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Abstract
Background: The preoperative selection of patients with in-
termediate-stage hepatocellular carcinoma (HCC) who are 
likely to have an objective response to first transarterial che-
moembolization (TACE) remains challenging. Objective: To 
develop and validate a clinical-radiomic model (CR model) 
for preoperatively predicting treatment response to first 

TACE in patients with intermediate-stage HCC. Methods: A 
total of 595 patients with intermediate-stage HCC were in-
cluded in this retrospective study. A tumoral and peritumor-
al (10 mm) radiomic signature (TPR-signature) was con-
structed based on 3,404 radiomic features from 4 regions of 
interest. A predictive CR model based on TPR-signature and 
clinical factors was developed using multivariate logistic re-
gression. Calibration curves and area under the receiver op-
erating characteristic curves (AUCs) were used to evaluate 
the model’s performance. Results: The final CR model con-
sisted of 5 independent predictors, including TPR-signature 
(p < 0.001), AFP (p = 0.004), Barcelona Clinic Liver Cancer Sys-
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tem Stage B (BCLC B) subclassification (p = 0.01), tumor loca-
tion (p = 0.039), and arterial hyperenhancement (p = 0.050). 
The internal and external validation results demonstrated 
the high-performance level of this model, with internal and 
external AUCs of 0.94 and 0.90, respectively. In addition, the 
predicted objective response via the CR model was associ-
ated with improved survival in the external validation cohort 
(hazard ratio: 2.43; 95% confidence interval: 1.60–3.69; p < 
0.001). The predicted treatment response also allowed for 
significant discrimination between the Kaplan-Meier curves 
of each BCLC B subclassification. Conclusions: The CR model 
had an excellent performance in predicting the first TACE 
response in patients with intermediate-stage HCC and could 
provide a robust predictive tool to assist with the selection 
of patients for TACE. © 2021 The Author(s)

Published by S. Karger AG, Basel

Introduction

Hepatocellular carcinoma (HCC) is the fifth leading 
cause of cancer mortality [1] and the most common cause 
of liver-related death [2], with >850,000 associated deaths 
reported annually worldwide [3, 4]. Patients with early 
HCC are candidates for curative therapies, such as trans-
plantation, resection, and ablation, and have an overall 
5-year survival rate reaching to 70–80% [5, 6]. However, 
many patients with HCC are diagnosed at the intermedi-
ate-stage Barcelona Clinic Liver Cancer staging classifica-
tion B (BCLC B), with significantly decreased survival 
compared to patients with early-stage, BCLC A HCC [7]. 
According to the European and American guidelines for 
the management of HCC, transarterial chemoemboliza-
tion (TACE) is recommended as the first-line therapy for 
patients with intermediate-stage HCC [8–10]. HCC pa-
tients with an objective response to first TACE enjoy a 
survival benefit [11], but nearly half of the HCC patients 
are nonresponsive to first TACE and have a poor progno-
sis [12]. For HCC patients who show no response to 
TACE, timely conversion to sorafenib or lenvatinib can 
prevent further liver dysfunction and prolong overall sur-
vival (OS), particularly if targeted kinase inhibitor thera-
py can be initiated before the HCC progresses to the ad-
vanced stage [13–15].

Several clinical factors are beneficial for preoperative-
ly selecting patients who are likely to have an objective 
response to TACE [16, 17]. The presence of fewer tumors, 
tumor size <5 cm, and a higher proportion of arterial en-
hanced tumors have been associated with a better treat-
ment response rate [18]. On the contrary, hypovascular 

tumors and those located in segment I or IV have been 
associated with poorer treatment response [18, 19]. Sev-
eral pre-TACE prediction models that were developed to 
estimate treatment response to TACE showed promising 
initial results [20–25]. However, those models did not in-
corporate tumor biology, a factor which might lead to a 
decrease in performance [26].

Recent advances in radiomics have provided a robust 
method for extracting radiological features beyond what 
is possible with the human eye, with the ability to assess 
tumor biological characteristics and oncologic prognoses 
[27]. The appropriate integration of radiomic features 
and clinical factors can improve accuracy in complex 
clinical decision-making [28].

Therefore, we aimed to establish a clinical-radiomic 
model (CR model) that integrated patient-specific infor-
mation and radiomic features extracted from contrast-
enhanced computed tomography (CECT) (1) to accu-
rately predict response to first TACE and (2) to assess its 
significance for OS in patients with intermediate-stage 
HCC. This model was further validated with an indepen-
dent external cohort.

Materials and Methods

Study Population
A total of 595 HCC patients between January 2010 and Decem-

ber 2014 were included in this study according to the following 
inclusion criteria: (1) radiologically and/or pathologically con-
firmed HCC; (2) BCLC B; (3) CECT performed within 1 month 
prior to the initial TACE treatment; and (4) the availability of 
CECT within 2 months of the first TACE. The exclusion criteria 
were (1) patients under 18 years old; (2) patients who had received 
other treatments, such as transplantation, resection, ablation, or 
targeted drugs, before the initial TACE treatment; (3) the presence 
of other cancers; or (4) a lack of necessary clinical information on 
the patient’s demographic characteristics, laboratory examina-
tions, tumor characteristics, treatment details, and follow-up. A 
total of 473 patients from Sir Run-Run Shaw Hospital, Zhejiang 
University, were identified as the primary cohort, which was ran-
domly divided into a training cohort (N = 355) and an internal 
validation cohort (N = 118), based on a random split-sample (3:1) 
approach (Fig. 1). The external validation cohort comprised 122 
patients who fulfilled the selection criteria from 2 other medical 
centers (Shaoxing People’s Hospital and Longyou People’s Hospi-
tal).

A standardized data form was created to collect all relevant 
clinical information. The form included 27 items which were cat-
egorized into the 4 following groups: (1) the demographics and 
clinical characteristics of the patients (including age, gender, hy-
pertension, diabetes, cirrhosis, hepatitis, and antiviral treatment); 
(2) laboratory variables including alpha-fetoprotein (AFP), ala-
nine aminotransferase (ALT), aspartate aminotransferase (AST), 
albumin (ALB), total bilirubin (TB), prothrombin time (PT), albu-
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min-bilirubin (ALBI) grade [29, 30], Child-Pugh class, and BCLC 
B subclassification (B1–B4) [31]; (3) tumor characteristics, such as 
number, size (of the largest lesion in multinodular HCC), location 
(targeted HCC and nontargeted lesions), and arterial hyperen-
hancement status on CECT scan; and (4) details of treatment and 
follow-up.

Treatment Response and Follow-Up
Treatment response to initial TACE was evaluated on a per-

target nodule and a per-patient basis on the follow-up CECT imag-
ing using the modified Response Evaluation Criteria in Solid Tu-
mors (mRECIST) [13, 15]. Notably, treatment response to initial 
TACE was divided into objective response (complete or partial 
response) and nonresponsive (stable disease or progressive dis-
ease). Treatment response was independently evaluated by 2 fac-
ulty radiologists with >6 years of experience, and conflicting re-
sults were mitigated by a third radiologist with over 10 years of 
experience.

Follow-up visits were performed with laboratory variables in-
cluding AFP, ALT, AST, ALB, TB, and PT and abdominal CECT 
recorded every 2–3 months. Subsequent treatments, such as re-
peated TACE, thermal ablation, sorafenib, or supportive care 
(TACE was sometimes used in combination with ablation, 
sorafenib, or supportive care), were also recorded.

Segmentation of ROIs and Acquisition of Radiomic Features
All preoperative CECT images in our study met the criteria de-

lineated by the American Association for the Study of Liver Dis-
ease (AASLD) guidelines [9]. First, all images were initially col-

lected, prejudged, and independently scored by 2 radiologists 
based on 10 primary imaging features, which were recommended 
by Xu et al. [32], Banerjee et al. [33], and Wang et al. [34]. The de-
tails of the CT imaging techniques and prejudged criteria are sum-
marized and described in online suppl. Text 1 (for all online suppl. 
material, see www.karger.com/doi/10.1159/000512028). Notably, 
for multinodular HCC, only the targeted lesions (the largest nod-
ules) with abundant vascularity that were easy to analyze with ra-
diomics were selected for further analysis, while other nontargeted 
lesions were estimated using radiological information. Interob-
server discrepancies between scores for the same image, including 
images of the targeted lesions, were reviewed by 3 radiologists to 
reach a consensus before the region of interest (ROI) segmentation 
was performed.

The ROIs were drawn at each targeted lesion by 2 radiologists 
using open-source 3D slicer V4.10.2 (https://www.slicer.org/) 
software, which provided a powerful function of semiautomatic 
segmentation. The tumoral ROI was considered to the entire tu-
mor volume (main part), and the peritumoral ROI was considered 
to be the peritumoral tissues (expanded rim part), which were re-
constructed with a dilation algorithm by 5, 10, and 20 mm, respec-
tively. If the longest distance from the liver surface to the tumor 
surface was shorter than the dilation distance, the regions with the 
longest distance for superficial lesions were identified as peritu-
moral ROIs. According to the performances in the training and 
testing sets, the dilation distance in the model with the best perfor-
mance was identified for drawing further peritumoral ROIs (ex-
panded rim part). Then, the tumoral ROI (main part) and peritu-
moral ROI (expanded rim part) were drawn at the hepatic arterial 

1,524 HCC patients diagnosed
at our center

122 patients with intermediate-stage
HCC selected from other centers

473 patients with
intermediate-stage HCC

Random: 3:1 ratio

Training cohort
n = 355

Internal validation cohort
n = 118

External validation cohort
n = 122

Building the clinical-radiomic
model

Performance evaluation

Fig. 1. Flowchart of patients and study design. HCC, hepatocellular carcinoma; CR, clinical radiomic.
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and noncontrast phases, respectively (Fig. 2). Finally, there were 4 
ROIs identified from those 2 phases after ROI segmentation for 
each patient. The radiomic features were then extracted from each 
ROI using the 3D slicer software with an extended plug-in called 
“PyRadiomics package” plug-in (https://www.radiomics.io/
pyradiomics.html). This plug-in automatically extracted 851 ra-
diomic features from each ROI. The radiomic data from each ROI 
(main part or expanded rim part at hepatic arterial or noncontrast 
phase) and image/radiological data from nontargeted lesions 
(HCC outside the analyzed part) are reported in detail in online 
suppl. Text 2. Furthermore, to facilitate distinguishing between the 
4 radiomic features (i.e., “tumoral ROI at arterial phase,” “tumor-
al ROI at noncontrast phase,” “peritumoral ROI at arterial phase,” 
and “peritumoral ROI at noncontrast phase”), these features were, 
respectively, labeled as “THA,” “TNC,” “PHA,” and “PNC” ac-
cording to the corresponding tissue and CT phase.

Tumoral and Peritumoral Radiomic Signature
A total of 355 and 118 targeted lesions were included in the 

training and internal validation sets, respectively. Significant ra-
diomic features associated with treatment response were identified 
and selected using the widely used least absolute shrinkage and 
selection operator (LASSO) method with 10-fold cross-validation. 
This method could remove the insignificant features that least af-
fected the objective function and leave those features that signifi-
cantly associated with treatment response. The tumoral and peri-
tumoral radiomic signature (TPR-signature) was built based on 

significant features from the tumoral and/or peritumoral ROI. The 
cutoff value was then identified using Youden’s index to divide 
patients into low- and high-risk subgroups (above and below this 
cutoff).

Construction of the Clinical-Radiomic Nomogram
Laboratory variables were categorized based on normal refer-

ence ranges, including those for ALT (≤50 or >50 U/mL), AST 
(≤40 or >40 U/mL), ALB (≤36 or >36 g/L), bilirubin (≤17.1 or 
>17.1 U/mL), and PT (≤13 or >13 s). Due to there being no obvi-
ous cutoff value, age was evenly separated into 2 categories (≤60 or 
>60 years). AFP (≤200 or >200 ng/mL) and tumor size (≤5 or >5 
cm) were categorized based on clinically relevant cutoff values. 
These clinical variables were subsequently compared by univariate 
comparison. Statistically significant variables were included along 
with the TPR-signature in the multivariable logistic regression 
models. A nomogram including statistically significant factors 
from the multivariate analysis was developed, and a final model 
was selected using a backward step-down process, with the Akaike 
information criterion as a stopping rule.

To use this nomogram, a vertical line was drawn over the 
graph from the top point row to the bottom of the scores row to 
obtain the points of each variable. The total points from each 
intersecting point of the vertical line were then added up to iden-
tify the predicted probability. Moreover, an easy-to-use web tool 
of this nomogram was later designed for public use (see the Re-
sults section).

a b c

ed

Fig. 2. ROI segmentation for radiomic analysis. First, radiologists 
checked the lesion on CECT (a). Then, 2 regions that enclosed the 
contour of the tumor (b) and peritumoral (c) tissues were drawn, 
respectively. Finally, the computer automatically segmented the 2 
regions, which resulted in the identification of the volumetric fea-

tures of the tumor (ROI tumor, green) and peritumor (ROI peri-
tumor, red). The entire ROI tumor (d); half of the 2 ROIs (e), half 
of the ROI tumor (green) and ROI peritumor (red), respectively. 
ROI, region of interest; CECT, contrast-enhanced computed to-
mography.
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Table 1. Demographic and clinical characteristics of patients in each cohort

Characteristics Training cohort 
(N = 355)

Internal validation 
cohort 
(N = 118)

External validation 
cohort 
(N = 122)

Age, years 57 [49–65] 56 [49–64] 56 [47–65]
Sex (male) 318 (89.6) 103 (87.3) 144 (93.4)
Hypertension 133 (37.5) 41 (34.7) 49 (40.2)
Diabetes 126 (35.5) 41 (34.7) 41 (33.6)
Cirrhosis 166 (46.8) 56 (47.5) 55 (45.1)
Hepatitis 293 (82.5) 97 (82.2) 100 (82.0)

HBV 290 (81.7) 96 (81.4) 99 (81.1)
HCV 3 (0.8) 1 (0.8) 1 (0.8)

Antiviral treatment 170 (47.9) 52 (44.1) 59 (48.4)
AFP, ng/mL 13.2 [4.0–233.9] 18.2 [3.9–258.6] 12.7 [4.2–285.4]

≤200 263 (74.1) 84 (71.2) 84 (68.9)
>200 92 (25.9) 34 (28.8) 38 (31.1)

ALT, U/mL 34.0 [23.0–50.1] 33.0 [24.0–47.25] 32.0 [23.0–51.0]
≤50 268 (75.5) 91 (77.1) 90 (73.8)
>50 87 (24.5) 27 (22.9) 32 (26.2)

AST, U/mL 29.0 [17.0–44.2] 28.5 [17.0–42.0] 27.5 [17.0–47.0]
≤40 249 (70.1) 88 (74.6) 81 (66.4)
>40 106 (29.9) 30 (25.4) 41 (33.6)

ALB, g/L 40.2 [37.0–43.5] 40.6 [37.8–43.7] 39.3 [36.1–43.1]
≤36 63 (17.7) 13 (11.0) 30 (24.6)
>36 292 (82.3) 105 (89.0) 92 (75.4)

TB, µmol/L 14.7 [11.5–20.0] 15.0 [12.4–20.7] 14.4 [10.4–18.9]
≤17.1 230 (64.8) 74 (62.7) 79 (64.8)
>17.1 125 (35.2) 44 (37.3) 43 (35.2)

PT, seconds 13.5 [12.8–14.1] 13.4 [12.9–14.0] 13.6 [12.9–14.3]
≤13 123 (34.6) 39 (33.1) 40 (32.8)
>13 232 (65.4) 79 (66.9) 82 (67.2)

ALBI grade (I, II) 202/153 (56.9/43.1) 71/47 (60.2/39.8) 63/59 (51.6/48.4)
Child-Pugh (A, B) 343/12 (96.6/3.4) 118/0 (100/0) 115/7 (94.3/5.7)
BCLC B subclassification

B1 254 (71.5) 85 (72.0) 82 (67.2)
B2 90 (25.3) 33 (28.0) 33 (27.0)
B3 8 (2.3) NA 6 (4.9)
B4 3 (0.9) NA 1 (0.8)

Tumor, n (≤3, >3) 202/153 (56.9/43.1) 70/48 (59.3/40.7) 73/49 (59.8/40.2)
≤3 202 (56.9) 70 (59.3) 73 (59.8)

4 81 (22.8) 28 (23.7) 24 (19.7)
5 70 (19.7) 19 (16.1) 24 (19.7)

≥6 2 (0.6) 1 (0.8) 1 (0.8)
Tumor size, cm 4.5 [3.0–6.5] 5.0 [3.0–7.0] 5.1 [3.2–7.5]
Tumor location

Right lobe 255 (71.8) 83 (70.3) 89 (73.0)
Left lobe 47 (13.2) 15 (12.7) 21 (17.2)
Segment I 10 (2.8) 5 (4.3) 1 (0.8)
Segment IV 43 (12.2) 15 (12.7) 11 (9.0)

Arterial hyperenhancement
Homogeneous 48 (13.5) 16 (13.6) 15 (12.3)
Heterogeneous 262 (73.8) 86 (72.8) 93 (76.2)
None (hypovascular) 45 (12.7) 16 (13.6) 14 (11.5)
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Statistical Analysis
The primary endpoint of interest was the actual treatment re-

sponse status to initial TACE, and the second endpoint of interest 
was the OS. The former was used to establish a clinical-radiomic 
nomogram for predicting treatment response. The performance of 
this nomogram was evaluated using a calibration curve and the 
area under the receiver operating characteristic curve (AUC). The 
AUCs were designed to assess the nomogram’s performance with 
survival outcomes. To assess OS across different predicted treat-
ment response statuses, survival curves were constructed using the 
Kaplan-Meier method and compared with the log-rank test. Uni-
variate and multivariate Cox proportional hazards regression 
model analyses were performed to identify potential prognostic 

factors for OS. Statistical analyses were carried out using R soft-
ware with the “survival” and “rms” packages (http://www.r-project.
org). A p value <0.05 was considered statistically significant.

Results

Demographic and Clinical Characteristics of Patients
The demographic and clinical characteristics of pa-

tients with intermediate-stage HCC in the training (N = 
355), internal validation (N = 118), and external valida-

Characteristics Training cohort 
(N = 355)

Internal validation 
cohort 
(N = 118)

External validation 
cohort 
(N = 122)

Treatment and follow-up
Response to TACE (OR/NR) 184/171 (51.8/48.2) 61/57 (51.7/48.3) 61/61 (50.0/50.0)

CR 26 (7.3) 11 (9.3) 8 (6.6)
PR 158 (44.5) 50 (42.4) 53 (43.4)
SD 137 (38.6) 45 (38.1) 52 (42.6)
PD 34 (9.6) 12 (10.2) 9 (7.4)

Rounds of TACE
1 169 (47.6) 52 (44.1) 66 (54.1)
2 139 (39.1) 47 (39.8) 41 (33.6)
3 37 (10.4) 15 (12.7) 12 (9.8)
4 7 (2.0) 2 (1.7) 2 (1.6)

≥5 3 (0.9) 2 (1.7) 1 (0.8)
Embolic materials

Lipiodol 238 (67.04) 86 (72.88) 91 (74.59)
Gelatin sponge microparticles 86 (24.23) 20 (16.95) 16 (13.11)
Polyvinyl alcohol particles 20 (5.63) 8 (6.78) 11 (9.02)
Others 11 (3.10) 4 (3.39) 4 (3.28)

Combined with chemotherapeutic agent
L-OHP 176 (49.58) 52 (44.07) 65 (53.28)
5-FU 68 (19.15) 27 (22.88) 20 (16.39)
THP 46 (12.96) 13 (11.02) 15 (12.30)
EPI 33 (9.30) 14 (11.86) 12 (9.84)
MMC 14 (3.94) 7 (5.93) 4 (3.28)
Others 5 (1.41) 2 (1.69) 1 (0.82)
None 13 (3.66) 3 (2.54) 4 (3.28)

Combined with other treatment (no, yes) 307/48 (86.5/13.5) 100/18 (84.7/15.2) 102/20 (83.6/16.4)
Supportive care 307 (86.5) 100 (84.7) 102 (83.6)
Sorafenib or PD1 42 (11.8) 14 (11.9) 19 (15.6)
Ablation 6 (1.7) 4 (3.4) 1 (0.8)

Date to follow-up CT, days 47 [40–53] 48 [40–54] 47 [41–55]
Median follow-up, months 24.0 [17.0–41.0] 23.0 [14.0–36.3] 25.0 [13.0–40.2]

Data are presented as median [interquartile range] or number (percent). HBV/HCV, hepatitis B/C virus; AFP, 
alpha-fetoprotein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALB, albumin; TB, total 
bilirubin; PT, prothrombin time; ALBI, albumin-bilirubin; OR, objective response; NR, nonresponsive; TACE, 
transarterial chemoembolization; CR, complete response; PR, partial response; SD, stable disease; PD, progressive 
disease; BCLC, Barcelona Clinic Liver Cancer System; L-OHP, oxaliplatin; 5-FU, fluorouracil; THP, pirarubicin; 
EPI, epirubicin; MMC, mitomycin.

Table 1 (continued)
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Table 2. The comparison of 7 different radiomic signatures based on tumoral (main part) and/or peritumoral (expanded rim part) 
radiomic features

Radiomic models based on 
different parts

ROIs, 
n

Training set (N = 355) Testing set (N = 118)

sensitivity, 
%

specificity, 
%

accuracy, 
%

AUC 
(95% CI)

sensitivity, 
%

specificity, 
%

accuracy, 
%

AUC 
(95% CI)

Tumor 2 80.7 75.5 78.0 0.76 [0.69–0.84] 73.8 73.7 73.7 0.72 [0.63–0.82]
Peritumor (5 mm) 2 56.5 65.5 60.8 0.59 [0.45–0.71] 54.1 54.4 54.2 0.55 [0.46–0.68]
Peritumor (10 mm) 2 59.8 61.4 60.6 0.59 [0.47–0.65] 50.8 52.6 51.7 0.53 [0.45–0.63]
Peritumor (20 mm) 2 59.2 56.1 57.7 0.56 [0.49–0.64] 49.2 52.6 50.8 0.52 [0.42–0.64]
Tumor + peritumor (5 mm) 4 88.0 81.2 84.8 0.84 [0.79–0.88] 83.6 75.4 79.6 0.79 [0.72–0.83]
Tumor + peritumor (10 mm) 4 89.1 81.9 85.6 0.85 [0.82–0.89] 85.2 77.2 81.4 0.81 [0.75–0.84]
Tumor + peritumor (20 mm) 4 81.2 77.7 79.4 0.79 [0.76–0.84] 82.4 68.9 75.4 0.75 [0.65–0.83]

ROIs, regions of interest; AUC, area under the receiver operating characteristic curve.

Non-response Objective response

3.0

2.5

2.0

1.5

1.0

1.6

1.4

Yo
ud

en
’s 

in
de

x 
(Y

I)

1.2

1.0

0 0.5 1 1.5 2 2.32.5
TPR-signature (10 mm)

3 3.5 4

p < 0.001***

3.0

2.5

Non-response Objective response

p < 0.001***

2.0

1.5

1.0

3.0

2.5

2.0

1.5

Non-response Objective response

p < 0.001***

a b

c
d

Fig. 3. The distribution of the TPR-signature between the objective response and nonresponse patients. Training 
cohort (a); internal validation cohort (b); external validation cohort (c); and cutoff point identified with Youden’s 
index (d). *p < 0.05; **p < 0.01; and ***p < 0.001. TPR, tumoral and peritumoral radiomic.
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tion (N = 122) cohorts are summarized in Table 1. The 
median age of the training cohort was 57 years, 318 pa-
tients were male, and 166 patients were diagnosed with 
cirrhosis. Most patients were Child-Pugh A (96.6%) and 
BCLC stage B1 (71.5%). The vast majority (81.7%) of the 
patients were hepatitis B surface antigen positive, and 
48% had received antiretroviral therapy. Similar baseline 
characteristics of patients with intermediate-stage HCC 
were observed in both the internal and external validation 
cohorts. There were no significant differences in terms of 
patients’ characteristics between the training and valida-
tion cohorts (online suppl. Table 1).

Over half of the patients in each cohort had an objec-
tive response to initial TACE, with a partial response rate 
of 44.5, 42.4, and 43.4% in the training, internal, and ex-
ternal validation cohorts, respectively. The median time 
from initial TACE to first follow-up CECT was approxi-
mately 47 days (range: 40–55 days). Median follow-up 
time ranged between 23 and 26 months in the 3 patient 
cohorts.

Radiomic Analysis
A total of 851 radiomic features were extracted from 

each ROI based on pre-TACE CECT imaging. Then, 7 

different models were built based on corresponding fea-
tures using LASSO and compared using the AUC value 
(Table 2). The best performance of TPR-signature, which 
was based on 3,404 radiomic features from the tumoral 
ROI and peritumoral (10 mm) ROI, was identified and 
selected for further analysis. The TPR-signature included 
18 radiomic features, 17 of which were selected from tu-
moral ROI at the hepatic arterial and noncontrast phases 
(14 vs. 3, respectively), with the remaining 1 feature com-
ing from the peritumoral ROI at the hepatic arterial phase 
(online suppl. Table 2 and online suppl. Fig. 1). The TPR-
signature all showed a significant difference between the 
objective response and nonresponsive groups (p < 0.001) 
(Fig. 3a–c). According to the cutoff value of 2.3, the pa-
tients could be divided into 2 subgroups (high and low 
likelihood of objective response) (Fig. 3d).

Clinical-Radiomic Nomogram
In the training cohort, 8 significant predictors, includ-

ing the TPR-signature and 7 clinical variables (antiviral 
treatment, AFP, BCLC B subclassification, tumor num-
ber, tumor size, tumor location, and arterial hyperen-
hancement), proved to be significant during univariate 
comparison (online suppl. Table 3). Based on the results 
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of multivariate analyses with regression models, 5 inde-
pendent predictors were selected and taken into the final 
model (Fig. 4a and online suppl. Table 3). Finally, a clin-
ical-radiomic nomogram was developed to predict the 
treatment response to initial TACE (Fig. 4b). This nomo-
gram is available as a web tool for public use (online sup-
pl. Fig. 2, https://rc9u60.axshare.com/nomogram.html).

Nomogram Performance
The performance of this clinical-radiomic nomogram 

was tested using a calibration curve and AUCs. The cali-
bration plot for the probability of objective response 
demonstrated optimal agreement between the predicted 
probabilities computed by the nomogram and actual ob-
servations among the 3 patient cohorts (Fig. 5a–c). The 
discrimination ability of the nomogram was measured by 
bootstrap-corrected AUCs. The AUCs of the training, in-
ternal validation, and external validation cohorts were 
0.96, 0.94, and 0.90, respectively (Fig. 5d–f).

Evaluation of OS
The median OS for all patients in the external valida-

tion cohort was 27.0 months (range: 23.3–30.7 months, 
95% confidence interval [CI]). Significant differences  
(p < 0.001) in OS were observed between the objective 
TACE response and nonresponsive groups during both 
treatment and with the predicted models (p < 0.001) 
(Fig.  6a, b). Univariate and multivariate analyses were 
performed to identify potential prognostic factors for OS 
using the Cox proportional hazards regression model. 
The treatment response status predicted by the clinical-
radiomic nomogram (hazard ratio [HR]: 2.43; 95% CI: 
1.60–3.69; p < 0.001) was an independent prognostic fac-
tor for OS. Other prognostic factors included AFP (p = 
0.014), BCLC B subclassification (p < 0.001), arterial hy-
perenhancement (p = 0.029), and salvage treatments after 
failure of TACE (p = 0.047) (online suppl. Table 4). In 
addition, predicted treatment response status demon-
strated a statistically significant ability to discriminate be-
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tween Kaplan-Meier curves for survival outcome within 
each BCLC B subclassification in the external validation 
and primary cohorts (Fig. 6c–f and online suppl. Fig. 3, 
respectively).

Discussion

This study developed and validated a CR model for 
predicting the treatment response of initial TACE in pa-
tients with intermediate-stage HCC, based on retrospec-
tive data from 595 patients at multiple centers. This CR 
model integrated a radiomic signature with 4 clinical fac-
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tors: AFP, BCLC B subclassification, tumor location, and 
arterial hyperenhancement. In addition, the treatment re-
sponse predicted by our CR model was an independent 
prognostic factor for OS. The CR model could accurately 
stratify patients with intermediate-stage (BCLC B and its 
substages) HCC into 2 prognostic subgroups with signif-
icantly different OS. The patients for whom an objective 
response was predicted were advised to repeat TACE. 
Conversely, for predicted TACE nonresponders, OS 
could be significantly improved if consideration was giv-
en to other therapies such as sorafenib [35], lenvatinib 
alone [36], or lenvatinib followed by selective TACE [37].

The TPR-signature which integrated various radiomic 
features was one of the most important components in 
predicting treatment response using our CR model. No-
tably, most of the significant radiomic features were de-
rived from ROIs at the hepatic arterial phase. This corre-
sponded with previous studies that showed that a differ-
ence in extracellular volume and blood flow between 
HCC tissue and nonneoplastic liver tissue during the ar-
terial phase could give rise to unique radiological features 
[38–40]. A recent meta-analysis also demonstrated simi-
lar results with the utilization of arterial phase imaging 
being related to a higher degree of sensitivity [41].

Previous studies have focused on the primary tumor 
without taking peritumoral tissue into account for the 
analysis [42]. In our study, we focused on the potential 
characteristics of both tumor tissue and peritumoral tis-
sue and explored the influence of the different size of the 
peritumoral tissue (expanded rim part) on the radiomic 
calculation. Previous studies on glioma [43], breast can-
cer [44], and lung cancer [45, 46] revealed that the peri-
tumoral tissue 5–20 mm away from tumor has a close 
relationship to tumor prognosis. In our study, we found 
that the TPR-signature (10 mm) based on tumoral and 
peritumoral (10 mm) ROIs had the best performance in 
the training set (AUC: 0.85; 95% CI: 0.82–0.89) and the 
testing set (AUC: 0.81; 95% CI: 0.75–0.84). A quite similar 
AUC value of TPR-signature (5 mm) (AUC: 0.84) was 
observed in the training set, but its range of 95% CI was 
larger and the AUC value (AUC: 0.79) was lower in the 
testing set. Therefore, the TPR-signature (10 mm) was 
identified and selected for further analysis in this study. 
Although there was only one peritumoral radiomic fea-
ture in the TPR-signature, the peritumoral stroma, which 
was enriched in inflammatory cells, especially monocytes 
or/and macrophages [47], was considered to be part of the 
HCC tissue. Peritumoral monocytes might promote the 
upregulation of autophagy in tumor cells by secreting tu-
mor necrosis factors and interleukin 1β at the invading 

edge region of the HCC, leading to more aggressive can-
cer progression [48]. Peritumoral hepatic macrophages 
have been shown to increase with a decrease in nitric ox-
ide synthase 2 expression and an increase in human leu-
kocyte antigen-DR isotype-positive cells, which upregu-
lates T lymphocytes by producing a variety of cytokines 
and chemokines [49]. The significant humoral cytokine 
response observed in peritumoral regions indicates that 
shifts to immune-suppressive responses might promote 
HCC venous metastases [50]. However, the radiomic sig-
natures of peritumoral tissue are of less importance than 
those of the cancer nest [51, 52] due to their heterogeneity 
and the lack of algorithmic standardization. In our study, 
some tumors were located deep inside the liver, while oth-
ers were close to Glisson’s capsule, leading to a primary 
difference in the peritumoral ROIs. Based on biological 
and clinical factors, the size of the peritumoral region var-
ied, and it would be inappropriate to obtain the peritu-
moral region by setting a consistent distance from the tu-
mor. Thus, further evaluation of the radiomic signatures 
of peritumoral tissues and the establishment of an indi-
vidualized size of the peritumoral region can help to de-
scribe differences between superficial and deep HCC.

The data in this study confirmed that previously re-
ported clinical predictors, such as tumor location and 
AFP, could affect treatment response to TACE, and they 
were incorporated into the CR model. Tumor location 
(segments I and IV) was related to poor treatment re-
sponse to TACE. TACE can inhibit HCC progression by 
cutting off the tumor blood supply. However, segments I 
and IV have multiple arterial branches originating from 
the left and right hepatic arteries, with frequent intrapa-
renchymal anastomoses [53, 54], which can provide a 
partial or total blood supply to the tumor, leading to non-
response to TACE and tumor recurrence [55]. Moreover, 
AFP level has been identified as one of the most signifi-
cant prognostic factors [56], and it has been used as an 
independent OS predictor for patients who undergo 
TACE [57]. The AFP level can be a moderate predictor 
for evaluating the tumor response before TACE because 
patients with a high AFP (>200 ng/mL) have a lower 
TACE response than their counterparts [58].

Several factors (e.g., tumor size) were not incorporated 
into our CR model; however, these factors could indi-
rectly contribute to predicting treatment response and 
should not be ignored. Previous studies have observed 
that patients with tumors >5 cm generally have a worse 
treatment response rate [19]. Our study also revealed that 
tumor size was significantly associated with the TACE 
response (p = 0.003) during univariate analysis, but not 
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in multivariate analysis, suggesting that tumor size was 
not an independent factor useful for building the CR 
model. In this respect, it can be said that BCLC B subclas-
sification had a similar function as tumor size (≤5 and >5 
cm) classification in the CR model because the distinction 
between BCLC stage B1 and B2 mainly depends on the 
Milan criteria, which takes the tumor size into account. 
Therefore, tumor size was a component, albeit indirectly, 
of our CR model.

In addition to treatment response, the performance 
of our model was evaluated by OS. We found that treat-
ment response to initial TACE predicted by our CR 
model was an important prognostic factor of OS. In 
fact, significant difference in OS occurred between pa-
tients with objective response and nonresponse, either 
when the response was predicted by the model or ob-
served by a physician. The median OS for all patients 
was 27.0 months, which exceeded the median OS of 
19.4 months reported by Lencioni et al. [59]. This ex-
pected difference could be attributed to the improved 
process for selecting ideal TACE candidates over time 
[60]. The utility of the CR model was convincingly sup-
ported by the significant difference in OS observed 
within the BCLC substages B1 (p < 0.001) and B2 (p = 
0.012) of the external validation cohort. Even for BCLC 
stage B3/4, patients with predicted nonresponse had a 
shorter OS than their counterparts although the small 
sample size might have contributed to an underpow-
ered analysis of this patient group.

Despite the importance of the developed model, this 
study has several limitations. Firstly, this was a retrospec-
tive study, and several clinical variables could not be mea-
sured. For example, injected drugs and their dosages dur-
ing TACE were not homogenous across patients in the 
training, internal validation, and external validation co-
horts. Secondly, selecting the radiomic data from the larg-
est parts of individual HCC tumor and the radiological 
features from other nontargeted lesions before the initial 
TACE might have affected the predictive outcomes of 
models. Therefore, it is feasible for clinicians to weigh the 
pros and cons in order to increase convenience and de-
crease workloads. Thirdly, while the number of TACE 
treatments can influence OS, patients who had an objec-
tive response to initial TACE had a better OS, regardless 
of the number of rounds of TACE, which is very useful 
information for clinicians in selecting patients. As predic-
tive models based on radiomics of multiple rounds of 
TACE are created with greater sophistication, further 
studies exploring the relationship of the number of TACE 
rounds and survival can be designed. At present, our 

model can help clinicians select targeting agents in ad-
vance so that the appropriate treatment for HCC in pa-
tients can be chosen before initial TACE or immediately 
after failure. Fourthly, our CR model was developed and 
validated in a setting where most patients had HBV-relat-
ed HCC. Therefore, with regard to the possible etiology-
based differences in cancer biology, this model should be 
validated in a Western context, where hepatitis C and al-
cohol abuse are more common [61]. Because of the lim-
ited number of patients with BCLC stage B3/4, the cor-
responding results need to be tested by a larger patient 
cohort with BCLC B3/4. Finally, prospective data includ-
ing patients with various etiologies for chronic liver dis-
ease and HCC would help evaluate and validate this CR 
model.

Conclusion

We have developed and validated a CR model to pre-
dict preoperative treatment response in patients with in-
termediate-stage HCC treated with initial TACE. The 
model had an excellent predictive performance and could 
be a powerful tool to assist clinicians in selecting patients 
who would optimally benefit from first TACE.
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