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Abstract

Background: Clinical research and medical practice can be advanced through the prediction of an individual’s

health state, trajectory, and responses to treatments. However, the majority of current clinical risk prediction models

are based on regression approaches or machine learning algorithms that are static, rather than dynamic. To benefit

from the increasing emergence of large, heterogeneous data sets, such as electronic health records (EHRs), novel tools

to support improved clinical decision making through methods for individual-level risk prediction that can handle

multiple variables, their interactions, and time-varying values are necessary.

Methods: We introduce a novel dynamic approach to clinical risk prediction for survival, longitudinal, and

multivariate (SLAM) outcomes, called random forest for SLAM data analysis (RF-SLAM). RF-SLAM is a continuous-time,

random forest method for survival analysis that combines the strengths of existing statistical and machine learning

methods to produce individualized Bayes estimates of piecewise-constant hazard rates. We also present a

method-agnostic approach for time-varying evaluation of model performance.

Results: We derive and illustrate the method by predicting sudden cardiac arrest (SCA) in the Left Ventricular

Structural (LV) Predictors of Sudden Cardiac Death (SCD) Registry. We demonstrate superior performance relative to

standard random forest methods for survival data. We illustrate the importance of the number of preceding heart

failure hospitalizations as a time-dependent predictor in SCA risk assessment.

Conclusions: RF-SLAM is a novel statistical and machine learning method that improves risk prediction by

incorporating time-varying information and accommodating a large number of predictors, their interactions, and

missing values. RF-SLAM is designed to easily extend to simultaneous predictions of multiple, possibly competing,

events and/or repeated measurements of discrete or continuous variables over time.

Trial registration: LV Structural Predictors of SCD Registry (clinicaltrials.gov, NCT01076660), retrospectively registered

25 February 2010

Keywords: Clinical risk prediction, Random forests, Survival analysis, Dynamic risk prediction

Background
Clinical risk assessment has been a long-standing chal-

lenge in medicine, particularly at the individual level [1].

Questions such as “what is the probability that this patient

has a particular disease?” or “what is the probability that

this patient will benefit from a particular treatment?” are

difficult to answer objectively but are essential in order to
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realize the promise of precision medicine. Accurate clini-

cal risk prediction can help guide decision making about

health status, disease trajectory, and optimal treatment

plans.

Recent advances in biomedical, information, and

communication technologies increase the potential to

substantially improve clinical risk prediction. Modern

statistical and machine learning methods are increas-

ing our capacity to learn from a wide variety of data

sources, including those that are complex, heterogeneous,

and temporally-varying in nature [2–11]. Currently, most
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approaches to clinical risk prediction employ a small frac-

tion of the available data. Specifically, even when variables

are repeatedly measured on the same individual over time,

it is common to base the patient’s risk score only on the

last available measurement rather than the full history

of measurements. This practice is inconsistent with the

inherently dynamic nature of human health and disease; it

discards valuable information from the history of the pre-

dictors, such as the rate of change of the variables or the

occurrence of prior events [1].

Our work is motivated by the challenge of develop-

ing tools for clinical risk prediction that can simultane-

ously handle time-to-event data, repeated measurements

of covariates, and repeated/multiple outcomes. We will

refer to these as survival, longitudinal, and multivariate

(SLAM) data. The clinical motivation for our approach is

sudden cardiac arrest (SCA), a leading cause of death with

complex pathophysiology that currently lacks effective

tools for prediction and could benefit from methodologi-

cal advances in risk assessment using SLAM data.

In this paper, we first review clinical risk prediction

approaches and identify limitations of current methods.

Next, we formulate the learning problem in terms of the

analysis of SLAM data. Afterwards, we introduce our

methodology called Random Forest for Survival, Longi-

tudinal, and Multivariate data analysis (RF-SLAM). We

then illustrate the RF-SLAM approach using the Left

Ventricular (LV) Structural Predictors of Sudden Car-

diac Death (SCD) Registry for SCA risk prediction and

describe methodology for assessing and reporting model

performance. We end with a discussion of the potential

applications and extensions of RF-SLAM.

Learning from data for clinical risk prediction

To date, most clinical risk prediction methods are based

on regression approaches [1]. For example, the Cox

regression model was used to develop the Framingham

Risk Score [12] and logistic regression was used to develop

the 30-day mortality risk prediction for patients with

ST-elevation myocardial infarction [13].

Traditional regression strategies for risk prediction suf-

fer from a number of limitations. These methods can typ-

ically only handle a small number of predictors, disregard

potential interactions with time, and assume constant pre-

dictor effects throughout their entire range. As a result,

the challenges not well handled by typical regressionmod-

eling strategies include: non-linearities, heterogeneity of

effects (interactions), and consideration of many potential

predictors. The basic assumption of a regression model

is that there is a linear relationship between the risk fac-

tor and outcome. Although this can be an appropriate

approximation for some risk factors, in many cases, pre-

dictors have non-linear relationships with the outcome.

For example, the risk of death sharply rises with increasing

age. In other cases, values both above and below the

normal ranges are indicative of high risk (e.g. hypogly-

caemia and hyperglycaemia, BMI for underweight and

overweight individuals).

Basic regression methods also tend to assume additive

relationships unless special efforts are made to identify

important interactions. Nevertheless, a variable’s impact

on the prediction can be influenced by another variable

(e.g. gene-environment interactions, treatment-race inter-

actions). In standard regression approaches, interactions

need to be prespecified, requiring the individual develop-

ing the model to a priori include the interaction term in

the model.

In addition, with a large number of potential predic-

tor variables to consider, it is challenging to determine

which to include in the model and strategies must also

be taken to avoid overfitting. In the setting of missing

data and many candidate predictor variables, traditional

regression methods must also be paired with variable

selection and missing data algorithms to accommodate

large numbers of predictors and their incomplete records.

When clinical risk prediction requires the consideration

of a large number of predictors as well as interactions and

non-linear predictor effects and missing values, moving

beyond traditional regression approaches offer the poten-

tial to improve predictive performance [1]. The increasing

emergence of large, heterogeneous data sets, such as elec-

tronic health records (EHRs), require novel tools for risk

prediction to support improved clinical decisions. Further

development of statistical machine learning approaches to

address the needs of clinical risk prediction has potential

to accelerate the progress towards precision medicine [1].

Motivating Example: Sudden Cardiac Arrest (SCA)

Prediction

Our work is motivated by the challenge of predicting sud-

den cardiac arrest (SCA), a leading cause of death with

complex pathophysiology [14–17]. In the United States,

each year, there are approximately 400,000 SCAs resulting

in death [18]. Approximately 50% of victims do not have a

prior diagnosis of cardiovascular disease and hence have

limited opportunities for prevention [18]. As a result, the

ability of clinicians to predict and prevent SCD remains

limited.

Although the implantable cardioverter defibrillator

(ICD) is considered the “cornerstone” therapy for SCD

primary prevention in high risk individuals with ischemic

or non-ischemic cardiomyopathy, guidelines directing

their use are based upon findings of several randomized

trials that have focused on dichotomizing risk based upon

left ventricular ejection fraction (LVEF) [18–23]. Current

guidelines define high risk as having an LVEF below 30

to 35% [18, 19]. However, LVEF is neither sensitive nor

specific as an indicator for SCA. Consequently, the use
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of LVEF as a guide for ICD placement has resulted in

poor identification of those patients most likely to benefit

from implantation of an ICD and poor risk/benefit bal-

ancing of significant short and long-term complications

[24]. Furthermore, applying summary results of clinical

trials to individual patients can “give misleading results to

physicians who care for individual, not average, patients”

[25]. In fact, the rate of appropriate device firings is low

(approximately 1.1 to 5.1% per year) [23, 26]. Hence, many

patients are subjected to the short and long term risks of

an ICD but may never require therapy and hence, receive

no benefit [27].

The current limitations in methods to effectively pre-

dict and prevent SCD have been summarized in the

National Heart, Lung, and Blood Institute (NHLBI)Work-

ing Group on SCD Prevention’s statement that “there is

an urgent need to develop effective preventive strategies

for the general population” of which effective SCA risk

assessment is one important component [28, 29]. Specif-

ically, there is a need to develop and validate SCA risk

scores using phenotypic, biological, and modern biomark-

ers such as cardiac magnetic resonance (CMR) imaging

with late gadolinium enhancement (LGE) that yields both

structural and functional indices of the heart [19, 24, 30].

SCA pathophysiology is complex and requires the inter-

action of a vulnerable substrate and one or more dynamic

triggering mechanisms to initiate and sustain a reen-

trant ventricular arrhythmia [30]. Accurate and precise

SCA risk assessment thus requires prediction methods

that handle the dynamic interplay among SCAs, trig-

gers such as heart failure hospitalizations (HF), and other

time-varying factors. Nevertheless, commonly usedmeth-

ods for SCA risk prediction, Cox proportional hazards

model and logistic regression, do not facilitate the inclu-

sion of nonlinear relationships or interactions among

predictors when modeling with a large number of predic-

tors [31]. Novel methods that automatically incorporate

nonlinear/interaction effects and the interplay of SCA,

HF, and survival (or death) could improve the accuracy

and precision of SCA prediction. In particular, random

forests, a decision-tree based approach, offer the advan-

tage of relatively lower prediction error than traditional

modeling approaches because of their capacity to iden-

tify complex interactions and nonlinearities of predictor

effects [32–35]. However, two main disadvantages of ran-

dom forests are 1) their limited interpretability and 2)

to the extent of our knowledge, the inability of current

random forest implementations to simultaneously han-

dle survival, longitudinal, and multivariate (SLAM) out-

comes. This research addresses these limitations through

the extension of random forests for SLAM data analy-

sis (RF-SLAM). We first begin with a description of the

RF-SLAM methodology. Then, to illustrate the potential

impact of RF-SLAM in clinical and translational research,

we apply our approach to data from the LV Struc-

tural Predictors of SCD prospective observational registry

[24, 36–41], and demonstrate the use and model perfor-

mance of RF-SLAM for determining population risk as

well as for predicting individualized SCA risk to guide

treatment decisions.

Methods
Methods: random forest for survival, longitudinal, and

multivariate (RF-SLAM) data analysis

To overcome the limitations of current SCA risk model-

ing approaches, we develop Random Forest for Survival,

Longitudinal, and Multivariate (RF-SLAM) data analy-

sis, a method that builds upon the concept of decision

trees for risk stratification. Decision trees that stratify

the population into strata of low and high risk based

on patient characteristics are popular in medicine due

to their intuitiveness and comparability to how clinicians

think through clinical decisions. Nevertheless, the deci-

sion tree may “overfit” the data used to construct the tree

and consequently, poorly generalize for predictions for

new observations [34].

To address these issues, random forests were developed

as an ensemble learning method based on a collection of

decision trees, where the overall random forest prediction

is the ensemble average or majority vote. Overfitting is

minimized through the introduction of random selection

of subjects and of predictor variables during the construc-

tion of trees in the random forest. Random sampling of

predictor variables at each decision tree node decreases

the correlation among the trees in the forest, and thereby

improves the precision of the ensemble predictions [32].

Random forests were originally developed for regression

and classification problems, but more recently, random

survival forests (RSFs) have been developed for the analy-

sis of right-censored survival data [33, 42].

Random survival forests (RSFs)

In this work, we expand upon randomForestSRC (random

forests for survival, regression, and classification), which

has previously been described [33, 42]. The key aspects of

the RSF algorithm are:

1. Bootstrap the original data set to create B bootstrap

samples.

2. On each of the B bootstrap samples, grow a survival

tree where at each node randomly selectm ≤ p

predictors as candidate splitting variables, wherem is

the number of candidate splitting variables

considered and p is the total number of predictors.

Among them variables, determine the optimal

splitting variable and split point to maximize the

difference between the estimated survival curves in

the resulting children nodes. For RSF, the split
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criteria is typically based upon the log-rank statistic.

Additional details are provided in the Additional

file 1.

3. Continue the recursive partitioning algorithm as long

as the node has no less than d0 > 0 unique deaths.

4. Calculate the cumulative hazard function for the

terminal nodes for each tree and obtain an ensemble

cumulative hazard function by averaging across the B
trees.

Despite the benefits of RSF, limitations remain regard-

ing the challenge of handling time-varying risk factors

(e.g. heart failure exacerbations) and the interpretability

of RSF predictions in the case of time-dependent outcome

data. Additionally, the recent literature has expressed con-

cerns regarding the log-rank split statistic since this is

based upon the proportional hazards assumption and

may suffer from significant loss of power in situations in

which covariates violate the proportional hazards assump-

tion, especially when the hazard/survival functions cross

for the groups being compared [43, 44]. As a result, we

introduce an extension of the random forest methodol-

ogy, which we call RF-SLAM, based upon the Poisson

regression log-likelihood as the split statistic to allow for

the inclusion of time-varying predictors and the analy-

sis of survival data without the restrictive proportional

hazards assumption. Here, we introduce our RF-SLAM

methodology for predicting survival outcomes.

RF-SLAMmethodology

For RF-SLAM, a large number of trees (e.g. 1000) are

grown to create the random forest. However, unlike with

the RSF approach where the individual is the unit of anal-

ysis, RF-SLAM builds trees using data binned according

to user-specified lengths of time in a format we call count-

ing process information units (CPIUs). Each individual

can have many CPIUs during the period of follow-up. For

example, in the motivating SCA risk prediction problem

using the LV Structural Predictors of SCD Registry, we

consider follow-up time of 8 years and specify the time

intervals to be 6 months long so that each individual has

a CPIU representing each half-year of observation. We

assume that a person’s event hazard is constant within

each CPIU. This strategy allows predictor variables to

change from one interval to the next. Given the parti-

tion of the follow-up time into CPIUs, we use a Poisson

regression splitting criterion that does not impose the pro-

portional hazards assumption that the predictors have a

common effect across the entire follow-up time. The key

aspects involved in the random forest construction using

RF-SLAM are detailed below and additional information

is provided in the Additional file 1:

• Counting Process Information Units (CPIUs):

The RF-SLAM approach includes a pre-processing

step where the follow-up information for each

individual is partitioned into discrete segments that

we refer to as counting process information units

(CPIUs), as shown in Fig. 1. Specifically, each CPIU

contains the following data for a prespecified bin of

time: person indicator, interval indicator,

multivariate outcome values (e.g. SCA and HF; 0

denoting that the event did not occur, 1 denoting that

the event did occur), summary function values of

outcome history, predictor values, and the length of

the interval. We partition the data for each of the N
subjects into CPIUs, which is similar to the concept

of the “person-period data set” [45], to account for

time-varying covariates and outcomes.

CPIUs are named after the formulation of a counting

process which is denoted by Ne = Ne(t), t ≥ 0,

where the value of Ne at time t indicates the number

of events that have occurred in the interval of time

(0, t], where Ne(0) = 0. Ne is nondecreasing and

increases in a stepwise manner as events accumulate

(i.e. Ne as a function of time can be modeled as a step

function) [46].

We introduce the CPIU data format and the

corresponding terminology to broaden the

generalizability of our approach to time-to-event

analysis. The CPIU formulation of the data allows for

the handling of time-varying covariates as well as

multivariate count data (i.e. the counting process

could be the occurrence of a single event, repeated

events, or events of different types).

Additionally, rather than considering the

times-to-event as discrete times, we allow the event

times to be continuous, occurring within the discrete

CPIU intervals. For instance, CPIUs can be created

with half-year intervals. However, the observed event

times can be represented more precisely as the time

at which the event occurs within the CPIU. Thus,

each CPIU can potentially be of differing lengths and

the length of the CPIU is recorded as the risk time. In

the reformulation of the data set into the CPIU

format, each subject’s data is represented as a

separate record for each period of observation.

Rather than having only one record per subject, the

CPIU data format could result in multiple records per

subject depending on the subject’s survival time and

the length(s) of the observation periods defined.

To predict the probability of an event of interest

during each CPIU, we model the event probability as

a Poisson process, which is a counting process that

can be used to count the occurrences of the event of

interest [46]. For the Poisson process, we denote Y (r)

as the number of events that occurs within a time

period of length r. Thus, Y (r) ∼ Poisson(µ), where

µ = λr where λ is the event rate per unit time and r
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Fig. 1 Random Forests for Survival, Longitudinal, and Multivariate (RF-SLAM) Data Analysis Overview. The Random Forests for Survival, Longitudinal,

and Multivariate (RF-SLAM) data analysis approach begins with a pre-processing step to create counting process information units (CPIUs) within

which we can model the possibly multivariate outcomes of interest (e.g. SCA, HF) and accommodate time-dependent covariates. For the LV

Structural Predictors Registry, the time-varying covariates of interest relate to heart failure hospitalizations (HFs), indicated by the blue diamonds. In

this case, CPIUs are created from the Survival, Longitudinal, and Multivariate (SLAM) data by creating a new CPIU every half year, corresponding to

the frequency of follow up. The variable int.n represents the interval number indicating time since study enrollment in half-years. The time-varying

covariates are int.n and pHF (total number of previous heart failure hospitalizations since study enrollment). Then, these CPIUs (containing the

time-varying covariates along with the baseline predictors) are used as inputs in the RF-SLAM algorithm to generate the predicted probability of an

SCA. The SCA event indicator is denoted with iSCA (0 if no event within CPIU, 1 if the event occurs within CPIU) and the heart failure hospitalization

event indicator is iHF (0 if no event within CPIU, 1 if the event occurs within CPIU)

is the length of the time interval. We use this

distributional assumption for the event probability

within each CPIU as the basis for our RF-SLAM

approach, which is an ensemble method based on

Poisson regression trees.
• Control of Bootstrapping:

Because we create CPIUs, each individual can have

multiple observation intervals rather than only one as

in a traditional random forest analysis. Rather than

bootstrapping CPIUs, we bootstrap individuals to

preserve the integrity of the original data structure.

Then, we assemble together the predictions for each

of the CPIUs for an individual to obtain the

piecewise-constant hazard function for each

bootstrap replication. This function, or the

corresponding piecewise-exponential survival

function, will be the basis for visualization of the risk

trajectory and post-hoc analyses of how changes in

different predictor variables impact an individual’s

risk. By bootstrapping people rather than CPIUs and

controlling the specification of the bootstrap samples

on which to construct the random forest, this

method also allows for the fair comparison between

different random forest approaches. For example, our

RF-SLAMmethod can be compared with RSF trained

on comparable bootstrap samples, where the

bootstrap samples for RF-SLAM would consist of

CPIUs and the bootstrap samples for RSF would

correspond to the same individuals who contributed

CPIUs to the bootstrap sample.
• RF-SLAM Splitting Criteria:

The RF-SLAM splitting criteria is based upon the

Poisson log-likelihood below. Note, it is not necessary

to directly assume that the CPIUs are independent.

Rather, the process of conditioning on the past events

results in a likelihood function for the discrete time

hazard model under non-informative censoring that

coincides with the likelihood obtained when treating

the event indicators as binomial or Poisson [45].

We use the following notation: i = 1, 2, . . . ,N

indicates the individual, j = 1, 2, . . . , Ji indicates the

interval for individual i, where Ji is the maximum

interval number for individual i, µij = λijrij is the

expected number of events where λij is the event rate
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for individual i during time period j, rij is the risk

time or length of the jth interval for individual i, yij is

the number of observed events for the jth interval for

individual i, Nj is the total number of individuals in

the risk set at the jth interval, and N is the total

number of individuals in the study.

The RF-SLAM Poisson log-likelihood split statistic is:

∑

i∈L

Ji
∑

j=1

[

−µ̂L
ij + yij ∗ log

(

µ̂L
ij

)]

+
∑

i∈R

Ji
∑

j=1

[

−µ̂R
ij + yij ∗ log

(

µ̂R
ij

)]

−
∑

i∈P

Ji
∑

j=1

[

−µ̂P
ij + yij ∗ log

(

µ̂P
ij

)]

,

(1)

where µ̂S
ij is the estimate for expected number of

events for jth interval for individual i for node S,
where S = L,R,P indicating the left, right, and parent

nodes, respectively. The estimate µ̂S
ij is:

µ̂S
ij = λ̂Sijrij, (2)

where λ̂Sij is the estimate of the event rate for

individual i during interval j.
Since all CPIUs within a certain node share the same

event rate estimate at a given time, the Bayes estimate

of the event rate for each node is defined as follows:

λ̂Sj =
α +

∑

i∈S yij

β +
∑

i∈S rij
, (3)

where α = 1/
(

k2
)

, where k can be specified by the

user (we set k = 2 as the default so the standard

deviation is greater than the mean in order to capture

the prior uncertainty in the estimate for λ̂) and

β = α/λ̂, where λ̂ is the overall event rate (i.e. total

number of events in the entire data set / total risk

time in the entire data set) [47]. The rationale for the

Bayes estimate of the event rate is provided below in

the following section on the Ensemble Hazard Rate

Estimates. Further details are provided in the

Additional file 1.
• Ensemble Hazard Rate Estimates:

Because classical approaches to estimate event rates

have poor performance when there are few events

(e.g. maximum likelihood estimators give overly

optimistic rate estimates of zero) [48], we instead

employ a Bayes estimate of the event rate. The Bayes

estimate for the event rates are derived by assuming a

Gamma prior for the event rates combined with a

Poisson distribution for the likelihood function.

Using Bayes rule, a Gamma posterior is obtained [49].

For an observation of interest, the hazard rate

estimate from each tree is obtained by sending the

observation down the tree, following the branches to

the left or right based upon the covariate values and

decision rule at each encountered branch until the

observation reaches a terminal node. Each terminal

node is assigned an estimated hazard rate based upon

the in-bag training data and the Bayes estimate of the

event rates.

The out-of-bag (OOB) ensemble estimate for the

CPIU for individual i for time period j is obtained by

averaging the estimates across the OOB trees as

follows:

λ̂OOB
e (j|xi) =

∑B
b=1 Ii,bλ̂b(j|xi)
∑B

b=1 Ii,b
, (4)

where Ii,b = 1 if i is OOB for tree Tb and 0 otherwise.

For a new observation not used in training, the

estimate is based upon averaging across all the trees

in the forest:

λ̂e(j|xi) =

∑B
b=1 λ̂b(j|xi)

B
. (5)

• Missing Data:

Because most real data sets contain missing values,

various methods for handling missing data with

tree-based methods have been developed including

surrogate splitting and imputing data using the

proximity weighted average of nonmissing data

[50–52]. Although surrogate splits can be a solution

for trees, it is computationally intensive and may be

infeasible when considering an ensemble of trees.

With the proximity approach to data imputation, the

forest is unable to predict on test data with missing

values. Due to these limitations, for RF-SLAM, we

adopt an adaptive tree imputation method to handle

missing data based upon the approach previously

introduced for RSF [33]. Overall, the idea is to impute

the missing data during the tree growing process by

randomly drawing from the nonmissing in-bag data

within the current node. The key steps are as follows:

1. Impute missing data prior to splitting node h
based upon randomly drawing from the

nonmissing in-bag data within node h.
2. Split node h into two children nodes based upon

the split rule.

3. Reset the imputed data values to missing in the

resulting children nodes.

4. Repeat from Step 1 until the tree reaches the

stopping criterion.

• Data Imbalance and Terminal Node Size:

An additional challenge that is typical to survival data

is data imbalance, where there are extreme differences
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between the number of censored and noncensored

individuals in the study. In our situation of creating

discrete CPIUs from the original survival data, the

data imbalance can be seen as the predominance of

yij = 0, corresponding to CPIUs with no events. As

was proposed in Breiman’s original random forest

algorithm for classification random forests, it is

common to grow the trees to purity of the terminal

nodes [32]. In our situation, the trees should not be

grown to purity since the goal is to obtain an estimate

of the hazard, or conditional probability. If the trees

are grown to purity, each tree probability estimate

would be 0 or 1. Instead, for hazard estimates, we

retain heterogeneity in the terminal nodes by setting

the default terminal node size as 10% of the total

sample size based upon prior research [53, 54].

Evaluating performance

In the era of promoting individualized health, there

is growing interest in clinical prediction models that

provide absolute risk estimates for individual patients.

When accurate predictions are made available, they

can inform clinical decisions by guiding timely action

for high risk individuals who may benefit from spe-

cific preventive strategies or aggressive interventions

and sparing low risk individuals from the burden of

unnecessary or inappropriate interventions. Before such

models are used by clinicians and patients, rigorous

evaluation of their validity is essential but is often not

quantified [55–59].

To characterize a model’s performance, we consider

both its discrimination and calibration. For models of

SLAM data, special considerations are necessary for

assessing model performance. In comparison to mod-

els that are constructed to provide a prediction in a

static manner (i.e. only provide a prediction for a partic-

ular time point), models fit to SLAM data are designed

to be used in a dynamic manner. For instance, prog-

nostic models are often employed for evaluating clin-

ical risk at multiple points in time as patients return

for follow-up visits and are reassessed. Naturally, the

model’s performance over time may change and thus,

time-varying measures of performance are necessary to

assess its potential ability to serve as a clinical decision

making tool [60].

Time-Varying AUC

The time-varying AUC is based upon time-dependent

definitions of the sensitivity and specificity, as described

previously [60]. These definitions take into account the

dynamic risk sets. At each evaluation time there are differ-

ing CPIUs at risk for the event. The time-dependent AUC

is defined as the area under the time-specific ROC curve,

ROCt , across all thresholds p given by:

AUC(t) =

∫

ROCt(p)dp, (6)

which is equivalent to:

AUC(t) = P(Ml > Mk|Tl = t,Tk > t), (7)

the probability that a random CPIU that experiences an

event at time t (i.e. case) has a larger predicted value than

a random CPIU that is event free (i.e. control) and also at

risk at that time t.

We extend the approach for time-varying discrimina-

tion previously described to obtain a smooth AUC curve

representing the model performance across the duration

of time under consideration. Our approach consists of the

following steps:

1. Calculate the ˆAUC(t) at each time interval where
∑

i∈Nt

yij > 0, where Nt denotes the risk set at time t.

2. Calculate the estimate of the maximum variance of

the ˆAUC(t) at each of the times considered in Step 1

using the following equation:

σ 2
max(t) =

ˆAUC(t)(1 − ˆAUC(t))

min{m(t), n(t)}
, (8)

wherem(t) is the number of cases at time t and n(t)

is the number of controls at time t [61].
3. Fit a smooth curve to model the relationship between

ˆAUC(t) and time, weighted by the inverse of the

variance:

w(t) = 1/σ 2
max(t). (9)

Our approach for confidence intervals for ˆAUC(t) is

based upon the non-parametric bootstrap and bootstrap

principle [62], which allows us to approximate how much

the distribution of our AUC estimate varies around the

true AUC using the distribution of how the bootstrapped

AUC values vary around our estimated AUC.

Clinically-Relevant visualizations of discriminative ability

through plots of the survival or hazard functions

In addition to plots of ˆAUC(t) versus time, for models of

SLAM data that give predictions of the hazard or survival

functions, the discriminative ability of the model can also

be visualized by plotting the predicted hazard or survival

function versus time and color-coding the trajectory of the

hazards by the observed outcomes (e.g. color-code indi-

viduals who experience the event during the study in red

and all other individuals in green). The greater the sepa-

ration between the predicted hazard or survival functions

for individuals who experience versus do not experience

the outcome, the greater themodel’s discriminative ability.

Calibration of predicted hazard rates

Calibrating predicted hazard rates for CPIUs from SLAM

data requires special consideration to account for the

potential differences in risk time for each CPIU. We use
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two approaches to check for calibration. The first is based

upon creating discrete risk groups and assessing the cali-

bration by group. The second is based upon the Spiegel-

halter’s z-statistic and does not require discretizing the

data into bins.

In the first approach, to assess calibration by risk groups,

groups are defined by deciles of the predicted values.

For each decile, the mean predicted value is compared

with the observed value. When the predicted values are

hazard rates, it is important to consider the observed

risk time when assessing calibration. To determine the

observed hazard rate, the total number of events observed

in the decile is divided by the total observed risk time

for that decile. Afterwards, calibration plots with the

observed versus the predicted rates can be created. In

the second approach, for a formal assessment of cali-

bration without discretizing the data into bins, we use

Spiegelhalter’s z-statistic [63, 64], described further in the

Additional file 1.

Confidence intervals for calibration can be formed by

the non-parametric bootstrap and bootstrap principle

[62]. To include confidence intervals for the calibration

plots, we present the calibration results as the differ-

ence between the observed and predicted risks. Because

both the predicted and observed risk for each decile can

differ across bootstrap replications, rather than plotting

the predicted versus observed risk, we take the differ-

ence between the predicted and observed risk and plot

this difference against the corresponding decile. For well

calibrated models, the confidence intervals for these dif-

ferences should overlap 0, suggesting agreement between

the predicted and observed values.

Clinically-Relevant visualizations of discrimination and

calibration through plots of the survival or hazard functions

To visualize the model performance in terms of both dis-

crimination and calibration in a clinically-relevant man-

ner, we introduce an approach to compare the model

predictions to the actually observed time-to-event data.

First, we stratify patients into tertiles of predicted risk.

For each group (i.e. high, intermediate, and low risk), we

plot a Kaplan-Meier curve based on the observed data and

compare the Kaplan-Meier curve to the predicted survival

curves for individuals in the group under consideration.

Illustrating example: sudden cardiac arrest (SCA)

prediction with SLAM data

The Left Ventricular (LV) Structural Predictors of Sudden

Cardiac Death (SCD) Registry is a prospective obser-

vational registry (clinicaltrials.gov, NCT01076660) that

enrolled patients between November 2003 and April 2015

at three sites: Johns Hopkins Medical Institutions (Bal-

timore, MD), Christiana Care Health System (Newark,

DE), and the University of Maryland (Baltimore, MD).

Patients meeting the clinical criteria for primary preven-

tion ICD insertion (LVEF ≤ 35%) were approached for

enrollment and underwent cardiac magnetic resonance

imaging (CMR) before device placement. This registry

allows for the analysis of SCA risk in a clinical popu-

lation with elevated SCA risk but in whom it is known

that many patients will not require or benefit from ICD

therapy. The design and methods of this study have been

previously published, as have interim results of multivari-

able risk models using traditional regression approaches

[24, 36–41]. The goal of the study was to identify risk

factors that predispose patients to arrhythmic death. 382

patients were enrolled. The primary SCA endpoint was

the occurrence of an adjudicated appropriate ICD fir-

ing for ventricular tachycardia or ventricular fibrillation

or sudden arrhythmic cardiac arrest not aborted by the

device. In the 8-years of follow-up, 75 individuals had the

primary SCA outcome. A summary of the data is available

in Additional file 1: Table S1 as well as in the published

literature [24, 36–41].

Briefly, the baseline variables include information

regarding demographics and clinical characteristics, risk

factors, medication usage, electrophysiologic variables,

laboratory values and biomarkers, LVEF by echocardio-

graphy, and CMR structural and functional indices. The

time-varying covariates are the number of previous adju-

dicated heart failure hospitalizations and number of half-

year intervals that have passed since study enrollment.

To assess the performance of our random forest method

(RF-SLAM), we compare our method to the random

survival forest (RSF) method currently available in the

randomForestSRC (random forests for survival, regres-

sion, and classification) R package [42]. Briefly, in contrast

to the RSF method, RF-SLAM can handle time-varying

covariates and directly provide piecewise-constant haz-

ard estimates (i.e. the probability of an event in a certain

period of time). In our analysis of the LV Structural

Predictors of SCD Registry, we compare three methods

(RF-SLAM using both baseline and time-varying covari-

ates, RF-SLAM using only baseline covariates, and RSF)

for predicting SCA. Additional file 1: Table S2 provides a

summary of the key differences between the three differ-

ent approaches.

RF-SLAM

As diagrammed in Fig. 1, the first step to constructing

the two RF-SLAM models is data pre-processing to cre-

ate counting processing information units (CPIUs). CPIUs

of half-year intervals are created since patients in this

registry are followed up every six months. Thus, the max-

imum interval length (i.e. risk time) for the CPIUs is 0.5

years. However, if censoring or SCA occurs prior to the

end of the half-year interval, the risk time is the amount

of time from the start of the CPIU interval to the time of
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censoring or SCA. With the CPIU data format, two differ-

ent random forests are constructed using RF-SLAM: one

with both baseline and time-varying covariates, and a sec-

ond with only baseline covariates. The parameters for the

number of trees, node size, and number of variables to try

at each potential split are set to be the same for both ran-

dom forests. We use the typical default values of 1000 as

the number of trees, 10% of the number of CPIUs as the

minimum terminal node size, and the number of variables

to try as the square root of the number of predictors in the

model.

Random survival forest (RSF)

For the RSF method, we also use the default settings for

the number of trees (1000), node size (15), and number

of variables to try at each potential split (square root of

the number of predictors in the model). After building a

random forest with the RSF approach, the survival and

cumulative hazard estimates can be obtained. Although

the RSFmethod does not provide piecewise-constant haz-

ard predictions, we develop an approach to obtain the

discrete-time hazard estimates to facilitate comparisons

between the methods. Specifically, the survival predic-

tions are obtained from the RSF method and a smooth

curve is fit to the predictions to obtain an estimate of the

survival function. Afterwards, the value of the derivative

of the log of the estimated survival function is obtained

every half-year (i.e. 0.5, 1, 1.5 years, etc.) to obtain compa-

rable hazard estimates to the RF-SLAM approach.

For all three methods, we assess the performance as

described in theMethods section onmodel evaluation. To

ensure the comparability of the bootstrap data set across

the three methods, we use the same L boostrapped data

set for all three methods and within each of the L boos-

trapped data set, we control bootstrapping by specifying

a user controlled bootstrap array to ensure that the same

data are used for comparable trees in the three different

random forests. For the analysis presented below, we use

L = 500.

Results
With data from the LV Structural Predictors of SCD Reg-

istry, we demonstrate a proof of concept of the RF-SLAM

approach.

Figure 2 (panels A, B, and C) shows the ˆAUC(t) for the

three different approaches. Figure 2a displays the worst

performance corresponding to RSF, the random survival

forest model with the log-rank split statistic and baseline

covariates only. Figure 2b shows an improvement in per-

formance with the RF-SLAM approach using the Poisson

split statistic and baseline covariates only. With the inclu-

sion of time-varying predictors in the model and the use

of the Poisson split statistic, there is further improvement

in model performance as measured by the ˆAUC(t). The

plots of the pairwise ˆAUC(t) comparison between the

different models along with the confidence intervals gen-

erated from the non-parametric bootstrap approach with

500 bootstrap samples are provided in Additional file 1:

Figure S1.

To visualize the difference between the predictions from

the different approaches, Fig. 2 (panels c, d, and e) shows

the predicted survival curves, color-coded by the actual

outcome. As shown in the figure, the RF-SLAM approach

with both baseline and time-varying covariates (Fig. 2e)

provides the best visual separation between individuals

who experienced an SCA (color-coded in red) and those

who did not (color-coded in green) when compared with

the predicted survival curves from RF-SLAM with base-

line covariates only (Fig. 2e) and RSF (Fig. 2d).

To further assess performance, we determine the

calibration. The calibration plots with the confidence

intervals generated from the non-parametric bootstrap

approach with 500 bootstrap samples for the three models

are shown in Fig. 3. To assess calibration without dis-

cretizing into deciles, the density plot for Spiegelhalter’s

z-statistic across 500 non-parametric bootstrap samples

is shown in Additional file 1: Figure S2. Overall, the

calibration plots suggest that the three models are well

calibrated.

To visualize both the discrimination and calibration

of the predictions from RF-SLAM (with both baseline

and time-varying covariates), we categorize patients into

different groups based upon the tertile of the average pre-

dicted risk for the individual and plot the predicted sur-

vival curves in comparison to the group’s Kaplan-Meier

curve based on the actual time-to-event data observed, as

shown in Additional file 1: Figure S3. These plots indicate

close agreement between the predictions from RF-SLAM

(with both baseline and time-varying covariates) and the

observed time-to-event data as well as separation between

individuals with and without the event.

Discussion
There is growing emphasis on individualizing care based

on patient-specific characteristics. The availability of large

amounts of patient data and advances in computer-driven

data science afford unique opportunities to implement

machine learning algorithms to inform clinical decision

making based on individual time-varying health trajecto-

ries and patient-specific risk profiles. With the upsurge in

machine learning applications to medicine, it is impera-

tive that such models are validated rigorously to justify

clinical use.

Although the analysis of survival data for most real

world applications utilize the Cox proportional hazard

model, there are numerous limitations to this approach,

including the restrictive assumption of proportional

hazards, the need to estimate the baseline hazard to obtain
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Fig. 2 Comparison of Discrimination for Sudden Cardiac Arrest (SCA) Prediction with Different Random Forests Approaches. a, b, c Time-varying

AUC curves for the RSF approach which uses only baseline covariates (panel a), RF-SLAM approach with only baseline covariates (panel b), RF-SLAM

approach with both baseline and time-varying covariates (panel c). d, e, f Predicted survival curves from RSF (panel d), RF-SLAM approach with only

baseline covariates (panel e), and RF-SLAM approach with both baseline and time-varying covariates (panel f). Individuals who experienced an SCA

are colored-coded in red and all others are colored-coded in green. Note each column of plots corresponds to the same model (i.e. the left column

corresponds to the RSF approach, center column corresponds to the RF-SLAM approach with only baseline covariate, and the right column

corresponds to the RF-SLAM approach with both baseline and time-varying covariates)

hazard predictions, and the difficultly in handling a large

number of variables, non-linearities, and missing predic-

tor values. While more recently developed approaches,

such as random survival forests, offer ways to overcome

some of these challenges, limitations remain in areas such

as handling data where predictor variables are measured

longitudinally as time-varying covariates, addressing data

imbalance issues, and expressing uncertainty about the

predictions. To address these limitations, we intro-

duce RF-SLAM as a piecewise-constant hazard survival

analysis approach to extend the utility of random survival

forests. Specifically, we develop a splitting function based

upon the Poisson regression log-likelihood and Bayes esti-

mate of the hazard rate. A comparison between RSF and

RF-SLAM is provided in Additional file 1: Table S3. RF-

SLAM allows for the handling of time-varying predictors

and time-varying effects through the CPIU formulation of

the data and the split rule based upon the Poisson log-

likelihood. Additionally, since the split rule is based upon

Poisson regression rather than the log-rank statistic, the
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Fig. 3 Comparison of Calibration for Sudden Cardiac Arrest (SCA) Prediction with Different Random Forests Approaches. a Calibration curves by

decile of predicted risk for the RSF approach which uses only baseline covariates, b RF-SLAM approach with only baseline covariates, c RF-SLAM

approach with both baseline and time-varying covariates. For each panel, the difference between the predicted and observed rates are plotted for

each decile. The black points indicate the estimates from the original data set. The mean predicted risk (%/year) for each decile are presented at the

bottom of the plot. The gray bars indicate the 95% confidence intervals from 500 bootstrapped data sets

splitting does not depend upon the proportional hazards

assumption, which is often inappropriate or an oversim-

plification in the analysis of real life data. Because RSF

employs the log-rank statistic for its split rule, it is possi-

ble that RSF will be unable to select potentially beneficial

splits if the proportional hazards assumption is violated

since the key requirement for the log-rank test optimality

is proportional hazards [43, 44, 65–68].

To characterize model performance, we consider both

discrimination and calibration since both are important

aspects of model performance to consider in developing

and evaluating a model for clinical risk prediction. When

the model is intended for clinical applications, a useful

model not only discriminates between individuals with

and without the outcome of interest, but also provides a

risk estimate that can be interpreted as a probability or

a predicted rate of event occurrence (e.g. a probability

of disease of 0.9 should correspond to 9 individuals hav-

ing the disease out of 10 individuals who are similar to

the patient under consideration, and a predicted rate of

1 event/5 years should correspond to an observation of 1

event occurring in 5 years). A highly discriminating model

can be poorly calibrated and limit the clinical utility of

the model when the objective is to obtain an accurate pre-

diction of the individual’s absolute risk. Thus, appropriate

model assessment is essential for the clinical impact of

these prediction tools [55, 60, 69].

For demonstrating the development of RF-SLAM and

its application to SCA prediction, we introduce the RF-

SLAM methodology with a single time-to-event outcome

(i.e. time to SCA) and both static and dynamic predictors

(i.e. baseline and time-varying covariates). Although not

presented here, the extensions of this fundamental RF-

SLAM formulation are manifold and include the consid-

eration of multiple recurrent or competing events (e.g.

repeat occurrences of SCA or the occurrences of SCA,

HF, and/or death). In this work, we focus on model-

ing the conditional distribution of SCA given baseline

information (i.e. patient demographics) and longitudinal

covariates (i.e. number of previous HF hospitalizations).

To handle multiple time-to-event outcomes, RF-SLAM

can be extended to consider the joint distribution of these

multiple outcomes through a modification of the splitting

criteria of the tree construction. Furthermore, our CPIU

data formulation, while used here to allow for piecewise-

constant hazard survival analysis (in which the hazard is

considered to be constant within each CPIU), can be easily

applied to other types of analyses. For instance, for longi-

tudinal data analysis where the outcome is a continuous

variable (e.g. modeling a patient’s blood pressure trajec-

tory over time) can be performed using the mean-squared

error split function. Additionally, RF-SLAM could be used

for longitudinal classification and analysis of multivari-

ate outcomes (e.g. competing risks). Since RF-SLAM is

an extension of the publicly available R package for sur-

vival, regression, and classification (randomForestSRC)

[42], split functions for regression and classification are

also available for RF-SLAM.

In our analysis of the LV Structural Predictors of SCD

Registry, we demonstrate the best performance for SCA

prediction with RF-SLAM using both baseline and time-

varying covariates. Using our RF-SLAM approach with
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just baseline covariates also demonstrates improved pre-

dictive performance compared with RSF. While this is

a univariate prediction problem and further research is

required to understand the general properties of RF-

SLAM, we hypothesize that the improvement in per-

formance is due in part to the fact that our Poisson

log-likelihood split function is not based upon a propor-

tional hazards assumption and can naturally handle time-

varying effects. In contrast, RSF uses the log-rank statistic,

which has the key requirement of proportional hazards

to achieve optimality [65–68]. In our proof-of-concept

example, we demonstrate that while all three methods are

well calibrated overall, the best discrimination between

individuals with and without SCA is achieved with RF-

SLAM using both baseline and time-varying covariates.

We also express estimates of model performance with

confidence intervals through the non-parametric boot-

strap [62]. Since this approach does not apply naturally

to the case of expression of uncertainty for individual-

level predictions because the bootstrap sample on which

each forest is constructed varies, we also describe in the

Additional file 1 the parametric bootstrap approach. With

the parametric bootstrap approach, we develop the frame-

work for utilizing extended data and simulated outcomes

to create synthetic data sets for the quantification of the

degree to which the RF-SLAM predictions might vary

by training the forest on a new training set. Although

other approaches, such as the jackknife and infinitesimal

jackknife approaches have been applied to generate con-

fidence intervals for random forests estimates [70], our

method has utility beyond confidence interval generation.

Our parametric bootstrap approach which is based upon

simulating alternate training data sets can also be used

in simulation studies to examine the impact of different

properties of the data set on the overall predictions (e.g.

the number of events, strength of the predictors, degree of

data imbalance in the outcomes of interest, etc.).

Although RF-SLAM provides a new approach to the

analysis of SLAM data, further research is necessary to

fully understand its strengths and limitations. The data

set analyzed in the proof-of-concept example is represen-

tative of the sample size and corresponding challenges

often encountered in the analysis of clinical data. The

width of the confidence intervals for ˆAUC(t) (Additional

file 1 Figure S1) reflect the low number of events and

overall observations in the small cohort considered (75

SCA events and 382 individuals). While machine learn-

ing methods are often expected to require “big data” since

they can perform well on high dimensional prediction

problems with large sample sizes and large number of

predictors [1], here we demonstrate that it is also pos-

sible to apply RF-SLAM to a smaller sized data set. To

better understand the characteristics of RF-SLAM, its

performance in data sets of varying number of patients,

events, and predictors requires further analysis. Other

potential areas of future work include: examining other

terminal node estimates for the hazard to compare with

the Bayes estimate of the hazard; comparing the perfor-

mance with different node sizes, number of trees, and

potential variables to consider for splitting at each node;

studying the robustness of the RF-SLAM predictions to

missing data; and implementing sampling methods to cre-

ate balanced training data sets and determining how dif-

ferent implementations impact predictive performance.

Other areas of work include comparing the performance

of RF-SLAM with joint modeling approaches for lon-

gitudinal and time-to-event data [71–74]. Additionally,

through the inclusion of error terms, joint models can

account for measurement error in the covariates [71].

Future extensions of RF-SLAM that account for measure-

ment error may be required when working with noisy

data where there is high concern regarding data qual-

ity (e.g. patient generated data from self-tracking through

smartphones or wearable devices).

Conclusion
We introduce a new approach to clinical risk prediction

with SLAM data that builds upon prior methods for sur-

vival analysis and tree-based strategies. RF-SLAM is a

Poisson regression forest that utilizes a Poisson split rule

and a Bayes estimate of the hazard rates. Our approach

is distinct from the previously developed RSF for survival

analysis in that RF-SLAM can handle time-varying predic-

tors, provide a predicted probability of failure in each time

interval in consideration, and quantify the uncertainty

in the predictions. We also present a method-agnostic

approach for time-varying evaluation of model perfor-

mance. We illustrate the methods using three different

proof-of-concept approaches utilizing random forests for

SCA prediction in the LV Structural Predictors of SCD

Registry and demonstrate the improvement in perfor-

mance that can be achieved using the RF-SLAM approach

with time-varying covariates. Overall, the applications

and future directions of RF-SLAM are numerous and have

potential to improve the analysis of data in medicine and

beyond.

Supplementary information
Supplementary information accompanies this paper at

https://doi.org/10.1186/s12874-019-0863-0.

Additional file 1: Figure S1 Pairwise Comparisons of Time-Varying AUC

Estimates. Figure S2 Calibration Assessment with Spiegelhalter’s

Z-Statistic. Figure S3 Visualization of Calibration and Discrimination

Through Comparison of Survival Curves by Tertile of Risk. Table S1

Summary of Predictors in the Left Ventricular Structural Predictors of

Sudden Cardiac Death (SCD) Prospective Observational Registry. Table S2

Summary of the Three Methods Compared. Table S3 Comparison

Between RF-SLAM and RSF.

https://doi.org/10.1186/s12874-019-0863-0


Wongvibulsin et al. BMCMedical ResearchMethodology            (2020) 20:1 Page 13 of 14

Abbreviations

CMR: Cardiac magnetic resonance; CPIU: Counting process information units;

HF: Heart failure hospitalizations; ICD: Implantable cardioverter defibrillator;

LGE: Late gadolinium enhancement; LV: Left ventricular; LVEF: Left ventricular

ejection fraction; OOB: Out-of-bag; randomForestSRC: Random forests for

survival, regression, and classification; RF-SLAM: Random forests for survival,

longitudinal, and multivariate data analysis; RSF: Random survival forest; SCA:

Sudden cardiac arrest; SCD: Sudden cardiac death; SLAM: Survival,

longitudinal, and multivariate

Acknowledgments

The authors thank Professor Mei-Cheng Wang for leading the Survival,

Longitudinal, Multivariate (SLAM) Working Group at Johns Hopkins

Department of Biostatistics that partially motivated the methods developed

here, and Matthew Rosen for his assistance with customizing the

randomforestSRC package to the needs of our particular analysis.

Authors’ contributions

SW, KCW, and SLZ conceived and formulated the study design. SW and SLZ

developed the methods and performed the data analysis. KCW acquired the

patient data for the study and provided input regarding the analytic approach.

SW drafted the manuscript. SW, KCW, and SLW contributed to critical revision

of the manuscript and approved the final manuscript.

Funding

National Institutes of Health (NIH) 5T32GM007309 (to SW), F30HL142131 (to

SW), R01HL103812 (to KCW). The funding bodies played no role in the design

of the study and collection, analysis, or interpretation of data and in writing

the manuscript.

Availability of data andmaterials

The data set used and/or analyzed during the current study are available from

the co-author (KCW) on reasonable request.

Ethics approval and consent to participate

The study protocol was approved by the institutional review boards at all sites

(Johns Hopkins Medical Institutions, Christiana Care Health System, and the

University of Maryland). All patients signed written informed consent.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details
1Department of Biomedical Engineering, Johns Hopkins School of Medicine,

Baltimore, USA. 2Department of Medicine, Division of Cardiology, Johns

Hopkins School of Medicine, Baltimore, USA. 3Department of Biostatistics,

Johns Hopkins Bloomberg School of Public Health, Baltimore, USA.

Received: 8 May 2019 Accepted: 8 November 2019

References

1. Goldstein BA, Navar AM, Carter RE. Moving beyond regression

techniques in cardiovascular risk prediction: applying machine learning

to address analytic challenges. Eur Heart J. 2016;38(23):1805–14.

2. Kruppa J, Ziegler A, König IR. Risk estimation and risk prediction using

machine-learning methods. Hum Genet. 2012;131(10):1639–54.

3. Malley JD, Kruppa J, Dasgupta A, Malley KG, Ziegler A. Probability

machines. Methods Inf Med. 2012;51(01):74–81.

4. Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920–30.

5. Boulesteix A-L, Janitza S, Kruppa J, König IR. Overview of random forest

methodology and practical guidance with emphasis on computational

biology and bioinformatics. Wiley Interdiscip Rev Data Min Knowl Disc.

2012;2(6):493–507.

6. Wager S, Athey S. Estimation and inference of heterogeneous treatment

effects using random forests. J Am Stat Assoc. 2018;113(523):1228–42.

7. Hill JL. Bayesian nonparametric modeling for causal inference. J Comput

Graph Stat. 2011;20(1):217–40.

8. Sparapani RA, Logan BR, McCulloch RE, Laud PW. Nonparametric

survival analysis using bayesian additive regression trees (bart). Stat Med.

2016;35(16):2741–53.

9. Foster JC, Taylor JM, Ruberg SJ. Subgroup identification from

randomized clinical trial data. Stat Med. 2011;30(24):2867–80.

10. Su X, Tsai C-L, Wang H, Nickerson DM, Li B. Subgroup analysis via

recursive partitioning. J Mach Learn Res. 2009;10(Feb):141–58.

11. Lu M, Sadiq S, Feaster DJ, Ishwaran H. Estimating individual treatment

effect in observational data using random forest methods. J Comput

Graph Stat. 2018;27(1):209–19.

12. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel

WB. Prediction of coronary heart disease using risk factor categories.

Circulation. 1998;97(18):1837–47.

13. Morrow DA, Antman EM, Charlesworth A, Cairns R, Murphy SA,

de Lemos JA, Giugliano RP, McCabe CH, Braunwald E. Timi risk score for

st-elevation myocardial infarction: a convenient, bedside, clinical score for

risk assessment at presentation: an intravenous npa for treatment of

infarcting myocardium early ii trial substudy. Circulation. 2000;102(17):

2031–7.

14. Fishman GI, Chugh SS, DiMarco JP, Albert CM, Anderson ME, Bonow

RO, Buxton AE, Chen P-S, Estes M, Jouven X, et al. Sudden cardiac death

prediction and prevention: report from a national heart, lung, and blood

institute and heart rhythm society workshop. Circulation. 2010;122(22):

2335–48.

15. Hayashi M, Shimizu W, Albert CM. The spectrum of epidemiology

underlying sudden cardiac death. Circ Res. 2015;116(12):1887–906.

16. Wellens HJ, Schwartz PJ, Lindemans FW, Buxton AE, Goldberger JJ,

Hohnloser SH, Huikuri HV, Kääb S, La Rovere MT, Malik M, et al. Risk

stratification for sudden cardiac death: current status and challenges for

the future. Eur Heart J. 2014;35(25):1642–51.

17. Kandala J, Oommen C, Kern KB. Sudden cardiac death. Br Med Bull.

2017;122(1):5–15. https://www.ncbi.nlm.nih.gov/pubmed/28444125.

https://doi.org/10.1093/bmb/ldx011.

18. Myerburg RJ, Goldberger JJ. Sudden cardiac arrest risk assessment:

population science and the individual risk mandate. JAMA Cardiol.

2017;2(6):689–94.

19. Zaman S, Goldberger JJ, Kovoor P. Sudden death risk-stratification in

2018–2019: The old and the new. Heart Lung Cir. 2019;28(1):57–64.

20. Haqqani HM, Chan KH, Kumar S, Denniss AR, Gregory AT. The

contemporary era of sudden cardiac death and ventricular arrhythmias:

basic concepts, recent developments and future directions. Heart Lung

Circ. 2019;28(1):1–5.

21. Chieng D, Paul V, Denman R. Current device therapies for sudden

cardiac death prevention–the icd, subcutaneous icd and wearable icd.

Heart Lung Circ. 2019;28(1):65–75.

22. Moss AJ, Zareba W, Hall WJ, Klein H, Wilber DJ, Cannom DS, Daubert

JP, Higgins SL, Brown MW, Andrews ML. Prophylactic implantation of a

defibrillator in patients with myocardial infarction and reduced ejection

fraction. N Engl J Med. 2002;346(12):877–83.

23. Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, Domanski

M, Troutman C, Anderson J, Johnson G, et al. Amiodarone or an

implantable cardioverter–defibrillator for congestive heart failure. N Engl

J Med. 2005;352(3):225–37.

24. Wu KC, Gerstenblith G, Guallar E, Marine JE, Dalal D, Cheng A, Marbán E,

Lima JA, Tomaselli GF, Weiss RG. Combined cardiac magnetic resonance

imaging and c-reactive protein levels identify a cohort at low risk for

defibrillator firings and death. Circ Cardiovasc Imaging. 2012;5(2):178–86.

25. Kent DM, Hayward RA. Limitations of applying summary results of clinical

trials to individual patients: the need for risk stratification. Jama.

2007;298(10):1209–12.

26. Sabbag A, Suleiman M, Laish-Farkash A, Samania N, Kazatsker M,

Goldenberg I, Glikson M, Beinart R, et al. Contemporary rates of

appropriate shock therapy in patients who receive implantable device

therapy in a real-world setting: From the israeli icd registry. Heart Rhythm.

2015;12(12):2426–33.

27. Kramer DB, Kennedy KF, Noseworthy PA, Buxton AE, Josephson ME,

Normand S-L, Spertus JA, Zimetbaum PJ, Reynolds MR, Mitchell SL.

Characteristics and outcomes of patients receiving new and replacement

implantable cardioverter-defibrillators: results from the ncdr. Circ

Cardiovasc Qual Outcomes. 2013;6(4):488–97.

https://www.ncbi.nlm.nih.gov/pubmed/28444125
https://doi.org/10.1093/bmb/ldx011


Wongvibulsin et al. BMCMedical ResearchMethodology            (2020) 20:1 Page 14 of 14

28. Deo R, Norby FL, Katz R, Sotoodehnia N, Adabag S, DeFilippi CR,

Kestenbaum B, Chen LY, Heckbert SR, Folsom AR, et al. Development

and validation of a sudden cardiac death prediction model for the

general population. Circulation. 2016;134(11):806–16.

29. Kaltman JR, Thompson PD, Lantos J, Berul CI, Botkin J, Cohen JT, Cook

NR, Corrado D, Drezner J, Frick KD, et al. Screening for sudden cardiac

death in the young: report from a national heart, lung, and blood institute

working group. Circulation. 2011;123(17):1911–8.

30. Wu KC. Sudden cardiac death substrate imaged by magnetic resonance

imaging: from investigational tool to clinical applications. Circ Cardiovasc

Imaging. 2017;10(7):005461.

31. Bou-Hamad I, Larocque D, Ben-Ameur H, et al. A review of survival trees.

Stat Surv. 2011;5:44–71.

32. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

33. Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS, et al. Random survival

forests. Ann Appl Stat. 2008;2(3):841–60.

34. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning.

Springer Ser Stat. 2001.

35. Fernández-Delgado M, Cernadas E, Barro S, Amorim D. Do we need

hundreds of classifiers to solve real world classification problems?. J Mach

Learn Res. 2014;15(1):3133–81.

36. Schmidt A, Azevedo C, Cheng A, Gupta S, Bluemke D, Foo T,

Gerstenblith G, Weiss R, Marban E, Tomaselli G, Lima J, Wu K. Infarct

tissue heterogeneity by magnetic resonance imaging identifies

enhanced cardiac arrhythmia susceptibility in patients with left

ventricular dysfunction. Circulation. 2007;115(15):2006–14. https://www.

ncbi.nlm.nih.gov/pubmed/17389270.

37. Tao S, Ashikaga H, Ciuffo LA, Yoneyama K, Lima JA, Frank TF, Weiss RG,

Tomaselli GF, Wu KC. Impaired left atrial function predicts inappropriate

shocks in primary prevention implantable cardioverter-defibrillator

candidates. J Cardiovasc Electrophysiol. 2017;28(7):796–805.

38. Zhang Y, Guallar E, Weiss RG, Stillabower M, Gerstenblith G, Tomaselli

GF, Wu KC. Associations between scar characteristics by cardiac magnetic

resonance and changes in left ventricular ejection fraction in primary

prevention defibrillator recipients. Heart Rhythm. 2016;13(8):1661–6.

39. Cheng A, Dalal D, Butcher B, Norgard S, Zhang Y, Dickfeld T, Eldadah

ZA, Ellenbogen KA, Guallar E, Tomaselli GF. Prospective observational

study of implantable cardioverter-defibrillators in primary prevention of

sudden cardiac death: study design and cohort description. J Am Heart

Assoc. 2013;2(1):000083.

40. Cheng A, Zhang Y, Blasco-Colmenares E, Dalal D, Butcher B, Norgard S,

Eldadah Z, Ellenbogen KA, Dickfeld T, Spragg DD, et al. Protein

biomarkers identify patients unlikely to benefit from primary prevention

implantable cardioverter defibrillators: findings from the prospective

observational study of implantable cardioverter defibrillators (prose-icd).

Circ Arrhythmia Electrophysiol. 2014;7(6):1084–91.

41. Zhang Y, Guallar E, Blasco-Colmenares E, Dalal D, Butcher B, Norgard S,

Tjong FV, Eldadah Z, Dickfeld T, Ellenbogen KA, et al. Clinical and serum-

based markers are associated with death within 1 year of de novo implant

in primary prevention icd recipients. Heart Rhythm. 2015;12(2):360–6.

42. Ishwaran H, Kogalur UB, Kogalur MUB. Package ’randomforestsrc’. 2019.

http://www.est.colpos.mx/R-mirror/web/packages/randomForestSRC/

randomForestSRC.pdf.

43. Moradian H, Larocque D, Bellavance F. L1 splitting rules in survival

forests. Lifetime Data Anal. 2017;23(4):671–91.

44. Nasejje JB, Mwambi H, Dheda K, Lesosky M. A comparison of the

conditional inference survival forest model to random survival forests

based on a simulation study as well as on two applications with

time-to-event data. BMC Med Res Methodol. 2017;17(1):115.

45. Singer JD, Willett JB. It’s about time: Using discrete-time survival analysis

to study duration and the timing of events. J Educ Stat. 1993;18(2):155–95.

46. Fleming TR, Harrington DP. Counting Processes and Survival Analysis, vol.

169. Hoboken: Wiley; 2011. https://books.google.com/books?id=Sqg-

YPcpzLYC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=

onepage&q&f=false.

47. Therneau TM, Atkinson EJ, et al. An introduction to recursive partitioning

using the rpart routines. 1997. https://www.mayo.edu/research/

documents/biostat-61pdf/doc-10026699.

48. Quigley J, Bedford T, Walls L. Estimating rate of occurrence of rare events

with empirical bayes: A railway application. Reliab Eng Syst Saf.

2007;92(5):619–27.

49. Howlader HA, Balasooriya U. Bayesian estimation of the distribution

function of the poisson model. Biom J J Math Methods Biosci. 2003;45(7):

901–12.

50. Breiman L. Classification and regression trees: Chapman & Hall; 1984.

https://books.google.com/books?id=Sqg-YPcpzLYC&printsec=

frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false.

51. Breiman L, Cutler A. Setting up, using, and understanding random forests

v4. 0: University of California, Department of Statistics; 2003. https://www.

stat.berkeley.edu/~breiman/Using_random_forests_v4.0.pdf.

52. Liaw A, Wiener M, et al. Classification and regression by randomforest. R

news. 2002;2(3):18–22.

53. Dankowski T, Ziegler A. Calibrating random forests for probability

estimation. Stat Med. 2016;35(22):3949–60.

54. Kruppa J, Schwarz A, Arminger G, Ziegler A. Consumer credit risk:

Individual probability estimates using machine learning. Expert Syst Appl.

2013;40(13):5125–31.

55. Steyerberg EW, Vergouwe Y. Towards better clinical prediction models:

seven steps for development and an abcd for validation. Eur Heart J.

2014;35(29):1925–31.

56. Lee Y-h, Bang H, Kim DJ. How to establish clinical prediction models.

Endocrinol Metab. 2016;31(1):38–44.

57. Moons KG, Royston P, Vergouwe Y, Grobbee DE, Altman DG. Prognosis

and prognostic research: what, why, and how?. Bmj. 2009;338:375.
58. Kattan MW, Hess KR, Amin MB, Lu Y, Moons KG, Gershenwald JE,

Gimotty PA, Guinney JH, Halabi S, Lazar AJ, et al. American joint

committee on cancer acceptance criteria for inclusion of risk models for

individualized prognosis in the practice of precision medicine. CA: A

Cancer J Clin. 2016;66(5):370–4.
59. Steyerberg EW, Uno H, Ioannidis JP, Van Calster B, Ukaegbu C, Dhingra T,

Syngal S, Kastrinos F. Poor performance of clinical prediction models: the

harm of commonly applied methods. J Clin Epidemiol. 2018;98:133–43.
60. Bansal A, Heagerty PJ. A tutorial on evaluating the time-varying

discrimination accuracy of survival models used in dynamic decision

making. Med Decis Making. 2018;38(8):904–16.
61. Cortes C, Mohri M. Confidence intervals for the area under the roc curve.

In: Advances in Neural Information Processing Systems; 2005. p. 305–12.

https://papers.nips.cc/paper/2645-confidence-intervals-for-the-area-

underthe-roc-curve.pdf.
62. Efron B, Tibshirani R. An introduction to the bootstrap. New York:

Chapman & Hall; 1994.
63. Spiegelhalter DJ. Probabilistic prediction in patient management and

clinical trials. Stat Med. 1986;5(5):421–33.
64. Rufibach K. Use of brier score to assess binary predictions. J Clin

Epidemiol. 2010;63(8):938–9.
65. Yang S, Prentice R. Improved logrank-type tests for survival data using

adaptive weights. Biometrics. 2010;66(1):30–8.

66. Mantel N. Evaluation of survival data and two new rank order statistics

arising in its consideration. Cancer Chemother Rep. 1966;50:163–70.
67. Peto R, Peto J. Asymptotically efficient rank invariant test procedures. J R

Stat Soc Ser A (Gen). 1972;135(2):185–98.
68. Prentice RL, Pettinger M, Anderson GL. Statistical issues arising in the

women’s health initiative. Biometrics. 2005;61(4):899–911.
69. Cook NR. Use and misuse of the receiver operating characteristic curve in

risk prediction. Circulation. 2007;115(7):928–35.
70. Wager S, Hastie T, Efron B. Confidence intervals for random forests: The

jackknife and the infinitesimal jackknife. J Mach Learn Res. 2014;15(1):

1625–51.
71. Papageorgiou G, Mauff K, Tomer A, Rizopoulos D. An overview of joint

modeling of time-to-event and longitudinal outcomes. Ann Rev Stat

Appl. 2019. https://www.annualreviews.org/doi/abs/10.1146/annurev-

statistics-030718-105048.
72. Rizopoulos D, Molenberghs G, Lesaffre EM. Dynamic predictions with

time-dependent covariates in survival analysis using joint modeling and

landmarking. Biom J. 2017;59(6):1261–76.
73. Chi Y-Y, Ibrahim JG. Joint models for multivariate longitudinal and

multivariate survival data. Biometrics. 2006;62(2):432–45.
74. Guler I, Faes C, Cadarso-Suárez C, Teixeira L, Rodrigues A, Mendonca D.

Two-stage model for multivariate longitudinal and survival data with

application to nephrology research. Biom J. 2017;59(6):1204–20.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

https://www.ncbi.nlm.nih.gov/pubmed/17389270
https://www.ncbi.nlm.nih.gov/pubmed/17389270
http://www.est.colpos.mx/R-mirror/web/packages/randomForestSRC/randomForestSRC.pdf
http://www.est.colpos.mx/R-mirror/web/packages/randomForestSRC/randomForestSRC.pdf
https://books.google.com/books?id=Sqg-YPcpzLYC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://books.google.com/books?id=Sqg-YPcpzLYC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://books.google.com/books?id=Sqg-YPcpzLYC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://www.mayo.edu/research/documents/biostat-61pdf/doc-10026699
https://www.mayo.edu/research/documents/biostat-61pdf/doc-10026699
https://books.google.com/books?id=Sqg-YPcpzLYC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://books.google.com/books?id=Sqg-YPcpzLYC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
https://www.stat.berkeley.edu/~breiman/Using_random_forests_v4.0.pdf
https://www.stat.berkeley.edu/~breiman/Using_random_forests_v4.0.pdf
https://papers.nips.cc/paper/2645-confidence-intervals-for-the-area-underthe- roc-curve.pdf
https://papers.nips.cc/paper/2645-confidence-intervals-for-the-area-underthe- roc-curve.pdf
https://www.annualreviews.org/doi/abs/10.1146/annurev-statistics-030718-105048
https://www.annualreviews.org/doi/abs/10.1146/annurev-statistics-030718-105048

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Learning from data for clinical risk prediction
	Motivating Example: Sudden Cardiac Arrest (SCA) Prediction

	Methods
	Methods: random forest for survival, longitudinal, and multivariate (RF-SLAM) data analysis
	Random survival forests (RSFs)

	RF-SLAM methodology
	Evaluating performance
	Time-Varying AUC
	Clinically-Relevant visualizations of discriminative ability through plots of the survival or hazard functions
	Calibration of predicted hazard rates
	Clinically-Relevant visualizations of discrimination and calibration through plots of the survival or hazard functions

	Illustrating example: sudden cardiac arrest (SCA) prediction with SLAM data
	RF-SLAM
	Random survival forest (RSF)


	Results
	Discussion
	Conclusion
	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12874-019-0863-0.
	Additional file 1

	Abbreviations
	Acknowledgments
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

