unconjugated LNA (locked nucleic acid)-
antimiR oligonucleotide complementary to the 5′-end of miR-122 markedly
reduced the infection load and liver damage in mouse models of HCV
infection [89]. Furthermore, Hock et al., found [90] enhanced bacterial killing
of mice infected with non-typeable Haemophilus influenza [91]. Moreover,
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administration of exosomes containing miR-146a and miR-155 enhanced
mice inflammatory responses to endotoxin in vivo [92]. In addition, inhibition
of miR-146a in Enterovirus 71-infected mice by intraperitoneal injection
of an anti-miR-146a significantly improved their survival by restarting the
production of interferon gamma I. Furthermore, intragastric delivery of
anti-miR-128 in Salmonella enterica-infected mice promoted survival and
suppressed infection [93].

Finally, Plasmodium transcripts have shown to be targeted by host
miRNAs translocating into the parasite [16]. LaMonte et al. pointed out
that translocation of sickle cell erythrocyte miRNAs into P. falciparum
inhibited parasite mRNA translation and contributed to malaria resistance
[16]. miRNAs have also been found to regulate virulence of Theileria-
infected leukocytes. Modulation of miR-126-5p expression by either a
mimic or an antimiR regulated the metastatic potential of Theileria-infected
leukocytes [61].

Conclusion

Overall, the use of miRNA-based therapies has shown great therapeu-
tic potential for cancer and infectious diseases (Figure 2). So far, many
approaches using either miRNA mimics, or miR-inhibitors have made their
way into clinical trials. With advance in knowledge of RNA interference
(RNAi) and the progress of RNAi technologies, miRNAs will in the near

Figure 2 miRNAs in cancer therapy: Inhibition of onco-miRs function by using anti-miR
oligonucleotides (AMOs), small molecule inhibitors and miRNA sponges, and enhancing the
expression of anti-onco-miRs through gene therapy or delivery of miRNA mimics can serve
as therapeutic approach against cancer.
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future become very helpful new biomarkers and effective therapeutic tools
routinely used in the clinic.
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