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Abstract

Prostate cancer (PC) remains a leading cause of cancer-related deaths among men 

worldwide, despite continuously improved treatment strategies. Patients with metastatic 

disease are treated by androgen deprivation therapy (ADT) that with time results in 

the development of castration-resistant prostate cancer (CRPC) usually established 

as metastases within bone tissue. The androgen receptor (AR) transcription factor is 

the main driver of CRPC development and of acquired resistance to drugs given for 

treatment of CRPC, while a minority of patients have CRPC that is non-AR driven. 

Molecular mechanisms behind epithelial AR reactivation in CRPC include AR gene 

ampli�cation and overexpression, AR mutations, expression of constitutively active AR 

variants, intra-tumoural and adrenal androgen synthesis and promiscuous AR activation 

by other factors. This review will summarize AR alterations of clinical relevance for 

patients with CRPC, with focus on constitutively active AR variants, their possible 

association with AR ampli�cation and structural rearrangements as well as their ability 

to predict patient resistance to AR targeting drugs. The review will also discuss AR 

signalling in the tumour microenvironment and its possible relevance for metastatic 

growth and therapy.

Introduction

Prostate cancer (PC) is one of the most common forms of 

cancer and a leading cause of cancer-related deaths in men 

worldwide (1). Androgens regulate normal and malignant 

prostate tissue growth via activation of androgen receptor 

(AR) signalling in epithelial and stroma cells. Androgen 

deprivation therapy (ADT) is the standard therapy for 

locally advanced and metastatic PC, including surgical 

and chemical castration that deprives tumour cells of 

testicular androgens and thereby reduces tumour growth. 

Although ADT is initially effective in most patients, the 

disease progresses within a few years into an incurable 

and lethal stage of castration resistance. Castration-

resistant prostate cancer (CRPC) is usually established as 

bone metastases, but also as soft tissue metastases and 

through local recurrence. The AR in tumour epithelial 

cells is active in nearly all CRPC tumours despite castrate 

levels of circulating testosterone (2, 3), while a minority 

of CRPC metastases seem to be non-AR driven (4, 5). 

Mechanisms leading to epithelial AR reactivation in 

CRPC include, AR amplification and overexpression, AR 

mutations, expression of constitutively active AR variants, 

intra-tumoural androgen synthesis and promiscuous 

AR activation by other factors, as extensively reviewed 

previously (6, 7). Thus, the AR has for a long time been 

the main target in the treatment of advanced PC, and the 

combination of castration therapy with 1st-generation 

antiandrogens (flutamide, nilutamide and bicalutamide) 

reduces the risk of PC death by 10–30% compared to 

castration alone (8). Through the development of the 

2nd-generation AR antagonists such as enzalutamide and 
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apalutamide and the steroidogenesis inhibitor abiraterone 

acetate, CRPC patients show further improved survival 

(9, 10, 11). However, not all CRPC patients respond to 

those AR-targeting drugs, and drug resistance also develops 

with use. This review will summarize AR alterations of 

clinical relevance for patients with CRPC, with focus on 

constitutively active AR variants, their possible association 

with AR amplification and structural rearrangements 

as well as their ability to predict patient resistance to 

AR-targeting drugs. It will also discuss AR signalling in the 

tumour microenvironment and its possible relevance for 

metastatic growth and therapy.

The AR structure, activation and function

The AR gene is located at chromosome X (Xq11–12) and 

contains eight exons encoding a 110 kDa protein. The AR 

protein consists of a NH2 terminal transactivation domain 

(NTD, encoded by exon 1), a DNA-binding domain (DBD, 

encoded by exons 2 and 3), a hinge region (H, encoded 

by the 5′ portion of exon 4) that contains the nuclear 

localization signal (NLS) and a ligand-binding domain 

(LBD/CTD, encoded by the remaining exon 4 through exon 

8) (12). Testosterone and dihydrotestosterone (DHT) bind 

to the LBD of the AR and induce a conformational change 

of the protein that leads to dissociation of chaperone 

proteins and exposes the NLS in the hinge region. The AR 

dimerizes and translocates to the nucleus where it interacts 

with transcriptional co-regulators, binds to androgen 

response elements (ARE) and regulates the transcriptional 

output of hundreds to thousands of androgen-regulated 

genes depending on cell type. In prostate epithelial cells 

the AR regulates the expression of NKX3.1 and FOX family 

transcription factors, IGF1R, UBE2C, UGT2B15, KLK3, 

TMPRSS2, FKBP5 and other genes controlling cell growth, 

differentiation and function in the normal prostate and 

during PC growth and progression (13).

Overexpression of the AR in CRPC

Increased AR expression is consistently seen in tumour 

epithelial cells during development of CRPC (2), whereas 

a loss of AR signalling is generally observed in the primary 

tumour and metastasis stroma (14). Overexpression of 

the AR in tumour epithelial cells could be a result of AR 

gene amplification as described below, but is probably also 

an instant response to castration as androgens normally 

supress AR transcription in prostate epithelial cells (15, 16, 

17). AR amplification is the most frequent genetic alteration 

reported for CRPC tumours, as observed in up to 50% of the 

cases (18, 19, 20, 21). This stands in contrast to untreated 

primary prostate tumours (22) where AR amplification 

is rarely detected, suggesting that AR amplification is an 

adaptive response to ADT. AR amplification has been linked 

to AR overexpression in clinical samples and experimental 

systems and thereby to sensitising tumour epithelial cells to 

low androgen levels (23, 24). Detection of AR amplification 

in circulating tumour cells (CTCs) and circulating tumour 

DNA (ctDNA) isolated from patients with CRPC has been 

associated with therapy resistance to the AR antagonist 

enzalutamide and the CYP17 blocker of steroidogenesis, 

abiraterone acetate (25, 26).

Activating AR mutations in CRPC

AR signalling in CRPC tumour epithelial cells could also be 

caused by activating AR point mutations. Such mutations 

are very rare in untreated PC, but detected in 15–20% of 

CRPC patients (19, 20, 27) and in up to 40% of CRPC 

patients treated with AR antagonists (28). Activating AR 

point mutations generally affect the c-terminal LBD, 

while about one-third occur in the transactivating NTD 

(29, 30) resulting in broaden ligand specificity and AR 

activation by weak adrenal androgens and other steroid 

hormones, including DHEA, progesterone, oestrogen 

and glucocorticoids as well as in turning antagonists into 

agonists, as recently reviewed in (31) and summarized 

in this article in Table  1. The first and most frequently 

identified AR point mutation is the flutamide-driven 

T878A mutation (32, 33, 34, 35), while W742C and 

H875Y also have been reported after treatment with first-

generation AR antagonists (36, 37, 38, 39, 40, 41). Also, 

the use of 2nd-generation AR antagonists and the CYP17 

inhibitor abiraterone acetate seems to select for activating 

AR mutations. The F877L-mutated AR has been detected in 

cfDNA from CRPC patients progressing on enzalutamide 

or apalutamide (25, 42) and is, accordingly, activated by 

flutamide, enzalutamide and apalutamide in experimental 

models systems for PC (38, 42, 43, 44). The F877L mutation 

seems to be a rare event as it was not detected in a study of 

150 CRPC metastases, of which about a half of the patients 

were pre-treated with enzalutamide (20). Enzalutamide 

and ARN509 (apalutamide) have agonist effects also on 

the H875Y, T878A and T878S mutations, all detected 

in CRPC patients (38), but acquired resistance to those 
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drugs may primarily depend on increased expression of 

the glucocorticoid receptor and AR bypass (45, 46) or the 

induction of constitutively active AR variants, as discussed 

below. The T878A, H875Y and the L702H mutations 

have been observed in CRPC patients progressing during 

abiraterone treatment and associated with either the 

increased progesterone levels obtained after CYP17 

inhibition (25, 47, 48, 49) or with the co-administration 

of exogenous glucocorticoids given to compensate for 

significantly reduced cortisol levels (26, 50, 51, 52). The 

activating AR point mutations T877A, L702H and H875Y 

have been detected in cfDNA from patients with CRPC 

and shown to be associated with resistance to abiraterone 

and enzalutamide (25, 26, 42, 49).

Structural AR gene alterations in CRPC

In addition to AR amplification and point mutations 

in tumour epithelial cells, diverse structural AR 

alterations including deletion, duplication, inversion 

and translocation events have been reported; first for 

experimental model systems of CRPC and then for a 

substantial fraction of clinical CRPC samples (53, 54, 

55, 56, 57). By targeted paired-end DNA sequencing of 

the coding and non-coding AR region in 30 soft tissue 

metastases collected at rapid autopsy of 15 CRPC patients, 

structural AR alterations were demonstrated in 10/30 cases 

(6/15 patients), while no alterations were observed in the 

21 hormone-naïve primary prostate tumours analysed 

(56). In another study, cell-free DNA was analysed from 

30 CRPC patients and 50% were found to have structural 

AR alterations (57). Together, these studies show that 

the AR gene structure is frequently altered in CRPC and, 

moreover, that sub-clonal heterogeneities may exist 

within and in-between patients. Possible associations 

between structural AR alterations and the generation of 

constitutively active, truncated AR variants as well as their 

prognostic and therapy-predictive value will be discussed 

in more detail below.

Constitutively active AR variants in CRPC

The first truncated AR variants (AR-Vs) with subsequently 

proved gain of function were identified in 22Rv1 cells due 

to the presence of 75–80 kDa AR immunoreactive species 

that were initially thought to be proteolytic fragments 

of wild-type AR (ARwt) (58). However, later work 

demonstrated that RNA interference (RNAi) targeting 

the LBD of the AR reduced expression of the full-length 

AR, but not of the shorter isoforms (59). This suggested 

that the truncated AR-Vs were not products of ARwt, 

but instead derived from unique RNAs. To date, over 20 

truncated AR-Vs have been identified in human PC cell 

lines, xenografts and clinical specimens and some have 

proven to be constitutively active, i.e. they are able to 

translocate into the nucleus and initiate transcription 

without the need for ligand binding (20, 60, 61).

In clinical samples, truncated AR-Vs has been detected 

in the normal prostate, in primary prostate tumours and 

in non-treated PC metastases, but highly increased levels 

have been seen only in CRPC (20, 62, 63, 64, 65, 66, 67) 

and mainly in association with AR amplification (21, 57).

Nuclear translocation and constitutive activity of 

AR variants

Gain-of-function AR-Vs lack portions of the LBD and 

instead have divergent COOH-terminal extensions 

encoded by unique transcripts. Some AR variants are 

recurrently found in CRPC and have been described as 

constitutively active, such as the AR-V7 (also termed AR3) 

(62, 63), AR-V567es (also termed AR-V12) (63, 64) and 

AR-V3 (59, 63), whereas others (i.e. AR-V1 and AR-V9) 

seem to be conditionally active, depending on cellular 

context (68, 69) (Table  2). The majority of the AR-Vs 

identified today harbour the same NTD and DBD as the 

ARwt. Between the DBD and the LBD is the hinge region, 

which harbours the canonical NLS required for the 

nuclear localization of the ARwt following ligand binding. 

In contrast to the canonical AR signalling pathway, the 

Table 1 Activating androgen receptor mutations recurrently identi�ed in CRPC.

Mutation Aberrant effect References

T878A Activated by progesterone, estrogen, �utamide, bicalutamide, enzalutamide and 
apalutamide

(25, 32, 33, 34, 35, 38, 47)

W742C Activated by bicalutamide, �utamide (36, 37, 38, 39)
H875Y Activated by estrogen, progesterone, glucocorticoids, adrenal androgens, 

bicalutamide, �utamide, enzalutamide and apalutamide
(25, 35, 36, 37, 38, 40, 41)

F877L Activated by �utamide, apalutamide and enzalutamide (25, 38, 42, 43, 44)
L702H Activated by glucocorticoids (26, 38, 50, 51, 52)
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mechanisms enabling AR variants to enter the nucleus 

are less clear. Depending on the presence/absence of the 

hinge region, some constitutively active AR variants (i.e 

AR-V567es) express a NLS, whereas others (i.e. AR-V3, 

AR-V7, AR-V9) do not (59, 62, 63, 64, 68). Studies have 

suggested that a NLS-like signal located in the unique 

COOH-terminal extension allows the NLS-negative AR 

variants to enter the nucleus (63, 68). However, Chan 

and coworkers reported that a truncated AR molecule 

consisting only of the AR NTD/DBD core exhibits a 

basal level of nuclear localization sufficient for ligand/

androgen-independent transcriptional activity regardless 

of whether they harbour the exon 4-encoded NLS or NLS-

like COOH-terminal extensions (70).

Two of the most well characterized AR-Vs, AR-V7 

and AR-V567es, have demonstrated constitutive activity 

in different cell systems. The AR-V7 was originally 

discovered and functionally tested in the androgen-

independent 22Rv1 and CWR-R1 cell lines (59, 62, 63). 

Specific depletion of endogenous AR-Vs in 22Rv1 cells 

and overexpression of AR-V7 in LNCaP cells resulted 

in decreased and increased growth, respectively, under 

androgen-depleted in vitro and in vivo conditions (59, 62, 

71). AR-V567es was first identified in the LuCaP 86.2 and 

136 PC xenografts, and found to increase proliferation 

of LNCaP cells in the absence of androgen as well as to 

enhance proliferation in response to very low levels of 

androgen (64). In preclinical in vivo models, expression 

of AR-V567es and AR-V7 has been shown to increase 

after castration and to confer both primary and acquired 

resistance to abiraterone and enzalutamide (64, 72, 73, 

74, 75, 76, 77, 78). A recent paper furthermore displays 

constitutive activity of AR-V9 when transfected into the 

AR-positive LNCaP and the AR-negative DU145 cell lines 

(69), while AR-V9 was previously reported as conditionally 

active due to transfected activity into LNCaP but not PC-3 

cells (68). Conditionally active AR-Vs may depend on the 

expression of certain co-regulators, as discussed below in 

relation to the AR-V transcriptome.

The transcriptome of constitutively active AR variants

The wild-type AR is well known to mediate its 

transcriptional effects after forming homodimers in 

response to ligand binding. Whether or not AR-Vs also 

form homodimers or possibly heterodimers with the ARwt 

needs to be further clarified. Heterodimers of ARwt and 

AR-V7 have not been detected in the 22Rv1 or the CWR-

R1 cell line (58, 62, 79), while AR-V567es has been shown 

to co-immunoprecipitate with ARwt in lysates from a 

patient-derived xenograft, indicating that AR-V/ARwt 

complexes are able to form (64). A recent study by Xu 

and coworkers characterized protein–protein interactions 

between AR-V7, AR-V567es and the ARwt in the PC3 cell 

line (80). They concluded that, in PC3 cells, both AR-V7 

and AR-V567es could form heterodimers with ARwt and 

were also able to form homodimers in the absence of 

androgens. The hetero-dimerization of AR-Vs and ARwt 

was mediated by NTD and CTD interactions (NTD of 

AR-Vs and CTD of ARwt) and by DBD-to-DBD interactions, 

whereas AR-V homodimerization was mediated by DBD-

to-DBD interactions only. PC3 cells with mutant AR-Vs 

that prevented DBD–DBD homodimerization abolished 

the ability of AR-Vs to induce transcription and to 

induce castration-resistant cell growth, suggesting that 

dimerization was required for AR-V function. In an earlier 

study where ARwt, AR-V7 and AR-V567es were ectopically 

expressed in COS-7 cells, AR-Vs could activate ARwt in the 

absence of androgen and facilitated nuclear translocation 

and transcriptional activity (75). The same study showed 

Table 2 Gain-of-function AR variants recurrently identi�ed in CRPC.

Variant Transcriptional activity Clinical relevance References

AR-V7 (AR3) Constitutive  • Resistance to ADT, enzalutamide and abiraterone
 • Short time to disease relapse after radical prostatectomy and 

more rapid progression to CRPC
 • Poor PSA response, short progression-free survival, short 

overall survival and short cancer-speci�c survival of CRPC 
patients

(48, 62, 63, 65, 66, 69, 
103, 104, 105, 107)

AR-V567es 
(AR-V12)

Constitutive  • Resistance to ADT
 • Enriched in CRPC and metastases

(64, 65, 68, 106)

AR-V3 Constitutive  • Resistance to ADT and abiraterone
 • Short progression-free survival of CRPC patients

(57, 59, 63, 69)

AR-V1 Dependent on cell 
context

 • Enriched in CRPC and metastases (63, 65, 68, 71)

AR-V9 Dependent on cell 
context

 • Resistance to ADT and abiraterone
 • Short progression-free survival of CRPC patients

(68, 69) 
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that in 22Rv1 cells the PSA promoter was co-occupied by 

AR-V7 and ARwt, whereas the promoter of the UBE2C gene 

was bound only by AR-V7. From these results and with 

the knowledge that also when expressed at high levels in 

clinical samples, the AR-V seems to be co-expressed with 

the ARwt, it can be speculated that AR-V homodimers and 

AR-V/ARwt heterodimers form in parallel and have the 

potential to regulate different sets of target genes (75).

AR-Vs may transcribe canonically androgen-regulated 

genes or a unique subset of genes or possibly both. In 

clinical bone metastases, we found high AR-V7 levels to be 

associated with expression of certain canonical AR genes, 

such as UBE2C, CCNA2, UGT2B17 and C-MYC, but not 

with others (KLK3, KLK2, NKX3-1, TMPRSS2 and FKBP5) 

(65). Many functional studies have been performed to 

evaluate the AR-V transcriptome by ectopically expressing 

or knocking-down AR-Vs in different cell lines, but 

unfortunately without consistency (63, 64, 73, 81). Some 

studies have suggested sets of AR-V7-regulated genes such 

as AKT1 (62) and genes associated with the M-phase cell 

cycle progression, including above-mentioned UBE2C and 

CCNA2 (82) and the FOXA1-repressed target genes EDN2 

and ETS2 (83). In contrast, chromatin immunoprecipitation 

sequencing (CHIP-seq) of the R1-D567 and R1-AD1 cell 

lines showed a high concordance between the AR-V567es 

and ARwt cistromes, with chromatin sites engaged by 

both AR-V567es and ARwt including UBE2C, CCNA2, 

EDN2 and ETS2 (84). UBE2C and CCNA2 were also not 

unique targets for AR-Vs in the 22Rv1 and CWR-R1 cell 

lines, but also regulated by the ARwt (73, 81). Importantly, 

a recent paper highlighted frequent parallel synthesis 

of AR-V7 and AR-V9 in PC cell lines (and in patients) 

due to a tandem site for the cryptic exons giving rise to 

alternative splicing of those two variants (69). Without 

previous knowledge of this tandem site, recent studies 

performed to specifically quantify or knock-down the 

AR-V7 transcript may have been targeting the AR-V9 in 

parallel. The AR-V transcriptome therefore need to be 

further refined by precise knock-down of AR-V7 without 

affecting AR-V9 levels and vice versa. Furthermore, with 

specific antibodies now available for AR-V7, AR-V9 and 

other AR-Vs more specific immunohistochemistry and 

CHIP-seq studies can be performed in the future.

It should also be considered that the AR-V 

transcriptome may depend not only on the specific AR-V, 

but also conditionally on the cell type and the expression 

of specific AR co-regulators. The ARwt harbour activating 

functional domains both in the NTD (AF-1, Tau1 and 

Tau5/AF5) and the LBD (AF-2) and, while the AF-2 site 

is lost in LDB-truncated AR-Vs, co-factors binding to the 

NTD could theoretically affect the activity of most AR-Vs, 

as recently reviewed in (85). Also co-factors that in the 

presence of androgens interact with the LBD of ARwt have 

been shown to enhance the activity of AR-Vs, probably by 

interaction through alternative domains. One interesting 

example is the more potent recruitment of PI3K/AKT 

phosphorylated MED1 to the enhancer region of the 

UBE2C promoter by AR-V567es compared to ARwt (86, 87, 

88), something that may explain the high level of UBE2C 

expression seen in AR-V-driven tumours. The pioneer 

factors FOXA1 and GATA2 co-localize with both ARwt and 

AR-Vs on chromatin and increase their activities (88, 89), 

and FOXA1 was shown to be obligate for the proliferative 

effect of AR-Vs in CWR22Rv1 cells (90). GATA2 induces AR 

transcription (and thus potentially also AR-V expression) 

and as ligand-activated ARwt normally should repress 

GATA2 expression, it may be that GATA2 increases both 

expression and activity of ARwt and AR-Vs in androgen-

deprived CRPC (89, 91, 92, 93). Further studies are needed 

to decipher how co-regulators, activators and repressors, 

interact with and facilitate the activity of different AR-Vs.

Origin of truncated AR variants

The molecular mechanisms mediating increased levels 

of truncated AR-Vs in CRPC tumour epithelial cells still 

need to be clarified. While most transcripts coding for 

truncated AR-Vs seem to arise from alternative splicing 

due to incorporation of cryptic exons in the AR (59, 62, 

63) some may also be derived from exon skipping or by 

genetic deletions/rearrangement (55, 64). The enrichment 

of AR-Vs in CRPC may be related to the increased 

transcription of AR, observed in prostate epithelial cells 

after castration and in AR amplified tumours, or to 

structural AR rearrangements and/or aberrant expression 

of specific splice factors, as discussed below. Another 

possible explanation for the observed enrichment of AR-V 

in CRPC may be a concomitant reduction of micro-RNAs 

normally downregulating AR and AR-V levels (94, 95).

The abundance of specific splice variants may be 

controlled both by gene transcription rate and by splice 

factor recruitment to the pre-mRNA during the process 

of alternative splicing (96, 97, 98). An early observation 

was that specific inhibition of the ARwt protein in PC cell 

lines (via castration, antiandrogen treatment or siRNA) 

led to increased expression of AR-V7 but also of ARwt, 

and DHT treatment lead to decreased expression of both 

AR-V7 and ARwt (77, 82). Enzalutamide treatment was 
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shown to increase transcript levels of ARwt and AR-V7 

and, furthermore, to increase the recruitment of the 

splicing factors to the binding sites near the 3′ terminal 

cryptic exon of AR-V7. The ASF/SF2 and U2AF65 splicing 

factors were shown to be critical for the formation of 

AR-V7, while the knockdown of the hnRNPA1 splicing 

factor reduced levels of both the AR-V7 and the full-length 

AR transcript (99). Another study, however, reported 

enhanced recruitment of hnRNPA1 to the AR-V7 splicing 

sites in enzalutamide-resistant cells, while no change in 

recruitment of hnRNPA1 to the full-length AR mRNA was 

observed (100). The authors further provided evidence 

that alternative splicing and generation of AR-V7 might 

be regulated by hnRNPA1 through NF-κB2/p52 and 

c-Myc. Another study implicated a role for the molecular 

chaperone HSP90 in the splicing of AR-V7, as HSP90 

inhibition in PC cells with endogenously expression 

of AR-V7 lead to the disruption of AR-V7 splicing and 

reduced AR-V7 mRNA levels (101). Thus, increased 

transcription rate and subsequent recruitment of certain 

splice factors might be the link between castration, AR 

amplification and the enrichment of AR-Vs in relation to 

ARwt in CRPC cases.

Certain structural AR gene alterations such as a 8.5 kb 

deletion of the 5, 6 and 7 exons as well as a genomic 

inversion of the corresponding part have been identified 

and provided mechanisms for AR-V567es synthesis in the 

LuCaP 86.2 and LuCaP 136 xenograft models, respectively 

(54, 55). Diverse structural AR alterations have further 

been suggested to increase the probability for occurrence 

of alternative splicing; both in experimental models and 

clinical samples of CRPC. The 22Rv1 cell line harbours a 

35 kb intragenic tandem duplication containing AR exon 3 

and several 3′ cryptic exons (CEs), including the terminal 

exon CE3 of AR-V7 and as subsequently shown also the 

CE5 of AR-V9 (53, 69). Structural AR events involving 

exon 3 were in parallel observed in clinical samples from 

CRPC patients by Li and coworkers. The high expression 

of AR-V7 in the CWR-R1 cell line was later linked to a 

48 kb deletion in AR intron 1 (54).

More recent studies have strengthened the associations 

between AR amplification, structural AR alterations and the 

expression of truncated AR variants in clinical samples, by 

targeting DNA analysis of the AR and AR-V7 mRNA levels 

in metastatic tissue and liquid biopsies from CRPC patients 

(21, 56, 57). The studies by Henzler and De Laere further 

refined that AR rearrangements can occur in the context 

of AR amplification or at normal AR copy number and, 

furthermore, that some AR structural variations seem to be 

associated with the presence of AR-V expression, whereas 

others are not. Further studies are needed to elucidate the 

functional importance of diverse structural AR alterations 

and the regulation of the RNA splicing program that seems 

to favour AR-V synthesis and/or stability as a survival 

strategy for PC cells in response to ADT.

Clinical relevance of truncated AR variants

As described earlier, AR-Vs can be detected in benign 

prostate tissue, hormone-naïve and CRPC, with the most 

frequent and highest expression detected in CRPC samples 

(20, 62, 63, 64, 65, 66, 67). AR-V7 is believed to be clinically 

relevant as it is frequently observed and abundantly 

expressed. In an early study of bone metastases from 

CRPC patients, we reported high AR-V7 mRNA expression 

to correlate with high AR-V protein levels and particular 

poor prognosis (65). In a recent study analysing AR-Vs in 

CTCs from CRPC patients, AR-V7 was reported as the most 

frequently occurring variant (12/15 patients), while the 

second most frequent variant, AR-V3 was more abundantly 

expressed (57). Expression of AR-V7 in primary prostate 

tumours has been shown to correlate with shorter time 

to disease relapse after radical prostatectomy (62, 63) and 

more rapid progression to CRPC (66). High levels of AR-V7 

mRNA or nuclear AR-V7 protein or detectable expression of 

AR-V567es mRNA in CRPC tumours have been associated 

with poor patient survival (65, 66, 67). Thus, AR-V7 and 

possibly also other variants appear to be associated with 

the development of lethal PC.

In clinical CRPC specimens, individual AR-V transcripts 

are always co-expressed with the full-length AR transcript, 

but they are usually much less abundant (20). Nevertheless, 

metastasis levels of the AR-V proteins are comparable 

to that of the ARwt receptor in a substantial fraction of 

CRPC patients (65, 102). In samples where the AR-V7 

mRNA levels constituted only 0.4–1% of the full-length AR 

mRNA levels, we observed a relative median AR-V protein 

expression of 32%, as determined by immunoblotting 

analysis using an antibody targeting the N-terminal of the 

AR. This could indicate post-transcriptionally stabilization 

of AR-Vs in selected CRPC tumours. Accordingly, in vitro 

studies have suggested that the AR-V7 protein may be 

more stable than the wild-type AR (101).

AR-Vs as therapy-predictive biomarkers

In a series of papers, detectable levels of AR-V7 and 

some other AR-Vs have been shown to predict poor 
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response to AR targeting therapies, as discussed below. 

In a prospective clinical study, Efstathiou and coworkers 

evaluated the prognostic impact of AR-V7 expression in 

metastasis biopsies. By using immunohistochemistry on 

FFPE specimens, AR-V7 protein levels were analysed in 60 

patients with bone metastatic CRPC before and 8 weeks after 

enzalutamide treatment. The presence of AR-V7 staining 

was associated with primary resistance to enzalutamide 

(103). Sampling of metastasis biopsies from therapy 

responding and non-responding patients is extremely 

important to enable research studies where we can gain 

knowledge about the biology of CRPC. However, as CRPC 

metastases are primarily found in the bone marrow and in 

the skeleton and as sampling of such metastasis biopsies 

is logistically challenging, non-invasive liquid biopsies like 

CTCs and cfDNA may be preferred in studies aiming at 

monitoring the whole tumour burden of a patient.

In 2014, Antonarakis and coworkers measured mRNA 

expression of AR-V7 in CTCs from metastatic CRPC 

patients before starting treatment with enzalutamide 

or abiraterone. The presence of AR-V7-positive CTCs 

correlated with lower PSA response rate, shorter 

progression-free survival and reduced overall survival 

in both treatment groups (104). These findings were 

supported by another prospective study were the AR-V7 

mRNA levels in CTCs were significantly higher in patients 

who had previously received abiraterone or enzalutamide 

compared to those who had not (48). Recently, 

Antonarakis and coworkers confirmed and extended 

their previous results by evaluating the predictive value 

of AR-V7-positive CTCs in a cohort of 202 CRPC patients 

starting enzalutamide or abiraterone treatment. Patients 

without detectable CTCs were found to have the longest 

progression-free and overall survival, while patients 

with AR-V7-positive CTCs showed the worst prognosis 

(105). The AR-V7 and AR-V567es transcripts have also 

been detected in CRPC patients by evaluation of whole 

blood (106, 107). In a retrospective study of 132 CRPC 

patients treated with either abiraterone or enzalutamide, 

KLK3 (PSA) and AR-V7 mRNA levels in whole blood were 

associated with short time to treatment failure and short 

overall survival (107). Novel data by Kohli and coworkers, 

however, provides evidence that previous measurements 

of the AR-V7 transcript using PCR-based assays may have 

misleadingly detected also the AR-V9 transcript due to 

a common 3′ cryptic exon (69). By evaluating available 

RNA sequence data from metastases from two different 

CRPC cohorts, they found AR-V9 and AR-V7 mRNA levels 

in CRPC metastasis tissue to be highly correlated. They 

furthermore found metastasis levels of AR-V9 together 

with AR-V3 to be significantly associated with short 

progression-free survival in 78 CRPC patients treated with 

abiraterone, while AR-V7 levels were borderline increased 

in poorly responding patients (69).

The role of AR-Vs in therapy resistance may not be 

limited to androgen-directed therapies. Preclinical studies 

have indicated that AR-Vs might also contribute to taxane 

resistance, although results are somewhat inconclusive 

(108, 109). In contrast, two prospective clinical trials 

showed no association between detection of AR-V7 in 

CTCs and primary resistance to taxane chemotherapy 

(110, 111). Instead, the clinical outcome for AR-V7-

positive patients appeared to be better with taxanes than 

with AR-targeted therapies (110). This concept was also 

confirmed in a study where nuclear expression of the 

AR-V7 protein was measured in CTCs from 161 CRPC 

patients before treatment with antiandrogens or taxane 

chemotherapy. Patients with AR-V7-positive CTCs 

prior therapy exhibited superior clinical outcome with 

taxanes compared with antiandrogen therapy (112). 

These studies thus suggest that AR-V7 may serve as a 

predictive biomarker favouring docetaxel and cabazitaxel 

chemotherapy over treatments targeting the AR axis 

in CRPC patients. Still, CRPC patients would probably 

benefit from the development of more specific AR-V-

targeting therapies.

Role of intra-tumoural steroidogenesis 

in CRPC

As described earlier, it is obvious that AR alterations in 

the epithelial tumours cells play a major role during 

development and growth of CRPC. In addition, intra-

tumoural steroidogenesis may exist that potentiates 

AR activation in epithelial tumour cells but also 

has the possibility to affect AR-positive cells in the 

microenvironment, i.e. in stroma fibroblasts, smooth 

muscle cells, endothelial cells, osteoblasts and 

inflammatory cells, as reviewed in (14, 113). Numerous 

studies have reported persistent (or possibly returning) 

androgen levels in the prostate and in primary tumours 

after castration (114), and nuclear AR immunostaining 

can be seen not only in prostate epithelial but also 

in stroma cells after long-term castration (115). In 

both locally recurrent and metastatic CRPC, residual 

levels of testosterone and DHT have been reported at 

concentrations able to activate AR-mediated growth 

Downloaded from Bioscientifica.com at 08/26/2022 05:03:14PM
via free access

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1530/EC-17-0118


This work is licensed under a Creative Commons 

Attribution-NonCommercial-NoDerivatives 4.0 

International License.

Review E Jernberg et al. Clinically relevant AR 

alterations in PC

E
n

d
o

c
r
in

e
 C

o
n

n
e
c
t
io

n
s

6:R153R153–R161

DOI: 10.1530/EC-17-0118

http://www.endocrineconnections.org © 2017 The authors

Published by Bioscienti�ca Ltd

in experimental PC models (116, 117). Also, adrenal 

androgens have been detected at biological relevant 

levels in PC after castration (118), and some studies 

suggest that circulating adrenal androgens contribute 

more than de novo synthesis to intra-tumoural steroid 

synthesis (102, 119, 120). In CRPC bone metastases, 

we found significantly increased expression of some 

enzymes; AKR1C3 and SRD5A1, with the potential to 

convert the adrenal gland–derived steroids DHEA and 

androstenedione into testosterone and DHT, while levels 

of early steroidogenic enzymes converting cholesterol 

into DHEA and androstenedione (CYP11A1, CYP17A1, 

HSD3B2) were reduced compared to levels in prostate 

tissue (102). Notably, a large variation in androgen levels 

and in levels of steroid-converting enzymes has been 

reported between patients (102, 117). We found high 

AKR1C3 protein levels to be almost mutually exclusive 

from detectable protein levels of constitutively active 

AR-Vs in CRPC bone metastases (102), suggesting that 

AR-Vs may not be selected for in metastases that have the 

potential to synthesize sufficient amounts of androgens 

to activate the wild-type AR.

Role of non-epithelial ARs in CRPC

When the AR is discussed in relation to castration 

resistance, it is generally assumed that only epithelial ARs 

are of importance, but this could be an oversimplification. 

Especially, cases with intra-tumoural steroidogenesis 

may have the possibility to affect AR-positive cells 

in the microenvironment, as discussed above. In the 

normal prostate, castration-induced tissue involution is 

dependent on effects in the androgen-regulated stroma 

and vasculature (14, 113, 121, 122, 123). Prostate tumours 

in patients are, for reasons largely unknown, characterized 

by a gradual loss of AR-positive cells in the tumour 

stroma, and this is in turn associated with a limited 

primary response to castration (124, 125, 126). Castration 

resistance can thus be linked not only to increased AR 

activity in tumour epithelial cells but also to decreased 

AR signalling in the tumour microenvironment. If these 

two events are functionally coupled is not known, but 

nevertheless, they may contribute to a limited castration 

response in metastatic cells adopted to a less androgen-

dependent microenvironment than tumour cells within 

the prostate.

Accordingly, the primary response to castration 

in AR-positive tumour epithelial cells has proven to 

be microenvironment dependent. In animals where 

AR-positive PC cells were injected both into the prostate 

and into the bone marrow, cells in the prostate responded 

considerably better to castration than those in the bone 

(127). This is apparently the case also in patients, as 

relapsed growth after castration and development of 

CRPC is far more common at metastatic sites (primarily 

in the bone marrow) than in the primary tumour. Cells in 

the bone marrow apparently influence tumour epithelial 

cells differently than those present in the prostate, 

and bone metastasis is thus the result of a complex 

reciprocal interaction between tumour cells and bone 

cells of different origin, as recently reviewed in (128). 

Metastatic cells in the bone environment are stimulated 

by survival factors released from activated osteoblasts 

and other cell types and by factors released from the 

bone matrix by resorbing osteoclasts. Cells of osteoblast 

and osteoclast origin have been shown to change AR 

co-regulator recruitment and activity (129). In turn, 

tumour cells feed this ‘vicious cycle’ through activation of 

osteoclastogenesis and subsequently the osteoblasts. Intra-

tumoural steroidogenesis and local steroid secretion from 

metastatic cells probably affects AR-positive osteoblasts 

and may contribute to the sclerotic phenotype of PC bone 

metastases. Furthermore, the AR is present in various cell 

types of the immune system (130) and factors produced 

by macrophages (131, 132, 133, 134) and by lymphocytes 

(135) have been reported to influence AR signalling and 

the induction of castration resistance in PC cells.

Collectively, these studies suggest that even though 

the AR in tumour epithelial cells is of major importance 

in CRPC, the presence or loss of AR signalling in cells of 

the tumour/metastasis microenvironment also need to be 

considered. The importance of local steroidogenesis as well 

as of tumour cell interactions with androgen-responsive 

and non-androgen-responsive cells in the metastasis 

stroma for the establishment of bone metastasis and 

the development of CRPC need to be examined in more 

detail. With this, possibilities for novel therapies of CRPC 

targeting not only the tumour cells but also the metastasis 

stroma may arise.

Conclusion and future directions

Continuously accumulating evidence indicates that  

the AR is a main driver of CRPC. In addition to AR 

amplification and overexpression, also AR mutations, 

structural alterations and the enrichment of constitutively 
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active AR-Vs appear to be of high clinical importance 

during development of CRPC and acquired resistance to 

ADT and AR antagonists (Fig. 1). Currently, clinical trials 

are ongoing where the predictive value of AR mutations 

and AR-V expression is evaluated in relation to patient 

response/resistance to enzalutamide, abiraterone and 

other treatments for CRPC. Hopefully, those studies will 

demonstrate the value of measuring specific AR variants 

and mutations for therapeutic stratification. Furthermore, 

novel compound for targeting of constitutively active 

AR variants and/or receptors with activating mutations 

are under evaluation in clinical trials (Table  3 and 

www.clinicaltrials.gov). As recently reviewed (85, 136), 

preclinical studies have shown promising results for 

disrupting AR-V signalling by various strategies including 

targeting the AR NTD or DBD, reducing AR-V expression, 

promoting AR protein degradation, disrupting AR-V 

dimerization and chromatin binding, but further 

studies need to prove their clinical value. Alternatively, 

co-regulators to the AR and/or AR-Vs or their downstream 

gene products may be targeted. A novel AR antagonist, 

ODM-201, has been reported to overcome enzalutamide 

and apalutamide resistance and is currently in clinical trials 

(137, 138), so is also EPI-506, an AR antagonist that binds to 

the AR NTD and thus has the potential to inhibit not only 

full-length AR but also LBD-truncated variants (139, 140, 

141, 142). Response to EPI-506 will be evaluated in relation 

to AR-V7 CTC levels, in CRPC patients previously treated 

with enzalutamide and/or abiraterone (NCT02606123). 

Another highly interesting drug, galeterone, has been 

reported to promote degradation of the AR and AR-Vs 

and at the same time inhibit steroid synthesis and act as 

an AR antagonist (143, 144, 145, 146, 147). Galeterone is 

compared to enzalutamide for treatment of AR-V7 positive 

CRPC patients (NCT02438007). Also niclosamide is in 

clinical trial for treatment of CRPC patients with AR-V-

positive tumors (NCT02532114), and has been shown 

to inhibit AR-V7 transcriptional activity and promote its 

proteasomal degradation to overcome enzalutamide and 

abiraterone resistance in preclinical models (148, 149, 

150). Further compounds in clinical trials with suggested 

inhibitory effects on constitutively active AR variants 

include BET inhibitors, HSP90 inhibitors and antisense 

oligonucleotides (Table 3) (78, 101, 151, 152).

Novel treatments that will improve survival of men 

with metastatic PC may include not only more efficient 

drugs for treating CRPC, but also better strategies for 

primary treatment of M1 patients. Early chemotherapy 

Canonical AR activation

AR amplification

Activating AR mutations: 

T878A, H875Y, L702H…

Steroidogenesis

AKR1C3 etc.

Differentiation

Proliferation

Metabolism

etc.

Structural AR alterations and

constitutively active AR-Vs:

AR-V7, AR-V3, AR-V9, AR-V567es…

Microenvironment
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etc.
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Testosterone, Dihydrotestosterone
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Alternative ligand 
AR-regulated genes

Figure 1

Different molecular explanations behind androgen receptor (AR) activation in castration-resistant prostate cancer, illustrated by an epithelial cancer cell 

interacting with AR-positive and non-AR-positive cells in the microenvironment of a bone metastasis. AR ampli�cation results in AR overexpression and 

possibilities for canonical AR signalling at low androgen concentration. Activating AR point mutations result in promiscuous receptors activated by weak 

androgens, other steroids and glucocorticoids as well as in turning AR antagonists into agonists. Structural AR alterations give enrichment of 

constitutively active AR variants (AR-Vs) that are able to dimerize, translocate into the nucleus and activate transcription of AR-regulated genes without 

the need for ligand binding. Tumour cells have the machinery for metabolizing weak androgens (i.e. adrenal-derived DHEA and androstenedione) into 

the more potent androgens testosterone and dihydrotestosterone. Different molecular mechanisms behind AR activation are seen in individual bone 

metastases, giving possibilities for therapy strati�cation in individual patients.
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with docetaxel given directly following ADT was recently 

shown to improve survival (153) and is now in clinical 

praxis. Now, interim results from the LATITUDE and 

STAMPEDE studies combining ADT with abiraterone for 

upfront treatment of metastasized PC show promising 

results with improved progression-free survival compared 

to standard ADT treatment (154, 155). Early abiraterone 

treatment of M1 patients may have the benefit of lowering 

residual steroid levels in metastases by inhibiting not 

only testicular and adrenal gland, but also intra-tumoural 

steroidogenesis and, consequently, lead to a more 

pronounced castration effect in tumour cells and also in 

AR-positive cells in the tumour microenvironment (Fig. 1).

Possible benefits of combining ADT with other therapies 

in early treatment of M1 patients are highly underexplored. 

Recent studies have proven the existence of prostate 

tumours of diverse molecular subtypes, based on somatic 

genetic aberrations or differential gene expression pattern 

(22, 156). You and coworkers performed meta-analysis of 

RNA profiles in primary prostate tumours and identified 

three PC subtypes, PCS1–3, with different phenotypic 

characteristics and prognosis (156). Pathway analysis of 

subtype-enriched genes revealed diverse cellular processes 

in the different subtypes, indicating possibilities for 

treatment stratification. Importantly, metastases can also be 

differentiated with respect to PCS1–3 related RNA profiles. 

By analysing subtype-enriched genes in biopsies from 69 

bone metastases (patients), we found PCS2 to be the most 

frequent subtype (Thysell E, Ylitalo EB, Jernberg E, Bergh 

A & Wikström P, unpublished observations). The PCS2 

bone metastases (77%) were characterized by AR activity 

and metabolic processes associated with differentiated 

prostate epithelial cells (i.e. lipid and sterol biosynthesis, 

PSA expression), while PCS1 cases showed cellular 

dedifferentiation and high proliferation and PCS3 appeared 

to be non-AR driven and more immunogenic (5; Thysell E, 

Ylitalo EB, Jernberg E, Bergh A & Wikström P, unpublished 

observations). AR amplification and high AR-V expression 

were seen in both PCS1 and PCS2 bone metastases (21; 

Thysell E, Ylitalo EB, Jernberg E, Bergh A & Wikström P, 

unpublished observations). Further studies are needed to 

explore if improved therapeutic results for PCS1 and PCS2 

could be obtained by combining AR-directed therapies with 

treatment strategies selected based on tumour subtype. The 

PCS3 metastases will probably not respond to AR-directed 

therapies, but will need other therapeutic strategies.
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