
Biology of Human Tumors

Clinical SignificanceofFourMolecularSubtypesof
Gastric Cancer Identified by The Cancer Genome
Atlas Project
Bo Hwa Sohn1, Jun-Eul Hwang2, Hee-Jin Jang1,3, Hyun-Sung Lee3, Sang Cheul Oh4,
Jae-Jun Shim5, Keun-Wook Lee6, Eui Hyun Kim1, Sun Young Yim1, Sang Ho Lee7,
Jae-Ho Cheong8,Woojin Jeong9, Jae Yong Cho10, Joohee Kim1, Jungsoo Chae11,
Jeeyun Lee12,Won Ki Kang12, Sung Kim13, Sung Hoon Noh8, Jaffer A. Ajani14, and
Ju-Seog Lee1

Abstract

Purpose: The Cancer Genome Atlas (TCGA) project recently
uncovered fourmolecular subtypes of gastric cancer: Epstein–Barr
virus (EBV), microsatellite instability (MSI), genomically stable
(GS), and chromosomal instability (CIN). However, their clinical
significances are currently unknown. We aimed to investigate the
relationship between subtypes and prognosis of patients with
gastric cancer.

Experimental Design: Gene expression data from a TCGA
cohort (n ¼ 262) were used to develop a subtype prediction
model, and the association of each subtype with survival and
benefit from adjuvant chemotherapywas tested in 2 other cohorts
(n ¼ 267 and 432). An integrated risk assessment model (TCGA
risk score) was also developed.

Results: EBV subtype was associated with the best progno-
sis, and GS subtype was associated with the worst prognosis.

Patients with MSI and CIN subtypes had poorer overall sur-
vival than those with EBV subtype but better overall survival
than those with GS subtype (P ¼ 0.004 and 0.03 in two
cohorts, respectively). In multivariate Cox regression analyses,
TCGA risk score was an independent prognostic factor [HR,
1.5; 95% confidence interval (CI), 1.2–1.9; P ¼ 0.001]. Patients
with the CIN subtype experienced the greatest benefit from
adjuvant chemotherapy (HR, 0.39; 95% CI, 0.16–0.94;
P ¼ 0.03) and those with the GS subtype had the least benefit
from adjuvant chemotherapy (HR, 0.83; 95% CI, 0.36–1.89;
P ¼ 0.65).

Conclusions: Our prediction model successfully stratified
patients by survival and adjuvant chemotherapy outcomes.
Further development of the prediction model is warranted.
Clin Cancer Res; 23(15); 4441–9. �2017 AACR.

Introduction
Gastric cancer is the fourth most common cancer and third

leading cause of cancer-related death worldwide, accounting for
an estimated annual 723,100 deaths (1–3). Surgical resection
with subsequent adjuvant chemotherapy has been established as
an effective treatment for patients with early-stage gastric cancer
(4–7). However, recurrence occurs in up to 30% to 40% of
patients within 5 years (4, 8–10), suggesting that gastric cancer
is a clinically heterogeneous disease. The inherent clinical het-
erogeneity is most likely due to differences in molecular char-
acteristics of cancer cells. In past years, molecular profiling studies
of gastric cancers at a whole-genome level have revealed several
genetic and epigenetic changes underlying gastric carcinogenesis
(11–13). However, these findings have not been translated to
clinical practice, largely owing to the lack of a strong genetic–
clinical association.

Recently, as part of The Cancer Genome Atlas (TCGA)
project, the genome and proteome of gastric cancer have been
extensively characterized to uncover molecular subtypes and
identify dysregulated pathways and potential therapeutic tar-
gets (14).Integrative analysis of multiple genomic and prote-
omic data from gastric cancer tissues revealed four molecular
subtypes: (i) Epstein–Barr virus (EBV) subtype with extreme
DNA hypermethylation, (ii) microsatellite instability (MSI)
subtype with elevated mutation rates and hypermethylation,
(iii) genomically stable (GS) subtype with less distinctive
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genomic alterations, and (iv) chromosomal instability (CIN)
subtype with marked aneuploidy and frequent focal amplifi-
cation of receptor tyrosine kinases. Although distinct gastric
cancer subtypes with striking genomic features would provide
a roadmap for the development of personalized treatment
strategies, the clinical relevance of these subtypes, such as
their implications for prognosis or response to standard
treatment, is currently unknown owing to a lack of sufficient
follow-up data from patients in the TCGA cohort. Further-
more, because molecular stratification of gastric cancer in the
TCGA study was based on highly complicated integrative
analysis of multiple genomic and proteomic data sets, it is
very unlikely that these findings will be easily translated into
clinical practice.

In the current study, we analyzed gene expression data
from TCGA project, uncovered gene expression signatures spe-
cific to each of the four molecular subtypes, developed predic-
tion models for stratification of patients with gastric cancer by
subtype using these signatures, and tested our model in two
large independent cohorts. We also found that the subtypes
were predictors of survival outcomes and response to standard
adjuvant chemotherapy.

Materials and Methods
TCGA cohort data and the 4 subtypes of gastric cancer

Genomic data from the TCGA gastric cancer cohort were
downloaded from the TCGA data portal site (http://cancergen
ome.nih.gov/) and processed as described in previous studies
(14–22). By applying integrative analysis of multiple genomic
and proteomic data from gastric cancer tissues, including
somatic mutations, mRNA expression, miRNA expression, pro-
moter methylation, somatic copy-number alteration, and pro-
tein expression data from reverse phase protein arrays, the
TCGA classification scheme employed a decision tree whereby
gastric tumors were divided into four subtypes (14). Briefly,
tumors were first categorized by the presence of EBV features
(EBV subtype), then by the presence of high MSI (MSI subtype).
The remaining tumors were further grouped by the number of
somatic copy-number alterations: genomically stable (GS sub-
type) or chromosomal instability (CIN subtype). In the TCGA

cohort, mRNA expression data were generated by RNA sequenc-
ing, and this information was available for 262 tumor tissue
samples. Because most tissues in the TCGA cohort were recently
collected, follow-up time for patients in the TCGA cohort was
very short and incomplete. Thus, TCGA cohort data from 262
patients were used to generate our model (see below) but were
not used for our survival analyses.

Patients and tissue samples for validation cohorts
Demographic information and clinical data, as well as tissue

samples, were obtained from 267 patients with gastric cancer
who had undergone gastrectomy as primary treatment between
1999 and 2006 at Korea University Guro Hospital, Kosin
University College of Medicine, or Yonsei University Severance
Hospital, South Korea. All patients underwent a D2 gastrecto-
my, and all tissues were snap-frozen and stored in �80�C
freezer. Informed consent for sample collection had been
obtained from all patients. Generation and analysis of genomic
data were carried out at The University of Texas MD Anderson
Cancer Center (MDACC, Houston, TX), and these data were
designated as the MDACC cohort. Our study was approved by
the Institutional Review Boards of MD Anderson Cancer Center
and each institute that provided tissues. Of the 267 patients in
MDACC cohort, 155 had received standard adjuvant chemo-
therapy [either single-agent 5-fluorouracil (5-FU) or a combi-
nation of 5-FU and cisplatin/oxaliplatin, doxorubicin, or
paclitaxel]. Patients in stage I and stage IV with metastasis were
not included in subset analysis for assessing benefit of adjuvant
chemotherapy.

For an external validation cohort, we used tumor specimen
data collected from patients with gastric cancer at the Samsung
Medical Center (SMC; n ¼ 432), as described in a previous
study (23).

Generation of gene expression data from human
gastric cancer tissues

All experiments and analyses were done in the Department of
Systems Biology at the MDACC. Gene expression data from the
267 patients in MDACC cohort were generated by hybridizing
labeled RNAs to HumanHT-12 v3.0 Expression BeadChips
(Illumina). Briefly, total RNA was extracted from the fresh-
frozen tissues using a mirVana RNA isolation labeling kit
(Ambion). We used 500 ng of total RNA for labeling and
hybridization according to the manufacturer's protocols. The
microarray data were normalized using the quantile normali-
zation method in the Linear Models for Microarray Data
package in the R language environment (24). The expression
level of each gene was transformed into a log2 base before
further analysis. Primary microarray data from the MDACC
cohort are available in the Gene Expression Omnibus (GEO)
database of the National Center for Biotechnology Information
(NCBI; accession numbers GSE13861 and GSE26942).

Gene expression data from the SMC cohort were generated
using HumanRef-8 WG-DASL v3.0 (Illumina) that contained a
subset (24,526 gene features) of probes in Human HT-12. Pri-
mary microarray data are available in the GEO database of the
NCBI (accession number GSE26253).

Generation of gene expression data, subtype prediction, and
TCGA risk score for recurrence

Gene expression data were generated and analyzed as
explained in previous studies (25–29). BRB-ArrayTools

Translational Relevance

Molecular classification of cancers has significantly
improved patient care by the development of treatments
tailored to the genetic or epigenetic abnormalities specific to
molecular subtypes as evidenced by improved clinical care in
breast cancer after the discovery of ER-positive and HER2-
positive subtypes and subsequent development of tailored
treatment targeting ER or HER2. For gastric cancer, such
important subtypes with characteristic molecular features are
likely to exist. The Cancer Genome Atlas project recently
uncovered fourmolecular subtypes of gastric cancer. However,
their clinical significances are currently unknown. Thus, we
analyzedmultiple data sets and uncovered clinical association
of each molecular subtype. This may help clinicians stratify
patients according to molecular characteristics and develop
tailored treatments for each subtype in future.
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(National Institutes of Health) were used for all statistical
analyses of gene expression data (30). We first generated a
subtype prediction model using data from the TCGA cohort.
For selection of subtype-specific gene sets, multiple two-class
t tests were performed for all possible combinations of the four
subtypes. Gene expression differences were considered statisti-
cally significant if the P value was less than 0.001. Only genes
with significant differences in expression in all 3 possible com-
parisons were considered subtype-specific genes, yielding 349
significant genes for the EBV subtype, 455 for the MSI subtype,
1,513 for the GS subtype, and 143 for the CIN subtype. The top
200 significant genes in each subtype and all 143 genes for the
CIN subtype were further selected for development of the
prediction model.

To develop a subtype prediction model, we adopted a
previously developed model using Bayesian compound covar-
iate predictor algorithms (25–29). Briefly, gene expression data
for each subtype gene signature (i.e., the 200 significant genes
for each subtype, as described above) were used to generate the
Bayesian probability of each tissue sample belonging to a
particular subtype. We applied 0.4 as the cutoff of Bayesian
probability for each predictor. With this cutoff, the sensitivity
and specificity of each predictor ranged from 0.8 to 1 in the
training set (the TCGA cohort). Receiver operating character-
istic (ROC) analysis of this training set indicated the following
order of strength for each predictor: EBV > MSI > GS > CIN
(Supplementary Fig. S1); therefore, we adopted a TCGA clas-
sification scheme employing a decision tree whereby tumors
are grouped into the four subtypes. Briefly, new samples in the
test cohorts (i.e., the MDACC and SMC cohorts) were assigned
to one of the four subtypes according to Bayesian probability
scores. When new samples had more than 2 probability scores
above the cutoff value, samples were assigned according to the
predetermined strength of the predictors. Samples lacking
probability scores above the cutoff value were not assigned

to any subtype. Same prediction algorithm was applied to gene
expression data from gastric cancer cell lines.

Development of the TCGA risk score for recurrence
We developed an integrated risk assessment model by pooling

the probabilities of the four predictors (subtypes). Because EBV
andMSIwere associatedwith good prognosis, we used the inverse
of the probability for these subtypes to determine risk of recur-
rence. GS probability was weighted by a factor of 2 to reflect its
strong association with poor prognosis. CIN probability was not
modified because it was only moderately associated with poor
prognosis.

TCGA Risk Score raw (TRSraw)¼ (1� EBV probability)þ (1�
MSI probability) þ (GS probability � 2) þ CIN probability. To
generate a dynamic rangeof scores from0 to 100,we reformulated
TRSraw: TRS¼ eTRSraw. This generated TRS values ranging from3.2
to 85.27. Cutoff points were specified to reflect prognostic differ-
ences: low risk (<20), intermediate risk (20–30), and high risk of
recurrence (>30).

Statistical analysis
The association of each subtype with overall survival and

recurrence-free survival (RFS) in the MDACC cohort was
estimated using Kaplan–Meier plots and log-rank tests. Over-
all survival was defined as the time from surgery to death, and
RFS was defined as the time from surgery to the first con-
firmed recurrence. Data were censored when a patient was
alive without recurrence at last follow-up. Multivariate Cox
proportional hazards regression analysis was used to evaluate
independent prognostic factors associated with RFS and over-
all survival, including TRS, tumor stage, and pathologic char-
acteristics as covariates. A P value of less than 0.05 was
considered statistically significant. To assess the association
of each molecular subtype with benefit from adjuvant che-
motherapy, we fitted a Cox proportional hazards model to

Figure 1.

Prediction signatures for four molecular subtypes of
gastric cancer in TCGA project cohort. Subtype-specific
gene expression signatures were identified by applying
multiple t tests (P < 0.001). Among the significant genes
in each subtype, the top 200 genes were selected for
development of prediction models (all 143 significant
genes were used for the CIN subtype). Data are
presented in matrix format in which each row represents
an individual gene and each column represents a tissue
sample. Each cell in the matrix represents the expression
level of a gene feature in an individual tissue sample. The
coloring in the cells reflects relatively high (red) and low
(green) expression levels, as indicated in the scale bar
(log2 transformed scale).

Four Subtypes of Gastric Cancer
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data from patients in MDACC cohort. All statistical analyses
were conducted in the R language environment (http://www.
r-project.org). Ingenuity pathway analysis (Ingenuity) was
used for gene set enrichment analysis and gene network
analysis to identify enriched gene sets and upstream regulators
in each subtype.

Results
Subtype-specific predictors

The subtype-specific gene signatures for each of the four sub-
types are shown in Fig. 1 and Supplementary Table S1. We next
constructed a prediction model using a Bayesian compound

Figure 3.

Schematic diagram of TCGA project prediction model. A
decision tree approach was employed for categorizing
patients in test cohorts into the four subtypes of gastric
cancer according to the Bayesian probability of each
predictor.
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Figure 2.

Scatter plot matrix of Bayesian
probability for each gastric cancer
subtype predictor in the TCGA cohort.
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covariate predictor algorithm and tested the strength of each
signature (29). When ROC analysis was carried out to the Bayes-
ian probability of each sample, the EBV signature showed highest
sensitivity and specificity (100% AUC), and the CIN signature
showed the lowest sensitivity and specificity (89.6% AUC). The
MSI andGS signatures showed sensitivity and specificity that were
lower than EBVbut higher thanCIN (MSI: 97.7%AUC;GS: 95.4%
AUC; Supplementary Fig. S1).

Using the scatter plot matrix approach (Fig. 2), we determined
the cutoff of Bayesian probability for each predictor to have
reasonably high sensitivity and specificity. Under a cutoff of
0.4, the sensitivity and specificity of each predictor ranged from
0.8 to 1 in the training set (Supplementary Table S2). For con-
struction of the prediction model for the four subtypes, we
adopted a TCGA classification scheme that employs a decision
treewhereby tumors are grouped into the four subtypes according
to Bayesian probability scores: first EBV, then MSI, then GS, and
lastly CIN (Fig. 3).

Prognostic significance of the TCGA gastric cancer subtypes
After establishing a robust, highly sensitive and specific pre-

diction model from the TCGA cohort data to categorize patients
with gastric cancer by subtype, we examined the association of
each subtype with prognosis using gene expression data from the
MDACC cohort (n ¼ 267; Supplementary Table S3). When

patients in the MDACC cohort were classified by subtype using
our prediction model, the EBV subtype was associated with the
best prognosis, for both RFS (P ¼ 0.006 by the log-rank test) and
overall survival (P ¼ 0.004; Fig. 4A). The GS subtype was asso-
ciated with the worst prognosis. Patients with the MSI and CIN
subtypes had a moderate prognosis that was worse than that of
patients with the EBV subtype but better than that of patients with
the GS subtype (Fig. 4A).

When the predictionmodelwas applied to the SMCcohort (n¼
432; Supplementary Table S3), the GS subtype was associated
with theworst prognosis and the EBV subtypewas associatedwith
the best prognosis (Fig. 4B). Consistent with the MD Anderson
cohort, the MSI subtype was associated withmoderate prognosis.
However, the prognosis of patients with the CIN subtype was
poorer in the SMC cohort than in the MD Anderson cohort,
suggesting that the CIN subtype might represent a less homoge-
neous subgroup.

Because favorable prognosis of patients in EBV subtype is most
intriguing, we next carried out gene set enrichment analysis of
EBV-specific gene expression signature using ingenuity pathway
analysis. It revealed that genes involved in energy production and
metabolism are most significantly altered in EBV subtype (Sup-
plementary Table S4). More interestingly, vast majority of met-
abolic genes are downregulated in EBV subtype (Supplementary
Fig. S2).

Patients with the MSI subtype were diagnosed at older ages
(median age 60) relative to patients with the other subtypes,
whereas those with the GS subtype were diagnosed at relatively
younger ages (median age, 52; P¼ 9.4�10�7 by the Student t test;
Supplementary Fig. S3). In addition, most patients with the EBV
subtypeweremale (79%) anddiagnosed at younger ages (median
age, 53; P ¼ 0.01 by Student t test; Supplementary Fig. S3). This
observation is highly consistent with reports from TCGA and
previous studies (14, 31, 32), suggesting that our prediction
model grouped patients with similar genetic and clinical char-
acteristics to those observed in each subtype in the TCGA data.
Taken together, these findings support the robustness of our
prediction model and indicate an association between
the molecular subtypes and clinical outcomes, suggesting that
molecular characteristics of gastric cancer reflected in genomic
and proteomic patterns may dictate clinical outcomes.

Biological characteristics of subtypes
We next carried out gene network analysis to uncover potential

upstream regulators of subtype-specific genes whichmay contrib-
ute to clinical and biological characteristics of each subtype. Not
surprisingly, vastmajority of predictedupstream regulators of EBV
subtype genes are cytokines such as IL1B, IL2, IL3, IL21, IL27, and
INFG (Supplementary Table S5), suggesting that infiltrated
immune cells in EBV tumors are highly active due to viral
infection. Interestingly, in contrast to EBV subtype, many of these
cytokines are suppressed in CIN tumors, suggesting that high
copy-number alteration may play roles in cancer immunity by
suppressing activation of immune cells. This observation is in
good agreement with recent study showing strong correlation of
tumor aneuploidy with immune evasion across 12 different
cancer types (33). MSI subtype is characterized by activation of
EZH2, subunit of histone methyltransferase Polycomb repres-
sive complex 2 (PRC2) that functions in the regulation of gene
silencing (34), suggesting that further silencing of gene expres-
sion by EZH2 may play roles in progression of MSI subtype.
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Figure 4.

Prognosis associated with each of the four subtypes of gastric cancer in two
independent patient cohorts. Patients in the MDACC cohort (A) and SMC
cohort (B) were stratified by subtype. RFS and overall survival (OS)
were plotted for each subtype.
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Interestingly, GS subtype is characterized by activation of mir-21,
a best knownoncomir gene (35), as evidenced bydownregulation
of its many targets genes in GS subtype (Supplementary Fig. S4).

TCGA subtypes and adjuvant chemotherapy
Because adjuvant chemotherapy is the standard treatment for

gastric cancer andmore than half of patients in the MD Anderson
cohort had received adjuvant chemotherapy (5–7), we next
sought to determine whether specific subtypes were associated
with an increased clinical benefit from adjuvant chemotherapy.
We carried out a subset analysis of patients in the MD Anderson
cohort with American Joint Commission on Cancer (AJCC) stage
II, III, or IV disease without distant metastasis (n¼ 157); patients
with advanced gastric cancer have been shown to benefit most
from adjuvant chemotherapy (7). Of 157 patients, 116 received
adjuvant chemotherapy. Patients with the CIN subtype exhibited
the greatest benefit from adjuvant chemotherapy, as evidenced by
significantly increasedRFS rates (P¼0.03; Fig. 5A). The 3-year RFS
rate was 58.7% for those who received chemotherapy, compared
with 33.5% for those who did not. The HR for recurrence among
those who received adjuvant chemotherapy was 0.39 [95% con-
fidence interval (CI), 0.16–0.94, P ¼ 0.03; Fig. 5B]. However, no
benefit from adjuvant chemotherapy was observed among
patients with the GS subtype (P ¼ 0.66; Fig. 5A). The HR for
recurrence among those who received adjuvant chemotherapy
was 0.83 (95%CI, 0.36–1.89, P¼ 0.65; Fig. 5B). Patients with the
MSI subtype showed only moderate benefit from adjuvant che-
motherapy (P¼0.18by log-rank test;HR, 0.55; 95%CI, 0.22–1.3,
P¼ 0.18; Fig. 5). The benefit of adjuvant chemotherapy could not
be assessed for patients with the EBV subtype because all patients
received chemotherapy.

To further demonstrate association of subtypes with che-
moresistance/chemosensitivity, we used gene expression data
and IC50 values of 5-FU from 24 gastric cancer cell lines that are

available from Genomics of Drug Sensitivity in Cancer project
(36). As seen in gene expression data from tumor tissues, similar
fraction of gastric cell lines were grouped into four subtypes
according to subtype-specific gene expression signatures (Supple-
mentary Fig. S5). In good agreement with clinical observation, GS
cell lines have highest IC50, whereas CIN cell lines have very low
IC50, suggesting that GS cells are indeed resistant to 5-FU.

TCGA risk score
We next developed an integrated risk assessment model (TRS)

by pooling the probabilities of the four predictors (subtypes).
When patients in the MDACC and SMC cohorts were pooled into
a single cohort (n ¼ 699) and stratified according to TRS, the 5-
year RFS rate was 66.7% for low-risk patients, 52.1% for inter-
mediate-risk patients, and 37.5% for high-risk patients (P¼ 5.4�
10�6 by log-rank test; Fig. 6A).

To evaluate the prognostic value of the TRS in combination
with other clinical variables, we next carried out univariate and
multivariate Cox proportional hazards regression analyses with
combined clinicopathologic variables in the pooled cohort (MD
Anderson þ SMC). In addition to T stage, N stage, distant
metastasis, and AJCC stage, which are well-known prognostic
factors, TRS was a significant predictor of RFS in the univariate
analysis (Supplementary Table S6).Whenwe included all relevant
clinical variables in a multivariate Cox regression analysis, TRS
remained a significant prognostic factor (HR, 1.5; 95% CI, 1.2–
1.9, P ¼ 0.001).

Because stage II gastric cancer is considered to beheterogeneous
(37), we carried out a subset analysis in patients with stage II
disease. In both univariate and multivariate analyses, TRS was a
significant predictor of RFS (Supplementary Table S7), providing
independent predictive value beyond tumor location, T stage,
number of nodes examined, and histologic findings.
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Benefit of chemotherapy among
patients with each subtype of gastric
cancer. A, Kaplan–Meier plots of RFS
among patients who received
adjuvant chemotherapy (CTX) and
those who did not (no CTX) for each
subtype. P values were obtained using
the log-rank test. B, Cox proportional
hazards regression analysis
estimating the benefit of adjuvant
chemotherapy for patients with each
subtype. The dotted line represents
the 95% CIs of the HRs.
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TRS showed linear correlation with probability of recurrence at
5 years (Fig. 6B). The distribution of TRS values across the four
subtypes reflected the prognostic nature of each subtype; patients
with theGS subtype had the highest TRS values and thosewith the
EBV subtype had the lowest TRS values (Supplementary Fig. S6).
Taken together, our data strongly suggest that TRS revealed
underlying biology not captured by the traditional clinical and
pathologic features.

Discussion
The comprehensive integrative analysis of the genome and

proteome of gastric cancer tissues from TCGA uncovered four
molecularly distinct subtypes (14).Because the clinical value of
subtype classification has been demonstrated in other cancers
(38, 39), we developed a genomic prediction model for the
subtype classification of gastric cancer using a statistically defined
set of multiple genes and gene expression data, and we tested our
model in two large independent cohorts (total of 699 patients).
This allowed us to properly demonstrate the robustness of the
model, as well as the prognostic value of the subtypes in relation
to conventional clinical variables.

Our analysis showed that all of the subtypes were present in
both test cohorts, clearly demonstrating the reproducibility of
tumor classification developed by TCGAand the robustness of the

prediction models we developed in the current study. Moreover,
clinical characteristics of patients in predicted subtypes are in
good agreement with previous observations, further supporting
the robustness of our prediction model. More importantly, the
four subtypes showed different clinical courses in terms of overall
survival and RFS. We found that patients with the EBV subtype
had a better prognosis than patients with other subtypes in both
cohorts, which is also consistent with a previous report showing
that positive immunostaining for EBVwas associated with a good
prognosis (32, 40, 41). Previous study suggested increased
immune response due to viral infectionmight prevent outgrowth
of cancer cells (32).In addition to increased immune response,
our data suggested that reducedmetabolic activity leading to slow
growth of cancer cells might contribute to better prognosis.

Previous TCGA data showed that mutation rates are highest
in the MSI subtype and genomic copy-number alterations are
highest in the CIN subtype (Supplementary Fig. S7). The EBV
subtype is characterized by very high promoter methylation
and frequent mutations in PIK3CA, and the GS subtype is
characterized by low mutation rates, low copy-number altera-
tions, and frequent mutations in CDH1 and RHOA. Taken
together with these TCGA data, our findings suggest that the
molecular characteristics in each subtype may dictate clinical
outcomes of patients with gastric cancer.

The subtype-specific genetic signatures used in our model
predicted not only survival outcomes, but also the relative benefit
of adjuvant chemotherapy. Our findings suggested that patients
with the CIN subtype most benefitted from adjuvant chemother-
apy. Adjuvant chemotherapy was associated with improved out-
comes in patients with the CIN subtype but not in patients with
the GS subtype. These findings suggest that gastric cancer cells of
the GS subtype are resistant to chemotherapy, and frequently
altered genes in the GS subtype might account for chemoresis-
tance. For example, NUPR1 is an activated transcription regulator
in GS subtype (Supplementary Table S5), and recent studies
demonstrated that it enhances chemoresistance in multiple can-
cers (42–44). However, although our data revealed an association
between the CIN subtype and benefit from adjuvant chemother-
apy, the retrospective design of our study limited the predictive
nature of this association. Therefore, additional studies are war-
ranted to fully assess the ability of this genomic prediction model
to identify patients most likely to benefit from adjuvant chemo-
therapy and those who may need additional treatments.

Using our model, we also developed TRS, an intuitive scoring
system ranging from 0 to 100 that can predict risk of recurrence
after treatment.Ourfindings strongly suggest that TRSprovides an
independent value beyond conventional clinical variables. First,
TRS was an independent predictor of recurrence in multivariable
analyses, both in the pooled cohort and in the subset of patients
with stage II disease. Second, TRS had a strong linear relationship
with probability of recurrence at 5 years. Third, the TRS values for
each of the subtypes were highly correlated with survival out-
comes for the subtypes. Our study has some limitation such as
retrospective nature in clinical data and sample collection and
lack of diverse ethnic groups in our cohort. Because all patients in
current studywere fromKorea, the clinical association of subtypes
needs to be further investigated in larger prospective cohort.

In summary, by analyzing genomic data from TCGA and new
data generated in the current study, we demonstrated the clinical
significance of the four subtypes of gastric cancer and developed
prediction models that can reliably stratify patients with gastric
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TCGA project risk score (TRS). A, Kaplan–Meier plots of RFS and overall
survival (OS) among patients stratified by TRS. P valueswere obtained using the
log-rank test. B, Relationship between continuous TRS values and 5-year
recurrence risk estimated by a Cox proportional hazardsmodel. The dotted lines
represent the 95% CIs of the HRs.
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cancer into these four subtypes. Our prediction model could be
used to identify not only patients with a poor prognosis (GS
subtype), but also those who would most benefit from adjuvant
chemotherapy (CIN subtype). Further development of the pre-
dictionmodel will be necessary before it can be implemented into
routine clinical practice. Simpler, more robust standardized tools
such as qRT-PCR for measuring expression of these genes will be
required for clinical use. Increasing the applicability of the pre-
diction model in the clinic will also require selecting fewer genes
that well represent each subtype. Nevertheless, the validation of
our predictionmodel in two independent patient cohorts and the
fact that themodel reflects the biological characteristics associated
with each subtype indicate that this prediction model could be
used to develop rational therapy recommendations. If confirmed
in prospective studies, the association between subtype and
adjuvant chemotherapy outcomes might improve patient selec-
tion for treatment.
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