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Abstract 1 

The genetic, biologic, and clinical heterogeneity of sarcomas poses a challenge for the 2 

identification of therapeutic targets, clinical research, and advancing patient care. Because there 3 

are > 100 sarcoma subtypes, in-depth genetic studies have focused on one or a few subtypes. 4 

Herein, we report a comparative genetic analyses analysis of 2,138 sarcomas representing 45 5 

pathological entities. This cohort was prospectively analyzed using targeted sequencing to 6 

characterize subtype-specific somatic alterations in targetable pathways, rates of whole genome 7 

doubling, mutational signatures, and subtype-agnostic genomic clusters. The most common 8 

alterations were in cell cycle control and TP53, receptor tyrosine kinases/PI3K/RAS, and 9 

epigenetic regulators. Subtype-specific associations included TERT amplification in intimal 10 

sarcoma and SWI/SNF alterations in uterine adenosarcoma. Tumor mutational burden, while 11 

low compared to other cancers, varied between and within subtypes. This resource will improve 12 

sarcoma models, motivate studies of subtype-specific alterations, and inform investigations of 13 

genetic factors and their correlations with treatment response.  14 
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Introduction 15 

Sarcomas are mesenchymal malignancies of the bone or soft tissue that arise in diverse organ 16 

sites and display a range of clinical behavior from indolent to aggressive. Sarcomas are also 17 

rare tumors, representing < 1% of all malignancies in adults (1). Although the diagnosis and 18 

management of sarcomas has slowly improved over the last decade, about 40% of patients with 19 

newly diagnosed sarcoma eventually die of disease. One barrier to improving outcomes in 20 

sarcoma patients is the cancer’s genomic and biologic complexity, with more than 100 different 21 

subtypes now recognized by the World Health Organization (2).  22 

Advances in clinical tumor genomic analyses have improved tumor classification; sarcomas are 23 

now classified into two broad genetic groups (3). Sarcomas often have either simple karyotypes, 24 

harboring genetic translocations or activating mutations, or highly complex karyotypes, including 25 

numerous genomic rearrangements and large chromosomal gains and losses, commonly 26 

involving cell cycle genes such as TP53, MDM2, RB1, and CDK4. Toward identifying 27 

therapeutic targets and designing precision oncology trials based on specific sarcomas’ genetic 28 

features, a comprehensive study of soft tissue sarcomas was performed by The Cancer 29 

Genome Atlas network, which analyzed 206 samples within 7 common subtypes; rarer ones 30 

were represented by as few as 5 cases (4). Analysis of a larger cohort could define the 31 

frequency of potentially actionable alterations in rare sarcoma subtypes and broadly compare 32 

the frequency of genetic alterations across subtypes to facilitate better diagnostic precision, 33 

identify prognostic biomarkers, improve laboratory-based modeling of sarcomas, and generate 34 

novel hypotheses on underlying disease mechanisms.  35 

Here, we leveraged an institution-wide tumor genomic profiling initiative to prospectively analyze 36 

2,138 sarcomas encompassing 45 subtypes to identify subtype-specific somatic mutations and 37 

copy number alterations and characterize tumor mutation burden (TMB) and microsatellite 38 
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instability. Paired tumor and normal DNA samples were analyzed using the FDA-cleared 39 

Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-40 

IMPACT) next generation sequencing platform (5).  41 

 42 

Results  43 

Study population characteristics 44 

A total of 2,138 bone and soft tissue sarcoma samples were analyzed. Median patient age was 45 

54 years (range < 1– > 90 years); 1,098 (51.4%) were female. Most were primary tumors; 790 46 

samples (36.9%) were metastases (Supplementary Table 1). The analyzed dataset included 47 

45 distinct pathologic entities as assessed by expert sarcoma pathologists. Twenty-two 48 

subtypes were represented by ≥ 20 tumor samples and were therefore used as our core 49 

subtype set for analyses (Fig. 1A). Data from less represented subtypes (Fig. 1B) are included 50 

in this cohort as a resource. The most common subtypes were gastrointestinal stromal tumor 51 

(GIST; n = 395, 18.5%), dedifferentiated liposarcoma (DDLS; n = 167, 5.4%), uterine 52 

leiomyosarcoma (ULMS; n = 165, 5.3%), and undifferentiated pleomorphic sarcoma (UPS; n = 53 

145, 4.6%) (Fig. 1B). Rare subtypes within the core set include angiosarcoma (ANGS; n = 101, 54 

3.2%), desmoplastic small round cell tumor (DSRCT; n = 53, 1.7%), and perivascular epithelioid 55 

cell neoplasms (PECOMA; n = 30, 0.96%) (Fig. 1B). As expected, the age distribution varied 56 

among subtypes, as did tumor location (Fig. 1A, Supplementary Table 1). Among the more 57 

common subtypes, myxofibrosarcoma (MFS) had the oldest median age (68 years), whereas 58 

embryonal rhabdomyosarcoma (ERMS) had the youngest (8 years). Similarly, sex distribution 59 

was not uniform among subtypes (Fig. 1A); PECOMA was more common in females (23/30; 60 

76.6%) and DSRCT more common in males (48/53; 90.5%), as was DDLS (males 115/164; 61 

68.8%) (Fig. 1A). Among the most common subtypes, survival rate differences were most 62 
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apparent starting at 3 years post-sequencing. Myxoid/round cell liposarcoma (MRLS) and GIST 63 

patients had the highest 3-year survival rates (both > 75%), whereas ANGS and alveolar 64 

rhabdomyosarcoma (ARMS) patients had the lowest (34% and 19%, respectively) (Fig. 1C).  65 

Subtype-specific mutation analysis 66 

Given the heterogeneity in sarcoma subtypes, their biologic behavior, and clinical presentation, 67 

we sought to define the genetics of individual subtypes at both the gene (mutation, gene fusion, 68 

and copy number alteration) and functional pathway levels. MSK-IMPACT identified at least one 69 

driver mutation in the majority of subtypes (Fig. 2A, Supplementary Table 2). Overall, TMB 70 

among sarcomas was low, whereas the fraction genome altered (FGA) in most cases was 71 

relatively high compared with other cancers, consistent with prior reports (Fig. 2A) (4). Both 72 

varied greatly among sarcoma subtypes, especially FGA. We performed MutSig and MuSiC 73 

analyses to identify significantly recurrently mutated genes in each subtype (Fig. 2B). As 74 

expected, TP53 and RB1 were significantly altered across multiple subtypes, but at markedly 75 

different frequencies. Within GIST, we identified several frequently mutated genes in addition to 76 

previously known drivers such as KIT, SDHA, and PDGFRA (6). These included the histone 77 

methyltransferase SETD2 (4%), the MYC binding partner and transcription factor MAX (4%), 78 

and MGA (3%), which binds the MAX-MYC complex (7).  79 

Additional subtypes with recurrently mutated genes of potential biologic or clinical relevance 80 

included ANGS (n = 101), in which we identified recurrent mutations in receptor tyrosine kinases 81 

involved in angiogenesis including KDR (VEGFR2; 19%) and FLT4 (VEGFR3; 9%) as well as 82 

another receptor tyrosine kinase, EPHA5 (9% of cases). The mutations in EPHA5 and FLT4 83 

were all variants of unknown significance (VUS). The VUS in FLT4 all affect the kinase domain 84 

or the C-terminus, implying a possible functional consequence (Fig. 2C). In Ewing sarcoma (ES; 85 

n = 99), 10% of samples carried mutations in the cohesion complex component STAG2, 86 

confirming prior reports (8). In ULMS, MED12, a member of the transcription elongation 87 
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complex, was altered in 16% of cases, most frequently missense mutations at glycine 44, as 88 

reported previously (Fig. 2B) (9).  89 

In PECOMA, SFT, LMS, ULMS, and ES, driver mutations were represented in a cancer cell 90 

fraction (CCF) of close to 1.0, suggesting that these represent a large clonal population (Fig. 91 

2D). The CCF for VUS was overall similar to that of drivers within most subtypes, with the 92 

exception of MFS, OS, and UPS, which suggests that in some cases these VUS could have an 93 

unrecognized function, calling for further studies to determine their roles in oncogenesis and 94 

progression.  95 

Copy Number Alterations by Subtype 96 

As many sarcomas are driven by copy number alterations, we analyzed these changes across 97 

the whole cohort, including in subtypes not classically thought to be driven by them (Fig. 3). For 98 

instance, in GIST patients (evaluable n = 371), there were frequent copy number loss events 99 

involving chromosomes 1, 14, 15, and 22 (Fig. 3A). Translocation-driven sarcomas, e.g. ES, 100 

DSRCT, and SYNS, exhibited highly recurrent copy number changes, indicating that there may 101 

be additional relevant genetic events beyond the driver translocations (Fig. 3B). We identified a 102 

diversity of chromosome arms (e.g. 5p, 8q, and 10p) that were recurrently affected by copy 103 

number variation across multiple common subtypes (Fig. 3B). Of note, 12q amplifications in 104 

DDLS and WDLS patients were not wide enough to be called in arm-level analysis (Fig. 3B, 105 

left), though they were clearly observed as a strong focal event in copy number profiles (Fig. 106 

3A, B, right). In most cases, these arm-level copy number events were not linked to a specific 107 

gene. However, there were some exceptions including significant gains of MYC on chromosome 108 

8q24 in OS, EPIS, ERMS, and ANGS, as well as significant gain of a negative regulator of NF-109 

kB signaling, TNFAIP3, in DDLS (Fig. 3B). As expected, we observed more widespread copy 110 
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number changes in classically copy number-driven subtypes such as LMS, ULMS, MFS, and 111 

OS compared with the rest of the cohort. 112 

Despite sharing CDK4 and MDM2 amplification events, DDLS is more aggressive than WDLS 113 

and has increased risk for distant spread (10). Therefore, we compared rates of amplifications 114 

between WDLS and DDLS, and found greater rates of amplification of the oncogenes GLI1 115 

(8.5% vs. 25.3%), TERT (6.3% vs. 14.4%), and JUN (0% vs. 13.8%) in DDLS. The Jun 116 

transcription factor positively regulates the expression of cyclin D1, a CDK4/6 cyclin partner, 117 

and amplification of JUN in DDLS is associated with a more aggressive phenotype (4), calling 118 

for investigation of whether CDK4 and JUN co-amplification drives progression to DDLS or 119 

modulates response to CDK4 inhibition. Amplification of the GLI1 transcription factor, 120 

downstream of Sonic Hedgehog (Shh) signaling, has previously been reported (11); this 121 

confirmation furthers rationale for studying Shh pathway inhibition in DDLS. GLI1 amplification 122 

and JUN amplification were mutually exclusive.  123 

OS, UPS, ERMS, and MPNST had high frequencies of WGD, all around 50%, ranking among 124 

the highest even among a wide variety of cancers for which WGD was previously analyzed (Fig. 125 

3C; Supplementary Fig. S1A) (12). In keeping with the notion that MFS is on a genetic 126 

continuum with UPS (4), UPS and MFS had similar WGD frequencies. Despite being copy 127 

number variation (CNV)-driven, WDLS and DDLS had lower rates of WGD frequency, as did 128 

many translocation-driven subtypes including SYNS, ES, DSRCT, and MRLS. In sarcomas, 129 

WGD was associated with worse overall survival among metastatic (p = 0.042) but not primary 130 

cases (p = 0.391; Supplementary Fig. S1B). Among specific subtypes, WGD was associated 131 

with worse overall survival (from time of sequencing) in metastatic UPS (p = 0.022; Fig. 3D), but 132 

not MFS (p = 0.78; Supplementary Fig. S1C).  133 

Commonly Disrupted Pathways in Sarcoma 134 
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Pathway-specific analyses within each sarcoma subtype for which ≥ 20 samples were available 135 

(Fig. 4A, genes in each pathway listed in Supplementary Table 3) revealed that a number of 136 

pathways important in carcinomas were infrequently altered in sarcoma, including TGFβ, WNT, 137 

Hippo, Notch, and NRF2 (Fig. 4A, right panel). By contrast, the cell cycle and TP53 pathways 138 

were altered in at least half of samples in 8 of the 22 most common subtypes. For instance, 139 

DDLS and WDLS demonstrated cell cycle or TP53 pathway alterations in 214/215 (99%) of 140 

samples, most commonly through co-amplification of CDK4 and the E3 ubiquitin ligase that 141 

targets p53 for degradation, MDM2 (Fig. 4A) (13,14). Many of the sarcomas with infrequent 142 

alterations (< 10%) in the cell cycle and TP53 pathways were driven by translocations (e.g. 143 

MRLS, DSRCT, SYNS) or alteration in the SWI/SNF remodeling complex (epithelioid sarcoma 144 

[EPIS]) (Fig. 4A), highlighting a distinct mechanism of pathogenesis. An exception was solitary 145 

fibrous tumor (SFT), which is driven by the NAB2-STAT6 fusion oncogene, and has oncogenic 146 

TP53 alteration in 28% of cases (Fig. 4A) (15).  147 

The PI3K pathway was frequently altered in some of the most prevalent subtypes in our dataset 148 

including MRLS (41%), PECOMA (40%), ULMS (30%), pleomorphic liposarcoma (PLLS; 22%), 149 

UPS (20%), and soft tissue leiomyosarcoma (LMS; 20%) (Fig. 4A, right panel). Among these 150 

subtypes, PTEN and PIK3CA were the most frequently affected genes except in PECOMA 151 

where TSC2 loss of function alterations were most common (30%) (Fig. 4A, 4B). PTEN loss of 152 

function alterations predominate in LMS and ULMS (14% and 21%, respectively), whereas in 153 

MRLS, PIK3CA mutations were most frequent, occurring in 25% of cases, consistent with our 154 

prior findings (16). In MRLS, PTEN loss is observed in 21% of cases, some of which were 155 

concurrent with PIK3CA mutations (4 PIK3CA mutations in 10 PTEN loss cases). In contrast, in 156 

UPS, PTEN alterations were identified in 8% of samples and PIK3CA in 3%; only 1 of the 11 157 

cases with a PTEN alteration had a concurrent PIKC3A mutation. Notably, PTEN loss of 158 
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function has also been proposed as a predictor of non-response to immune checkpoint inhibition 159 

in ULMS (17). 160 

Because a pan-cancer MSK-IMPACT analysis identified TERT promoter mutations in a subset 161 

of sarcomas (18), we investigated their frequency as a function of sarcoma subtype (Fig. 4C). 162 

We identified oncogenic TERT amplifications in 44% (8/18) of intimal sarcoma (INTS) and TERT 163 

promoter mutations in 79% (38/48) of MRLS, 46% (24/52) of SFT, and 35% (5/14) of 164 

dedifferentiated chondrosarcoma (DDCHS). In DDLS, oncogenic TERT promoter alterations 165 

were present in 16% of samples (27/167) and were almost entirely amplifications (n = 24). 166 

TERT copy number alterations have not yet been described in INTS, perhaps due to the low 167 

incidence of this rare subtype. The TERT locus is distinct from that of the MDM2 and CDK4 168 

amplifications (19) that are hallmarks of INTS, implicating TERT amplification as a potential 169 

independent contributor to pathogenesis.  170 

Alterations in DNA damage repair (DDR) pathway genes have been associated with 171 

development of sarcomas (20), and are of particular clinical interest as PARP inhibition has 172 

activity in select carcinomas with homologous recombination deficiency and immune checkpoint 173 

blockade has activity in certain tumors with microsatellite instability (21,22). Our analysis of 174 

DDR pathway alterations found that 9.6% of all samples harbored an oncogenic somatic 175 

alteration in a DDR pathway. Among subtypes with more than 20 samples, the frequency of 176 

DDR gene alterations was highest in ULMS (24%), MPNST (16%), PLLS (13%), PECOMA 177 

(13%), ANGS (13%), LMS (10%), and OS (10%) (Fig. 4A, right panel). The most frequently 178 

altered genes across subtypes were BRCA2 (1.4% of all samples), RAD51B (1.1%), CHEK2 179 

(1.0%) ATM (0.9%), FANCA (0.6%), and RAD51 (0.6%). Consistent with a previous report in 180 

uterine sarcomas (23), nearly half of BRCA2 (41%) and RAD51B (47%) alterations occurred in 181 

sarcomas of uterine origin, with RAD51B or BRCA2 each mutated in 7% of ULMS cases. 182 

Similarly, 35% of the 14 uterine adenosarcomas also had an altered DDR gene, all deep 183 
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deletions. Five percent of ANGS had oncogenic mutations and another 5% had a VUS in ATM. 184 

Given the association of ANGS with prior ionizing radiation, ATM mutations may represent a 185 

convergent pathogenic mechanism for accumulation of DNA damage. Of the 15 sarcomas 186 

(0.7%) with an altered mismatch repair (MMR) gene (MLH1, MSH2, MSH6, or PMS2), one 187 

(LMS) was microsatellite instability (MSI)-high by MSISensor and had a high TMB.  188 

Epigenetic dysregulation contributes to the pathogenesis of several sarcoma subtypes (24). In 189 

SYNS, EPIS, malignant rhabdoid tumors, and MPNST, this occurs through alterations of 190 

chromatin-remodeling and -modifying complexes; in chondroblastoma, CHS, UPS, giant cell 191 

tumors of bone, and osteosarcoma through oncogenic histone mutations. In light of emerging 192 

pharmacologic strategies to study and therapeutically target epigenetic regulatory proteins, we 193 

identified sarcoma subtypes characterized by epigenetic pathway alterations (Fig. 4A; 194 

Supplementary Table 3) (25). As expected, 75% of EPIS had loss-of-function deletions, 195 

truncating mutations, or intragenic fusions in SMARCB1. In addition, the epigenetic pathway 196 

was one of the most altered pathways among the highly prevalent subtypes in our dataset. 197 

Pathogenic alterations in epigenetic pathway genes (Supplementary Table 3) were observed 198 

in 64% of MPNST, 49% of ULMS, 45% of PLLS, 43% of CHS, 42% of UPS, 36% of MFS, and 199 

32% of OS (Fig. 4A). By contrast, these alterations were infrequently observed (< 10%) in 200 

WDLS, ARMS, and MRLS, suggesting subtype specificity. 201 

We determined the association with specific subtypes of epigenetic pathway genes contributing 202 

to a specific biochemical function (e.g. DNA methylation, chromatin remodeling) and complex 203 

(e.g. PRC1, PRC2, MLL3/4) (Fig. 4D; Supplementary Fig. 2; Supplementary Table 4). Genes 204 

involved in histone modification were altered in 48% of MPNST, 42% of sclerosing epithelioid 205 

fibrosarcoma (SEF), 36% of uterine adenosarcoma (UAS), and 36% of high-grade endometrial 206 

stromal sarcoma (HGESS). ERMS had frequent alterations in in the transcriptional co-repressor 207 

and non-canonical PRC1 complex member BCOR (19% total, 16% oncogenic), which were 208 
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mutually exclusive with DICER1 alterations (12% oncogenic). Both alterations were more 209 

prevalent in our population than in prior studies (26,27).  210 

Genes involved in chromatin remodeling were altered at similarly high frequencies: 76% of 211 

epithelial sarcoma (EPIS), 39% of ULMS, 26% of UPS, 24% of MFS, and 18% of MPNST. In a 212 

significant portion of these cases, the histone chaperone ATRX drove these high rates 213 

(Supplementary Fig. 2). We also note the unexpected finding that UAS (n = 14), a rare 214 

sarcoma subtype, had oncogenic alterations in genes encoding subunits of the SWI/SNF 215 

chromatin remodeling complex in 43% of patients, with ARID1A and PBRM1 most frequently 216 

affected (Fig. 4D, Supplementary Fig. 2). Interestingly, UAS also had alterations in histone-217 

modifying genes in 36% of cases.  218 

As epigenetic alterations are more frequent in DDLS (25%) than WDLS (8%) and we have 219 

previously found epigenetic dysregulation to contribute to DDLS (28), we further examined 220 

differences between DDLS and WDLS. Histone-modifying and histone chaperone/chromatin-221 

remodeling alterations occur in 15% and 13% of DDLS cases, respectively, compared with 4% 222 

each of WDLS (Fig. 4D). This suggests that loss of epigenetic regulation could be an important 223 

contributor to dedifferentiation.  224 

We also examined epigenetic pathways without filtering for alterations already established as 225 

oncogenic, which is a strategy we recently employed to generate hypotheses in an analysis of 226 

genetic alterations in OS (Supplementary Fig. 3) (29). This analysis identified the histone 227 

methyltransferase KMT2D/MLL4 as more frequently altered in MFS (16%) compared with other 228 

subtypes including the closely related UPS (6%) (4). Histone-modifying enzymes were altered in 229 

20% of SYNS, among which KMT2B and SETD2 were altered in 6% and 7% of samples, 230 

respectively. We also found that the transcriptional corepressor NCOR1, which complexes with 231 

HDAC3 and other deacetylases to regulate the activity of transcription factors such as the 232 
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retinoic acid receptor and thyroid hormone receptor (30), was altered in 10% of ULMS, 19% of 233 

LMS, and 21% of OS, mostly through amplification. NCOR1 has also been shown to regulate 234 

transcription factors important in mesenchymal lineages including the MEF2 family and PPARγ, 235 

which regulate myo- and adipogenesis, respectively (31). Several other genes within the same 236 

cytoband as NCOR1, 17p12-p11.2, were co-amplified, including FLCN, MAP2K4, AURKB, and 237 

ALOX12B (Supplementary Fig. 4A). Amplifications of MYOCD, whose genomic location is 238 

within a region previously found to be amplified in LMS (32), were not detected because this 239 

gene is not represented on the MSK-IMPACT panel. Except for ALOX12B, the 17p copy 240 

number gains of MSK-IMPACT-assessed genes were associated with increased gene 241 

expression in the sarcoma TCGA analysis (Supplementary Fig. 4B). Thus, one or more of 242 

these genes could play a pathogenic role. 243 

Mutual Exclusivity and Co-occurrence 244 

To better understand how gene- and pathway-level alterations interact, we analyzed their co-245 

occurrence and mutual exclusivity (Fig. 5A). As expected, KIT and PDGFRA alterations were 246 

mutually exclusive in GIST and CDK4 and MDM2 co-occurred in DDLS. In OS, KDR alterations 247 

co-occurred with KIT and PDGFRA, as did the latter two with each other, suggesting 248 

dysregulation of signaling through these 3 RTK genes located at the 4q12 locus (29). TP53 249 

alterations were mutually exclusive with CDKN2A/B in GIST and ULMS, but not in UPS. In SFT 250 

and ES, TP53 alterations co-occurred with STAG2 and TERT alterations, respectively, 251 

suggesting context dependence for alterations co-occurring with TP53. In UPS, ATRX and NF1 252 

alterations, which are mostly loss-of-function events, were mutually exclusive, suggesting 253 

biologically different subgroups. 254 

At the pathway level, cell cycle and DDR pathway alterations significantly co-occurred (false 255 

discovery rate [FDR] < 0.05) with those in other pathways. For instance, cell cycle alterations 256 
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co-occurred with MYC pathway alterations in GIST, with PI3K pathway alterations in GIST and 257 

ULMS, and with RTK/RAS alterations in GIST, OS, and SYNS (Fig. 5A). DDR pathway 258 

alterations co-occurred with MYC pathway alterations in ULMS and MRLS, epigenetic pathway 259 

alterations in GIST and DDLS, Hippo pathway alterations in DDLS, and cell cycle alterations in 260 

ES. There were no examples of significant mutual exclusivity at the pathway level. 261 

ATRX Alterations across Subtypes 262 

ATRX stood out across subtypes as frequently affected by loss-of-function events (Fig. 5B); this 263 

gene was altered in ≥ 10% of cases in 7 subtypes: ULMS, PLLS, UPS, MFS, PECOMA, LMS, 264 

and ANGS. In ULMS, which had the highest rate of ATRX alterations, the frequency was 265 

roughly 1 in 3 cases. That ATRX loss-of-function events occur in both copy number- and 266 

translocation-driven subtypes, although at lower frequency in the latter, raises the possibility that 267 

they may serve a fundamental role in the biology of a molecular subset of these subtypes. 268 

ATRX loss-of-function mutations were more frequent than deletion events, independent of 269 

subtype, despite the overall low mutation rate. Our analysis also captured intra- and intergenic 270 

ATRX fusion events. 271 

Unsupervised Clustering of Subtypes 272 

To assess genetic similarities among subtypes, we grouped samples on the basis of genetic 273 

alterations by unsupervised clustering (Fig. 5C), which generated 15 distinct clusters 274 

subsequently named according to their prevailing subtype and/or genetic feature. Some 275 

subtypes and clusters were closely associated (Fig. 5D). These included EPIS and the 276 

SMARCB1 cluster, DSRCT and WT1, and WDLS and DDLS with MDM2-CDK4. These 277 

groupings largely reflect known or presumed drivers in these subtypes and reinforces their 278 

central roles therein.  279 
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Other clusters were heterogeneous and comprised of many subtypes. One such cluster was 280 

associated with frequent alterations in TERT, which dominated by MRLS and SFT, but also 281 

included small populations of other sarcoma subtypes. Another cluster lacked any 282 

predominantly altered gene. This ‘other’ cluster included the majority of samples in some 283 

histotypes (e.g. ANGS and CHS) but also included samples from multiple subtypes that are 284 

represented more commonly in other clusters (e.g. LMS and UPS), suggesting that they may be 285 

genetic outliers among those subtypes. 286 

Notably, alterations in TP53, thought of as a canonical driver in many sarcomas, were 287 

associated with 4 closely related clusters, each with a distinct association with co-occurring 288 

ATRX and/or RB1 alterations. In contrast, the RB1-altered/TP53-WT (“RB1”) group clustered 289 

distantly from the TP53-altered groups and was more closely related with CDKN2A/B and ‘other’ 290 

groups. ULMS, PLLS, and UPS were represented in both the TP53-altered groups and the RB1-291 

altered/TP53-WT group.  292 

For each subtype we also assigned an entropy score with respect to the clustering assignments 293 

(Fig. 5D). WDLS, DDLS, and DSRCT had the lowest entropy, suggesting relatively uniform 294 

genomic profiles within each subtype, whereas ULMS, UPS, and OS had high entropy, 295 

suggesting that these pathologically defined entities harbor multiple distinct genetic variants.  296 

Tumor Mutational Burden, Microsatellite Instability, and Mutational Signatures 297 

Two recent immune checkpoint blockade trials in sarcoma demonstrated low overall response 298 

rates, though rates varied among subtypes (33,34). Thus, predictive biomarkers for response to 299 

checkpoint blockade are needed to deconvolute this heterogeneity and aid in the design of 300 

future clinical trials. As microsatellite instability predicts response to pembrolizumab (21), and 301 

tumors with high TMB are more likely to respond to immune checkpoint blockade (35), we 302 

determined MSI status and TMB for each subtype (Fig. 6A and 6B, Supplementary Table 1).  303 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 30, 2021. ; https://doi.org/10.1101/2021.10.28.21265587doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.28.21265587
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

While the median TMB for sarcomas was low compared to many carcinomas (4), there is 304 

considerable heterogeneity within and between the more common subtypes in our cohort (inter-305 

subtype median range 0.9–3.0) (Fig. 6A). The median TMB was greatest in ANGS (3.0), UPS 306 

(2.6), and ULMS (2.6) and lowest in WDLS (0.9), EPIS (0.9), and RCS (other) (0.9). However, in 307 

certain subtypes, the distribution of TMB had a long upper tail and was skewed towards higher 308 

TMB (Fig. 6A). TMB was ≥ 5 mut/Mb in 25% of ANGS, 15% of ULMS and UPS, and 13% of 309 

ERMS. Only two subtypes had ≥ 5% of samples with a TMB of ≥ 10 mut/Mb: ANGS (7.6%) and 310 

UPS (6.7%).  311 

Only 5 of 1893 samples evaluable for MSI status were MSI-high (by MSIsensor score ≥ 10), 312 

including one UPS, one LMS, and 3 ULMS (Fig. 6B). Of these, 4 were confirmed to be MSI-high 313 

by a conventional PCR-based MSI assay. MSIsensor scores varied widely between subtypes 314 

(Supplementary Table 1). Overall, while microsatellite instability corresponded with high TMB, 315 

the inverse was not true.  316 

To understand mechanisms contributing to extensive genetic alterations, we examined 317 

mutational signatures in samples with ≥ 15 single nucleotide variants (SNVs) (Fig. 6C). A UV 318 

mutational signature was observed in a subset of ANGS and was most strongly observed in 319 

samples at the highest end of the TMB spectrum within that group. Of these 16 samples, 11 had 320 

a head and neck primary site. Interestingly, a subset of UPS also harbored a UV signature and 321 

a higher TMB, while another subset of highly mutated UPS was dominated by an aging 322 

signature, suggesting alternative mechanisms for high TMB within UPS.  323 

Subtype-specific actionable alterations 324 

Toward improved detection of targetable alterations for each subtype and patient, we analyzed 325 

genetic alterations by actionability according to OncoKB (Fig. 7) (36). As expected, level 1 326 

alterations, defined as FDA-recognized biomarkers for response to an FDA-approved drug, 327 
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were most frequent in GIST due to KIT and PDGFRA mutations. Similarly, level 1 SMARCB1 328 

deletion was noted in 66% of EPIS. Level 2 alterations, defined as guideline-supported 329 

standard-of-care biomarkers for an FDA-approved drug, were seen in > 90% of WDLS and 330 

DDLS related to CDK4 amplification. In the same subtypes, MDM2 amplifications in > 90% of 331 

cases were deemed Level 3A, for which compelling evidence supports use as a predictive 332 

biomarker for an existing drug. Many other observed alterations were classified as Level 3B, 333 

defined as standard-of-care or investigational biomarkers that predict response to an FDA-334 

approved or investigational drug in another cancer. Notable examples included a combined 37% 335 

prevalence of actionable TSC1/2 deletions in PECOMA, IDH1/2 alterations in 27% of CHS, and 336 

targetable PI3K pathway (PIK3CA, ATK1, MTOR, or TSC1) alterations in a collective 31% of 337 

MRLS. Notably, 21% of MRLS cases had Level 4 PTEN deletions, for which compelling 338 

biological evidence supports their use as a predictive biomarker. Other intriguing Level 4 339 

alterations included somatic NF1 deletions in MPNST (32%), UPS (14%), ERMS (14%), and 340 

PLLS (14%), and CDKN2A deletions in many subtypes at a rate of up to 48% as seen in 341 

MPNST. 342 

 343 

Discussion 344 

To better understand genetic heterogeneity in sarcomas, we analyzed prospectively generated 345 

tumor next generation sequencing data from a cohort of 2,138 sarcoma samples representing 346 

45 histological subtypes. Across all subtypes, the most common alterations we identified were in 347 

cell cycle control and TP53, receptor tyrosine kinases/PI3K/RAS, and epigenetic regulators. 348 

Previously unreported subtype-specific associations included TERT amplification in intimal 349 

sarcoma and SWI/SNF complex alterations in uterine adenosarcoma. Tumor mutation burden 350 

varied widely between and within subtypes. 351 
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Epigenetic pathway mutations frequently occurred in many subtypes in our cohort, in keeping 352 

with an emerging recognition of epigenetic dysregulation as an important factor in the 353 

pathogenesis of sarcomas (24). A common epigenetic pathway alteration was amplification of 354 

NCOR1, particularly in ULMS, LMS, and OS. NCOR1 is a transcriptional corepressor that 355 

regulates transcription factors specific to mesenchymal lineages and can suppress 356 

differentiation when overexpressed (31,37). If amplification of NCOR1 correlates with increased 357 

protein levels in these sarcomas, which RNA sequencing data suggests it may, this could lead 358 

to altered differentiation and transcriptional programs. Moreover, since the activity of NCOR1 is 359 

modulated by PI3K/Akt-mediated control of nuclear localization, both inhibition of that pathway 360 

and of HDAC3 warrant further exploration as potential therapeutic strategies in NCOR1-361 

amplified ULMS, LMS, or OS (38).  362 

In uterine adenosarcoma, we identified genetic alterations in the SWI/SNF chromatin 363 

remodeling complex in 43% of cases, mostly loss-of-function alterations in ARID1A or PBRM1. 364 

Uterine adenosarcoma is a rare subtype composed of both sarcomatous stroma and benign 365 

epithelium, which can behave aggressively, especially in the setting of sarcomatous overgrowth 366 

(39). Given the role of epigenetic regulation in determining differentiation, impaired SWI/SNF 367 

function could contribute to this phenotype. Histone mutations have been observed in ovarian 368 

carcinosarcoma, suggesting that epigenetic dysregulation may be a common mechanism for 369 

impaired lineage commitment in Müllerian tumors (40). Given synthetic lethality between the 370 

loss of the SWI/SNF component SMARCB1 in epithelioid sarcoma and EZH2 inhibition with the 371 

now FDA-approved drug tazemetostat, EZH2 inhibition may represent a future therapeutic 372 

strategy in uterine adenosarcoma (41).  373 

We also analyzed genes involved in maintenance of telomeres, whose tumor-suppressive 374 

function is dependent on the silencing of TERT, a reverse transcriptase and core component of 375 

telomerase. Mutations in the TERT promoter, first identified in melanoma, lead to increased 376 
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transcription of the TERT gene (42,43). Within our cohort, TERT amplification occurs in 44% of 377 

intimal sarcomas, which to our knowledge has not been previously reported. Whether this 378 

amplification leads to increased expression of the TERT gene product should be investigated, 379 

as TERT overexpression is known to be oncogenic in certain contexts (44). In addition, our data 380 

validate prior findings of TERT mutations in MLPS and SFT. However, the rate in SFT was 381 

greater than observed in prior studies (45), which may be explained by differences in disease 382 

aggressiveness, as TERT mutations associate with worse prognosis (46).  383 

While we included ATRX in the epigenetic pathway gene list owing to its fundamental role, 384 

along with DAXX, as a histone variant H3.3 chaperone, ATRX also participates in other 385 

pathways including telomerase-independent alternative lengthening of telomeres (ALT), which 386 

has been observed in a number of soft tissue sarcomas including UPS and liposarcoma (47). 387 

Because UPS and liposarcoma also harbor TERT alterations in a largely non-overlapping 388 

pattern, these sarcomas may acquire the ability to aberrantly maintain telomeres through 389 

multiple independent mechanisms. In addition to epigenetic and ALT functions, ATRX helps 390 

maintain genomic integrity (48). Because of the diversity of the physiologic functions of ATRX, 391 

the role(s) of ATRX alterations in sarcomagenesis are difficult to predict a priori. Thus, 392 

developing tools such as patient-derived cell lines and xenografts to study the impact of these 393 

alterations on ATRX-dependent functions will be informative. Given the relative frequency of 394 

ATRX alterations and the inclusion of ATRX on MSK-IMPACT and other tumor sequencing 395 

platforms, such investigations are eminently feasible.  396 

Toward identifying predictive biomarkers for response to immune checkpoint blockade in 397 

sarcoma, we analyzed the distribution of MSI-H and high TMB, which are associated with 398 

response to these agents in other solid tumors. Almost none of the samples had microsatellite 399 

instability and there were relatively few samples with high TMB. However, the upper tail of TMB 400 

was relatively long in certain subtypes such as UPS, ANGS, and ULMS. Moreover, we do not 401 
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yet know whether the TMB cutoff of 10 mutations per megabase, which defines high TMB for 402 

carcinomas and predicts response to immune checkpoint blockade, is the appropriate threshold 403 

for TMB as a predictive biomarker in mesenchymal neoplasms, let alone specific sarcoma 404 

subtypes. Indeed, recent work suggests that the highest quintile of TMB within a specific cancer 405 

type is associated with improved outcomes following checkpoint inhibitor therapy and, following 406 

from that observation, that the TMB threshold for benefit is not absolute (49). Because both MSI 407 

status (via MSIsensor) and TMB can be readily determined from targeted sequencing, 408 

correlative analysis of both MSI status and TMB in sarcoma immunotherapy trials on a subtype-409 

specific basis is needed to inform our understanding.  410 

Determining the clinical relevance of the landscape of genetic alterations in sarcomas described 411 

herein requires a further phase of investigation. Toward improved designs of clinical trials in 412 

sarcoma, which have often grouped multiple subtypes together despite significant inter- and 413 

intra-subtype genetic variability, future studies should investigate which genetic alterations result 414 

in functional effects. This may be particularly important in the subtypes we identified as having 415 

high entropy in their genomic clustering. That knowledge will enable the establishment of 416 

subtype and genotype-based trials to study the effect of novel agents in better defined biologic 417 

groups of tumors. The data we present herein and via an accompanying interactive database 418 

(cBioPortal link to be provided) will serve as a resource for the field to explore and compare 419 

subtype-specific alterations to facilitate this transition in approach.  420 

 421 

Methods 422 

Patient Cohort 423 

This study was approved by the Institutional Review Board at Memorial Sloan Kettering Cancer 424 

Center (MSK). We identified patients with a diagnosis of soft tissue or bone sarcoma who had 425 
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tumor and matched normal (white blood cell) tissue sequenced using the MSK-IMPACT assay 426 

through December 19, 2019 (5,18). Tumors were sequenced using one of 3 versions of MSK-427 

IMPACT, including 341, 410, or 468 genes, with results reported in the medical record. In 428 

patients with multiple samples, only one sample was included in the cohort; those collected 429 

earliest and of highest purity and highest average coverage were selected in that order of 430 

priority. Clinical characteristics such as patient age, sex, race, and metastatic versus primary 431 

site, were annotated per the standard MSK-IMPACT workflow (18). 432 

Histologic Analysis 433 

Histologic diagnosis was annotated according to the standard MSK-IMPACT workflow. In the 434 

case of sarcomas characterized by canonical fusion events, the medical record was queried to 435 

ensure that the appropriate fusion event was detected and if not, the sample was reviewed with 436 

the assistance of an expert sarcoma pathologist. Similarly, samples harboring a canonical 437 

fusion but with a discordant pathologic diagnosis were further reviewed to assign the most 438 

appropriate diagnosis. Fusions other than those identified by MSK-IMPACT were annotated at 439 

the patient (not sample) level. Samples originally annotated as sarcoma or round cell sarcoma 440 

not otherwise specified, rhabdomyosarcoma (without further classification), spindle cell 441 

rhabdomyosarcoma, and fibrosarcoma underwent additional medical record review and, in 442 

some cases, pathology review to render the most accurate diagnosis possible. In some 443 

additional cases with ambiguity in subtype assignment, the diagnosis was updated upon further 444 

review by an expert pathologist. We further standardized diagnoses by mapping each tumor to a 445 

unique code from the OncoTree ontology (50) except for round cell sarcoma other (RCS (other)) 446 

and extraskeletal osteosarcoma, which were categories created for this study. Samples that 447 

could not be assigned to one of the Oncotree codes (n = 243) were excluded from our analysis 448 

cohort.  449 
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Computational Genomic Analysis  450 

Genomic alterations were annotated using the OncoKB precision oncology knowledge base, 451 

which identifies functionally relevant cancer variants and their potential clinical actionability (36). 452 

Except where otherwise specified in the text, variants of unknown significance, i.e. not labeled 453 

as oncogenic, likely oncogenic, or predicted oncogenic in OncoKB were excluded from the 454 

analysis. Therapeutically targetable somatic alterations were labeled using levels of clinical 455 

actionability defined in OncoKB, which range from level 1, FDA-recognized biomarkers of 456 

response to FDA-approved drugs, to level 4, biomarkers of hypothetical relevance based on 457 

compelling preclinical biological evidence. Analyses of alterations in oncogenic signaling 458 

pathways were performed using the set of pathway definitions previously curated by our group, 459 

which we expanded to include the DDR and epigenetic modifier pathways using additional 460 

templates curated from literature subtypes (24,51-53). 461 

Tumor mutation burden (TMB) was computed as the total number of nonsynonymous mutations 462 

divided by the total number of base pairs sequenced per sample. The fraction of the genome 463 

altered (FGA) was defined as the fraction of genome with log2 copy number gain > 0.2 or loss < 464 

−0.2 relative to the size of the genome for which copy number was profiled. We computed 465 

MSIsensor scores for all samples in the cohort and used a threshold of MSIsensor score ≥ 10 to 466 

identify tumors with microsatellite instability (MSI-high) (54). MSI-high was confirmed by a PCR-467 

based assay (Idylla). MSIsensor ≥ 3 and < 10 were labeled indeterminate and samples that did 468 

not meet quality control for assigning MSI status were labeled do not report (DNR).  469 

Allele-specific copy number estimates at both the gene and chromosome arm levels were 470 

computed using the FACETS (Fraction and Allele-Specific Copy Number Estimates from Tumor 471 

Sequencing) algorithm, which also provided purity-corrected segmentation files and allowed 472 

identification of whole-genome duplication events (55). FACETS output was also used to infer 473 
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the cancer cell fraction associated with individual mutations for clonality analyses. Significantly 474 

recurrently mutated genes were identified using the MuSic and MutSigCV 1.4 algorithms, with a 475 

threshold q-value of 0.1 (56,57). Dimensionality reduction was performed using Uniform 476 

Manifold Approximation and Projection (UMAP) (http://arxiv.org/abs/1802.03426) and clusters 477 

were identified using Hierarchical Density-Based Spatial Clustering of Applications with Noise 478 

(HDBSCAN) (58). Shannon entropy was calculated from observed cluster assignment by 479 

subtype and reported in natural units. 480 

Mutational signatures for samples with ≥ 15 synonymous and nonsynonymous single nucleotide 481 

variants (SNVs) were extracted using the COSMIC v3 catalog of exome reference signatures 482 

and default parameters (59) (https://github.com/mskcc/tempoSig). For mutational signatures to 483 

be considered detectable, we required a p-value < 0.05 and a minimum of 1 observed mutation 484 

attributed to the signature, where the number of observed mutations was defined as the 485 

observed mutational signature fraction multiplied by the number of SNVs per sample.  486 

Data Availability 487 

All clinical and genomic data described in this manuscript will be accessible online and publicly 488 

available for bulk download through the cBioPortal for Cancer Genomics (60).  489 
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Supplementary Figure 1. Whole genome doubling (WGD) and survival probability. A, Frequency of WGD by subtype (green) 

compared to other cancers (all available samples) (gray). B-C, Overall survival based on WGD status within metastatic and primary 

tumor cohorts in B, all sarcoma subtypes; C, MFS.
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Supplementary Figure 2. Oncogenic epigenetic pathway alterations. Frequency of oncogenic 

alterations in specific epigenetic pathway genes in each subtype with ≥ 10 samples. Top box, aggregate 
number of alterations in each gene family/biochemical process. 
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Supplementary Figure 3. All epigenetic pathway alterations, including variants of unknown significance (VUS). 

Frequency of somatic alterations in epigenetic pathway genes in each subtype with ≥ 10 samples. Top boxes, aggregate 
number of alterations in each gene family and biochemical process.
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