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et us consider the range of activities in clinical research 
(Figure 1). We can observe our patients, make a mea-
surement that reflects their physiologic state, or inter-

vene to modify their condition. These activities can occur any-
where along the biologic continuum from ideal health, through 
the development of risk factors, and ultimately the transition to 
clinical disease. We refer to our efforts at preventing disease 
as primordial when we emphasize healthy behaviors (eg, heart 
healthy diet) to maintain a state of ideal health, primary when 
we focus on risk reduction once risk factors are observed, and 
secondary when we attempt to prevent subsequent occurrences 
of disease once it has developed for the first time. Of particular 
interest to us are those interventions designed to treat disease 
once it has occurred.

There is a range of technologies we can use to manage our 
patients. They fit broadly into 5 categories: drugs, devices, bio-
logics, biomarker assays, and imaging procedures. Although 
there are many common principles that govern the clinical re-
search we conduct to introduce new medical therapeutics, each 
of these has its unique pathway of development before intro-
duction into practice. In this article, which is based on a lecture 
I delivered at the 78th Annual Scientific Meeting of the Japanese 
Circulation Society, I will discuss the example of how new 
drugs are currently developed and highlight novel approaches 
for us to consider. This will be done in the context of drugs to 
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Clinical research plays a central role in the development of medical therapeutics, but the current system is estimated 
to take 10–15 years from initial discovery to regulatory approval, at a cost of approximately US$1 billion. Contrast 
the paths by which 2 anticoagulant options for atrial fibrillation were discovered and ultimately established as treat-
ment options in clinical medicine. Warfarin was discovered by serendipity and compared with placebo in relatively 
small trials; this was associated with a low cost of development. The new oral anticoagulants were synthesized to 
provide highly specific, targeted inhibition of critical steps in the coagulation system. They were compared with war-
farin for prevention of stroke and systemic embolic events in large, phase 3 trials; this resulted in very expensive de-
velopment programs. Neither of these paths is desirable for future development of therapeutics. We need to focus 
on innovative approaches at the preclinical level (systems approach, greater use of inducible pluripotent stem cells, 
use of novel bioengineering platforms) and clinical trial level (adaptive design, greater use of new and emerging tech-
nology). Focusing on disruptive innovations for development of medical therapeutics has the potential to bring us 
closer to the goal of precision medicine where safer, more effective treatments are discovered in a more efficient 
system.    (Circ J  2014; 78: 1267 – 1271)
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Figure 1.    Overview of clinical research. (Top) The range of 
clinical research: observation, measurement, and interven-
tion. These aspects of clinical research can occur alone or in 
combination and may take place anywhere along the bio-
logic continuum from ideal health, through the development 
of risk factors, and the transition to clinical disease.
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ticoagulation, and several doses were identified; importantly, 
there was no need for monitoring the anticoagulation status of 
the patient.16

We enrolled 21,105 patients with AF in the ENGAGE AF-
TIMI 48 study, a definitive phase 3 trial of edoxaban.11 Random-
ization was either to warfarin with a target INR of 2–3, high-
dose edoxaban (60 mg once per day), or low-dose edoxaban 
(30 mg once per day). If subjects had diminished creatinine 
clearance, a low body weight, or were simultaneously taking a 
drug that was a strong PGP inhibitor their edoxaban dose was 
reduced by 50%. The primary endpoint was total stroke or sys-
temic embolic events (SEE). The primary safety endpoint was 
major bleeding.

High-dose edoxaban satisfied the prespecified criteria for non-
inferiority compared with warfarin for preventing stroke and 
SEE, when analyzed in the modified intention-to-treat cohort. 
It also tended to be superior to warfarin in the intention-to-treat 
cohort. Importantly, it was associated with a 20% reduction in 
major bleeding. The low dose also satisfied the criteria for 
noninferiority but was not as effective as the high dose com-
pared with warfarin for preventing stroke and SEE. However, 
there was an even greater reduction in bleeding in the low-dose 
edoxaban group.

We pooled our data with the results of the 3 prior NOAC trials 
in a prespecified meta-analysis and had a database of 72,000 
patients.17 The new drugs are similar to warfarin at preventing 
ischemic stroke but their use was associated with a significant 
50% reduction in hemorrhagic stroke. What are the important 
aspects of these new drugs when we consider their use in clini-
cal practice? There is no need for laboratory monitoring; phar-
macogenetics are not needed to adjust the dose; although miss-
ing a dose of warfarin is rarely a clinical problem the shorter 
half-life of the NOACs means that compliance with the pre-
scribed regimen is important to avoid under-anticoagulation; 
specific antidotes for the new drugs are not yet available but are 
under development.

Let us consider the 2 broad options for anticoagulation in AF. 
The discovery of warfarin was by serendipity, a play of chance 
that a farmer delivered the spoiled hay to a laboratory that was 
able to solve the problem that affected the cattle; warfarin was 
compared with placebo in relatively small trials that resulted 
in a low overall cost of development.5,6 Contrast that with the 
targeted approach to producing compounds that inhibit spe-
cific proteins in the coagulation system. Neither of these ap-
proaches is satisfactory for the development of medical thera-
peutics in the future. We cannot rely on serendipity alone to 
bring us the next breakthrough and we cannot afford to continue 
with the very expensive, unsustainable programs that brought 
us the NOACs.

We must use the scientific advances occurring in laboratories 
around the world to identify innovative approaches to the de-
velopment of medical therapeutics. There are 2 broad catego-
ries of innovation to consider. The first is to focus on a systems-
based approach, make use of inducible pluripotent stem cells 
(iPS) and test new drugs in novel bioengineering platforms that 
are producing organs on a chip. The second is to bring innova-
tion into our clinical trials by using more adaptive designs, new 
research platforms, and incorporating new tools and technolo-
gies into how we organize clinical research.

In the typical population approach in classical clinical trials, 
we enroll a cohort of subjects that we hope is representative of 
the larger universe of patients with the disease we are studying.18 
We report our results as the average treatment effect we ob-
serve in our trial population. Often we analyze key subgroups 
to see if there is variation in the response to the treatments we 

treat a common cardiovascular condition.
That condition is atrial fibrillation (AF): a global problem, 

affecting 33.5 million persons worldwide.1 There is a higher 
prevalence of AF among the elderly members of society.2 Given 
the increasing percentage of the elderly in populations world-
wide, the prevalence of AF is projected to increase dramatically 
over the next several decades.3 Management of patients with 
AF is also associated with a high cost to healthcare systems. 
The most feared complication is stroke, which occurs 5-fold 
more frequently in persons with AF than in those who do not 
have that rhythm disturbance. Anticoagulation reduces the risk 
of embolic stroke but increases the risk of bleeding. It is of in-
terest to compare the route by which warfarin, our standard of 
care, was developed and introduced into clinical medicine with 
the new oral anticoagulants (NOACs) that became available 
more recently.4

In the 1920 s in the Western part of the United States, farm-
ers reported that after their cattle ate certain batches of hay 
(referred to as sweet clover hay) the animals developed severe 
bleeding that was often fatal. It was known at the time that the 
natural substance coumarin was found in the shaft of the hay. 
In 1933, a farmer delivered to the laboratory of Dr Paul Link 
(an agricultural biochemist in Wisconsin) a sample of the hay 
that seemed to be causing a bleeding problem in his cattle. 
Researchers in Dr Link’s laboratory discovered that when the 
hay became wet, a fermentation reaction occurred and 2 mol-
ecules of coumarin fused together. That was the substance that 
caused the bleeding in the cattle. They named it dicoumarol.5 
Various derivatives of dicoumarol were synthesized and deriva-
tive no. 42 was much more potent at causing prolongation of 
coagulation. The laboratory named it after their sponsor, the 
Wisconsin Alumni Research Foundation (WARF), combined 
that with the fact that it was a coumarin derivative, and intro-
duced to the medical literature the name “warfarin”.

Six randomized trials conducted between 1989 and 1993, col-
lectively enrolling 2,900 subjects, studied the benefits of war-
farin in preventing stroke in AF. This meta-analysis identified 
the dramatic 64% reduction in total stroke and 67% reduction 
in ischemic stroke association with warfarin treatment.6 How-
ever, clinicians are well aware of the difficulties in administer-
ing warfarin in clinical practice. For example, in an analysis 
of the Quest Diagnostic Health Trends national database in the 
United States, only 50.6% of patients with AF had their INR 
in the target range of 2.0–3.0, 16.9% were >3.0 and 32.5% were 
<2.0.7

The search was on for potential replacements. The direct 
thrombin inhibitor, dabigatran, and specific FXa inhibitors, ri-
varoxaban, apixaban, and edoxaban, have all been studied and 
compared with warfarin in large phase 3 trials for the preven-
tion of stroke in AF.8–11

Each of these compounds went through a typical lengthy de-
velopment process12 that starts with an initial drug discovery 
phase, followed by a preclinical phase. The various phases of 
clinical trials then take place. It is estimated, that on average, 
a typical development program takes approximately 15 years, 
with 10,000 compounds being screened for 1 that successfully 
achieves regulatory approval – all at a cost of approximately 
US$1 billion.

Edoxaban was first synthesized in Japan in 1994 in the Daiichi 
laboratories,13 and the preclinical work was also done in Japan.14 
After the first-in-human, proof of concept, and dose-ranging 
work was completed, again much of it in Japan,15 there were 
3 observations that suggested edoxaban was worthy of further 
investigation: there were very few food and drug interactions; 
it was available in pill form that provided a stable level of an-
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on a chip” is placed in a microfluid test chamber, which is then 
sealed and drugs can be infused as well as electrical currents 
delivered to stimulate the cells. Dose-response curves for drugs 
affecting twitch stress can be established. Imagine the next phase 
of experiments where iPS-derived human cardiomyocytes with 
a specific disease phenotype are mounted on the deformable 
film and studied in the test chamber; this is another innovative 
way to screen for individual, disease-specific therapies that have 
an improved chance of being effective in clinical trials.

Adaptive trial designs offer the opportunity to perform more 
trials that have a greater likelihood of success. In the classical 
frequentist approach, patients fulfilling the enrolment criteria 
are randomized to treatment A vs. B and followed for the pri-
mary endpoint. The trial runs to completion with no modifica-
tions to its basic structure. In an adaptive design, investigators 
inspect the data in an interim analysis and modify the study 
based on the findings. The study continues, but with modifica-
tions that improve the likelihood that promising treatments are 
identified for the optimum profile of patients. The modifications 
can occur at 3 levels: enrollment criteria, the characteristics of 
the treatment arms, and the endpoints and analyses for the trial.12

Consider 4 different doses of an experimental treatment that 
are compared with a control therapy. At the interim analyses, 
the response to the various doses of the experimental arms is 
evaluated and only those that appear promising are continued, 
while the others are dropped. Doses that appear most promis-
ing during the dose-ranging “learning phase” of drug testing are 
then taken forward in a seamless fashion in a confirmatory reg-
istration pathway trial for formal evaluation against controls.

New Technologies to Enable Clinical Research
Millions of individuals around the world currently have wear-
able wireless sensors that track physiologic parameters such 
as heart rate or calories burned every day. These wireless sen-
sors communicate via Bluetooth to a smartphone. Once the data 
are on a smartphone they can be transmitted wirelessly to a 
research grade database on the internet where “big data” anal-
yses can take place.

Is it possible to use such new technologies to conduct the 
range of clinical research activities and do so across the bio-
logic continuum from ideal health to disease? This would be a 

are studying; such efforts are best considered exploratory be-
cause we usually do not have sufficient power to make defini-
tive statements about subgroups.19 Rarely, if ever, do we actu-
ally examine the response to treatment on an individual patient 
level.

A systems medicine approach turns this flow around. Here, 
one synthesizes the network of information from investigations 
of genetic, molecular, cellular, and whole organ studies in in-
dividual patients to predict their personalized response to treat-
ment.20 One then extends the observations to subgroups of pa-
tients who have a similar profile, ultimately leading to a much 
richer picture of how a population of patients might need cus-
tomized treatments for their disease.

A simple example will illustrate these points. In the classical 
approach, we use 1 dose of a drug for a population of patients, 
the so-called “one size fits all”, say 100 mg. If we study the 
genotype of the persons in that population, we will find that 
some have functional alleles, others have reduced function, and 
some have nonfunctional alleles. This translates to phenotypes 
of ultrarapid, extensive, intermediate, and poor metabolizers. 
These different phenotypes define the optimum dose, which 
ranges from 500 mg in the ultrarapid metabolizers, to 100 mg 
in the extensive and intermediate metabolizers, and 10 mg in 
the poor metabolizers.21 This personalized medicine approach 
requires innovation in regulatory science and a number of regu-
latory authorities around the world are now addressing this 
important issue.

In 2007, Professor Yamanaka in Japan published a break-
through paper that described how somatic cells (such as human 
skin fibroblasts) could be reprogrammed to become iPS.22 These 
iPS cells can be directed to differentiate into specific cells, such 
as cardiomyocytes, and used to develop individualized thera-
py. A somatic cell is harvested from a patient with a given dis-
ease phenotype. The biopsied cells are reprogrammed to become 
iPS cells that then differentiate into disease-specific cells in a 
dish. Drug screens are performed on those cells to identify the 
most effective regimen for patients with a specific disease phe-
notype.23

Another approach of interest is a novel bioengineering plat-
form developed by investigators at Harvard. Neonatal rat myo-
cytes are layered on a deformable thin elastic film.24,25 When 
the myocytes contract, they cause the film to bend. The “heart 

Figure 2.    Consequence of forces 
influencing clinical research. We 
are now at a moment of conver-
gence of advances in biotechnol-
ogy, sensor technology, informa-
tion technology, and mobile 
health. As research scientists and 
healthcare professionals, we have 
the responsibility of providing 
credible information to social net-
works of patients and consumers.
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Finally, what might the future look like if we take advantage 
of the array of enabling technologies that are now available and 
others that will become available in the years to come? We 
could envision the emerging data from clinical medicine and 
biomedical research being fed into an information commons, 
which is used to construct a knowledge network that is likely 
to offer new insights into disease and even new taxonomic clas-
sifications of diseases (Figure 3). These new insights and clas-
sifications are likely to lead to novel clinical approaches and 
serve as a resource for basic research. This continuously up-
dated, learning system approach holds promise for new clini-
cal research for developing medical therapeutics and takes us 
closer to the goal of precision medicine for our patients.29
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