
Clinical study of noninvasive in vivo
melanoma and nonmelanoma skin
cancers using multimodal spectral
diagnosis

Liang Lim
Brandon Nichols
Michael R. Migden
Narasimhan Rajaram
Jason S. Reichenberg
Mia K. Markey
Merrick I. Ross
James W. Tunnell



Clinical study of noninvasive in vivo melanoma and
nonmelanoma skin cancers usingmultimodal spectral
diagnosis

Liang Lim,a Brandon Nichols,a,† Michael R. Migden,b Narasimhan Rajaram,a,† Jason S. Reichenberg,c

Mia K. Markey,a Merrick I. Ross,d and James W. Tunnella,*
aUniversity of Texas at Austin, Department of Biomedical Engineering, 107 W. Dean Keeton Street C0800, Austin, Texas 78712, United States
bUniversity of Texas MD Anderson Cancer Center, Department of Dermatology, 6655 Travis Street Suite 650, Houston, Texas 77030,
United States
cUniversity of Texas Southwestern-Austin, Department of Dermatology, 601 E 15th Street, Austin, Texas 78701, United States
dUniversity of Texas MD Anderson Cancer Center, Surgical Oncology, 1400 Pressler Unit #1484, Houston, Texas 77030, United States

Abstract. The goal of this study was to determine the diagnostic capability of a multimodal spectral diagnosis
(SD) for in vivo noninvasive disease diagnosis of melanoma and nonmelanoma skin cancers. We acquired
reflectance, fluorescence, and Raman spectra from 137 lesions in 76 patients using custom-built optical
fiber-based clinical systems. Biopsies of lesions were classified using standard histopathology as malignant
melanoma (MM), nonmelanoma pigmented lesion (PL), basal cell carcinoma (BCC), actinic keratosis (AK),
and squamous cell carcinoma (SCC). Spectral data were analyzed using principal component analysis.
Using multiple diagnostically relevant principal components, we built leave-one-out logistic regression classi-
fiers. Classification results were compared with histopathology of the lesion. Sensitivity/specificity for classifying
MM versus PL (12 versus 17 lesions) was 100%/100%, for SCC and BCC versus AK (57 versus 14 lesions) was
95%/71%, and for AK and SCC and BCC versus normal skin (71 versus 71 lesions) was 90%/85%. The best
classification for nonmelanoma skin cancers required multiple modalities; however, the best melanoma classi-
fication occurred with Raman spectroscopy alone. The high diagnostic accuracy for classifying both melanoma
and nonmelanoma skin cancer lesions demonstrates the potential for SD as a clinical diagnostic device. © 2014
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1 Introduction

Skin cancer is the most common cancer in the United States with

an annual estimate of 3.5 million nonmelanoma skin cancer

(NMSC) cases1 and 70,000 melanoma cases.2 NMSC is uncom-

monly fatal, but it can be locally destructive, spread to surround-

ing tissues, and give rise to complications. On the other hand,

melanoma is the leading cause of death related to skin disease.

Five-year relative survival rates of localized, regional, and dis-

tant melanomas are 98%, 61%, and 15%, respectively.3

Early diagnosis and treatment are currently the recom-

mended management strategy for skin cancer; however, the

current “gold standard” for diagnosis is invasive, costly, and

time consuming. A diagnostic procedure consists of a clinical

examination of the suspicious lesion, followed by biopsy and

histopathology, with an additional turnaround time of approxi-

mately 1 week. When compared with histopathology, general

practitioners’ diagnostic accuracy was reported to be between

24% and 44%, while dermatologists’ diagnostic accuracy was

77%.4,5 The common stance to err on the side of caution has

led to performing an increased number of biopsies, where

histopathology may be found to be negative for tumors. This

increases both the patient’s and health care financial burdens,

with associated patient discomfort undergoing these additional

surgical procedures. A more recent study reported a discordance

rate of 14% among pathologists for melanoma diagnosis,6 high-

lighting the difficulty of accurately diagnosing melanoma even

among experts. All these factors highlight the need for an

objective, noninvasive, and faster method to aid a physician

in diagnosing cancerous lesions, increasing clinical diagnostic

accuracy while reducing unnecessary biopsies.

Optical spectroscopy offers a noninvasive alternative to mea-

sure tissue pathology. The interaction of light with tissue can

provide insight into a tissue’s morphology and biochemical

state. Weak and harmless light is delivered to sample the tissue

under investigation. Analyzing the reemitted light provides

structural and biochemical compositions such as specific protein

content,7,8 nuclear morphology,9–11 oxygenation,12 and hemo-

globin concentration.13 As these parameters change with disease

progression, optical spectroscopy provides an alternative to

detect disease progression in an objective and noninvasive way.

Cancer detection using optical spectroscopy has been reported for

a variety of tissues such as bladder,14,15 breast,16,17 oral cavity,18

cervix,19 coronary arteries,20,21Barrett’s esophagus,22 and skin.23,24

Several commercial efforts have developed optical-based
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(MSC) diagnosis. These include MoleMax (Derma Medical

Systems, Vienna, Austria), MelaFind (MELA Sciences, Inc.,

Irvington, New York), MoleMate (Biocompatibles, Surrey,

United Kingdom), and SolarScan (Polartechnics Ltd, Sydney,

Australia).25 While studies with these devices have reported

good diagnostic performance for MSC diagnosis,26–28 all of

these devices are targeted only for MSC diagnosis. Clinical

adoption of such devices will likely require a single device

for characterizing both melanoma and NMSC.

Because of the strong need for a single device for the diag-

nosis of both melanoma and NMSC, several research efforts

have focused on developing noninvasive optical spectroscopy

techniques for combined diagnosis of malignant melanoma

(MM) and NMSC. Zhao et al.29 have developed an in vivo

Raman spectroscopy (RS) technique with clinical verification of

sensitivities and specificities of approximately 90% and 70%,

respectively. Garcia-Uribe et al.30 have used oblique incidence

diffuse reflectance spectroscopy (DRS) to diagnose melanoma

and NMSC with sensitivities and specificities of approximately

90%. These research efforts show great promise for optical spec-

troscopy’s sensitivity to skin pathology; however, a successful

clinical diagnostic device will require extreme accuracy.

Because of melanoma’s high mortality rate, high sensitivity

will be required to avoid missing potential deadly lesions. At

the same time, high specificity is needed in order to realize the

benefits of such a device, to decrease the over-biopsy rate, and

to reduce the costs and morbidity.

In an effort to increase the diagnostic accuracy, we propose

a device based on multiple spectroscopic modalities. This

approach takes advantage of the sensitivity of various spectral

modalities to different tissue pathologies (e.g., light scattering is

sensitive to cellular architecture while RS is sensitive to specific

biomolecular bonds). Specifically, we combined three fiber-

optic-based optical spectroscopy modalities: diffuse optical

spectroscopy (DOS), laser-induced fluorescence spectroscopy

(LIFS), and Raman spectroscopy (RS). DOS uses diffusely scat-

tered light to determine tissue scattering and absorption,31 pro-

viding the tissue’s microarchitecture, hemoglobin and melanin

contents, and oxygen saturation. LIFS is sensitive to endog-

enous fluorophores7 such as metabolic coenzymes nicotinamide

adenine dinucleotide (NADH) and flavin adenine dinucleotide,

providing insight into cellular metabolism. In addition, LIFS

measures structural protein status such as collagen and elastin,7

key indicators of a tumor’s morphology and invasiveness.32 RS

is sensitive to specific molecular vibrational energy levels,

which are very common in biological tissue and skin. For exam-

ple, the amide I bond is common in structural proteins such as

collagen. Other Raman active molecules have allowed for the

identification of specific tissue constituents such as lipids,

water, cell nuclei, cell cytoplasm, and others.33 As each optical

spectroscopy technique is sensitive to specific and complemen-

tary interactions between light and tissue, a combination of

modalities provides a more comprehensive picture of the

tissue’s biochemical and morphologic states. Previously, we

reported that a combination of DOS and LIFS provides better

NMSC diagnosis34 than one technique alone. Volynskaya et al.17

reported that adding intrinsic fluorescence spectroscopy to

DRS improves the diagnostic accuracy between subcategories

of benign breast lesions by 12%.17

In this study, we describe the use of multimodal (RS, DOS,

and LIFS) spectral diagnosis (SD) for noninvasive in vivo diag-

nosis of both melanoma and NMSC. SD’s fast acquisition time

(∼5 s) is practical for in vivo measurements in a clinical setting.

This study suggests that the multimodal SD has high diagnostic

performance for in vivo melanoma (Se ¼ 100%; Sp ¼ 100%)

and NMSC diagnosis (Se ¼ 90% to 95%; Sp ¼ 71% to 85%),

and the multimodal nature of the technique contributes to this.

Although RS contributes most highly to the diagnosis of mela-

noma, a combination of all techniques is required for good

NMSC diagnosis. Our results demonstrate SD’s potential as an

in vivo melanoma and NMSC diagnostic tool that can help

reduce unnecessary biopsies.

2 Materials and Methods

2.1 Spectral Diagnosis Clinical Instrument

Figure 1 shows the SD system in a clinical setting, with the sys-

tem’s schematic. The Raman instrument and fiber optic probe

have previously been described in detail.35,36 The excitation

source is an 830-nm diode laser (Lynx, Sacher Lasertechnik,

Marburg, Germany). Excitation light is passed through a laser

cleanup filter (Edmund Optics, Barrington, New Jersey) and

coupled into a delivery fiber (NA ¼ 0.22, 200-μm core diam-

eter). A simple sapphire ball lens at the distal tip of the probe

improves light collection. Custom-in-line filters were placed

between the fibers and ball lens to optimize light delivery

Fig. 1 Spectral diagnosis (SD) system in a clinical setting. It consists of two independent systems, each
with a customized fiber optic probe. Details of the system are available in Sec. 2.
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(short pass filter) and collection (long pass filter). Light col-

lected at the distal tip of the probe then travel through the 15

collection fibers (NA ¼ 0.27, 200-μm core diameter), which

are linearly arranged at the proximal tip through a slit (200 μm)

into a spectrograph (Kaiser Optical Systems HoloSpec f/1.8i,

Ann Arbor, Michigan), and the spectrum is finally imaged

onto a camera (Kodak KAF-1001E CCD, Finger Lakes

Instrumentation, Lima, New York). Integration time is approx-

imately 3 s. The collected spectra range is approximately 835 to

975 nm, corresponding to 84 to 1796 cm−1 Raman wavenumber

shift relative to excitation source of 830 nm.

The combined DOS and LIFS system has been described in

detail previously.37 The excitation source for DOS is a pulsed

xenon flash lamp (Hamamatsu Photonics, Bridgewater, New

Jersey), and the excitation source for LIFS is a 337-nm pulsed

nitrogen laser (Stanford Research Systems, Mountain View,

California). Excitation sources are coupled to the center fiber

of a 6-around-1 optical fiber probe (NA ¼ 0.22, 200-μm core

diameter, 200-μm source–detector separation, Fibertech Optica,

Ontario, Canada) through a fiber optic switch (FSM-13,

Piezoystems Jena, Jena, Germany). Light collected at the distal

tip of the probe travels through the collection fibers, which are

linearly arranged at the proximal tip into a spectrograph (SP-

150, Princeton Instruments, Trenton, New Jersey), and the

spectra are imaged onto a thermo-electrically cooled CCD

(Coolsnap, Princeton Instruments). Total integration time for

a complete measurement (DOS, LIFS, and background) is

less than 0.5 s. The collected spectra range is approximately

330 to 690 nm.

2.2 Patient Recruitment

This study was approved by the Institutional Review Board at

The University of Texas at Austin and The University of Texas

MD Anderson Cancer Center (trial registration ID: NCT

00476905). Informed consents were acquired from all patients

prior to the study. We acquired in vivo DOS, LIFS, and RS spec-

tra from 137 lesions in 76 patients. Enrolled patients’ age ranged

from 22 to 93 years, with an average age of 62. Enrolled patients

were predominantly male (male 71%, female 24%, NA 5%)

and Caucasian (Caucasian 91%, Hispanic 1%, Asian/Pacific

Islander 1%, NA 7%). NA (not available) accounts for missing

entries from incomplete patient surveys.

Corresponding biopsies were acquired from each lesion site

and classified using standard histopathology by a board certified

pathologist as MM (12 lesions), nonmelanoma pigmented lesion

(PL, 17 lesions), basal cell carcinoma (BCC, 19 lesions), actinic

keratosis (AK, 14 lesions), and squamous cell carcinoma (SCC,

38 lesions). Fourteen out of the 38 SCC lesions have features of

both AK and SCC. Sixteen lesions (e.g., scar, seborrheic kera-

tosis) did not fall under any of the previous groups. Twenty-one

lesions were excluded from the analysis from bad data (4

lesions), incomplete data (13 lesions), and small lesions (4

lesions). Bad data consisted of measurements with saturated

and high background signal. Incomplete data consisted of mea-

surements without all three modality’s measurements. These

errors occurred when fibers in our DOS + LIFS probe broke,

and on instances when the Raman system failed in its initializa-

tion process. We also excluded lesions smaller than 2 mm in

diameter. Our DOS + LIFS probe sleeve is 6.35 mm in diameter,

which posed a challenge in measuring lesions smaller than the

probe diameter. This version of the instrument also required the

room lights to be turned off to reduce ambient light influences

on the spectral data, making it more difficult to position probes

on small lesions.

2.3 Acquisition Procedure

SD measurements were conducted prior to lesion biopsy. Each

measurement consisted of spectral data from each modality

(RS, DOS, and LIFS). Care was taken to position both probes

in the same location. We acquired measurements from multiple

spots on each lesion [average measurements (range) per

corresponding lesion ¼ 2.2 (2 to 4)] followed by measurements

of nearby corresponding normal skin [average measurements

(range) per corresponding normal skin ¼ 2 (1 to 3)]. Although

none of the normal skin measurements were verified by histo-

pathology, we ensured that the normal skin measurements were

acquired at an area close to the lesion and visually verified to be

normal by an experienced dermatologist/physician assistant. A

biopsy was performed on the lesion, and the histopathology

results were recorded. Histopathology for the lesion was applied

for all the measurements on that lesion. We developed a num-

bering system to keep the correct corresponding histopathology

results with our measurements without compromising patients’

privacy and information.

2.4 Data Processing and Calibration

All spectral data underwent background noise removal. DOS

and LIFS data processing and calibration were processed as

described by Rajaram et al.37 Briefly, DOS data are intensity

calibrated to a liquid phantom solution of polystyrene micro-

spheres (1 μm, Polysciences, Warrington, Pennsylvania). LIFS

data are intensity calibrated to a liquid phantom of Rhodamine

(Rhodamine B, Sigma-Aldrich, St. Louis, Missouri) and spec-

trally calibrated to a NIST traceable tungsten calibration stan-

dard (LS-1-CAL, Ocean Optics, Dunedin, Florida). DOS and

LIFS spectra were wavelength calibrated using a mercury

argon calibration source (HG-1, Ocean Optics).

RS data underwent cosmic ray removal and fluorescence

removal using a fifth-order modified-polynomial fitting rou-

tine.38 Raman spectral data were wavenumber calibrated with

daily measurements of acetaminophen. For our analysis, data

under 800 cm−1 were excluded because of strong sapphire

peaks around 400 and 750 cm−1 and fiber background signal

around 800 cm−1.

2.5 Standardization of Diffuse Optical Spectroscopy
and Laser-Induced Fluorescence Spectroscopy

Visual observation of multiple individuals’ skin will show that

the spectral variance between individuals’ normal skin is high.

Even among the same individual, variance of normal skin from

different anatomical sites is high. Meaningful comparison

between different anatomical sites and individuals can only

be achieved after standardization of all measurements from

all patients to a baseline or reference point. We have previously

described a standardization technique for both DOS and LIFS

spectral data.34 LIFS spectral data were standardized using the

following equations:

NiðλÞ ¼
NiðλÞ

max½N1ðλÞ�
× Nmean; (1)
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LiðλÞ ¼
LiðλÞ

max½N1ðλÞ�
× Nmean; (2)

where NiðλÞ and LiðλÞ represent the wavelength-dependent

fluorescence spectra from normal skin and lesion, respectively.

N1ðλÞ is the first normal skin spectra measurement for each

patient’s lesion, and Nmean is the mean LIFS value for all normal

skin sites collected in this study. The basic premise behind this

standardization technique is to standardize every patient’s nor-

mal skin measurement and to adjust the corresponding lesion

measurement by the same scale.

In this study, we modified this standardization technique

to better suit DOS data using the following standardization

equations:

NiðλÞ ¼
NiðλÞ

max½N1ð630 − 690 nmÞ�
× Nmeanð630 − 690 nmÞ;

(3)

LiðλÞ ¼
LiðλÞ

max½N1ð630 − 690 nmÞ�
× Nmeanð630 − 690 nmÞ:

(4)

Light scattering is the dominant contributor to DOS spectra

in the 630- to 690-nm wavelength region, with less influence by

melanin and hemoglobin absorptions. By restricting the DOS

standardization wavelength range to 630 to 690 nm, DOS stand-

ardization is less unpredictable and more anchored around scat-

tering. This standardization emphasizes tissue scattering, which

we have reported to be a strong diagnostic parameter for

NMSC.34 Further details on how this standardization procedure

impacts diagnosis are available in Appendix A1.

2.6 Statistical Analysis and Classification

Processed spectral data were then grouped to their classifica-

tion datasets (MM versus PL, SCCBCC versus AK, and

AKSCCBCC versus normal). Principal component analysis

(PCA) was performed on each classification dataset for each

modality. PCA is adept at dimensional reduction of spectral

data. Using multiple highest varying principal components (PC),

we built leave-one-out logistic regression classifiers for mela-

noma (MM versus PL) and nonmelanoma (SCCBCC versus

AK and AKSCCBCC versus normal) skin cancers. Leave-one-

out cross-validation is preferred when sample size is small and

logistic regression is simple to implement.

We limited the PCs used for classification to those that

accounted for the highest variance from each modality. The

most significant 10, 2, and 2 PCs accounted for the majority

(95%) of the variance in each modality (RS, DOS, and LIFS,

respectively). The higher number of significant PCs in

Raman as compared with DOS and LIFS is expected as DOS

and LIFS spectral features are not as varied compared with

Raman, which has multiple well-defined and narrow peaks.

We surveyed every possible combination of the most significant

PCs and identified the combination of PCs for the optimum sen-

sitivity and specificity. We limited the total number of PCs used

in the classification to seven, because in most cases, the diag-

nostic performance stopped improving significantly beyond five

PCs. Classification results were compared with histopathology

of the lesion. In this article, PC of a particular modality is

labeled by the modalities’ first letter and the PC’s rank. For

example, D2 refers to DOS PC 2 and R1 refers to RS PC 1.

We determined sensitivity and specificity using a

conservative per lesion analysis approach, as mentioned in

our previous study,34 and demonstrated in this Appendix A3.

Per lesion analysis classifies a lesion as positive, if any one of

the lesion’s measurements is classified as positive. Conversely,

all of the lesion’s measurements have to be classified as negative

in order for the lesion to be considered as negative.

3 Results

3.1 Spectral Variations Between Pathologies by
Modalities

Figures 2(a) and 3(a) show the mean Raman spectra of mela-

noma and NMSC pathologies, respectively. Prominent Raman

bands are highlighted.39,40 Major contributors of Raman signal

in skin are lipids and proteins. By visual inspection, we

observed several spectral differences between pathologies. PL

and MM showed decreased intensity of amide I spectral region,

resulting in spectral flattening between 1500 and 1800 cm−1 and

increased intensity in the 1310 to 1340 cm−1 lipid band. PL and

MM showed peaks between 800 and 900 cm−1 that are absent

from all other pathologies. MM and BCC showed lower inten-

sity in the 1450-cm−1 region.

A major source of Raman signal in skin is from the protein

collagen,8 which is abundant with amide linkages. Increased

melanin and pigmentation in MM and PL explain the reduced

collagen’s Raman signals and spectral flattening in the amide I

region, consistent with studies by other groups.41,42 Melanin has

two broad Raman peaks in the 1380- and 1580-cm−1 wavenum-

ber region, contributing to the flattening of Raman signal in

these wavenumber regions.43 The flatter amide I region in

MM could be indicative of further degradation of collagen in

MM with respect to PL. Spectral changes in amide I and

amide III are also effective diagnostic parameters in NMSC,

as they are prominent Raman features in PCs used in those

classifications. Various diagnostic PCs have features located

between 800 and 950 cm−1 that may represent contributions

from amino acids such as tyrosine (830, 853 cm−1) and proline

(853, 920 cm−1), and at 1300 and 1340 cm−1 that may represent

contributions from lipids, mainly from ring breathing and C–C

stretching, and DNA components such as adenine (1336 cm−1).

Tyrosine is a precursor of melanin, and tyrosine phosphatase

genes (regulators of tyrosine phosphorylation) have been

shown to be downregulated in melanoma.44 Tyrosine phospho-

rylation has been shown to induce collapse of the doublet

around 820 to 850 cm−1, attenuation of the peak at 1205 cm−1,

and shift of the amide III band.45

Figures 2(b) and 3(b) show the mean DOS spectra by path-

ology. DOS measurement is a function of optical scattering and

absorption. The primary sources of scattering in skin include

collagen, mitochondria, melanin, and cell nuclei. Hemoglobin

and melanin are the primary sources of absorption in skin.

Determined by visual inspection, the two most diagnostically

significant PCs contribute to reflectance spectral intensity and

spectral slope (D1 and D2, respectively). Although PCs do

not directly indicate optical properties, Skala et al.46 have dem-

onstrated that the first DOS PC correlates strongly with reduced

scattering coefficient. With our fiber optic geometry, scattering

from dermal collagen dominates epidermal scattering from cells

and nuclei. All pathologies have lower reflectance intensities
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compared with normal skin. Melanoma and nonmelanoma

pigmented lesions (MMPL) have lower overall intensity and

slightly different DOS spectral slope, mostly because of more

absorption from higher melanin content. In NMSC, decrease

in reflectance intensity of lesions is most likely because of

a decrease in scattering coefficient, which indicates the break-

down of collagen present in the dermis. Another possible

explanation is that the thickening of epidermis from the progres-

sion of malignancy47,48 reduces the amount of collagen being

sampled, and thus the overall scattering of the cancerous lesion

is lower compared with normal skin. Other studies have

observed lower scattering coefficient in neoplastic lesions.24,34,49

AK differed from SCC in spectral slope and absorption. SCC

shows the higher reflectance intensity around 400 to 475 nm.

Figures 2(c) and 3(c) show the mean LIFS spectra by path-

ology. The main fluorophores from human skin using 337-nm

excitation wavelength are collagen and NADH. Both AK and

SCC fluorescence intensities are higher compared with normal

skin, with AK’s fluorescence peak slightly red-shifted compared

with SCC’s fluorescence peak. PL and MM have much lower

fluorescence intensity compared with all the other pathologies.

Table 1 summarizes the sensitivity and specificity of all

classifiers for all modalities using per lesion analysis and the

corresponding PCs that provided the optimal diagnostic accu-

racy. Corresponding receiver operating characteristic curves are

shown in Fig. 4.

3.2 Melanoma Skin Cancer and Pigmented Lesions

One of the primary spectral differences between MMPL and

normal skin is the much lower DOS and LIFS. This is expected

as we can visually observe that MMPL is darker compared with

normal skin. Melanin’s absorption overlaps with fluorescence

emission from major fluorophores in skin, explaining the

much lower fluorescence intensity from MMPL. This makes

DOS and LIFS intensities as excellent parameters in diagnosing

MMPL from normal skin. Using just two PCs (D1 and R9 or L1

and R9), we can distinguish normal skin from MMPL with sen-

sitivity/specificity of 100%/100%.

However, this makes DOS and LIFS intensities as poor diag-

nostic parameters in differentiating MM from PL. As MM and

PL can be lightly pigmented or heavily pigmented, both MM

and PL overlap in DOS and LIFS intensities. Nevertheless,

five PCs from RS were able to distinguish MM from PL

with sensitivity/specificity of 100%/100%. Diagnostic Raman

PCs for MM versus PL correspond to Raman spectra in the

amide 1, 1300–1340 lipids, amide 3, CH2 around 1450 cm−1,

and regions around 800 to 1000 cm−1.

One amelanotic melanoma (AM) lesion was included in our

melanoma dataset (plotted as the dotted-cross-line in Fig. 2).

AM is a rare type of melanoma without the pigmentation that

normally accompanies pigmented lesions (often mistaken as

BCC), thus challenging to notice and diagnose visually. A cou-

ple of interesting observations can be made on this lesion’s spec-

tra. The AM’s DOS and LIFS intensities were close to that of

the MM’s and PL’s spectra. AM’s Raman spectra also showed

lower CH2 (1450 cm−1) and amide I (1650 cm−1) vibrations,

like MM and PL. The absence of melanin pigmentation is

consistent with the lack of melanin peaks around 1380 and

1580 cm−1, thus having a Raman profile more similar to normal

skin at these wavenumber regions. The AM’s Raman spectra in

the 900 to 1300 cm−1 are most similar to MM. In our case, the

AM was still correctly classified as positive for melanoma.

3.3 Nonmelanoma Skin Cancer

In general, DOS and LIFS PCs were more prominent in the

diagnosis of NMSC. One of the main spectral features of

NMSC compared with normal skin is the lower DOS reflectance

spectra intensity, as shown in Fig. 3(b). Decrease in reflectance

intensity of lesions is most likely from a decrease in scattering

coefficient, which indicates breakdown of collagen present in
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Fig. 2 Mean spectra of melanoma (MM) nonmelanoma pigmented lesions (PL), and normal skin. One of
the melanoma lesions is an amelanotic melanoma (AM): (a) RS, (b) DOS, and (c) LIFS.
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Table 1 Sensitivity/specificity (%) summary table using per lesion analysis. Accuracy is the percentage of correct classifications
[ðtrue positiveþ true negativeÞ∕total lesions]. For instance, for SCCBCC versus AK, true positive ¼ 0.95 × 71 ¼ 54, true negative ¼ 0.71 × 14 ¼
10, total lesions ¼ 71, and accuracy ¼ ð54þ 10Þ∕71 ¼ 90%. Best diagnostic performance with the least number of modalities and/or PCs are
in bold.

Classifier # Lesions

Sensitivity/Specificity (%)

Accuracy (%)RS DOS LIFS Combined

MM versus PL 12 versus 17 100/100
R3, R5, R8, R4, R9

17/59 67/18 100/100 100

MMPL versus norm. 29 versus 28 90/82 97/100 93/100 100/100
(D1, R9) or (L1, R9)

100

SCCBCC versus AK 57 versus 14 72/64 75/71 91/57 95/71
D2, L2, R9

ð54þ 10Þ∕71 ¼ 90

AKSCCBCC
versus norm.

71 versus 71 68/55 87/68 52/52 90/85
D1, D2, L1, L2, R7

ð64þ 60Þ∕142 ¼ 87
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the dermis, or thickening of epidermis from the progression of

malignancy,47,48 reducing the sampling of highly scattering col-

lagen. Thus, the overall scattering of the cancerous lesion is

lower compared with normal skin, consistent with reports in

the literature.24,34,49 However, DOS spectral intensity might

not be a reliable parameter in diagnosing SCC and BCC

from AK, as their mean spectra overlap with a smaller distribu-

tion. LIFS on the other hand is not as straightforward. Mean

LIFS spectra from diseased skin (AK, SCC, and BCC) are dis-

tributed all around the mean spectrum of normal skin.

A combination of PCs from all modalities is needed for effec-

tive NMSC diagnosis. Five PCs (D1, D2, L1, L2, and R7)

resulted in the best classification of AKSCCBCC versus normal

skin, providing sensitivity/specificity of 90%/85%. A more clin-

ically relevant diagnosis is to differentiate SCC and BCC from

AK. AK has been hypothesized to be a precursor of SCC.50

Treatments for AK vary from external topical medication to sur-

gery, while SCC and BCC are almost always removed surgi-

cally. A combination of three PCs (D2, L2, and R9) resulted

in the best classification between SCCBCC (biopsy and surgical

excision) versus AK (cryotherapy/topical cream treatment), pro-

viding sensitivity/specificity of 95%/71%. Also, as we expected,

D1 (main contributor to spectral intensity) is not one of the diag-

nosis parameters for SCCBCC versus AK.

4 Discussion

4.1 Future Work

We envision that our classifiers could be applied in a clinical

setting via a simple two-step process. For the first step, a physi-

cian will choose the MSC or NMSC classifier. For the second

step, if MSC was chosen, the classifier will classify MM (pos-

itive, biopsy) from PL (negative, observation). The negative

group will eventually need to include lesions such as pigmented

BCC and SK, which are commonly suspected as melanoma. If

NMSC was chosen, then the classifier will classify SCCBCC

(positive, biopsy, and surgical excision) from AK (negative,

cryotherapy/topical treatment). The outcome of the classifiers

will diagnose the lesion and also indicate the lesion’s treatment.

In this study, we applied a purely statistical approach (PCA)

to analyze and classify the data. While PCA is a powerful tech-

nique, it does not elucidate the underlying physiological basis

for the diagnosis. Physiological-based models can be used to

determine the underlying chemical, physiological, and morpho-

logical statuses of tissues.21,33 For example, we have previously

demonstrated a DOS model that can extract physiological

parameters such as hemoglobin content, oxygen saturation,

and tissue microarchitecture.34,51 Haka et al.33 demonstrated

an RS physiological model for determining lipid, nuclear,

and protein content from breast tissues. However, an RS physio-

logical model for skin currently does not exist. Such a model

would allow similar physiological components to be extracted

from measured skin RS data and potentially explain the under-

lying physiological basis for the diagnosis.

Our results also indicate that PCA may not be sensitive to

important pathological changes. For instance, LIFS PCs were

only used in diagnosis of AK and SCC and only performed

well when combined with other modalities. Panjehpour et al.52

reported that LIFS alone was capable of good diagnostic perfor-

mance of BCC and SCC from normal and benign lesions, sug-

gesting that our simple PC analysis was not robust enough to

detect pathological changes seen in that study. One important

note is that the PC approach does not allow for the correction

of tissue fluorescence for distortions from tissue optical absorp-

tion and scattering. This correction has been noted to be an

important factor in other organs,53 and may further improve

the diagnosis of this modality.

While this study used two separate systems to acquire three

modalities, our lab has developed a multimodal system to

acquire all three modalities using a single optical fiber probe

and instrument.54 This will reduce sampling site error and clini-

cal acquisition time.

4.2 Conclusion

We implemented DOS, LIFS, and RS as a noninvasive in vivo

diagnostic for melanoma and NMSC. We collected in vivo mea-

surements of 137 lesions from 76 patients and built leave-one-

out logistic regression classifiers using PCs from each modality.

Our results demonstrate the ability of these modalities to quan-

titatively assess tissue biochemical, structural, and physiological

parameters that can be used to determine tissue pathology with

high accuracy. We compared the diagnostic capabilities between

each spectroscopy modalities for both melanoma and NMSC.

Individual modalities can achieve very good diagnostic results.

PCs from RS were able to diagnose MM from PL with 100%

accuracy. However, a combination of PCs from all modalities is

needed to properly diagnose NMSC. As a whole, a combination

of all three modalities is necessary for in vivo noninvasive diag-

nosis of both melanoma and NMSC.

In conclusion, these results show good diagnostic perfor-

mance of noninvasive in vivo diagnosis of melanoma and

NMSC using multiple optical spectroscopy modalities. An accu-

rate, fast, and objective skin cancer diagnosis device has the

potential to improve skin cancer diagnosis and to reduce unnec-

essary biopsies. This high diagnostic performance applicable to

both melanoma and NMSC shows great promise as a clinical

diagnostic tool.

Appendix: Miscellaneous Details on
Materials and Methods

A1 Standardization of DOS and LIFS Data

The effect of DOS and LIFS standardization is shown in Fig. 5.

Specific to our sample pool, note that the mean DOS and LIFS

spectra of the normal skin from the PL group are significantly

higher than the mean spectra of all normal skin measurements

[Figs. 5(a) and 5(c)]. On the contrary, the mean DOS and LIFS

spectra of normal skin from the MM group are lower than the

mean spectra of all normal skin measurements. After standardi-

zation, DOS and LIFS spectra from normal skin are more tightly

spaced together [Figs. 5(b) and 5(d)], whereas the corresponding

MM and PL spectra are adjusted accordingly. MM and PL spec-

tra are also more tightly spaced together.

The benefit of standardization is obvious when we compare

sensitivity/specificity before and after standardization, as sum-

marized in Table 2. The biggest benefit for both standardization

techniques is in diagnosing MMPL from normal skin. Without

any standardization, two DOS PCs or two LIFS PCs were

able to classify MMPL from normal skin with sensitivity/

specificity of 93%/89% and 83%/100%, respectively. After

standardization, one DOS PC or one LIFS PC was better in clas-

sifying MMPL from normal skin with sensitivity/specificity of

97%/100% and 93%/100%, respectively. This is expected as
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standardization narrows the distribution of normal skin measure-

ments, and as a result, narrows the distribution of MMPL

measurements.

DOS’s ability to classify MM from PL is reduced (from 92%/

53% to 17%/59%). This might first appear to be disadvanta-

geous, but it is likely more representative of the clinical setting.

Spectral intensity, which is directly correlated with pigmentation

of a lesion, is not a reliable diagnostic parameter for discrimi-

nating MM from PL. Both MM and PL can be light (e.g., ame-

lanotic), or extremely dark, with every shade in between. The

better sensitivity/specificity of unstandardized MM versus PL

based on DOS spectral intensity and shape (D1 and D2) is

only specific to this unstandardized sample pool, because

most of the MM in this sample pool happened to have lower

DOS spectral intensity. Overall, standardization is a key step

in processing DOS and LIFS spectral data for malignancy

diagnosis. It removes the variances due to normal anatomy

and enhances the variances due to disease.

A2 Standardization of Raman Spectroscopy

The importance of standardization on DOS and LIFS implied a

similar need of standardization for RS data. Research groups

have implemented various standardization techniques for

measurements from skin. Several standardization techniques

reported in the literature include: (1) scaling the area under

the curve (AUC) to 1,55 (2) zeroing the mean with unit vari-

ance,56,57 (3) standardizing to mean intensity,41 and (4) scaling

to Raman peak intensity.42,58 Each has its merits, but a consensus

has not been established regarding the proper standardization

technique for Raman measurements of human skin tissue.

Our general standardization approach was to normalize to a

prominent benchmark that was present in all measurements.
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Fig. 5 Effect of standardization on DOS (a, b) and LIFS data (c, d): DOS prestandardization (a) and
poststandardization (b), and LIFS prestandardization (c) and poststandardization (d).

Table 2 Effect of standardization on DOS and LIFS sensitivity/specificity (%).

Standardization # Lesions

DOS Sensitivity/Specificity (%) LIFS Sensitivity/Specificity (%)

Pre Post Pre Post

MM versus PL 12 versus 17 92/53
D1, D2

17/59
D1

66/6
L1, L2

67/18
L1, L2

MMPL versus normal 29 versus 28 93/89
D1, D2

97/100
D1

83/100
L1, L2

93/100
L1

SCCBCC versus AK 57 versus 14 70/57
D2

75/71
D2

60/57
L2

91/57
L2

AKSCCBCC versus normal 71 versus 71 82/70
D1, D2

87/68
D1, D2

54/51
L2

52/52
L2
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Specifically, we normalized to the AUC of the amide I Raman

peak centered at 1650 cm−1. For consistency with our DOS

and LIFS, we standardized using the lesion’s first normal meas-

urement, as shown by the following equations:

NiðλÞ ¼
NiðλÞ

AUC½N1ð1642 − 1660Þ�
; (5)

LiðλÞ ¼
LiðλÞ

AUC½N1ð1642 − 1660Þ�
: (6)

Figure 6 illustrates the effect of standardization on the

RS data, and Table 3 summarizes the sensitivity/specificity

differences between standardized and unstandardized RS

data. Mean Raman spectra of normal skin from each pathology

group were closer (e.g., in the spectral regions of 1650 and

1450 cm−1), resulting in less variance between PL and MM

(i.e., mean spectra of PL and MM are closer around 1650,

1450, 1200 to 1300 cm−1). Unfortunately, amide I is an impor-

tant diagnostic peak, and thus, standardization to this peak

reduced its variance and the resulting effectiveness of this

“standardized” RS diagnosis.

Because amide I exists in various physiological components

in skin,21,59 standardizing RS data to it may not highlight tissue

pathology appropriately. While DOS and LIFS standardizations

were anchored around one or two physiological components,

RS standardization to amide I was likely from multiple physio-

logical components. RS is very different in spectral profile (i.e.,

many narrow peaks from various contributing physiological

parameters). Thus, RS may require a more intricate standardi-

zation procedure. More study is needed to determine an appro-

priate standardization technique for RS. For this study, we

reported results from both standardized and unstandardized

RS data, and we use the unstandardized RS data in reporting

our final diagnostic performance.

A3 Per Lesion Analysis

We determined sensitivity and specificity using a conserva-

tive per lesion analysis approach. Our acquisition procedure

acquired multiple measurements from the same lesion, and the

classification was performed on a per lesion basis. This is in
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Fig. 6 RS standardization to AUC of amide I peak (1642 to 1660 cm−1). (a) RS prestandardization and
(b) RS poststandardization.

Table 3 Effect of standardization on RS sensitivity/specificity (%).

Classifier # Lesions

Raman Unstandardized Raman Standardized

RS Se./Sp. (%) Combined Se./Sp. (%) RS Se./Sp. (%) Combined Se./Sp. (%)

MM versus PL 12 versus 17 100/100 100/100 92/88 92/88

MMPL versus normal 29 versus 28 90/82 100/100 76/89 100/100

SCCBCC versus AK 57 versus 14 72/64 95/71 81/50 91/79

AKSCCBCC versus normal 71 versus 71 68/55 90/85 80/52 92/79
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contrast with a “per measurement” approach that would treat

each measurement as an individual sample. In the “per measure-

ment” analysis approach, a conflicting lesion classification

could occur in instances when measurements from the same

lesion are classified both positive and negative (i.e., lie on

both sides of the decision line). One solution is a conservative

diagnostic classification called “per lesion” analysis, as men-

tioned in our previous study.34 Per lesion analysis classifies a

lesion as positive if any one of the lesion’s measurements is clas-

sified as positive. Conversely, all of the lesion’s measurements

have to be classified as negative in order for the lesion to be

considered as negative. The basis of this classification was

the dermatologist’s approach to err on the side of caution. To

prevent training bias, classifier training was also performed

per lesion.

Figure 7 illustrates the impact of a per measurement (a) ver-

sus a per lesion (b) analysis approach. For this example, we plot

the two diagnostic PCs (D1 and D2) used to classify BCC from

normal skin. In Fig. 7(a), there is one normal skin measurement

on the positive (left) side of the decision line, and seven BCC

measurements on the negative (right) side of the decision line.

Using per measurement analysis, the sensitivity/specificity

using this decision line is 82%/97% (32 of 39 BCC measure-

ments and 37 of 38 normal skin measurements are correctly

classified). However, five of these seven measurements incor-

rectly classified as normal measurements are from lesions

with another measurement on the positive side of the decision

line. While all measurements from lesion “1” are on the negative

side of the decision line, measurements from normal skin “2”

and lesion “3” both have a corresponding measurement on

the positive side of the decision line. In Fig. 7(b), using per

lesion analysis, lesion “1” is a per lesion false negative

(PLFN) as all of its measurements are on the negative (right)

side of the decision line. Both normal skin “2” and lesion

“3” would be classified as positive, because at least one of

its measurements is on the positive side of the decision

plane. As a result, normal skin “2” is a per lesion false positive

(PLFP), while lesion “3” is per lesion positive (PLP), as shown

in Fig. 7(b). The other BCC measurements on the negative side

of the decision line have a measurement from the same lesion

classified as positive (on the positive side of the decision line).

Per lesion analysis gives a sensitivity and specificity of 95%/

95% (18 of 19 BCC lesions and 18 of 19 normal skin measure-

ments are correctly classified).
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