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Clinical practices underlie COVID-19 patient
respiratory microbiome composition and its
interactions with the host
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Understanding the pathology of COVID-19 is a global research priority. Early evidence sug-

gests that the respiratory microbiome may be playing a role in disease progression, yet

current studies report contradictory results. Here, we examine potential confounders in

COVID-19 respiratory microbiome studies by analyzing the upper (n= 58) and lower

(n= 35) respiratory tract microbiome in well-phenotyped COVID-19 patients and controls

combining microbiome sequencing, viral load determination, and immunoprofiling. We find

that time in the intensive care unit and type of oxygen support, as well as associated

treatments such as antibiotic usage, explain the most variation within the upper respiratory

tract microbiome, while SARS-CoV-2 viral load has a reduced impact. Specifically, mechanical

ventilation is linked to altered community structure and significant shifts in oral taxa pre-

viously associated with COVID-19. Single-cell transcriptomics of the lower respiratory tract of

COVID-19 patients identifies specific oral bacteria in physical association with proin-

flammatory immune cells, which show higher levels of inflammatory markers. Overall, our

findings suggest confounders are driving contradictory results in current COVID-19 micro-

biome studies and careful attention needs to be paid to ICU stay and type of oxygen support,

as bacteria favored in these conditions may contribute to the inflammatory phenotypes

observed in severe COVID-19 patients.
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C
OVID-19, a novel coronavirus disease classified as a
pandemic by the World Health Organization, has caused
over 150 million reported cases and 3 million deaths

worldwide to date. Infection by its causative agent, the novel
coronavirus SARS-CoV-2, results in a wide range of clinical
manifestations: it is estimated that around 80% of infected indi-
viduals are asymptomatic or present only mild respiratory and/or
gastrointestinal symptoms, while the remaining 20% develop
acute respiratory distress syndrome requiring hospitalization and
oxygen support and, of those, 25% of cases necessitate critical
care. Despite a concerted global research effort, many questions
remain about the full spectrum of the disease severity. Indepen-
dent studies from different countries, however, agree that age and
sex are the major risk factors for disease severity and patient
death1–3, as well as type 2 diabetes and obesity4,5. Other potential
risk factors for critical condition and death are a viral load of the
patient upon hospital admission6–8 and the specific immune
response to infection, with the manifestation of an abnormal
immune response in critical patients characterized by dysregu-
lated levels of proinflammatory cytokines and chemokines, which
some studies have associated with organ failure9,10.

Despite its close interplay with the immune system and its
known associations with host health, little is known about the role
of the respiratory microbiota in modulating COVID-19 disease
severity, or its potential as a prognostic marker11. Previous studies
exploring other pulmonary disorders have shown that the lung
microbiota members may exacerbate symptoms and contribute to
their severity12, potentially through direct crosstalk with the
immune system and/or due to bacteremia and secondary
infections13. First studies of the respiratory microbiome in
COVID-19 have revealed elevated levels of opportunistic patho-
genic bacteria14–16. However, reports on bacterial diversity are
contradictory. While some studies report a low microbial diver-
sity in COVID-19 patients14,17 that rebounds following
recovery15, others show an increased diversity in the COVID-19
associated microbiota16. These conflicting results could be due to
differences in sampling location (upper or lower respiratory
tract), the severity of the patients, disease stage, treatment, or
other confounders. While these early findings already suggest that
the lung microbiome could be exacerbating or mitigating
COVID-19 progression, exact mechanisms are yet to be eluci-
dated. Therefore, an urgent need exists for studies identifying and
tackling confounders in order to discern true signals from noise.

To identify potential associations between the COVID-19
severity and evolution and the upper and lower respiratory tract
microbiota, we used nasopharyngeal swabs and bronchoalveolar
lavage (BAL) samples, respectively. For the upper respiratory
tract, we longitudinally profiled the nasopharyngeal microbiome
of 58 COVID-19 patients during intensive care unit (ICU)
treatment and after discharge to a classical hospital ward fol-
lowing clinical improvement, in conjunction with viral load

determination and nCounter immune profiling. For the lower
respiratory tract, we profiled microbial reads in cross-sectional
single-cell RNA-seq data18 from bronchoalveolar lavage (BAL)
samples of 22 COVID-19 patients and 13 pneumonitis controls
with negative COVID-19 qRT-PCR, obtained from the same
hospital. The integration of these data enabled us to (1) identify
potential confounders of COVID-19 microbiome associations, (2)
explore how microbial diversity evolves throughout hospitaliza-
tion, (3) study microbe-host cell interactions, and (4) substantiate
a link between the respiratory microbiome and SARS-CoV-2 viral
load, as well as COVID-19 disease severity. Altogether, our results
suggest the existence of associations between the microbiota and
specific immune cells in the context of COVID-19 disease. These
interactions may be driven by mechanical ventilation and its
associated clinical practices, and therefore could potentially
influence COVID-19 disease progression and resolution.

Results
The upper respiratory microbiota of COVID-19 patients. We
longitudinally profiled the upper respiratory microbiota of 58 patients
diagnosed with COVID-19 based on a positive qRT-PCR test or a
negative test with high clinical suspicion based on symptomatology
and a chest CT scan showing typical round glass opacities. All these
patients were admitted and treated at UZ Leuven hospital. Patient
demographics for this cohort are shown in Table 1.

In total, 112 nasopharyngeal swabs from these patients were
processed (Fig. 1a): the V4 region of the 16S rRNA gene
was amplified on extracted DNA using 515F and 806R primers
and sequenced on an Illumina MiSeq platform (see Methods). From
the same swabs, RNA was extracted to determine SARS-CoV-2 viral
loads and to estimate immune cell populations of the host and
expression of immune-related genes using nCounter (Methods). Of
the 112 samples processed and sequenced, 101 yielded over 10,000
amplicon reads that could be assigned to bacteria at the genus level
(Fig. 1b; Methods). The microbiome of the entire cohort was
dominated by the gram-positive genera Staphylococcus and Coryne-
bacterium, typical from the nasal cavity and nasopharynx19.

Bacterial alpha diversity is associated with ICU stay length,
SARS-CoV-2 viral load, and calprotectin levels. First, we
determined genus-level alpha diversity for the 101 samples with
more than 10,000 genus-level assigned reads, using the Shannon
Diversity index (SDI; see Methods; Supplementary Table 1). We
observed that the SDI was significantly different across sampling
moments (Kruskal–Wallis test, p value = 0.009; Supplementary
Figure 1a), with significant differences between the swabs pro-
cured upon patient ICU admission and later timepoints, sug-
gesting an effect of disease progression and/or treatment (for
instance due to antibiotics administered throughout ICU stay).
We explored these differences further, and observed that SDI
correlated negatively with the number of days spent in ICU at the

Table 1 Patient demographics of upper and lower respiratory tract cohorts.

Upper respiratory tract (swabs) Lower respiratory tract (BAL)

Number of patients 58 35

Type of sampling Longitudinal Cross-sectional

COVID-19 diagnosis (%) 58 (100%) 22 (63%)

Patients admitted to ICU (%) 58 (100%) 21 (60%) at sampling

Age (range) 61 (37–83) 64 (45–85)

Female sex (%) 13 (22%) 12 (34%)

BMI (range) 29 (22–47) 26 (16–36)

Diabetic (%) 12 (21%) 6 (17%)

Days in ICU (range) 21.4 (2–72) Not Available (cross-sectional cohort)

Days in hospital (range) 32.5 (6–86) Not Available (cross-sectional cohort)
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moment of sampling, with longer ICU stays leading to a lower
diversity (ρ=−0.53, p value= 1.9 × 10−8).

To evaluate the association of other clinical or disease-related
variables with upper respiratory tract microbiome diversity, we used a
generalized linear mixed model framework: we performed an
exhaustive screening of all possible models containing up to eight
different explanatory variables, using an automated model selection
algorithm (see Methods). The variables used to regress the SDI
comprise the patient ID, modeled as a random effect; disease-related
variables, such as the time in ICU, SARS-CoV-2 viral load or the use
of mechanical ventilation; and other variables known to affect the
microbiome, such as the administration of antibiotics (specifically
meropenem/piperacillin-tazobactam and ceftriaxone) or the levels of
inflammatory markers (calprotectin, C-reactive protein). The anti-
biotics meropenem and piperacillin/tazobactam were grouped as a
single variable in all subsequent analyses as they were administered
under the same clinical guidelines. The best performing model
(AICc= 121.79; p value= 4.06 × 10−8) included the patient modeled
as a random effect and confirmed a negative association between the
time spent in ICU and diversity. Additionally, this model showed a
negative effect of SARS-CoV-2 viral load and a positive association of
calprotectin levels with the SDI (Fig. 1c, d; Supplementary
Figure 1b–d).

We leveraged all the models generated in the screening to
calculate weighted importance scores for all the fixed effects
tested (Methods; Supplementary Figure 1e). These scores showed
that the three variables incorporated in the best model (time in
ICU, SARS-CoV-2 viral load, and calprotectin) held the highest
relative importance, followed by CRP levels and mechanical
ventilation. Treatment with antibiotics ceftriaxone an meropenem
or piperacillin-tazobactam had the lowest importance scores, and
no significant differences in SDI were found between the samples
obtained before and after the administration of meropenem/
piperacillin-tazobactam (Supplementary Figure 1f).

Altogether, our data suggest that respiratory microbiome
diversity is linked to the length of ICU stay, SARS-CoV-2 viral
load, and calprotectin levels. While no significant effects were
found for the most widely used antibiotics in this cohort, we
cannot rule out that antibiotic administration or other clinical
practices are causing the decrease of SDI over time.

Respiratory microbiome composition variation is linked to
respiratory support and associated clinical practices. We next
explored potential associations between the upper respiratory
genus-level microbiota composition and the extensive metadata

Fig. 1 Sample overview and alpha diversity. a Longitudinal sampling of patients (n= 58 patients). Each line represents one patient. Yellow lines span the

days spent in ward, while blue lines span the days spent in ICU. Red points mark hospital discharge dates. Crosses indicate the timepoints where swab

samples were obtained for microbiome analyses. b Top 15 most abundant genera in this cohort. Samples with >10,000 reads assigned to microbial taxa at

the genus level (n= 101) were stratified according to the sampling moment: upon admission, throughout the ICU stay or at ICU discharge/during

treatment in ward. c Effect of the length of ICU stay and SARS-CoV-2 viral load on upper respiratory tract microbiome diversity (n= 89, after removal of

samples with missing data). The plot shows the model-predicted Shannon index as a function of the days in ICU, for different levels of SARS-CoV-2 viral

load (selected within the range of observed data). Confidence intervals for the predictions are shown in Supplementary Figure 1c. d Association of the

length of ICU stay and calprotectin gene expression levels with upper respiratory tract microbiome diversity (n= 89, after removal of samples with missing

data). The plot shows the model-predicted Shannon index as a function of the days in ICU, for different levels of calprotectin RNA (subunit S100A8) gene

expression, selected within the range of observed data. Confidence intervals for the predictions are shown in Supplementary Figure 1d. Source data are

provided as a Source Data file.
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collected in the study. In total, 72 covariates related to patient
anthropometrics, medication, and clinical variables measured in
the hospital, as well as SARS-CoV-2 viral load, host cytokine
expression, and estimated immune cell populations measured in
the swabs were tested (Supplementary Data 1). Individually, 20 of
these covariates showed a significant correlation to microbiota
composition in a univariate analysis (dbRDA, p value < 0.05;
FDR < 0.05; Fig. 2a). These significant covariates were related to

disease and measures of its severity, such as the clinical evaluation
of the patient, the total length of the ICU stay, the number of days
in ICU at the time of sampling, or the type of oxygen support
needed by the patient. Despite showing an association to the
overall diversity, SARS-CoV-2 viral load detected in the swabs
was not significantly associated to microbiome composition
variation (Supplementary Data 1). Neither ongoing antibiotic
usage (i.e., administration of any type of antibiotic) nor number

Fig. 2 Upper respiratory microbiome covariates in COVID-19. a Significant (BH-corrected p value < 0.05) covariates explaining microbiota variation in the

upper respiratory tract in this cohort (n= 101 samples, dbRDA). Individual covariates are listed on the y-axis, their color corresponds to the metadata

category they belong to. Darker colors refer to the individual variance explained by each of these covariates assuming independence, while lighter colors

represent the cumulative and nonredundant variance explained by incorporating each variable to a model using a stepwise dbRDA analysis. The black

horizontal line separates those variables that are significant in the nonredundant analysis on top (Patient ID and oxygen support type) from the rest. b RDA

ordination plot showing the first two constrained axes. Ordination is constrained by the two significant variables “Patient ID” and “Oxygen support”.

Samples are depicted as points, whose color indicates the oxygen support type of the patient and whose shape indicates stay at ward or ICU (during

sampling). Axes indicate the variance explained by the first two constrained components of the dbRDA analysis. c Species- (left) and strain-level diversity

(right) of the samples, stratified by oxygen support type (n= 101 samples). d Pearson correlation between average species- and strain- level diversity for

each of the oxygen support categories. The R2 and the p value (two-sided F-test) from a linear regression between the two variables are shown. e.

Significant differences in taxa abundances among oxygen support types (n= 101 samples). Differentially abundant taxa between invasive (red) and

noninvasive (blue) ventilated samples. Only the top 10 most significant taxa are shown, as determined by their BH-adjusted p value. Boxplots span from the

first until the third quartile of the data distribution, and the horizontal line indicates the median value of the data. The whiskers extend from the quartiles

until the last data point within 1.5 times the interquartile range, with outliers beyond. Individual data points are also represented. Gray lines join samples

pertaining to the same patient, taken at different timepoints. Asterisks (*) indicate taxa that remain significant after controlling for the main antibiotics

(ceftriaxone and meropenem/piperacillin-tazobactam). Source data are provided as a Source Data file.
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of ongoing antibiotics administered were significant, but the
administration of specific antibiotics meropenem/piperacillin-
tazobactam (previous or ongoing treatment) and ceftriaxone
(ongoing administration only) showed significant associations
with microbiome composition (Supplementary Data 1, Fig. 2a).

Of the 20 significant covariates, only two accounted for 48.7%
nonredundant variation in this dataset in a multivariate analysis
(dbRDA; p value= 0.001), with the rest holding redundant
information. These were the patient ID, included due to the
longitudinal sampling of patients, and confirming that intra-
individual variation over time is smaller than patient inter-
individual variation20, and the type of oxygen support received at
the time of sampling (Fig. 2a, b). Notably, the type of oxygen
support discriminated samples based on ventilation type, with
noninvasive ventilation samples (groups 1, 2, and 3) separating
from samples from intubated patients (groups 4 to 7; PERMA-
NOVA test, R2= 0.0642, p value= 0.001). Because of this
separation, we also evaluated whether previous mechanical
ventilation (regardless of the specific group) had a significant
impact on the microbiome composition, showing even a larger
effect size than when considering only the ongoing mechanical
ventilation (PERMANOVA test, R2= 0.0965, p value= 0.001),
suggesting that this invasive procedure may have an effect that is
prolonged in time.

Mechanical ventilation is inherently associated to additional
clinical practices, such as administration of broad-spectrum
antibiotics and decontamination procedures (including chlorhex-
idine washes) to prevent/treat ventilator-associated pneumonia.
Hence, we explored whether antibiotic usage could explain the
significant relationship between microbiome composition and
oxygen support type. We found that from the specific antibiotics
associated to microbiome composition, ceftriaxone was predo-
minantly administered in patients on noninvasive oxygen support
(Chi-square, p value= 0.001), whilst meropenem or piperacillin-
tazobactam were preferentially given to patents on mechanical
ventilation (Chi-square test, p value= 0.002; Supplementary
Figure 2a). This association is not casual and responds to current
treatment guidelines at UZ Leuven University Hospital: ceftriax-
one is administered to patients upon admission and for 3–7 days
to prevent potential bacterial co-infections. In our cohort, 80% of
the patients received ceftriaxone at the beginning of their stay
(Supplementary Figure 2b). Patients with longer ICU stays and
requiring higher levels of oxygen support will be considered to
have hospital-acquired/ventilator-associated pneumonia (HAP/
VAP) and receive meropenem or a combination of piperacillin/
tazobactam (Supplementary Figure 2b). Therefore, the observed
correlation between oxygen support types and these antibiotics
can be explained by disease severity and length of ICU stay.

We therefore explored whether we could observe an effect of
oxygen support type alone, deconfounding for the patient ID and
the two significant antibiotic covariates using partial dbRDA to
extract the effect size of oxygen support alone. The deconfounded
model exhibited a significant association to overall microbiome
composition (partial dbRDA; R2= 0.058, p value= 0.042)
suggesting that although antibiotic administration may explain
part of the variation in microbiome composition observed, there
may an independent effect of the oxygen support type. Never-
theless, the effect of other practices concomitant to mechanical
ventilation, such as oral decontamination with chlorhexidine
washes, could not be disentangled as these treatments were always
performed together.

To determine if oxygen support or associated practices also
impacted the microbiome at finer taxonomic resolution, we
revisited alpha diversity at species- and strain-level. We defined
species as 97% identity 16S OTUs and strains per species as the
clustered 16S sequences within each OTU. Our analyses revealed

both species- and strain-level diversity change with ventilation,
even with noninvasive ventilation (e.g., BIPAP, CPAP). Across all
samples we observed high species- and low strain-level diversity
preventilation, which reversed following any form of ventilation
(Fig. 2c; Wilcoxon test; p values < 0.05, with the exception of type
7), with the exception of ventilation with inhaled nitric oxide.
Further, species- and strain-level diversity showed a strong
inverse correlation (Fig. 2d; Pearson’s correlation, R2=−0.92, p
value = 0.0035).

Given the observed effect of mechanical ventilation on the
overall microbiome composition, we evaluated which specific taxa
were differentially abundant between samples from intubated and
nonintubated patients. In total, 28 genera were more abundant in
samples from mechanically ventilated patients, while 1 genus was
more abundant in non-invasively ventilated patients (p value <
0.05; FDR < 0.05; Fig. 2e, Supplementary Figure 3a; Supplemen-
tary Data 2). When controlling for the effect of the antibiotics
ceftriaxone and meropenem/piperacillin, 20 genera were sig-
nificantly different between both groups of samples (Supplemen-
tary Figure 3b, Supplementary Data 2). Some of these taxa are
common oral microbiome commensals or opportunistic patho-
gens that had been repeatedly reported as more abundant in
COVID-19 patients than in controls, such as Prevotella,
Fusobacterium, Porphyromonas, or Lactobacillus14–16. Here, we
reported higher abundance of these genera in mechanically
ventilated COVID-19 patients as compared to nonmechanically
ventilated COVID-19 patients. This points at mechanical
ventilation (and associated practices such as oral decontamina-
tion) as a potential confounder of previous COVID-19 studies.
Additionally, we found other taxa not previously reported in
previous COVID-19 microbiome studies, such as Mycoplasma or
Megasphaera (Fig. 2e, Supplementary Figure 2), but previously
associated to the risk of ventilator-associated pneumonia21.

By extracting the amplicon sequence variants (ASVs) corre-
sponding to these differentially abundant genera (see Methods),
some of these taxa could be narrowed down to the species level,
confirming their origin as typically oral bacteria: for instance,
Prevotella species included P. oris, P. salivae, P. denticola, P.
buccalis, and P. oralis. Within the Mycoplasma genus, ASVs were
assigned to Mycoplasma salivarium among other species, an oral
bacterium which has been previously associated to the incidence
of ventilator-associated pneumonia21. When controlling for
ventilation type, no taxa were found associated to SARS-CoV-2
viral loads (Supplementary Data 2). These results show that
further research with larger cohorts and controlling for the
relevant confounders highlighted here, such as ventilation type,
antibiotic usage or length of stay in ICU, will be needed to study
the specific effect of the viral infection.

Single-cell RNA-seq of bronchoalveolar fluid identifies oral
commensals and opportunist pathogens in the lower respira-
tory tract. Next, we explored what the functional consequences of
(disease and/or treatment-driven) lung microbiome disturbances
could be. To do so, we screened host single-cell RNA-seq data
generated on BAL samples of 35 patients18 using a computational
pipeline to identify microbial reads (see Methods). All patients in
this cross-sectional cohort showed clinical symptoms of pneu-
monia, 22 of them being diagnosed with COVID-19. The other 13
patients with non-COVID-19 pneumonia were hereafter referred
to as controls (Table 1). Out of the 35 patients, 21 were admitted
to ICU (20 COVID-19 patients and 1 control) and 14 were
hospitalized in ward at the moment of sampling (2 COVID-19
patients and 12 controls; Table 1 and Supplementary Figure 4).
Microbial read screening of these samples revealed an average of
7295.3 microbial reads per sample (ranging from 0 to 74,226
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reads, with only a single sample yielding zero microbial reads;
Supplementary Fig. 4).

Among the top taxa encountered in these patients, we found
similarities with the data obtained in nasopharyngeal swabs. The
top 15 species detected include Mycoplasma salivarium as the
dominating taxon in five COVID-19 patients in ICU, as well as
different Prevotella members. Non-COVID-19 pneumonia
patients in ward (i.e., nonmechanically ventilated) harbored
different microbes: two patients had a microbiome dominated by
Porphyromonas gingivalis, while a single patient had a micro-
biome dominated by the fungus Pneumocystis jirovecii, a known
pathogen causing Pneumocystis pneumonia (PCP)22.

Bacteria in the lower respiratory tract associate to host cells
from the innate immune system in COVID-19 patients. Next,
we took advantage of the single-cell barcoding and questioned
whether the microbial reads that we identified were found in
association with host cells (for instance infecting or internalized),
or contrarily, had unique barcodes suggesting a free-living state.
In total, 29,886 unique barcodes were identified that matched a
total of 46,151 microbial UMIs. The distribution of UMIs per
barcode was asymmetrical, ranging from 1 to 201 and with 88%
of the barcodes having a single UMI. Additionally, 26,572 bar-
codes (89%) were associated to a single microbial species, the rest
being associated to 2 species (8.8%) or more (2.2%).

Out of the total 29,886 microbial barcodes, only 2,108 were also
assigned to host cells, suggesting that the bulk of bacteria found in
BAL samples exist as free-living organisms or in bacterial
biofilms. Although microscopic evaluation would be needed to
validate this hypothesis, bacterial biofilms have been previously
documented in bronchoalveolar lavages23, and the enrichment for
host cells in these samples via centrifugation18 may have also
indirectly enriched these specimens for biofilm and/or host-
associated microbes. However, for the fraction of bacteria
associated to host cells, the distribution across disease types was
not random. We found that while 2.3% of the non-COVID-19
patient cells were associated to bacterial cells, almost double (4%)
could be observed in COVID-19 patients (Fig. 3a; Chi-squared
test; p value = 3.75·10−35). However, because COVID-19
diagnosis is highly correlated with mechanical ventilation in this
cohort, this effect could be due to higher intubation rates in
COVID-19 patients and possibly, a higher incidence of VAP.
Within COVID-19 patients, we also evaluated the overlap
between bacteria-associated host cells and cells with detected
SARS-CoV-2 reads18 (Supplementary Table 2). Out of 1,033 host
cells associated with bacteria in COVID-19 patients and 343 cells
with detected SARS-CoV-2 reads, only one cell was positive for
both viral and bacterial reads. A binomial test for independence
of virus and bacteria detection in the same host cell, showed that
the observed co-occurrence in one cell only was highly unlikely (p
value= 5.7×10−4), therefore suggesting mutual exclusion of
microbiome members and viruses in the same host immune
cells. However, it must be noted that lack of detection does not
necessarily imply lack of association of bacteria/virus to host cells,
especially with experimental methods such as single-cell RNA-
seq, designed for profiling host cells and not optimized for
detection of these entities. Therefore, further studies with larger
sample sizes are required to validate the co-exclusion hypothesis.

We also explored whether host-associated bacterial reads
would preferentially be linked with specific cell types, taking into
account the varying frequencies of cell types in COVID-19
patients and controls (see Methods). Such a preferential
association would suggest that these observations are biologically
relevant and not an artifact of the single-cell sample and library
preparation. Among control patients, cell types were similarly

distributed in both groups (i.e., with and without bacteria), with
only a preferential association of microbial cells with neutrophils (p
value = 3.61 × 10−12; Fig. 3b; Supplementary Figure 4). However,
in COVID-19 patients, three cell types were significantly associated
with bacteria: neutrophils (p value = 8.27 × 10−29), monocytes (p
value = 4.82 × 10−5) and monocyte-derived macrophages (p value
= 2.23 × 10−51; Fig. 3b; Supplementary Fig. 5 and Supplementary
Data 3). We also found that different bacteria associate with
distinct host cells. For instance, in COVID-19 patients, bacteria
from the Mycoplasma genus preferentially associated to monocyte-
derived macrophages (p value = 2.28 × 10−7), while Rothia (p
value = 8.21 × 10−4), Enterobacter (p value = 2.59 × 10−5), or
Klebsiella (p value = 3.12 × 10−9) are enriched in monocytes
(Fig. 3c, Supplementary Data 3).

Last, we investigated whether the associations of bacteria to
host cells are linked to host cell expression. To do so, we assessed
whether expression-based cell subtype classification18 for neu-
trophils, monocytes and macrophages showed non-random
associations with bacteria across all samples in this cohort.
Among the neutrophils, a subtype of inflammatory neutrophils
characterized by expression of the calgranulin S100A12 gene was
enriched in bacteria-associated cells (Chi-squared two-sided test,
p value 7.18 × 10−6; Fig. 3d, e; Supplementary Data 3). This
subset of cells was also found to be enriched in SARS-CoV-2
nucleocapsid gene reads18, suggesting that the same cell type
responsible for defense against the virus would be responding to
potentially invasive bacteria in the lung. This subgroup is
characterized by the expression of the calprotectin subunits
encoded by S100A8 and S100A9. It is known that S100A8/A9
heterodimer secretion is increased in infection-induced inflam-
mation and has some antibacterial effects mediated by secretion
of proinflammatory cytokines, release of reactive oxygen species
and recruitment of other inflammatory cells, as well as chelation
of Zn2+ necessary for bacterial enzymatic activity24. These
mechanisms are mediated by binding of the S100A8/A9 dimer
to TLR4 receptors to trigger the release of proinflammatory
cytokines, such as IL-6 and TNF-α, and thus may contribute to
sustain or exacerbate inflammation25. Therefore, the association
with bacteria could, at least in part, explain the inflammatory
phenotype of this neutrophil subset. To further examine this
hypothesis, we explored differential gene expression between
bacteria-associated and non-associated S100A12hi neutrophils
(Supplementary Data 4). Because association of these cells with
SARS-CoV-2 and with bacteria was mutually exclusive, we also
compared these changes with the ones triggered by the virus in
neutrophils18. Within this subset, neutrophils with co-occurring
bacteria showed significantly higher expression (Bonferroni-
corrected p value < 0.05) of proinflammatory genes, including
the cytokine IL1B and some of its target genes (PTSG2), the
transcription factors encoded by FOS and JUN, and several genes
encoding proteins involved in degranulation (S100A9, FOLR3,
HSPA1A, HSP90AA1, FCGR3B), (Supplementary Data 4). Among
these, FOLR3, a gene encoding for a folate receptor, is found in
neutrophil secretory granules and has antibacterial functions, by
binding folates and thus depriving bacteria of these essential
metabolites26. This response differed to that of virus-engulfing
neutrophils in that IFN response genes are not distinctively
upregulated by bacteria.

Regarding myeloid cells, both inflammatory IL1Bhi monocytes
(p value < 2 × 10−16), as well as a mixed group of CCL2-
expressing macrophages (p value = 5.38 × 10−10) are enriched in
bacteria-associated cells (Fig. 3f). These inflammatory monocytes
are believed to have an important role in the aberrant immune
response occurring in severe COVID-19 patients. In this case,
further gene expression patterns were detected, specific for
bacteria-associated cells: for CCL2hi macrophages, cells with co-
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Fig. 3 Host single cells associated to the lower respiratory tract microbiota. a relative proportion of cells from negative (n= 31,923 cells) and positive

(n= 33,243 cells) COVID-19 patients with (red) and without (blue) associated bacteria. The p value of a two-tailed Chi-squared test using the count data

is shown on top. b Cell types enriched in bacteria-associated cells. Barplots represent the proportion of cell types without (“No”; n= 63,463 cells) and with

(“Yes”; n= 1,703 cells with 2108 bacteria detected) bacteria in COVID-19 positive and negative patients. For each patient class, we tested for enrichment

of bacteria-associated cells (“Yes”) across the different cell types, using the proportions of non-bacteria associated cells (“No”) as background (Chi-

squared tests, two-tailed). c Bacterial genera preferentially associating to specific cell types. The heatmaps show the standardized residuals of a two-tailed

Chi-squared test including all bacterial genera and the three host cell types enriched in bacteria, for controls (left) and COVID-19 positive patients (right).

Taxa with no significant associations with any of the cell types are not shown. Enrichments are shown in red; depletions are depicted in blue. d Host cell

subtypes associated with bacteria. The heatmap shows the standardized residuals of a two-tailed Chi-squared test, including the subtypes of neutrophils,

monocytes and monocyte-derived macrophages with associated bacteria, considering cells without bacteria as background. Enrichments are shown in red;

depletions are depicted in blue. e Marker genes detected for the 5 different subtypes of neutrophils, showing within-group differences between bacteria-

associated and bacteria-non-associated cells. f Myeloid cell functional gene set showing the expression of canonical proinflammatory, anti-inflammatory

and MHC-encoded genes for the two subtypes of myeloid cells significantly associated with bacteria (CCL2hi-macrophages and IL1Bhi-monocytes). The

heatmap also shows within group differences between bacteria-associated and non-associated cells. Statistically significant differences (two-sided

Wilcoxon rank-sum test, Bonferroni-adjusted p value < 0.05) are marked with squares. For (b–d) asterisks denote significance after BH multiple testing

correction as follows: *p value ≤ 0.05; **p value ≤ 0.01; ***p value ≤ 0.001; ****p value ≤ 0.0001; exact p values are provided in Supplementary Data 3.

Source data are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26500-8 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6243 | https://doi.org/10.1038/s41467-021-26500-8 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


occurring bacteria expressed higher levels of MHC genes of type I
and II, suggesting a more active role of these cells in antigen
presentation (Bonferroni-corrected p value < 0.05; Fig. 3f; Sup-
plementary Data 4). A similar increase was also observed in
monocytes, yet not significant (Supplementary Data 4), possibly
due to the lower monocyte abundances in this dataset.
Additionally, bacteria-associated macrophages express signifi-
cantly higher levels of the calprotectin subunit genes S100A8/A9,
similarly to neutrophils, as well as genes encoding proinflamma-
tory chemokines (such as CCL4, CXCL10, and CXCL1).

Altogether, our results suggest that the bacteria detected in
these cell subsets via scRNA-seq analyses may be contributing to
the inflammatory response observed in the host.

Discussion
Since the beginning of the COVID-19 pandemic, a massive global
effort by the scientific community was undertaken to understand
physiopathology of SARS-CoV-2 infection and risk factors
affecting disease outcome. In this study, we explored the
respiratory microbiota as a potential risk factor for disease
severity, and we evaluated the upper and lower respiratory tract
microbiota in COVID-19 patients throughout hospitalization. We
linked these data to viral load measurements and immunopro-
filing results from nCounter and single-cell RNA sequencing data.
To assess robustness of previously reported signals, we investi-
gated the effect of potential confounders based on a broad panel
of patient metadata variables.

We found that in the upper respiratory tract, SARS-CoV-2
viral load has a mild negative association with bacterial biodi-
versity. A larger effect of severity indicators such as calprotectin
levels or length of ICU stay was observed, with diversity
decreasing throughout the length of the ICU period, a pattern
reminiscent of that seen in other pulmonary conditions27,28. The
effect of ICU length-of-stay may be mediated by treatment
options such as the administration of broad-spectrum antibiotics
and/or patient intubation and mechanical ventilation. Antibiotic
usage might also explain why calprotectin levels correlate with
alpha diversity: such antibiotics would decrease overall microbial
diversity, including (some of) the taxa that could be linked to
inflammation. The observed effects of these clinical practices on
microbiome alpha diversity could potentially explain why pre-
vious studies on the microbiota of COVID-19 patients show
conflicting results regarding diversity: some studies reported
lower diversity in sputum or throat swab samples of COVID-19
patients14,15,17 while others, focusing on the lower respiratory
microbiome using bronchoalveolar fluid samples, showed higher
bacterial diversity in COVID-19 patients than in controls16. To
further complicate matters, it cannot be excluded that sampling
site or processing could also be potential confounders in these
studies and/or reflect the different pathologies in the different
areas of the respiratory tract.

We further found that between-patient microbiome variation
(as measured by genus-level microbial beta-diversity) was also
influenced by different severity indicators, such as the clinical
status of the patient, or more importantly the type of oxygen
support received, with mechanically ventilated patients harboring
a different microbiota than nonintubated patients. This effect
could not be fully explained by neither general antibiotic
administration, nor the usage of specific antibiotics such as cef-
triaxone, meropenem, or piperacillin-tazobactam, suggesting an
independent effect of mechanical ventilation. Such an indepen-
dent effect has previously been suggested in small cohorts27,29,30,
but it needs to be validated in larger studies. However, other
associated practices, such as decontamination procedures, could
still be responsible for the observed associations, and we cannot

completely rule out a confounding effect of disease severity, as
COVID-19 severity dictates the clinical practices executed. The
impact of oxygen support was also reflected at the species- and
strain-levels, with intubation causing a significant decrease and
increase, respectively, in diversity. Combined, these results sug-
gest that noninvasive ventilation (e.g., BIPAP, CPAP) can have
microbial effects indicating that any form of ventilation may be a
tipping point for microbial community differences.

Importantly, several of the taxa reported to change between
intubated and nonintubated patients were reported to be linked to
diagnosis in previous COVID-19 microbiome studies14–16. In our
study, no taxa were specifically linked to SARS-CoV-2 viral load
after controlling for mechanical ventilation. This result suggests
the possibility that mechanical ventilation and its associated
clinical practices are confounding previous results. Indeed, one
study comparing COVID-19 patients with patients diagnosed of
community-acquired pneumonia found no differences in
respiratory microbiome composition between both groups of
patients, but both groups did differ from healthy controls31.
Together, these results indicate that patient intubation or even
noninvasive ventilation, as well as their associated medical
practices, are to be considered as important confounders when
studying the upper respiratory microbiome, and we strongly
suggest future COVID-19 microbiome studies should foresee and
include strategies to account for this covariate. As an example, a
recent study found a single ASV corresponding to the genus
Rothia that was specific for SARS-CoV-2 patients after control-
ling for ICU-related confounders by comparing with a previous
study of the microbiome in ICU patients32. Additionally, these
findings on potential drivers of microbiome variation are not
exclusive to COVID-19 disease: the effect of intubation on the
respiratory microbiome and its influence on the incidence of
ventilator-associated pneumonia have been previously
studied27,29,30.

To better understand the potential functional consequences of
these procedures and linked microbial shifts, we also profiled the
microbiome of the lower respiratory tract using single-cell data
obtained from a cross-sectional cohort of patients derived from
the same hospital. Our results show that single-cell RNA-seq,
despite not being optimized for microbial detection and profiling,
can identify bacteria alone or in association with specific human
cells. In this cohort, we identified a subset of bacteria associated
with host cells, more specifically with neutrophils, monocytes and
macrophages. While associations with neutrophils were common
to COVID-19 patients and controls, associations with monocytes
and macrophages were unique to COVID-19 cells. This enrich-
ment shows that these bacteria are likely not random con-
taminants, from which an even distribution across cell types (i.e.,
considering cell type abundances) would be expected. The iden-
tity of these host cells suggests that bacteria could have been
phagocyted by these innate immune system cells, rather than be
attached to the host cell surface. To the best of our knowledge,
this is the first study linking interacting host cells and lung
microbiome via high-throughput single-cell RNA-seq.

We find that host cells associated with bacteria, most of which
are of oral origin, exhibit proinflammatory phenotypes as well as
higher levels of MHC for antigen presentation. In this single-cell
cohort it was observed that critical COVID-19 patients are
characterized by an impaired monocyte to macrophage differ-
entiation, resulting in an excess of proinflammatory monocytes,
as well as by prolonged neutrophil inflammation18. Given that
only these cell types are enriched in bacteria, we hypothesize that
the respiratory (or ventilation-linked) microbiome may be play-
ing a role in exacerbating COVID-19 progression in the lower
respiratory tract. We verified that this response could likely be
driven by bacteria and not SARS-CoV-2, which is also detected
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mostly in these cell types, as there is almost no overlap in
detection of both the virus and bacteria in the same cells. How-
ever, it must be noted that lack of detection does not completely
rule out presence of both virus and bacteria within these cells.
Therefore, further research is required in order to confirm a
causative role of the microbiota in this immune impairment
characteristic of critical disease, and to reveal the specific
mechanisms involved.

The presence of oral taxa in the lung microbiota is not unique of
disease conditions. It is known that microaspiration, or the aspiration
of aerosol droplets originated in the oral cavity, occurs in healthy
individuals and can serve as a route for lung colonization of oral
commensals33. Such an increase of oral bacteria in the lower
respiratory tract could be facilitated when critically ill patients—
including but not limited to COVID-19—get intubated. Indeed, oral
bacteria have been linked to ventilator-associated pneumonia34,35. It
is yet to be elucidated whether COVID-19 physiopathology favors
lung colonization by oral bacteria or if, in contrast, a lung micro-
biome previously colonized by oral microbes could also contribute to
the disease. What is known is that an increase of oral bacteria in the
lower respiratory tract can result in an increased inflammatory
phenotype, even in healthy subjects36

Overall, this study provides a systematic analysis of potential
confounders in COVID-19 microbiome studies. We identified that
ICU hospitalization and type of oxygen support, which may be at
least partially explained by clinical practices such as antibiotic usage,
had large impacts on the upper respiratory tract microbiome and
have the potential to confound clinical microbiome studies. Among
the different types of oxygen support we reported the largest shifts in
microbial community structure between the intubated and non-
intubated patients. We found that oral taxa were strongly enriched in
the upper respiratory tract of mechanically ventilated COVID-19
patients, and specific taxa were also found in the lower respiratory
tract of COVID-19 patients. Further, in the lower respiratory tract,
microbes were strongly associated with specific proinflammatory
immune cells. This information contributes to a collective body of
literature on the pathology of COVID-19 and suggests that careful
attention be paid to ICU stay and type of oxygen support and
associated clinical practices such as antibiotic usage or oral decon-
tamination procedures when evaluating the role of the lung micro-
biome on COVID-19 disease progression.

Methods
Study design and patient cohorts. All experimental protocols and data analyses
were approved by the Ethics Commission from the UZ Leuven Hospital, under the
COntAGIouS observational clinical trial (study number S63881). The study design
is compliant with all relevant ethical regulations, including the Declaration of
Helsinki and the GDPR. All participants gave their informed consent to participate
in the study. Research was performed as part of the COntAGIouS observational
clinical trial, as recorded in: https://clinicaltrials.gov/ct2/show/NCT04327570.

A total of 58 patients from the COntAGIouS observational trial were included
as our upper respiratory tract cohort. All patients were admitted to the UZ Leuven
hospital with a diagnostic of COVID-19. The disease was diagnosed based on a) a
positive qRT-PCR test, performed on admission or previously on other hospitals,
when patients were transferred from other medical facilities; or b) a chest CT scan
showing alveolar damage and clinical symptoms of the disease. All patients
included in the study were admitted to ICU for a variable amount of time.
Nasopharyngeal swabs were taken from these patients at different timepoints
throughout ICU stay and after ICU discharge, during recovery in ward. A total of
112 swabs were processed for upper respiratory microbiome characterization
(Fig. 1a).

To extend our findings from the upper respiratory tract, we also profiled the
lower respiratory tract microbiota in a different cohort18 of 35 patients. These
patients were recruited as part of the same observational trial at UZ Leuven
hospital, but there was no overlap between these 35 patients and the 58 patients
from the upper respiratory tract cohort. The lower respiratory tract cross-sectional
cohort is composed by 22 COVID-19 patients and 13 pneumonitis controls with
negative qRT-PCR for SARS-CoV-2, with varying disease severity. Previous data
from single-cell RNA-sequencing had been collected for this cohort18. We
reanalyzed this single-cell dataset to profile the lower respiratory tract microbiota
in these patients.

RNA/DNA extraction and sequencing. Nucleic acid extraction from the swab
samples was performed with AllPrep DNA/RNA/miRNA Universal kit (QIAGEN,
catnr. 80224). Briefly, swabs from the potentially infectious samples were inacti-
vated by adding 600 µL RLT-plus lysis buffer. To increase bacterial cell lysis effi-
ciency, glass beads and DX reagent (Pathogen Lysis Tubes, QIAGEN, catnr. 19091)
were added to the lysis buffer, and samples were disrupted in a FastPrep-24TM

instrument with the following program: 1-minute beating at 6.5 m/sec, 1-minute
incubation at 4 °C, 1-minute beating at 6.5 m/sec, 1-minute incubation at 4 °C.
After lysis, the remaining extraction steps followed the recommended protocol
from the manufacturer. DNA was eluted in 50 µL EB buffer. Amplification of the
V4 region of the 16S gene was done with primers 515F and 806R (GTGYCAG
CMGCCGCGGTAA/ GGACTACNVGGGTWTCTAAT), using single multiplex
identifiers and adaptors as previously described37. RNA was eluted in 30 µL of
nuclease-free water and used for SARS-CoV-2 viral load determination in the
swabs as well as to measure inflammatory markers and cytokines and to estimate
host cell populations via marker gene expression using nCounter. In brief, raw
nCounter data were processed using nSolver 4.0 software (Nanostring), sequen-
tially correcting three factors for each individual sample: technical variation
between samples (using spiked positive control RNA), background correction
(using spiked negative control RNA) and RNA content variation (using 15
housekeeping genes). We have previously validated nCounter digital tran-
scriptomics for simultaneous quantification of host immune and viral transcripts38,
including respiratory viruses in nasopharyngeal aspirates, even with low RNA
yield39–41.

DNA sequencing was performed on an Illumina MiSeq instrument, generating
paired-end reads of 250 base pairs. For quality control, reads were demultiplexed
with LotuS v1.56542 and processed following the DADA2 microbiome pipeline
using the R packages DADA243 and phyloseq44. Briefly, reads were filtered and
trimmed using the parameters truncQ=11, truncLen=c(130,200), and
trimLeft=c(30, 30) and then denoised. After removing chimeras, amplicon
sequence variants (ASVs) table was constructed and taxonomy was assigned using
the Ribosomal Database Project (RDP) classifier implemented in DADA2 (RDP
trainset 16/release 11.5). The abundance table was then corrected for copy number,
rarefied to even sequencing depth, and decontaminated. For decontamination, we
used the prevalence-based contaminant identification method in the R package
decontam45.

16S statistical analysis. All the 16S data analyses were performed using R v3.6.0
and the packages vegan (v2.5.7)46, phyloseq (v1.34.0)44, CoDaSeq (v0.99.6)47,
DESeq2 (v1.30.1)48, Biostrings (v2.58.0)49, rstatix (v0.7.0)50, glmulti (v1.0.8)51,
sjPlot (v2.8.7)52, and DECIPHER (v2.18.1)53.

To analyze the 16S amplicon data, technical replicates were pooled and counts
from technical replicates were added. For all the analyses using genus-level
agglomerated data, only samples containing more than 10,000 reads assigned at the
genus level were used (101 samples in total). Alpha-diversity was analyzed using
Shannon’s Diversity Index. Comparison of the alpha diversity values across
different groups was performed using Kruskal–Wallis tests for comparisons across
multiple groups. When applicable, pairwise comparisons were performed using
Dunn post hoc tests. To establish the potential associations of alpha diversity with
different metadata variables, we selected eight variables related to COVID-19
disease and/or known to affect microbiome composition and diversity: patient ID,
days spent in ICU, SARS-CoV-2 viral load, antibiotic usage for ceftriaxone and
meropenem/piperacillin-tazobactam, previous mechanical ventilation, calprotectin
gene expression and CRP levels. Meropenem and piperacillin-tazobactam were
merged as a single antibiotic as their administration is indicated under the same
clinical guidelines.

We used the R package glmulti to perform an exhaustive evaluation of the 256
models including all possible combinations of the selected variables. All models
generated were generalized linear models or generalized linear mixed models
(when including the patient ID as a random effect), using a Gaussian family with a
logarithmic link. Model ranking and selection was performed based on the lowest
small-sample-corrected Akaike Information Criterion (AICc), and model
significance was assessed comparing with a null model (including the intercept
only) using the ANOVA test. The final variable importance was calculated as a
weighted average of the models in which each of the variables appeared, with
weights corresponding to the model ranks, defined by their AICc values. This was
also implemented as part of the glmulti package. The final model plots were
generated with the sjPlot package. Intra-patient differences in alpha diversity
between timepoints before and after administration of antibiotics or mechanical
ventilation were determined with Wilcoxon signed-rank tests.

Beta diversity analyses were performed using distance-based redundancy
analyses (dbRDA), using Aitchison distances. Prior to CLR data transformation, we
filtered the data using the CoDaSeq.filter function, to keep samples with more than
10,000 reads and taxa with a relative abundance above 0.1% in any sample, as well
as a prevalence of at least 10% in the cohort. To replace zeros, we first calculated
the minimum (nonzero) relative abundance of each taxon across all samples. Then,
for samples with zero counts for a given taxon, the minimum relative abundance of
the specific taxon was multiplied by the total counts of such samples and this value
was used to impute the zeros. dbRDA analyses were performed using the capscale
function from vegan, first in univariate analyses with 72 metadata variables
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(Supplementary Data 1). Model p values were corrected using Benjamini-
Hochberg’s (BH) multiple-testing correction, to select 20 variables with BH-
adjustedp values < 0.05. These 20 variables were included in a multivariate model,
and nonredundant contribution to variation was calculated using forward stepwise
variable selection via the ordiR2step function from vegan. To deconfound the effect
of antibiotics and patient ID for oxygen support type, partial dbRDA was used,
including both the antibiotics and patient ID as blocking variables. Metadata
variables containing dates, as well as noninformative metadata were excluded.
Noninformative metadata variables were defined as those containing a single non-
NA value or, for categorical variables, those being unevenly distributed (with > 90%
of the samples belonging to the same category, for instance, an antibiotic
administered only in two different samples). Additionally, from pairs of highly
collinear variables (correlation higher than 0.9), only one variable was kept.

Differential taxa abundance analyses were performed using DESeq2’s likelihood
ratio tests and controlling for potential confounders when indicated, including
them in the null model.

To explore species-level and strain-level diversity, 16S sequences were first
clustered into 97% nucleotide diversity operational taxonomic units (OTUs) using
the R packages Biostrings and DECIPHER. These OTUs were used to represents
the species-level. The number of unique 16S sequences clustered within each OTU
were used to represent the number of detectable strains per species. To calculate
strain-level diversity per sample, the number of strains of 5 detected OTU species
were randomly selected and averaged. This was repeated 1000× and the average of
the all 1000 subsamplings was used as the final strain-level diversity value for each
sample, as previously described54. To account for uneven sampling assessing
diversity differences based on different parameters, we randomly selected and
averaged the species- and strain-level diversity of five samples per parameter. This
was repeated 100× and the subsamplings were used to assess the significant
differences between species- and strain-level diversity across the parameters. The
average of all 100 subsamplings was used to as the input for a Pearson’s correlation
between species- and strain-level diversity.

All statistical tests were two-sided unless otherwise specified, and when multiple
tests were applied to the different features (e.g., the differential taxa abundances
across two conditions) p values were corrected for multiple testing using
Benjamini–Hochberg’s method.

Identification of microbial reads in BAL scRNA-seq data. BAL scRNA-seq raw
fastq data, as well as cell type and subtype assignations for all individual cells, were
obtained from a previous publication from within the COntAGIouS consortium.
Experimental procedures on BAL samples as well as detailed host single-cell gene
expression analyses are detailed in the original publication18.

5’ single-cell RNA-seq data obtained from the 10X Genomics Chromium
platform was processed with an in-house pipeline to identify microbial reads. This
pipeline comprises a series of steps designed to detect bacterial reads with high
sensitivity, while discarding potential false positives. For microbial identification,
only the read 2 fastq file from the raw sequencing files, containing the information
on the cDNA fragment, was used. Trimmomatic55 (v0.38) was used to trim low
quality bases and adapters, and discard short reads. Additionally, Prinseq++56

(v1.2) was used to discard reads with low-complexity stretches such as poly-A
sequences. Following these two quality control steps, reads from human and
potential sequencing artifacts (phage phiX174) were mapped with STAR57 (v2.7.1)
and discarded. The remaining unmapped reads were mapped against reference
microbial genomes using a two-step approach: first, we scanned these remaining
reads using mash screen58 (v2.0) against a custom database of 11,685 microbial
reference genomes including bacteria, archaea, fungi and viruses. Genomes likely to
be present in the analyzed sample (selected using a threshold of at least two shared
hashes from mash screen) were selected and reads were pseudoaligned to this
subset of reference genomes using kallisto59 (v0.44.0). Kallisto provides two
outputs: an “abundances” table containing the number of reads aligned to each
gene from the pre-selected set of reference genomes and a pseudoalignment file (in
*.bam format) containing the mapping information for each of the reads processed
by kallisto. From the abundances table, we derived a taxonomy table, assigning
each gene to its corresponding species, as well as a functional table, mapping each
gene to KEGG functional annotation using KEGG Orthology numbers (KOs). To
remove potential artifacts, two additional filters were applied to the taxonomic
table: first, if less than 10 different functions (i.e., 10 different KOs) were expressed
from a given species, such species was discarded. This filter ensures identification of
active bacteria, minimizing the capture of contaminants appearing during the
sample preparation or sequencing. Second, if one function accounted for more
than 90% of the mapped reads of a given species, it was also discarded. This filter
was aimed at removing potential artifacts caused by errors in the reference genome
assemblies from our database.

Bacterial reads were assigned their specific barcodes and UMIs as follows: read
IDs from the mapped microbial reads were retrieved from the kallisto
pseudoalignment (*.bam) output using SAMtools (v1.9)60. These unique read IDs
were used to retrieve the specific barcodes and UMIs using the raw read 1 fastq
files, thus assigning each barcode and UMI univocally to a microbial species and
function. Barcodes assigned to bacterial species that had been removed in the last
two filtering steps of the single-cell analysis pipeline (see above) were discarded, to
avoid including potential contaminants in the host-bacteria association analyses.

Direct associations between bacteria and host cells. Host single-cell tran-
scriptomics data was obtained from the Seurat61 object after preprocessing and
integrating the samples of the single-cell cohort, as described previously18. From
the Seurat object, the metadata was extracted, including the information on patient
group (COVID-19 or control) and severity of the disease (moderate or critical) as
well as cell type and subtype annotation corresponding to each barcode. Enrich-
ment of bacteria detected in patient groups or cell types was calculated using Chi-
squared tests, with effect sizes determined via the standardized residuals. Sig-
nificance was assessed via post hoc tests using the R package chisq.posthoc.test62.

To evaluate the overlap between bacterial and viral reads detection in host cells
of COVID-19 patients, we considered the total number of cells analyzed in these
patients: 33,243. Of these, 31,868 cells do not have associated bacterial or viral
reads; 1032 have only bacterial reads; 342 have only viral reads; and 1 has both
viral and bacterial reads detected (Supplementary Table 2). The marginal
probability for bacterial detection is thus P(bacterial detection) = 1033/
33,243= 0.031; while the marginal probability for viral detection in this dataset is
P(viral detection) = 343/33,243= 0.010. Assuming independence of both events,
the joint probability of finding a host cell associated to both bacterial and viral
reads would be P(bacterial and viral detection) = 0.031*0.010= 3.2 × 10−4. With
this joint probability and a total of 33,243 cells profiled, an average of 10.65 host
cells should have both bacterial and viral reads detected. A Chi-squared test
suggests nonindependence of the data (p value = 4.1 × 10−3). Additionally, we
performed an exact binomial test, considering number of successes = 1 (joint
bacterial and viral detection), probability of success = 3.2 – 10−4, (the joint
probability assuming independence of both events), and number of trials = 33,243
(the total number of cells studied). This two-sided test evaluates the null
hypothesis that the joint probability of both events is the one calculated assuming
independence. The result of this test (p value = 5.7 × 10−4) suggests rejecting the
null hypothesis. Therefore, these analyses altogether suggest that both events are
not independent and that there is mutual exclusion of microbiome members and
viruses in the same host immune cells.

For cell types showing an enrichment in associated bacteria, a new Seurat object
was created by subsetting the specific cell type. Chi-squared tests were also used to
determine the enrichment of bacteria-associated cell subtypes. Previous
annotations of cell subtypes18 were used to generate new clusters manually and
identify marker genes for these subtypes, using the function findAllMarkers from
Seurat. This function was also used to find differentially expressed genes between
bacteria-associated and not-bacteria-associated host cells of each subtype. When
using this function, reported adjusted p values are calculated using Bonferroni
correction by default.

Reporting Summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The raw amplicon sequencing data generated in this study, as well as patient metadata,

have been deposited in the European Genome-phenome Archive (EGA) repository under

accession code EGAS00001004951. These data are available under restricted access to

comply with current European personal data protection regulations. Access can be

obtained for research purposes within specific approved projects granted by the

corresponding Data Access Committee (raw sequencing data requests should be

addressed to Prof. Jeroen Raes, metadata requests should be addressed to Prof. Joost

Wauters: https://ega-archive.org/dacs/EGAC00001001901). The single-cell RNA-seq data

was first described in a separate publication18 and deposited also in EGA with accession

number EGAS00001004717. Source data are provided with this paper.

Code availability
The computer code used to process the data generated for this study has been made

available at https://raeslab.org/software/COVID19_respiratory_microbiome. A release

version of the code has been archived in the Zenodo repository: https://doi.org/10.5281/

zenodo.5524635 (https://zenodo.org/record/5524635)63. Source data are provided with

this paper.
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