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IMPORTANCE Covert vascular brain injury (VBI) is highly prevalent in community-dwelling
older persons, but its clinical and therapeutic implications are debated.

OBJECTIVE To better understand the clinical significance of VBI to optimize prevention
strategies for the most common age-related neurological diseases, stroke and dementia.

DATA SOURCE We searched for articles in PubMed between 1966 and December 22, 2017,
studying the association of 4 magnetic resonance imaging (MRI) markers of covert VBI
(white matter hyperintensities [WMHs] of presumed vascular origin, MRI-defined covert
brain infarcts [BIs], cerebral microbleeds [CMBs], and perivascular spaces [PVSs]) with
incident stroke, dementia, or death.

STUDY SELECTION Data were taken from prospective, longitudinal cohort studies including
50 or more adults.

DATA EXTRACTION AND SYNTHESIS We performed inverse variance–weighted meta-analyses
with random effects and z score–based meta-analyses for WMH burden. The significance
threshold was P < .003 (17 independent tests). We complied with the Meta-analyses of
Observational Studies in Epidemiology guidelines.

MAIN OUTCOMES AND MEASURES Stroke (hemorrhagic and ischemic), dementia (all and
Alzheimer disease), and death.

RESULTS Of 2846 articles identified, 94 studies were eligible, with up to 14 529 participants
for WMH, 16 012 participants for BI, 15 693 participants for CMB, and 4587 participants for
PVS. Extensive WMH burden was associated with higher risk of incident stroke (hazard ratio
[HR], 2.45; 95% CI, 1.93-3.12; P < .001), ischemic stroke (HR, 2.39; 95% CI, 1.65-3.47;
P < .001), intracerebral hemorrhage (HR, 3.17; 95% CI, 1.54-6.52; P = .002), dementia (HR,
1.84; 95% CI, 1.40-2.43; P < .001), Alzheimer disease (HR, 1.50; 95% CI, 1.22-1.84; P < .001),
and death (HR, 2.00; 95% CI, 1.69-2.36; P < .001). Presence of MRI-defined BIs was
associated with higher risk of incident stroke (HR, 2.38; 95% CI, 1.87-3.04; P < .001), ischemic
stroke (HR, 2.18; 95% CI, 1.67-2.85; P < .001), intracerebral hemorrhage (HR, 3.81; 95% CI,
1.75-8.27; P < .001), and death (HR, 1.64; 95% CI, 1.40-1.91; P < .001). Presence of CMBs was
associated with increased risk of stroke (HR, 1.98; 95% CI, 1.55-2.53; P < .001), ischemic
stroke (HR, 1.92; 95% CI, 1.40-2.63; P < .001), intracerebral hemorrhage (HR, 3.82; 95% CI,
2.15-6.80; P < .001), and death (HR, 1.53; 95% CI, 1.31-1.80; P < .001). Data on PVS were
limited and insufficient to conduct meta-analyses but suggested an association of high PVS
burden with increased risk of stroke, dementia, and death; this requires confirmation.

CONCLUSIONS AND RELEVANCE We report evidence that MRI markers of VBI have major
clinical significance. This research prompts careful evaluation of the benefit–risk ratio for
available prevention strategies in individuals with covert VBI.

JAMA Neurol. 2019;76(1):81-94. doi:10.1001/jamaneurol.2018.3122
Published online October 22, 2018.

Supplemental content

Author Affiliations: University of
Bordeaux, Inserm 1219, Bordeaux
Population Health Research Center,
Bordeaux, France (Debette, Schilling,
Duperron); Department of
Neurology, Memory Clinic, Bordeaux
University Hospital, Bordeaux, France
(Debette); Stroke Research Group,
Department of Clinical
Neurosciences, University of
Cambridge, Cambridge Biomedical
Campus, Cambridge, United Kingdom
(Larsson, Markus); Unit of Nutritional
Epidemiology, Institute of
Environmental Medicine, Karolinska
Institutet, Stockholm, Sweden
(Larsson).

Corresponding Author: Stéphanie
Debette, MD, PhD, University of
Bordeaux, Inserm U1219, Bordeaux
Population Health Research Center,
146 rue Léo Saignat, 33076
Bordeaux, France (stephanie.debette
@u-bordeaux.fr).

Research

JAMA Neurology | Original Investigation

(Reprinted) 81

© 2018 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 08/27/2022

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamaneurol.2018.3122&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2018.3122
mailto:stephanie.debette@u-bordeaux.fr
mailto:stephanie.debette@u-bordeaux.fr


L arge-scale brain imaging studies in the general popula-
tion have shown that radiological evidence of covert vas-
cular brain injury (VBI) is much more frequent than clini-

cal stroke and is highly prevalent in community-dwelling older
persons.1-3 Such incidental findings are also often detected on
magnetic resonance imaging (MRI) performed in routine clini-
cal practice, and how they should be interpreted and acted on
presents a common clinical challenge. Individual studies have
suggested that MRI markers of covert VBI predict an in-
creased risk of stroke, dementia, and death, but other studies
did not show any association. Better understanding of the as-
sociation of specific MRI markers of VBI with outcomes is cru-
cial to optimize prevention strategies. Indeed, detection of co-
vert VBI on MRI may provide a unique opportunity to prevent
the occurrence of stroke and dementia, the 2 most common
age-related neurological diseases, representing a major source
of disability and mortality.4

Four radiological features of VBI are seen on routine MRI
scans (Figure 1).5 Magnetic resonance imaging–defined
covert brain infarcts (BIs) represent areas of infarction, most
commonly small and in subcortical regions, and are usually
asymptomatic.6 White matter hyperintensities (WMHs) of pre-
sumed vascular origin are seen as areas of high signal on
T2-weighted MRI in the periventricular and deep white mat-
ter and represent areas of gliosis, axonal loss, and ischemic
demyelination.7 Cerebral microbleeds (CMBs) are seen as areas
of low signal on gradient echo MRI sequences and represent
susceptibility effects due to hemosiderin from previous
microbleeds.8 Perivascular spaces (PVSs) correspond to the di-
lation of spaces surrounding small perforating vessels filled
with cerebrospinal fluid–like signal and lined by leptomenin-
geal cells.9 These MRI markers of covert VBI are thought to pri-
marily reflect consequences of underlying cerebral small ves-
sel disease (SVD). The most common pathological substrates
of SVD are arteriolosclerosis or lipohyalinosis and cerebral amy-
loid angiopathy.10 We conducted a systematic review and meta-
analyses of published studies to explore associations of the 4
main MRI markers of covert VBI with risk of incident stroke,
dementia, and death.

Methods
Search Strategy and Selection Criteria
We did a systematic search of PubMed from 1966 to December
22, 2017, for English-only publications using predefined search
terms (eMethods in the Supplement) and reviewed the reference
list of relevant articles. Studies were searched and selected by 3
independent researchers (S.S., M.-G.D., and S.C.L.); differences
were solved by discussion. We included published prospective
studies with longitudinal data exploring the association of WMH,
BI, CMB, and PVS with risk of incident stroke, dementia, or death,
limited to studies in adults and in English language. We included
studies carried out in the general population and in populations
at high risk for vascular disease or dementia and present results
separatelyforeach.Weexcludedstudieswithouteffectestimates
and confidence intervals or raw numbers enabling the calcula-
tion of these estimates. We also excluded studies with computed

tomographyevaluationonly;withfewerthan50individuals(con-
sidering these could not provide reliable effect estimates); and
with WMH occurring in inflammatory conditions (eg, multiple
sclerosis, lupus,orSneddonsyndrome),monogenicneurodegen-
erative or cerebrovascular diseases (eg, cerebral autosomal domi-
nant arteriopathy with subcortical infarcts and leukoencepha-
lopathy), leukodystrophies, or studies on postthrombolysis
outcome after ischemic stroke (IS). If several studies provided
results on the same outcome and used overlapping groups of in-
dividuals, we included the study with the longest follow-up. If
follow-up periods were equivalent, we included the study with
the largest number of individuals. This review was not registered
butcompliedwithMeta-analysesofObservationalStudiesinEpi-
demiology guidelines.

Data Analysis
Data were extracted independently by S.S. and S.C.L. Extracted
data consisted of population type (general or high-risk popu-
lation), length of follow-up, MRI characteristics and sequence,
definition of MRI marker, outcome definition (ie, stroke, IS, in-
tracerebral hemorrhage [ICH], all-cause dementia, Alzhei-
mer disease [AD], and death), number of incident events, and
relative risk estimate for the association of the MRI marker with
the outcome. Variable definitions are provided in the eMethods
in the Supplement. The relative risk estimate was a hazard ra-
tio (HR), a relative risk, or an odds ratio; odds ratios were used
in the meta-analysis as an approximation of the HR.11 We ex-
tracted quality criteria of included studies (eTable 1 in the
Supplement) and used the Newcastle-Ottawa Scale to quan-
tify study quality (eTable 2 in the Supplement).12

Meta-analyses were carried out when 3 or more studies were
available for the same main outcome or 2 or more studies for the
sameoutcomesubtype(andonlywhenpossiblefor3ormoreMRI
markers of covert VBI). We calculated pooled HRs using inverse
variance–weightedmeta-analysiswithrandomeffectstoaccount
for potential heterogeneity for associations with BI, CMB, or di-
chotomized WMH burden. Statistically significant heterogeneity
was defined by a heterogeneity P value less than .05 or an I2

greater than 50%. We also performed sample size–weighted

Key Points
Question What is the clinical and therapeutic significance of
magnetic resonance imaging markers of covert vascular brain
injury (white matter hyperintensities of presumed vascular origin,
magnetic resonance imaging–defined covert brain infarcts,
cerebral microbleeds, and perivascular spaces) in
community-dwelling older adults?

Findings In this systematic review and meta-analysis of more than
16 000 participants, there was evidence that white matter
hyperintensities, brain infarcts, and cerebral microbleeds have a
major clinical significance in community-dwelling older adults;
they were associated with an increased risk of stroke (both
hemorrhagic and ischemic for all markers), dementia, and death.

Meaning This research highlights the urgent need for randomized
clinical trials to assess the benefit–risk ratio of prevention
strategies for individuals carrying these markers, such as aspirin
and intensive blood pressure–lowering treatment.
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z score–based meta-analyses (providing significance values but
no effect estimates) to combine studies using continuous WMH
burdenonlywiththoseusingdichotomizedWMHburden.When-
ever available, we used the model adjusted for vascular risk fac-
tors. Primary meta-analyses combined all available studies, and
secondary meta-analyses included studies in general or high-risk
populations only (eMethods in the Supplement). P values less
than .003 after applying a Bonferroni correction for 17 meta-
analyses were considered statistically significant (this threshold
is conservative, as MRI markers are correlated with each other),
and all P values were 2-tailed.

Meta-regression analysis was conducted in Stata version
14.2 (StataCorp) to assess the effect of length of follow-up and
potential confounding factors (ie, age, smoking, hyperten-
sion, diabetes, and education) on associations. Small-study
bias, such as publication bias, was evaluated using Egger test.13

P values less than .006 (accounting for 9 MRI marker × out-
come associations) were considered statistically significant.

Results
The initial search in PubMed identified 2846 articles. Of these,
94 articles met our inclusion criteria (eFigure 1 in the Supple-

ment). Some articles explored several MRI markers and asso-
ciations with more than 1 outcome. Five articles, all on PVS bur-
den, could not be included in the meta-analyses, as too few
studies tested associations of the same MRI marker with the
same outcome.

For WMH, 52 studies met our inclusion criteria:
25 for stroke,6,14-37 22 for dementia,25,35,38-57 and 16 for
death.14,15,17,20,22,33,36,37,39,58-64 For BI, we included 24 studies: 14
forstroke,16,17,21,25,33,36,39,65-71 10fordementia,25,39,40,48,51,54,57,72-74

and 8 for death.17,33,36,39,58,59,71,73 For CMB, 38 studies were re-
tained:28forstroke,16,18,19,24,28,30-32,75-92 6fordementia,54,57,93-96

and 10 for death.58,76,77,83,88,90,91,97-99 Of note, for 7 studies, as-
sociation results of CMB with recurrent stroke or ICH risk were
obtained from 3 previously published meta-analyses.78,100,101 Re-
garding PVS, 5 studies were included: 3 for stroke,18,102,103 2 for
dementia,104,105 and 2 for death.102,103

White Matter Hyperintensity Burden
In 14 529 participants from 17 studies, we found a significant
associationofextensiveWMHburden(n = 2859participants)with
riskofincidentstroke(n = 1049events)overall (heterogeneitytest
results, I2 = 56%; P = .003), in the general population,6,17,25,27,35,36

andinhighriskpopulations14,19,20,23,24,28,29,31-33,37 (Table;Figure2)
(eTables 3 and 4 in the Supplement). Adding 3 studies reporting

Figure 1. Magnetic Resonance Imaging (MRI) Markers of Covert Vascular Brain Injury

White matter hyperintensitiesaA MRI-defined brain infarctsB

Cerebral microbleedsC Perivascular spacesD

A, Minor (left) and extensive (right) white matter hyperintensities of presumed
vascular origin on axial fluid-attenuated inversion recovery MRI sequences.a

B, Magnetic resonance imaging–defined covert brain infarct without (left) and
with (right) white matter hyperintensities on axial fluid-attenuated inversion
recovery MRI sequences. C, Single cerebral microbleed (left) or multiple
cerebral microbleeds (right), including lobar (white arrowheads) and deep (pink
arrowheads) microbleeds, on gradient echo T2-weighted axial MRI sequences.
D, Perivascular spaces following the shape of deep penetrating arteries on

T2-weighted MRI.
a The definitions of extensive white matter hyperintensity burden differed

across studies, ie, top half, tertile, quartile, or quintile; or moderate to severe
white matter hyperintensity burden (or corresponding grades) on the
following visual semiquantitative rating scales: Fazekas scale, Scheltens scale,
or Age-Related White Matter Changes Scale (eTables 4-6 in the Supplement).
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associations with continuous WMH burden in a sample size–
weighted meta-analysis confirmed the association with incident
stroke (n = 14 913 participants; n = 1114 events; P < .001).15,22,30

Regarding stroke subtypes, extensive WMH burden was signifi-
cantly associated with increased risk of incident IS overall
(I2 = 67%; P = .002), in the general population,26,27,36 and in high-
risk populations14,20,23,29,31,33 and with increased risk of incident
ICH overall (I2 = 65%; P = .008)16,18,21,24,26,31,34 and in the general
population16,21,26 (Table) (eTables 3 and 4 and eFigure 2 in the
Supplement).

In 9338 participants from 12 studies, extensive WMH bur-
den (n = 2402 participants) was significantly associated with
incident dementia risk (n = 1127 events) overall (I2 = 64%;
P = .001) and in the general population,25,39,48,52 while the
association was only nominally significant in high-risk
populations38,41-46,53 (Table; Figure 2) (eTables 3 and 4 in the
Supplement). Adding 6 studies reporting associations with con-
tinuous WMH burden in a sample size–weighted meta-
analysis confirmed the association with incident dementia
(n = 11 093 participants; n = 1163 events; P < .001).40,47,49,51,55,57

Concerning dementia subtypes, we found a significant asso-
ciation of extensive WMH burden with risk of incident AD over-
all (I2 = 0%; P = .79) and in the general population,35,48 the as-
sociation being only nominally significant in high-risk
populations38,41,46,54 (Table) (eTables 3 and 5 and eFigure 2 in
the Supplement). Adding 4 studies reporting associations with
continuous WMH burden in a sample size–weighted meta-
analysis confirmed the association with incident AD (n = 7123
participants; n = 708 events; P < .001).49,50,52,56

We found a significant association in 13 138 participants
from 13 studies of extensive WMH (n = 1496 participants)
with mortality (n = 1700 deaths) overall (I2 = 41%; P = .06), in
the general population,17,36,39,59,61 and in high-risk
populations14,20,33,37,58,60,62,63 (Table; Figure 2) (eTables 3
and 6 in the Supplement). Adding 3 studies reporting associa-
tions with continuous WMH burden in a sample size–
weighted meta-analysis confirmed the association with in-
creased mortality (n = 13 939 participants; n = 1818 events;
P < .001).15,22,64

Magnetic Resonance Imaging–Defined Covert Brain Infarcts
In 16 012 participants from 12 studies, presence of BI (n = 3018
participants) was associated significantly with incident stroke
risk (n = 881 events) overall (I2 = 54%; P = .01), in the general
population,17,25,36,39,65,66,69 andinhigh-riskpopulations33,67,68,70,71

(Table; Figure 3) (eTables 3 and 7 in the Supplement). When con-
sidering stroke subtypes, presence of BI was significantly asso-
ciated with increased risk of IS overall (I2 = 0%; P = .70), in the
general population,16,26,36 and in high-risk populations33,70,71 and
with increased risk of incident ICH overall (I2 = 40%;
P = .15)16,21,26,33,71 and in the general population16,21,26 (Table)
(eTables 3 and 7 and eFigure 3 in the Supplement).

In 10 772 participants from 9 studies,25,39,40,48,51,57,72-74

presence of BI (n = 2759 participants) showed nominally sig-
nificant association with incident dementia risk (n = 1029
events), which did not withstand correction for multiple test-
ing (I2 = 44%; P = .08) (Table; Figure 3) (eTables 3 and 8 in the
Supplement). Presence of BI was not associated with inci-

Table. Summary of Meta-analysis Results for the Association of Magnetic Resonance Imaging Markers of Vascular Brain Injury
With Incident Stroke, Dementia, and Death

Vascular Brain Injury
Type Stroke Ischemic Stroke

Intracerebral
Hemorrhage Dementia Alzheimer Disease Death

Extensive WMH burden

Studies included, No. 17 9 7 12 6 13

No./total No. 2859/14 529 1159/7320 1572/7976 2402/9338 572/5206 1496/13 138

Events, No. 1049 696 148 1127 572 1700

HR (95% CI) 2.45 (1.93-3.12) 2.39 (1.65-3.47) 3.17 (1.54-6.52) 1.84 (1.40-2.43) 1.50 (1.22-1.84) 2.00 (1.69-2.36)

P value <.001 <.001 .002 <.001 <.001 <.001

BI presence

Studies, No. 12 6 5 9 3 8

No./total No. 3018/16 012 936/6873 878/8847 2759/10 772 1125/3429 1311/10 007

Events, No. 881 333 88 1029 414 1212

HR (95% CI) 2.38 (1.87-3.04) 2.18 (1.67-2.85) 3.81 (1.75-8.27) 1.29 (1.02-1.65) 1.06 (0.83-1.36) 1.64 (1.40-1.91)

P value <.001 <.001 <.001 .04a .64 <.001

CMB presence

Studies, No. 22 20 23 5 6 10

No./total No. 3131/15 693 2557/13 125 3174/14 280 1498/8736 1514/8875 1433/9942

Events, No. 831 459 218 338 290 1134

HR (95% CI) 1.98 (1.55-2.53) 1.92 (1.40-2.63) 3.82 (2.15-6.80) 1.41 (0.90-2.21) 1.18 (0.73-1.89) 1.53 (1.31-1.80)

P value <.001 <.001 <.001 .13 .49 <.001

Abbreviations: BI, brain infarct; CMB, cerebral microbleed; HR, hazard ratio;
WMH, white matter hyperintensity.
a Of note, 1 population-based study72 provided only effect estimates of

dementia risk either comparing participants with at least 1 prevalent but no
incident magnetic resonance imaging–defined BI with participants with
neither prevalent nor incident magnetic resonance imaging–defined BI or

comparing participants with at least 1 prevalent and 1 incident magnetic
resonance imaging–defined BI with participants with neither prevalent nor
incident magnetic resonance imaging–defined BI. By default, the effect
estimates of the first comparison were included, but meta-analysis results
were substantially unchanged overall when using effect estimates from the
second comparison (HR, 1.52; 95% CI, 1.15-2.00; P = .003).

Research Original Investigation Clinical Significance of Magnetic Resonance Imaging Markers of Vascular Brain Injury

84 JAMA Neurology January 2019 Volume 76, Number 1 (Reprinted) jamaneurology.com

© 2018 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 08/27/2022

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamaneurol.2018.3122&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2018.3122
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamaneurol.2018.3122&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2018.3122
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamaneurol.2018.3122&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2018.3122
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamaneurol.2018.3122&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2018.3122
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamaneurol.2018.3122&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2018.3122
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamaneurol.2018.3122&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2018.3122
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamaneurol.2018.3122&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2018.3122
http://www.jamaneurology.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2018.3122


Figure 2. Association of Extensive White Matter Hyperintensity (WMH) Burden
With Incident Stroke, Dementia, and Death
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dent AD, both in 1 general population study48 and in 2 high-
risk population studies54,57 (eTable 8 and eFigure 3 in the
Supplement).

In 10 007 participants from 8 studies, presence of BI
(n = 1311 participants) was significantly associated with mor-
tality (n = 1212 deaths) overall (I2 = 0%; P = .48) and in the
general population,17,36,39,59 with the association in high-risk

populations being only nominally significant33,58,71,73 (Table;
Figure 3) (eTables 3 and 9 in the Supplement).

Cerebral Microbleeds
In 15 693 participants from 22 studies, presence of CMB
(n = 3131 participants) was significantly associated with inci-
dent stroke risk (n = 831 events) overall (I2 = 49%; P = .005) and

Figure 3. Association of Magnetic Resonance Imaging (MRI)–Defined Brain Infarct (BI)
With Incident Stroke, Dementia, and Death
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in high-risk populations,19,24,28,30-32,76-80,83,84,88-92 the asso-
ciation in the general population being only nominally
significant16,75 (Table; Figure 4) (eFigure 2 in the Supple-
ment). With respect to stroke subtypes, presence of CMB was
significantly associated with increased risk of incident IS over-
all (I2 = 50%; P = .006)16,19,24,28,30,31,75,77-80,83,84,89-92 and in
high-risk populations16,19,24,28,30,31,75-80,83,84,89-92 and with in-
creased risk of incident ICH overall (I2 = 60%; P < .001) and in
high-risk populations,18,19,24,30,31,76-78,80-92 with nominally sig-
nificant associations in the general population16,75 (eTables 3
and 10 and eFigure 4 in the Supplement).

In 8736 participants from 5 studies,57,93-96 presence of CMB
(n = 1498 participants) was not significantly associated with in-
creased risk of incident dementia (Table; Figure 4) (eTables 3 and
11 in the Supplement). Presence of CMB was also not associated
with risk of incident AD54,57,93-96 (Table) (eTables 3 and 11 and
eFigure 4 in the Supplement). In 9942 participants from 10 stud-
ies, presence of CMB (n = 1433 participants) was significantly as-
sociated with increased mortality (1134 deaths) overall (I2 = 0%;
P = .48) and in high-risk populations58,76,77,83,88,90,91,97-99 (Table;
Figure 4) (eTables 3 and 12 in the Supplement).

Information on lobar vs deep location of CMB was avail-
able only in a small minority of studies (eTables 10-12 in the
Supplement). The results of these secondary meta-analyses are
included in the eResults in the Supplement.

Perivascular Spaces
There were too few eligible studies on the clinical significance
ofPVSstoconductmeta-analyses. Inonestudyinhigh-riskpopu-
lations with IS or transient ischemic attack (n = 2002
participants),103 high PVS burden (>20 vs <11 PVSs) in basal gan-
glia was associated with recurrent stroke and IS but not with ICH.
In another study in 229 patients with cerebral amyloid
angiopathy–related ICH,18 high PVS burden in the centrum semi-
ovale (≥20 PVSs) was associated with increased risk of ICH recur-
rence. In a single population-based study (n = 1228
participants),102 participants in the highest tertile of PVS burden
did not have a significantly higher risk of incident stroke after ad-
justing for vascular risk factors (eTable 13 in the Supplement).

In one population-based study (n = 1778 participants),105 the
highest grade of PVS burden in the basal ganglia and white mat-
ter was associated with increased risk of incident dementia. In
another population-based study (n = 2612 participants),104 the
presence of large PVS (greater than 3 mm) overall and in the basal
ganglia was significantly associated with increased risk of inci-
dent vascular dementia but not all dementia or AD (eTable 14 in
the Supplement).

One study in high-risk patients with IS or transient ischemic
attack (n = 2002 participants)103 did not observe any significant
association of high PVS burden (>20 vs <11 PVSs) with mortality.
In a single population-based study (n = 1228 participants),102 par-
ticipants in the highest tertile of PVS burden had a higher rate of
vascular death but not death overall after adjusting for vascular
risk factors (eTable 15 in the Supplement).

Sensitivity Analyses
Study quality was mostly high (eTable 2 in the Supplement).
After removing studies with medium to low quality (less than

7 stars on the Newcastle-Ottawa scale) or studies using ORs
only, the main findings of meta-analyses were unchanged
(eTable 16 in the Supplement). Meta-regression analyses in-
dicated no association of length of follow-up or adjustment for
potential confounders with associations (eTable 17 in the
Supplement). Regarding assessment of possible publication
bias, Egger test was only nominally significant for WMH and
stroke (coefficient, 2.5; SE, 0.8; P = .006), with all HRs greater
than 1 (eFigures 5-10 in the Supplement).

Discussion
In this systematic review and meta-analysis, we summarized
data from 94 prospective studies with up to 14 529 partici-
pants for WMH, 16 012 participants for BI, 15 693 participants
for CMB, and 4587 participants for PVS. We observed signifi-
cant associations of extensive WMH burden, BI, and CMB with
increased risk of incident stroke and both IS (risk more than
doubled) and ICH (risk more than tripled). White matter hy-
perintensity burden was also associated with increased risk of
incident dementia and AD, with hazard ratios between 1.5 and
1.8. White matter hyperintensity burden, BI, and CMB were all
associated with increased risk of death, with hazard ratios be-
tween 1.5 and 2.0. These associations were mostly seen both
in the general population and in high-risk individuals. Data on
high PVS burden were limited and insufficient to conduct meta-
analyses, with some but not all studies reporting a significant
association with increased risk of stroke, dementia, and vas-
cular death.

To our knowledge, this is the first systematic review and
meta-analysis simultaneously gathering published data on the
association of the 4 main MRI markers of VBI (ie, WMH, BI, CMB,
and PVS) with risk of incident stroke, dementia, and death.
Previous meta-analyses focused on 1 MRI marker at once
(ie, WMH or CMB)3,78,100,101,106,107 and mostly 1 outcome, some-
times in subpopulations. As well as integrating information
on multiple MRI markers of VBI, our review adds numerous
new studies.14,16,18-21,24-26,28,29,32,33,35,36,41,46,49-51,57,58,64,72,75,84,88,

95,96,99,102-105 We also present, to our knowledge, the first meta-
analyses on the association of BI with stroke subtypes, dementia,
and mortality and the first systematic review on the association
of PVS with stroke, dementia, and mortality.

White matter hyperintensities, BI, CMB, and PVS are com-
mon incidental findings on MRI brain scans carried out for other
reasons. They occur in about 10% to 28% of individuals 70 years
or older for BI and CMB and in more than 80% for WMH and
PVS, leading to study of them as extensive vs nonextensive bur-
den (with frequencies of extensive WMH and PVS burden vary-
ing depending on definitions [Figure 1] but ranging approxi-
mately between 10% and 50%).1-3,87,108-111 These MRI markers
of VBI predominantly reflect underlying cerebral SVD, and in
the vast majority of individuals, they are covert, ie, not asso-
ciated with clinical stroke. The clinical and therapeutic sig-
nificance of these findings is debated. Our analysis demon-
strates that extensive WMH, BI, and CMB are predictors of a
markedly increased risk of stroke and death and an increased
risk of dementia for extensive WMH. Perivascular spaces have
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Figure 4. Association of Cerebral Microbleeds (CMB) With Incident Stroke, Dementia, and Death
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I2 = 0%; P = .48). Results correspond
to hazard ratios (HRs) with 95% CIs
for each study; the meta-analysis
results (inverse variance–weighted
meta-analysis with random effects)
are shown in diamonds. The No./total
No. corresponds to the number of
individuals with the outcome of
interest and the total sample size.
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recently been suggested as a further manifestation of cere-
bral SVD,112-114 and some studies indicated that PVS burden cor-
relates with cognitive outcomes.105,115,116 We found only 5 lon-
gitudinal studies,18,102-105 some of which reported a significant
association of PVS burden with risk of stroke, dementia, and
vascular death. Additional studies are warranted to explore the
clinical significance of high PVS burden.

There are no guidelines for the management of covert,
MRI-defined VBI, leading to wide variation in clinical prac-
tice. Often, these lesions are ignored, likely representing an im-
portant missed opportunity for prevention of stroke and de-
mentia. When such findings are detected, it seems reasonable
to give healthy cardiovascular lifestyle advice. However, it
remains uncertain whether specific drug therapies should
be given or more stringent lowering of risk factors be targeted
to limit progression of VBI and prevent or slow down cogni-
tive decline.117 The major treatable risk factor for VBI is
hypertension,118 and some evidence from epidemiological
studies and secondary outcomes of clinical trials suggests that
treating hypertension in patients with extensive WMH re-
duces WMH progression119,120 and stroke risk120 and may re-
duce dementia risk.121 However, it remains uncertain how in-
tensively blood pressure should be lowered. Recently, trials
have been launched to look at the effect of intensive blood pres-
sure lowering on lesion progression in extensive WMH, either
in stroke-free patients (NCT01650402; NCT02472028) or
patients with lacunar stroke.122 In patients with lacunar stroke
included in the Secondary Prevention of Small Subcortical
Strokes (SPS3) trial123 (not selected to have extensive WMH
burden), no significant association of intensive blood pressure
lowering with reduction in stroke risk was observed.

Our finding that WMH and BI increase the risk of not only IS
but also ICH is consistent with recent data suggesting that a simi-
lar small vessel arteriopathy underlies both ischemic and hem-
orrhagic SVD.10,124 This has important potential implications for
therapy. Antiplatelet agents such as aspirin are often empirically
given to patients with WMH and BI detected on MRI. That they
also predict ICH suggests that this strategy could lead to an in-
creased hemorrhage rate. Antiplatelet agents also tend to be
avoided in persons with CMB detected on MRI; however, our re-
sults highlight that persons with CMB are also at increased risk
of IS. The SPS3 trial117 reported no reduction in stroke recurrence
when adding clopidogrel to aspirin in patients with symptomatic
lacunar stroke but a significant increase in bleeding and death.
Randomized clinical trials are required to determine whether any
antiplatelet therapy is indicated in stroke-free persons with ex-
tensive WMH or BI and whether the benefit–risk ratio is modi-
fied by the presence of CMB.

Magnetic resonance imaging markers of VBI are correlated
with each other, and using the data in our analysis, it is not pos-
sible to determine whether observed associations are indepen-
dent of other MRI markers of VBI. Studies using multimodal MRI
inpatientswithsymptomaticSVDhavedemonstratedthatBIand
WMH as well as more subtle and diffuse changes in white mat-
ter microstructure detected using diffusion tensor imaging are
the strongest predictors of cognitive impairment compared with
other MRI features.125,126 Results for CMB have been less conclu-
sive, with some studies finding that they are independent

predictors93,127-129 while others found the associations with cog-
nition to disappear when WMH and BI are controlled for.130 Fur-
ther studies, ideally combining individual-level data from large
cohort studies, are needed to systematically explore the respec-
tive independent associations of MRI markers of VBI with vas-
cular and cognitive outcomes. If valid genetic instruments be-
come available in the near future, the causal relation of each MRI
marker with clinical outcomes may also be explored by mende-
lian randomization. Exploring interactions of VBI markers with
biomarkers of neurodegeneration in relation to dementia risk is
another important future step, although specific biomarkers are
still lacking for large cohort studies.

Although BI and CMB were associated with risk of stroke
and death, they did not significantly predict dementia risk af-
ter correction for multiple testing. The lack of association in
this data set may reflect that most individuals had a small num-
ber of BIs and CMBs, which therefore made a modest contri-
bution to overall disease burden. This does not preclude an ef-
fect of BI or CMB on dementia risk in a subset of individuals
with more extensive or rapidly progressing lesions.125,131 In line
with this hypothesis, recent population-based studies re-
ported that dementia risk was significantly increased in indi-
viduals with both prevalent and incident BI72 or with 3 or more
CMBs.96 Small vessel disease is thought to cause cognitive
decline and dementia at least partly by disruption of white
matter pathways underlying complex cortical–subcortical
networks.132,133 Recent studies have shown that the degree of
network disruption, measured using advanced MRI tech-
niques, is strongly correlated with cognitive decline125,133 and
subsequent dementia risk.134 One or few BIs or CMBs are un-
likely to have a significant effect on network disruption in con-
trast to extensive WMH, which may affect multiple white mat-
ter tracks. White matter hyperintensity volume may also be
more linked with dementia-related neurodegenerative pro-
cesses, including potential reverse causation with Wallerian
degeneration secondary to cortical atrophy or with the fre-
quent coexistence of AD and cerebral amyloid angiopathy.135,136

Limitations
Our study has limitations. Meta-analyses were conducted post
hoc, based on available data with various sources of heteroge-
neity (eg, study population, measurement method of MRI mark-
ers and cutoffs used, MRI field strength, methods of incident
event ascertainment, analytical model, and length of follow-up).
We used random-effects meta-analyses and secondary sample
size–weighted meta-analyses to account for this heterogeneity.
Indeed, heterogeneity measures were statistically significant for
several of the meta-analyses, although less so when looking at
morehomogeneousoutcomesubtypes,andmostlydrivenbydif-
ferences in effect size rather than directionality of effect. More-
over, we conducted secondary analyses stratified by population
type (general population vs high-risk populations, where hetero-
geneity was highest), excluding studies with lower methodologi-
cal quality, and observed similar findings. Similarly, meta-
regression analyses did not suggest any significant effect of
differences between studies in length of follow-up or adjustment
for confounders. Nevertheless, we acknowledge residual intrin-
sic sources of heterogeneity, such as differences in definition of
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extensive WMH burden across studies. While most studies used
HRs (or few relative risks), a few studies used ORs. The latter were
pooled with HRs in meta-analyses, assuming that they numeri-
cally approximate one another, but we acknowledge this may not
be perfectly verified for studies in high-risk populations with a
higher incidence of events and higher risks.11 Excluding studies
that used ORs in sensitivity analyses led to similar results. All
these sensitivity analyses suggest robustness of our findings. Be-
cause of a small number of studies, we did not include analyses
of associations of longitudinal change in MRI markers of VBI with
risk of clinical events. These may be important to better estab-
lish the potential role of these MRI markers as surrogate end
points for prevention trials. We limited our review to articles pub-
lished in English in peer-reviewed journals found in PubMed and
through the reference list of relevant articles and did not system-
atically search other databases nor include articles published in
languages other than English. This may have led to the omission
of a small number of articles, most likely of lower methodologi-
cal quality. We did not contact the authors of the 4 studies that
did not provide an effect estimate or raw data to calculate one
(4% of eligible studies); results of these studies are described in
eTables 5 and 10 in the Supplement. Finally, although we did not

identify any significant evidence for small-study bias, confirma-
tion and in-depth exploration of our findings could be obtained
by future prospective meta-analyses within large consortia using
harmonized phenotypic criteria and analytical models, which
would also enable estimation of age-specific population attrib-
utable risk.

Conclusions
In conclusion, this systematic review and meta-analysis pro-
vides evidence that WMH, BI, and CMB, all highly prevalent
in the general population, have major clinical significance in
that they indicate a significant increased risk of stroke,
dementia, and death. From a practical perspective, the dis-
covery of these MRI markers should prompt detailed assess-
ment of a person’s risk for stroke and dementia and careful
evaluation of the benefit–risk ratio for available preventive
strategies. Randomized clinical trials are required to deter-
mine whether specific therapies, particularly aspirin therapy
and intensive blood pressure lowering, are beneficial when
these MRI markers are noted as incidental findings.
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