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ABSTRACT
The pleiotropic actions of insulin are mediated by a single receptor

tyrosine kinase. Structure/function relationships of the insulin re-
ceptor have been conclusively established, and the early steps of
insulin signaling are known in some detail. A generally accepted
paradigm is that insulin receptors, acting through insulin receptor
substrates, stimulate the lipid kinase activity of phosphatidylinositol
3-kinase. The rapid rise in Tris-phosphorylated inositol (PIP3) that
ensues triggers a cascade of PIP3-dependent serine/threonine ki-
nases. Among the latter, Akt (a product of the akt protooncogene) and
atypical protein kinase C isoforms are thought to be involved in
insulin regulation of glucose transport and oxidation; glycogen, lipid,

and protein synthesis; and modulation of gene expression. The pres-
ence of multiple insulin-regulated, PIP3-dependent kinases is con-
sistent with the possibility that different pathways are required to
regulate different biological actions of insulin. Additional work re-
mains to be performed to understand the distal components of insulin
signaling. Moreover, there exists substantial evidence for insulin
receptor substrate- and/or phosphatidylinositol 3-kinase-indepen-
dent pathways of insulin action. The ultimate goal of these investi-
gations is to provide clues to the pathogenesis and treatment of the
insulin resistant state that is characteristic of type 2 diabetes. (J Clin
Endocrinol Metab 86: 972–979, 2001)

THIS YEAR MARKS the 50th anniversary of the seminal
paper in which Levine and co-workers reported that

insulin’s effect on glucose utilization was mediated by in-
creased membrane permeability to glucose (1). Twenty years
later, Roth and colleagues discovered the insulin receptor (2),
thus ushering in a new era of investigations that led to de-
termination of the molecular basis of insulin action. Activa-
tion of the insulin receptor triggers complex biochemical
reactions required for insulin’s biological effects. However,
a detailed road map of insulin receptor signaling is, with
some noticeable exceptions, not available. Indeed, even in
those instances where a defined chain of events from the
receptor to its effector(s) has been established, such molec-
ular mechanisms do not provide a complete explanation of
the biological actions of insulin. Thus, despite enormous
strides in understanding the elusive mechanism by which
insulin regulates fuel homeostasis and growth, numerous
questions remain unanswered.

Insulin receptor 1971–2000

The insulin receptor is necessary and sufficient to mediate
insulin action. Humans and mice lacking insulin receptors
are born at term, but do not survive long, suggesting that
insulin receptors are essential for postnatal growth and fuel
metabolism, but are not required for fetal metabolism (3, 4).
Since the landmark paper describing specific insulin binding

to rat liver membranes (2), structure/function relationships
of the insulin receptor have been conclusively established
using numerous approaches. These include site-directed mu-
tagenesis (5) and a host of naturally occurring mutations
identified in patients with genetic syndromes of extreme
insulin resistance (6). In recent years, designer mice bearing
constitutive or conditional null alleles of the insulin receptor
have provided substantial insight into its in vivo function (4,
7–11). Moreover, determination of the crystal structure of the
receptor’s kinase domain has provided a mechanistic link
between insulin binding and receptor activation (12, 13). The
molecular basis of ligand binding to the receptor and its
unique kinetic properties [negative cooperativity (14)] has
proven more difficult to tackle due to the difficulty of crys-
tallizing the carbohydrate-rich ectodomain.

The complete insulin receptor is a heterotetrameric mem-
brane glycoprotein composed of two a- and two b-subunits,
linked together by disulfide bonds (Fig. 1). Insulin binds to
the receptor’s extracellular a-subunit. Insulin binding pre-
sumably brings the two a-subunits closer together. This con-
formational change enables ATP binding to the b-subunit’s
intracellular domain. ATP binding activates receptor auto-
phosphorylation (12, 13), which, in turn, enables the recep-
tor’s kinase activity toward intracellular protein substrates.
There are numerous autophosphorylation sites in the b-
subunit’s intracellular domain. Three main clusters have
been recognized to play a functionally important role. They
include Y1158, Y1160, and Y1162 in the active loop of the cat-
alytic domain, Y972 in the juxtamembrane domain, and Y1328

and Y 1334 in the carboxyl-terminal domain. Phosphorylation
of residues in the active loop is essential to promote the
receptor’s kinase activity. The carboxyl-terminal phosphor-
ylation sites may play a role in the receptor’s mitogenic
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activity. The juxtamembrane autophosphorylation site plays
an important role in the interaction between the receptor and
its intracellular substrates, providing a docking site to in-
crease the stability of the receptor/substrate complex (5).

In addition to binding insulin, the insulin receptor can
bind insulin-like growth factors (IGF-I and IGF-II). The af-
finity of IGF-I binding to the insulin receptor is in the high
nanomolar range, approximately 100- to 1000-fold lower
than insulin’s affinity (15). However, as circulating IGF-I
levels are approximately 100-fold higher than those of insu-
lin, the potential exists for IGF-I binding and acting through
the insulin receptor. Strongly supportive evidence to this
effect comes from the observation that the growth of mice
lacking both IGF-I receptor and IGF-II receptor is rescued by
insulin receptors, presumably in response to IGF-I binding
(16).

IGF-II binds with equal affinity to both IGF-I receptor and
insulin receptor. In rodents, during embryonic growth,
IGF-II binds to the insulin receptor to promote growth (17–
19). The molecular basis for high affinity IGF-II binding to the
insulin receptor has been proposed to reside within the al-
ternatively spliced exon 11 of the insulin receptor gene. The
insulin receptor is expressed as two isoforms, resulting from
alternative splicing of exon 11. Isoform B contains a 12-amino
acid peptide located at the carboxyl-terminal end of the re-
ceptor’s a-subunit. Isoform A lacks this insertion. Frasca and
colleagues have suggested that splicing of exon 11 to yield
isoform A bestows on the insulin receptor the ability to bind
IGF-II with high affinity (20).

Insulin receptor substrates (IRSs)

IRSs represent key elements in insulin and IGF actions (21).
Insulin, IGF-I, and certain cytokine receptors phosphorylate
IRSs at specific Y-x-x-M motifs. These motifs serve as mo-
lecular adhesives. Phosphorylation of their tyrosine residues
increases the affinity with which IRS proteins bind other
signaling molecules. Each tyrosine-phosphorylated motif
binds to a specific signaling molecule. In this way, protein-
protein complexes are formed, and various signaling path-
ways are engaged, providing a potential explanation for the
diversity of insulin signaling (22) (Fig. 2).

Different roles of IRS proteins

The IRS family is composed of four closely related mem-
bers (IRS-1 to -4) (23–26) and a more distantly related ho-
molog, Gab-1 (27). Genetic ablation studies in mice have
conclusively shown substantial differences in the abilities of
various IRSs to mediate insulin action. Ablation of IRS-1
causes severe growth retardation with mild insulin resis-
tance (28, 29), suggesting an important role of IRS-1 in both
insulin and IGF actions. In contrast, ablation of IRS-2 causes
combined insulin resistance in peripheral tissues and im-
paired growth of pancreatic b-cells (30). The findings in the
IRS-2-deficient mouse recapitulate the natural history of type
2 diabetes and have led to the suggestion that IRS-2 is a
diabetes-predisposing gene, a conclusion that is not borne
out by genetic analyses carried out to date (31–33). Ablation
of IRS-3 is devoid of a clear phenotype (34), whereas ablation
of IRS-4 is associated with modest growth retardation and

FIG. 1. Subunit structure of the insulin receptor. Schematic diagram of the insulin receptor subunit organization and major structural features.
The insulin receptor is the product of a single copy gene located on chromosome 19. It is translated from messenger ribonucleic acid as a single
chain polypeptide precursor, which undergoes posttranslational cleavage, followed by dimerization and export to the plasma membrane. The
insulin-binding domain is localized to the N-terminus of the a-subunit. The b-subunit intracellular domain contains the tyrosine-specific protein
kinase activity. Insulin binding to the extracellular domain causes a conformational modification in the intracellular domain, such that the
receptor undergoes autophosphorylation and can bind ATP. Several tyrosine residues are phosphorylated in the receptor’s juxtamembrane
domain (Y965 and Y972), catalytic loop (Y1158, Y1162, and Y1163), and carboxyl-terminal domain (Y1328 and Y1334). The variably spliced exon 11
is indicated at the COOH-terminus of the a-subunit.
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insulin resistance (35). Finally, inactivation of Gab-1 has an
embryonic lethal phenotype that suggests a role in hepatic
growth factor, rather than insulin, signaling (36).

As IRS-1 and IRS-2 have widely overlapping tissue dis-
tribution, these finding are consistent with the possibility
that each molecule subserves a specific set of functions. We
and others have proposed that IRS-1 is the main IRS in
skeletal muscle, whereas IRS-2 is the main signaling mole-
cule in liver (9, 30, 37).

An emerging area of investigation is the role of IRS pro-
teins in b-cells. Ablation of IRS-2 is associated with impaired
b-cell growth (30, 38). In contrast, lack of IRS-1 is associated
with impaired coupling of glucose sensing to insulin secre-
tion, suggesting that IRS-1 signaling is important for b-cell
function (39). Interestingly, ablation of insulin receptors in
b-cells results in abnormalities similar to those seen in IRS-1
knockout mice, whereas lack of IGF-I receptors increases the
severity of the IRS-2 knockout phenotype. These findings
have lead to the suggestion that insulin and IGF-I receptor
signaling play physiological roles in b-cell function (10,
38, 40).

Are all the actions of insulin mediated through
IRS proteins?

To address this question, it is interesting to compare the
phenotypes of insulin receptor- and IRS-deficient mice. In
every case, ablation of IRS proteins is associated with a much
milder phenotype than lack of insulin receptors. Even the
lack of IRS-2 does not have such a rapidly lethal effect as the
lack of insulin receptors. Moreover, lack of IRS-2 is associated
with a specific b-cell defect and does not lead to extreme
insulin resistance. Even after three of four IRS-1 and IRS-2

alleles have been ablated (for example, in Irs-12/2Irs-21/2

mice), insulin resistance in newborn mice is not nearly as
severe as that in insulin receptor knockout mice (38). On the
other hand, mice lacking both IRS-1 and IRS-2 die before
implantation, resulting in one of the most dramatic embry-
onic lethal phenotypes observed in mice with targeted gene
mutations (38). This phenotype is substantially more severe
than the phenotype due to combined lack of insulin and IGF-I
receptors (18), suggesting that IRS proteins play additional
roles to mediate the actions of other receptors, as predicted
by studies of cytokine receptor signaling (22). The phenotype
of insulin receptor-deficient mice indicates that multiple sub-
strates are required to mediate insulin action. The conclusion
of these studies is that the search for IRSs is not over.

Role of phosphatidylinositol 3-kinase (PI 3-kinase) in
insulin action

The enzyme PI 3-kinase catalyzes the addition of phos-
phate on the D3 position of the inositol ring of phospoinosi-
tol, leading to the generation of PI 3-phosphate. The enzyme
is composed of a regulatory subunit, which exists in several
isoforms (p85-a, p85-b, p55/AS53, p55PIK, and p50), and a
catalytic 110-kDa subunit. 3-Phosphorylated inositides act as
intracellular messengers, leading to activation of PI-depen-
dent kinases, changes in intracellular trafficking, and growth
stimulation (41). In addition, the enzyme has protein kinase
activity, although there is no evidence yet for the latter’s
involvement in insulin action (42). Activation of PI 3-kinase
is important for many of insulin’s actions. Thus, blocking PI
3-kinase with the fungal inhibitor wortmannin is associated
with inhibition of insulin-stimulated glucose uptake (43, 44);
glycogen (45, 46), lipid (44), and protein (47, 48) synthesis;

FIG. 2. Insulin signaling pathways. The
diversity of insulin action can potentially
be explained by the activation of multiple
signaling pathways. The pathways ema-
nating from activation of IRS proteins are
described. The IRS/PI 3-K pathway leads
to the generation of PIP3 and the conse-
quent activation of PIP3-dependent ki-
nases. The Ras/mitogen-activated pro-
tein kinase kinase pathway can be
activated by insulin through the forma-
tion of complexes between the exchange
factors SOS and growth factor receptor
binding protein 2 (GRB2) and may play a
role in certain tissues to stimulate the
actions of insulin on growth and prolifer-
ation. SOS, son-of-sevenless; GAP,
GTPase-associated protein; PDK, PI-de-
pendent protein kinase; MAPKK, mito-
gen-activated protein kinase kinase;
MAPK, mitogen-activated protein ki-
nase; GSK3, glycogen synthase kinase 3.
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and modulation of gene expression (49, 50). PI 3-kinase ap-
pears to play a permissive, rather than a necessary and suf-
ficient, role in insulin action (51). The evidence generally
offered to buttress this conclusion is that although several
growth factors result in activation of PI 3-kinase, only insulin
has the ability to stimulate processes such as glucose trans-
porter 4 (GLUT4) translocation. This controversy has raged
in the literature for the past decade and is not entirely settled.
Convincing evidence for a direct role of PI 3-kinase in insulin
action comes from mice carrying a deletion of the gene en-
coding the p85a subunit. These mice develop hypoglycemia
due to increased basal levels of glucose uptake in several
insulin-sensitive tissues (52). One possible interpretation of
these data is that the p85a subunit exerts an inhibitory role
on the kinase activity, and that its ablation increases the
enzyme’s catalytic activity, possibly through association
with other regulatory subunits, such as p50 and p55. Al-
though the latter point requires further investigation, these
data indicate that PI 3-kinase is crucial for insulin action.

Targets of PI 3-kinase

Arguably, the most important question in insulin action is
to identify targets of PI 3-kinase that may account for the
specificity of insulin signaling. The rapid increase in Tris-
phosphorylated inositol (PIP3) concentration in response to
insulin stimulation activates several PIP3-dependent serine/
threonine kinases, such as PI-dependent protein kinase-1 and
-2 (53), Akt (a product of the akt protooncogene) (54), salt- and
glucocorticoid-induced kinases (55), protein kinase C (PKC)
(56), wortmannin-sensitive and insulin-stimulated serine ki-
nase (57), and others (58). Among the PIP3-dependent ki-

nases, Akt has received much attention. The Akt kinase exists
as three different isoforms, all of which are activated by
phosphorylation on T308 and S473 (59, 60). Upon growth factor
stimulation, Akt localizes near the plasma membrane, where
it becomes phosphorylated. The activated enzyme has the
ability to translocate to the nucleus (61) (Fig. 3). Expression
of constitutively active Akt stimulates glucose uptake in
3T3-L1 adipocytes (62–64), whereas Akt inhibition through
the use of dominant negative mutants does not completely
inhibit the insulin effect on glucose transport (65). These
results suggest that regulation of glucose transport may in-
volve multiple kinases. Akt has the ability to phosphorylate
proteins that regulate lipid synthesis (66), glycogen synthesis
(67, 68), cell survival (69), and protein synthesis (70, 71). This
mechanism provides a direct link between insulin receptor
signaling and biological effects. Nevertheless, it is not clear
whether Akt plays a unique or redundant role in insulin
action.

Members of the PKC family of serine/threonine kinases
have been implicated in several of insulin’s actions. There are
four subgroups of PKCs; the classical ones are activated by
calcium binding, whereas the other three groups can be ac-
tivated by diacylglycerol or other phospholipids, such as
PIP3 (atypical PKCs). Different isoforms of PKC have been
shown to undergo translocation from the cytosol to the mem-
brane in response to insulin stimulation in different tissues
(72). Atypical PKCs (z and l) have been proposed to play a
role in insulin-dependent glucose transport (73, 74) and pro-
tein synthesis (75). It is also known that PKCs can activate the
mitogen-activated protein kinase pathway and the transcrip-
tion factor nuclear factor-kB, leading to increased gene ex-
pression and protein synthesis.

FIG. 3. Akt in insulin action. The rapid increase in intracellular PIP3 leads to activation of the PI-dependent kinase-1 and -2 (PDK1 and PDK2).
PDK1 and PDK2 phosphorylate Akt on amino acid residues T308 and S473, leading to its activation. The identity of PDK2 has not been established,
and there is evidence that PDK1 is the S473 kinase. After insulin stimulation, Akt undergoes phosphorylation and nuclear translocation. Some
of the known cellular targets of Akt are indicated.
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An insulin receptor/PI 3-kinase pathway regulates
metabolism and survival in Caenorhabditis elegans

The nematode C. elegans has provided novel insight into
the mechanism of insulin action (76). The life span of C.
elegans consists of four developmental stages leading to the
maturation of larvae into adult hermaphrodites. When larvae
are grown at high density or in the presence of high levels
of pheromone, they enter the dauer stage, a reversible arrest
of development characterized by reduced metabolic activity,
increased fat content, and a near doubling of life span (77).
A constitutive dauer stage can be brought about by mutations
in specific genes. The alleles causing a constitutive dauer
phenotype have been dubbed Daf alleles. Mutations of the
Daf-2 gene cause a constitutive dauer phenotype, as do mu-
tations of the Age-1, Akt-1, and Akt-2 genes (78). The Daf-2
gene encodes the C. elegans homolog of the insulin/IGF-I
receptor gene, whereas the Age-1 gene is the homolog of PI
3-kinase, and the two Akt genes represent the homologs of
mammalian Akt (79–81) (Fig. 4). A parallel pathway impli-
cates transforming growth factor-b signaling through SMAD
proteins (Daf-1, Daf-4, Daf-8, and Daf-14 mutations) in the
same process (82). Considerable interest has been generated
by the study of mutations that suppress the effects of the
Daf-2, Age-1, Akt-1, and Akt-2 mutations. Two of them are
especially relevant to insulin signaling through PI 3-kinase:
Daf-16 and Daf-18. Daf-16 mutations completely suppress
the dauer phenotype due to Daf-2 mutations, whereas Daf-18
mutations have a less complete ability to rescue Daf-2 mu-
tations. Daf-16 encodes a transcription factor with homology
to the mammalian forkhead transcription factors (83),
whereas Daf-18 encodes a phosphoinositide phosphatase

with homology to the mammalian phosphatase- and tensin-
homolog deleted on chromosome 10 tumor suppressor gene
(84). Daf-16 is a substrate of Akt (85). The observations that
Daf-16 and Daf-18 are important for insulin receptor signal-
ing in C. elegans and are regulated in a PIP3-dependent man-
ner suggest that similar mechanisms play a role in the reg-
ulation of mammalian metabolism.

FKHR, the mammalian homologue of the C. elegans Daf-16
gene, regulates insulin-dependent gene expression

The Daf-16 gene product belongs to the forkhead family of
transcription factors. These proteins were first identified as
the homeotic gene product of the forkhead mutation in Dro-
sophila (86). They contain a highly conserved DNA-binding
domain, the forkhead or winged helix domain (87). A sub-
group of forkhead proteins known as FKHR is the closest
mammalian homolog of the Daf-16 gene product. These pro-
teins were first identified as the products of chromosomal
translocations associated with alveolar rhabdomyosarcoma,
hence the acronym ForKhead in Human Rhabdomyosar-
coma (88). The family includes three expressed genes, FKHR,
FKHRL1, and AFX, and two pseudogenes (89).

Indeed, based on the presence of binding sites for the
forkhead transcription factor HNF-3, Unterman was the first
to propose that such transcription factors might represent
transcriptional regulators of insulin-responsive genes such
as IGF-binding protein-1, phospho-enolpyruvate carboxyki-
nase, and glucose-6-phosphatase (49, 90). Several groups
have shown that FKHR is phosphorylated in an insulin-
responsive manner by PIP3-dependent kinases, such as Akt
and others (91–100). FKHR is a transcriptional enhancer, the
targets of which include genes regulating apoptosis, glucose
production, and entry into the cell cycle (69, 101). Under basal
conditions, FKHR and its homologs, FKHRL-1 and AFX,
reside within the nucleus. When cells are exposed to insulin
or other known stimulators of PI 3-kinase, these transcription
factors become phosphorylated at Akt consensus sites. Phos-
phorylation is followed by nuclear exclusion and cytoplas-
mic retention (69, 101). It follows that FKHR phosphorylation
is a powerful mechanism by which insulin inhibits gene
transcription. The full array of FKHR target genes as well as
the spectrum of FKHR kinases in addition to Akt remain to
be determined.

What makes GLUT4 tick

Insulin stimulation of glucose uptake is mediated by trans-
location of an intracellular pool of GLUT4 to the plasma
membrane (102, 103). Two approaches are being employed
to identify elements in the signal transduction chain leading
to GLUT4 translocation: a forward approach, starting from
the insulin receptor, and a backward approach starting from
GLUT4. Like two teams digging up a tunnel starting at both
sides of a mountain, the two approaches will hopefully
merge at some point, although none can predict when. In the
worst-case scenario, we may end up with two tunnels.

The status of the forward approach is summarized in the
IRS/PI 3-kinase and CAP-cbl sections of this review. What do
we know about the distal components of this pathway? Two
models have been proposed to account for insulin’s effect on

FIG. 4. Conserved insulin signaling pathways in C. elegans and
mammals. The pathways regulating cellular metabolism and survival
in mammalian cells are conserved in the nematode C. elegans. Acti-
vation of the insulin receptor ortholog Daf-2 leads to stimulation of
Age-1, the PI 3-kinase ortholog. Targets of Age-1 include Akt-1 and
-2, which, in turn, phosphorylate Daf-16. Age-1 is regulated by Daf-18,
the PI phosphatase phosphate- and tensin-homolog deleted on chro-
mosome 10 ortholog.
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GLUT4 translocation: a retention model and a synaptic ves-
icle model (104). The former would predict that GLUT4 mol-
ecules are prevented from joining the constitutive cellular
recycling compartment from an inhibitory mechanism, or
molecule, that would be inactivated by insulin. The latter
envisions a mechanism analogous to neurotransmitter re-
lease, in which a specialized GLUT4 vesicle would dock onto
and fuse with the plasma membrane via a v-SNARE protein
(Vesicle SNAP Receptor) pairing with appropriate target
membrane or t-SNAREs. It is easily realized that the two
models need not be mutually exclusive.

Considerable progress has been made in identifying the
v-SNAREs and t-SNAREs that facilitate GLUT4 vesicle trans-
location. VAMP-2 is the main v-SNARE found in GLUT4
vesicles. The main t-SNAREs found in the plasma membrane
of insulin-sensitive tissues are syntaxin 4 and SNAP-23 (104).
Many of the accessory components of GLUT4 vesicles have
been identified, and intensive efforts are underway to isolate
every single constituent of this important subcellular or-
ganelle. Adapter molecules that regulate the interaction be-
tween VAMP-2 and syntaxin-4 in an insulin-dependent man-
ner have been cloned from protein-protein yeast interaction
libraries from 3T3-L1 adipocytes. Synip is a syntaxin 4-bind-
ing protein (105). Insulin catalyzes Synip dissociation from
syntaxin 4. Moreover, inhibition of Synip dissociation by a
dominant negative mutant results in inhibition of GLUT4
translocation. The mechanism by which insulin causes Synip
dissociation remains unknown. Another syntaxin 4-binding
protein is Munc18. Insulin inhibits binding of Munc18c to
syntaxin 4, thereby increasing binding of VAMP2 to syntaxin
4 (106).

PI 3-kinase independent pathways of insulin signaling

As stated above, the possibility exists that not all of the
actions of insulin are mediated through the IRS/PI 3-kinase
pathway. One such example is the pathway mediated
through the protein Cbl. Cbl is a substrate of the insulin
receptor kinase in differentiated 3T3-L1 adipocytes, but not
in preadipocytes (107). This differential phosphorylation is
due to expression of a Cbl-associated protein (CAP) (108).
Although CAP is not phosphorylated in response to insulin,
it is able to target Cbl to the insulin receptor. After phos-
phorylation, Cbl translocates to caveolae, a specialized sub-
domain of the plasma membrane. Inhibition of the CAP-Cbl
interaction by dominant negative CAP correlates with inhi-
bition of insulin-stimulated glucose transport and GLUT4
translocation in a wortmannin-independent fashion, sug-
gesting that Cbl participates in a PI 3-kinase-independent
mechanism whereby insulin stimulates GLUT4 translocation
in adipocytes (109).

Role of tyrosine phosphatases in insulin action

Tyrosine phosphatases play a key role in terminating the
signal generated through tyrosine kinases. This family of
enzymes comprises more than 100 different genes. Therefore,
it has proven difficult to identify physiological phosphatases
that regulate insulin signaling by dephosphorylating the in-
sulin receptor and its targets. Experiments in various cell
types have suggested that the receptor type leukocyte com-

mon antigen-related phosphatase is an insulin receptor phos-
phatase (110). Accordingly, mice lacking leukocyte common
antigen-related phosphatase exhibit a complex syndrome of
insulin sensitivity and insulin resistance (111). Likewise,
mice lacking protein tyrosine phosphatase 1b present with an
insulin sensitivity syndrome that has suggested that this
phosphatase represents an important modulator of insulin
action. Ablation of PTP-1b in mice is associated with failure
to develop insulin resistance when exposed to a high fat diet
(112, 113). These studies implicate PTP-1b as a physiological
mediator of insulin action and as a potential therapeutic
target to develop therapies against diet-induced obesity.

Conclusions

Substantial progress has been made in understanding how
insulin mediates its effects on fuel metabolism. Through a
combination of approaches, from cellular and molecular
techniques to transgenic and knockout mice, many pathways
of insulin signaling have been reconstructed in detail. As
outlined in this review, significant questions remain unan-
swered. First and foremost is the identification of the com-
plete chain of events leading from IRS phosphorylation and
PI 3-kinase activation to the biological effects of insulin.
Second and not less important is to dissect the role of PI
3-kinase-dependent and -independent pathways of insulin
action. Finally, it remains to be determined how these com-
plex pathways interact in vivo and how different tissues
contribute to the pathogenesis of the insulin resistant state of
type 2 diabetes.
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