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Clinical Trials and Sample Size
Considerations: Another Perspective
Sandra J. Lee and Marvin Zelen

Abstract. We propose a Bayesian formulation of the sample size prob-
lem for planning clinical trials. The frequentist paradigm for calculating
sample sizes for clinical trials is to prespecify the type I and II error
probabilities. These error probabilities are conditional on the true hy-
potheses. Instead we propose prespecifying posterior probabilities which
are conditional on the outcome of the trial. Our method is easy to imple-
ment and has intuitive interpretations. We illustrate an application of
our method to the planning of cancer clinical trials for the Eastern Co-
operative Oncology Group (ECOG).
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1. INTRODUCTION

This paper discusses the use of Bayesian ideas
in the formulation and calculation of sample sizes
for planning clinical trials. Our view is that there
are special features of the clinical trials setting that
require a Bayesian formulation. However the imple-
mentation of our ideas has a frequentist perspective.
The discussion will be formulated in the context of
comparing two treatments, but the ideas are easily
generalized to compare more than two treatments.

Nearly all sample size calculations for planning
clinical trials follow the usual frequentist ideas by
choosing a fixed type I error �α� and calculating
a sample size consistent with a prespecified power
�1−β� to detect a prespecified noncentrality value δ.
Ordinarily the value of α is taken to be α = 0�05 or
in rarer cases α = 0�01� It is highly unusual to have
values of α > 0�05, although it is common to have
0�05 < β ≤ 0�2� There is no logic in the widespread
use of α = 0�05 except that there is general agree-
ment that it should not be large. Intuitively it is
clear that β should not be large, but there is no
general agreement on the widespread use of a fixed
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β value. A referee has recommended that the selec-
tion of (α�β) should be based on the relative costs
of making a wrong decision. However the consider-
ation of relative costs is rarely done. We have no
knowledge of any such application in the clinical
trial setting.

There have been recent papers in the literature
putting forth Bayesian ideas in the planning of clin-
ical trials. The papers by Berger, Boukai and Wang
�1997�1999�, although not specifically directed at
the planning of clinical trials, attempt to reconcile
frequentist and Bayesian ideas that have implica-
tions for the interpretations of results from clinical
trials. Spiegelhalter and Freedman (1986) propose
using the posterior distribution to plan clinical tri-
als when the magnitude of the noncentrality param-
eter is obtained from subjective clinical opinions (see
Discussion). Recent papers on this topic are Joseph
and Belisle (1997), Joseph, Wolfson and du Berger
(1995), Lindley (1997) and Pham-Gia (1997). How-
ever these efforts have for the most part been ig-
nored by those engaged in the planning of clinical
trials. We also note that Peto et al. (1976) briefly
discuss the advantages and disadvantages of inter-
preting a p-value together with prior opinions.

Nevertheless, most statistical practitioners of
clinical trials acknowledge that the formal proce-
dures for planning sample sizes in clinical trials
have many subjective elements. Among these are
the choice of the α level and the sensitivity of the
trial to have acceptable power for detecting (say)
a specified noncentrality parameter. Our approach
to the sample size problem leads to specification of
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�α�β�, but requires other subjective elements that
may be easier to estimate or accept.

The basic idea underlying the frequentist theory
of planning studies is to control the false positive
and false negative error rates by specifying them in
advance of the study. These are probabilities that
are conditional on the true state of the hypotheses
under consideration. We believe this methodology is
inappropriate for the planning of clinical trials. Our
views are motivated by the following considerations.
If the outcome of the clinical trial is positive (one
treatment is declared superior), then the superior
therapy is likely to be adopted by other physicians.
Similarly if the outcome is neutral (treatments are
comparable), then considerations other than out-
comes are likely to be important in the adoption
of therapy.

The consequences of false negative and positive
decisions after the clinical trial has been completed
are conditional on the outcome of the clinical trial.
Hence the false positive and negative error rates
should also be conditional on the trial outcome. In
our view these latter probabilities should be used in
the planning of clinical trials. The contrast is that
there are two classes of error rates: the frequentist
type I and II error rates (that are conditional on the
true hypotheses) and the posterior error rates (that
are conditional on the outcome of the trial). It is the
latter rates that are important in assessing the con-
sequences of wrong decisions. In “plain” language,
we believe the two fundamental issues are (a) if the
trial is positive, “What is the probability that the
therapy is truly beneficial?” and (b) if the trial is
negative, “What is the probability that the thera-
pies are comparable?” The frequentist view ignores
these fundamental considerations and can result in
positive harm because of the use of inappropriate
error rates. The positive harm arises because an ex-
cessive number of false positive therapies may be
introduced into practice. Many positive trials may
be unethical to duplicate and, even if replicated,
could require many years to complete. Hence a false
positive trial outcome may generate many years of
patients’ receiving nonbeneficial therapy.

The above discussion essentially casts the fun-
damental interpretation of a clinical trial in a
Bayesian setting. This requires that the determina-
tion of the required sample size also be viewed from
a Bayesian framework. It is the purpose of this pa-
per to reformulate the sample size problem in the
context of planning clinical trials and to illustrate
how it can be used in a practical way. Because of
the widespread use of the 0.05 significance level we
believe that an unacceptably high proportion of pos-
sibly ineffective therapies may have been routinely

adopted. We do not intend to be pejorative with re-
spect to the use of well conducted clinical trials,
but feel that the interpretation of results from such
trials is not well understood.

The outline of this paper is that Section 2 formu-
lates the problem, Section 3 contains illustrations of
the planning of trials and Section 4 concludes with
a general discussion.

2. NOTATION AND PROBLEM FORMULATION

Consider a phase III clinical trial for comparing
two groups. To motivate ideas, suppose the trial is
comparing an experimental therapy with the best
available therapy. It is assumed that the experimen-
tal therapy has been evaluated in phase II clini-
cal trials that have demonstrated some efficacy. The
available evidence allows the possibility that the ex-
perimental therapy may be comparable to, or poten-
tially of even greater benefit than, the best available
therapy.

Let δ be a noncentrality parameter that is a func-
tion of the parameters so that the hypothesis test-
ing situation can be formulated in the traditional
frequentist paradigm; that is, H0� δ = 0 versus
H1� δ �= 0 (two-sided alternative). (Later in this
section, we discuss carrying out a trial with a one-
sided alternative hypothesis together with the as-
sociated ethical issues.) A test statistic T�Y�, that
is a function of the observations, will be used to
carry out an appropriate statistical test. Without
loss of generality we will take the mean and vari-
ance of the test statistic to be E�T�Y�� = δ and
var�T�Y�� = 2σ2/n where σ2 is defined in an ap-
propriate manner and n is the sample size for each
group. For example if the test statistic is the differ-
ence of two sample averages, T�Y� = Ȳ1 − Ȳ2, then
E�Ȳ1 − Ȳ2� = m1 − m2 = δ and var�Ȳ1 − Ȳ2� =
σ2

1/n + σ2
2/n = �2/n��σ2

1 + σ2
2 �/2 ≡ 2σ2/n� If two

proportions are being compared, averages are re-
placed by sample proportions. It will be assumed
that the sample sizes are sufficiently large so that
the test statistic has an asymptotic normal distri-
bution. However, this assumption is not necessary
for our main development.

We shall consider a two-sided alternative hy-
potheses, that is, H0� δ = 0 versus H1� δ �= 0. In
order for this trial to be ethical, it is necessary that,
a priori, there is no reason to favor one therapy
over the other. We assign a prior probability of θ
to the joint event δ > 0 or δ < 0. Hence there will
be a prior probability �1 − θ� of the null hypothe-
sis being true, and θ/2 will be the prior probability
for each alternative δ > 0 and δ < 0. If the prior
probabilities are not equal for δ > 0 versus δ < 0,
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then the trial would be unethical as it will be ad-
vantageous for the patient to be assigned to the
treatment with the larger prior probability of be-
ing superior. Our view is that if a physician has a
prior belief that one of the treatments is “likely” to
be better for a particular patient, then the physi-
cian cannot ethically enter that patient in a clinical
trial.

The quantity θ essentially summarizes the prior
evidence and/or subjective assessment in favor of
differences between treatments. It also reflects the
level of clinical innovation that motivated the trial.
Numerical values of θ are difficult to estimate. In
practice it may only be necessary to have a range of
values.

In some applications it may be possible to order
different experimental situations with regard to θ.
For example, combining two drugs into a combina-
tion, in which each drug alone has been shown to be
clinically ineffective, may have a lower prior prob-
ability of success when compared to a situation in
which one is evaluating a two-drug combination in
which each drug has shown benefit. Another possi-
bility is that a series of pilot or preclinical studies
may be available showing that a new treatment is
beneficial. If the disease that is being treated has
no accepted standard treatment, or the standard
treatment is regarded as having very modest bene-
fit, then it may be unethical to carry out a clinical
trial comparing the new treatment to a control or
the standard treatment, as the prior probabilities
may not be equal for δ > 0 compared to δ < 0.

The null hypothesis H0� δ = 0 is a “shorthand”
expression that δ is in the neighborhood of δ = 0.
There is an “indifference” region in which the treat-
ments are regarded as comparable. The hypothe-
sis testing situation can be reformulated by denot-
ing an indifference region �δ� < δ0 and a region
of importance �δ� > δ1. Then the null and alterna-
tive hypotheses can be stated as H0� �δ� ≤ δ0 and
H1� �δ� > δ1, with the region δ0 < �δ� < δ1 being re-
garded as an “indecisive” region. A special case in
the formulation is to take δ0 = δ1. The usual for-
mulation is to set δ0 = δ1 = 0. We note that the
main ideas of this paper can be applied to this more
general formulation of the hypothesis testing prob-
lem. However, we do not address these modifications
further as it detracts from the main theme of this
paper.

As a special case of the hypothesis testing con-
text described above, we distinguish between the
two sets of one-sided hypothesis testing situations:
(a) H0� δ ≤ 0 versus H1� δ > 0 and (b) H0� δ = 0
versusH1� δ > 0. The hypotheses denoted by (a) re-
quire that equal prior probabilities �θ = 1/2� be as-

signed to the null and alternative hypotheses. Oth-
erwise the trial would be unethical. In the setting
of (b), we assume that the prior probability of δ < 0
is zero. An example of this situation is when a new
treatment is being evaluated against no treatment
or placebo and the new treatment will not result
in negative benefit. Our thinking is that the hy-
potheses denoted by (b) should never be tested in
a clinical trial because in that context it is always
advantageous to the patient to be assigned to the
new treatment. These considerations show that one-
sided alternative hypotheses require different con-
siderations with respect to the ethical basis of a clin-
ical trial as well as the choice of the prior distribu-
tion.

The outcome of the clinical trial will be idealized
as having a positive or negative outcome. The pos-
itive outcome refers to the conclusion that δ �= 0,
whereas a negative outcome refers to the conclu-
sion δ = 0. Define C to be a binary random vari-
able which reflects the outcome of the clinical trial;
that is, C = + or −. Also define T to be an indicator
random variable which denotes the true state of the
hypothesis under evaluation; that is, T = − refers
to δ = 0 and T = + signifies δ �= 0�

Our assessment of T will be identified with the
prior probability associated with δ �= 0; that is,
θ = Pr�T = +�. Also define the usual frequentist
probabilities of making false positive and false neg-
ative conclusions from the data by

α = Pr�C = +�T = −��
β = Pr�C = −�T = +��

In an analogous way define

α∗ = Pr�T = +�C = −��
β∗ = Pr�T = −�C = +��

These are the posterior probabilities of the true sit-
uation being opposite to the outcome of the trial.
They are the posterior false positive and false neg-
ative error probabilities.

In the context of applications it is sometimes con-
venient to refer to the complement of the posterior
error probabilities. For this purpose define P1 and
P2 to be P1 = 1 − α∗ = Pr�T = −�C = −� and
P2 = 1 − β∗ = Pr�T = +�C = +�� These quanti-
ties are functions of �α�β� θ�. A direct application
of Bayes Theorem results in expressing �P1�P2� in
terms of �α�β� θ�; that is,

P1 = 1− α∗ = Pr�T = −�C = −�
(1)

= �1− α��1− θ�/[�1− α��1− θ� + βθ]�
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P2 = 1− β∗ = Pr�T = +�C = +�
(2)

= �1− β�θ/[�1− β�θ+ α�1− θ�]�
Note that if P1 = P1�θ� α�β� and P2 = P2�θ� α�β�,
then P2 = P1�1− θ�β� α� and P1 = P2�1− θ�β� α�.
The quantities P1 and P2 also arise in the evalua-
tion of diagnostic tests. They are referred to as the
negative and positive predictive values. We prefer to
refer to them as posterior probabilities to avoid any
confusion about diagnostic tests versus hypothesis
testing applications.

Alternatively �α�β� can be written as a function
of �θ�P1�P2�; that is,

α = �1−P2��θ+P1 − 1�/�1− θ��P1 +P2 − 1��(3)

β = �1−P1��P2 − θ�/θ�P1 +P2 − 1��(4)

Equations (3) and (4) require P1 > 1−θ and P2 > θ
or P1 < 1− θ and P2 < θ. Otherwise α and β could
be negative. Note that α = β = 1−P if P1 = P2 = P
and θ = 0�5. The relations P1 > 1−θ and P2 > θ en-
sure that the posterior probabilities are larger than
the prior probabilities and this hypothesis test is in-
formative. The opposite is true for P1 < 1 − θ and
P2 < θ. This latter condition seems unreasonable
and we will only require that P1 > 1−θ and P2 > θ.

The frequentist method of calculating sample
size in a clinical trial is to specify �α�β� δ�. This
specification is sufficient to allow the calculation of
the sample size. We believe a more relevant way of
calculating sample size is to specify �θ�P1�P2�, or
equivalently �θ� α∗� β∗�, yielding the values of �α�β�
by use of equations (3) and (4).

Given the value of �α�β�, we then have the large
sample relationship for two-sided tests,

n�δ/σ�2 = 2�zα/2 + zβ�2�(5)

where

Q�zγ� =
∫ ∞

zγ

�2π�−1/2 exp�−t2/2�dt = γ�

The relationship given by (5) is a suitable approx-
imation for the two-sided alternative if the type I
error is in the neighborhood of α ≤ 0�05. Otherwise
it may be necessary to use the more accurate normal
approximation to the power given by

1− β = Q
(
zα/2 −

δ
√
n

σ
√
2

)
(6)

+Q
(
zα/2 +

δ
√
n

σ
√
2

)
�

Conditional on the value of �α�β�, there is a trade-
off between sample size �n� and δ/σ as given by (5)
or its more complicated version (6). Thus for fixed
�α�β� and given θ, one can tabulate values of n
and δ/σ which satisfy the error probabilities. In the

Table 1
Type I and II errors for specified P1, P2 and θ

� P1 P2 � �

0.25 0.85 0.95 0.0083 0.5250
0.25 0.90 0.95 0.0118 0.3294
0.25 0.95 0.95 0.0148 0.1556
0.50 0.85 0.95 0.0438 0.1688
0.50 0.90 0.95 0.0471 0.1059
0.50 0.95 0.95 0.0500 0.0500
0.75 0.85 0.95 0.1500 0.0500
0.75 0.90 0.95 0.1529 0.0314
0.75 0.95 0.95 0.1556 0.0148

above it is assumed that σ is approximately known
or that δ is expressed as a multiple of σ .

We have derived all of the elements for estimating
sample size. Instead of choosing �α�β�, the investi-
gator chooses �P1�P2� θ� subject to P1 > 1 − θ and
P2 > θ. This in turn specifies �α�β� using equations
(3) and (4), and a table of n versus δ/σ can be cal-
culated by making use of (5) or (6). If there is some
uncertainty about θ, the entire calculation may be
repeated for different values of θ. The final sample
size is chosen corresponding to a fixed value of δ/σ .

The procedure described above requires selecting
values of �P1�P2� prior to the trial. The trial will be
planned so that �P1�P2� are the posterior probabili-
ties after the trial is completed. It is clear that these
posterior probabilities should be reasonably high.
Intuitively, our view is that a positive outcome from
a clinical trial should have a relatively high poste-
rior probability of being true. We recommend that
P2 = 0�95 or higher. We believe that values of P1
can be lower, and could range from 0.85 to values
close to unity.

Table 1 summarizes values of �α�β� forP1 = 0�85�
0.90, 0.95 and P2 = 0�95 for values of θ = 0�25�
0.50, 0.75 and Figure 1 shows how these quantities
change over a range of prior probabilities. In gen-
eral, as θ→ 1, α increases and β→ 0; similarly as
θ→ 0, β increases and α→ 0. When P1 = 0�95 and
P2 = 0�95, both α and β remain under 0.156 for θ
between 0.25 and 0.75.

We note that if the alternative hypothesis is
specified by H1� �δ� > δ1 and a prior distribu-
tion P�δ� is available for δ, then an “average”
sample size may be calculated by the expression
Eδ�n� =

∫
�δ�>δ1 n�δ�P�δ�dδ�

3. PLANNING OF CLINICAL TRIALS

3.1 ECOG Studies

In this section we illustrate one application of our
methods to the planning of cancer clinical trials for
the Eastern Cooperative Oncology Group (ECOG).
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Fig. 1. Type I and type II error probabilities versus prior probabilities (θ) for selected values of P1 and P2.

The ECOG is a collection of major cancer treatment
centers, medical school hospitals and community
hospitals (mainly located throughout the United
States) which enter cancer patients into common
therapeutic clinical trials. It has been in existence
since 1955.

In order to estimate the quantity θ = Pr�T = +�,
we evaluated outcomes of all phase III clinical trials
conducted by ECOG during a recent 15-year period.
Between 1980 and 1995, 98 studies were activated
and completed. Among these studies, 87 trials had
a report on the final outcomes. If any of the ma-
jor endpoints such as response rate, overall survival
or disease-free survival was declared significant, we
considered that the study had a positive outcome.

Most studies used α = 0�05 and 0�10 ≤ β ≤ 0�20.
Among the 87 studies, 25 had significant outcomes.
Hence an estimate of the probability of having a
positive clinical outcome was Pr�C = +� = 25/87 =
0�29. This quantity ranged from 0.25 to 0.43 in ma-
jor disease sites such as Breast (0.38), GI (0.33),
GU (0.31), Leukemia (0.40), Lymphoma (0.43) and
Melanoma (0.25). In the discussion of the ECOG
studies, we will use the overall estimate of Pr�C =
+� = 0�29. However in planning studies for a partic-
ular disease site, the marginal probability for that
site should be utilized.

By using the relationship

Pr�C = +� = Pr�C = +�T = −�Pr�T = −�
+ Pr�C = +�T = +�Pr�T = +��
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Fig. 2. ECOG posterior probabilities and type II error probabil-
ity for α = 0�01�0�025�0�05 (prior probability θ = 0�30�.

we have

θ = Pr�C = +� − α
�1− α− β� �(7)

thus permitting an estimate of θ from knowledge of
Pr�C = +�. Under the assumption of α = 0�05 and
0�10 ≤ β ≤ 0�20, θ ranges from 0.28 to 0.32. This
leads to the posterior probabilities �P1�P2� ranging
from �0�90�0�88� to �0�96�0�88�. In other words, the
negative clinical trials have a posterior probability
of being true negatives within the range �0�90�0�96�;
the positive outcomes have a probability of being
true positives equal to 0.88. As a result, among the
25 positive outcomes, 12% (or three trials) are ex-
pected to be false positive trials. Similarly among
the 62 negative (or neutral) outcomes, 4–10% (two
to six trials) are expected to be false negative trials.

Figure 2 displays the relationships between the
posterior probabilities and β at selected levels of α.
Figure 3 is a similar plot displaying the relation-
ships between the posterior probabilities and α at

Fig. 3. ECOG posterior probabilities and type I error probability
for β = 0�05� 0�1� 0�2 (prior probability θ = 0�30�.

Fig. 4. ECOG posterior probabilities �θ = 0�30� for α = 0�025�
0�05.

selected levels of β. These calculations were made
using a value of θ = 0�30. Note that the posterior
negative probability P1 is insensitive to the type I
error probability α, whereas the posterior positive
probability P2 is insensitive to the type II error
probability β. In order to have the posterior posi-
tive probability P2 > 0�90, the type I error should
be in the neighborhood of �0�025�0�030�.

Figure 4 shows how the posterior probabilities
change over a range of β values when α = 0�025
and α = 0�05. Note that values of β in the neigh-
borhood of 0.20 result in relatively high posterior
probabilities. Because the ECOG experience is com-
parable to that of other cancer cooperative clinical
control groups, we recommend that future trials be
planned to have a type I error of less than 0.03 and
a power of at least 80%.

3.2 Sample Size Calculations

In this section, we illustrate the sample size
calculations for two common experimental cases.
One case is the comparison of means and the
other is the comparison of survival distributions.
We illustrate calculating sample size by specify-
ing �θ�P1�P2�. First, equations (3) and (4) are
used to calculate �α�β�. Using the large sample
approximations described by (5), a table of sample
size �n� versus δ/σ can be generated for specified
�θ�P1�P2�. We consider P1 = P2 = 0�95, θ = 0�25�
0.5, 0.75 and assume equal variances for the two
treatment groups. Table 2 summarizes calculated
sample sizes for a range of δ/σ . As indicated in
Table 1, P1 = P2 = 0�95 results in different val-
ues of �α�β� which depend on θ. When θ = 0�5,
α = β = 0�05. The quantity θ = 0�25 leads to val-
ues of �α�β� = �0�015�0�156�; these values are
reversed for θ = 0�75. For example, a value of
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Table 2
Sample size versus �δ/σ� for P1 = P2 = 0�95

� � � (�/�) Sample Size (n)

0.5 0.05 0.05 0.1 2599
0.2 650
0.3 289
0.4 162
0.5 104

0.25 0.015 0.156 0.1 2371
0.2 593
0.3 263
0.4 148
0.5 95

0.75 0.156 0.015 0.1 2576
0.2 644
0.3 286
0.4 161
0.5 103

θ = 0�25 generates α = 0�015, β = 0�156 and leads
to n�δ/σ�2 = 23�7. Any choice of �n� δ� satisfying
n�δ/σ�2 = 23�7 can be used to plan the clinical trial.
The entries in Table 2 indicate the range of values
of n and δ/σ .

These procedures can be extended to calculate
the approximate sample size calculation for time-to-
event outcomes. We assume that the time-to-event
outcome follows the exponential distribution with
failure rate λ, and interest is in comparing λ1 and
λ2 between two treatment groups. In this setting,
the total sample size is equivalent to the total num-
ber of events from both treatment groups. We denote
the number of events by d1 and d2 in each treatment
group. Again using the large sample approximation,
we have

d1d2

d1 + d2
�ln��2 = �zα/2 + zβ�2(8)

with � = λ1/λ2. In (8), the type I error is α for
two-sided tests. For the purpose of illustration, we
assume that d1 = d2. Calculated total number of
events (d1) under a range of � are presented in Ta-
ble 3 for P1 = P2 = 0�95.

An alternative treatment of sample size calcula-
tions for exponentially distributed survival time is
to carry out a test using information on the num-
ber of failures. If the two groups have equal person
years of follow-up, then the total number of observed
events to achieve a level α test (two-sided) with a
power of �1− β� is given by

d =

{
zα/2

2
+ zβ

√
�/�1+ ��2

}2

(
�

1+ � − 0�5
)2 �(9)

Table 3
Number of events versus ��� for P1 = P2 = 0�95

� � � (�) Number of events (d1)

0.5 0.05 0.05 0.4 31
0.5 54
0.6 100
0.7 205
0.8 522

0.25 0.015 0.156 0.4 28
0.5 50
0.6 91
0.7 187
0.8 476

0.75 0.156 0.015 0.4 31
0.5 54
0.6 99
0.7 203
0.8 517

The above formula was derived by taking the fail-
ures to follow a Poisson distribution with the same
person years of follow-up time for each group. Equa-
tion (9) immediately follows by conditioning on the
sum of two Poisson random variables �d1 + d2 = d�
which has a binomial distribution with sample size
d and success probability �/�1+ ��. The value of d
in (9) is approximately twice of the value of d1 in
Table 3.

4. DISCUSSION

We have proposed that the calculation of sam-
ple sizes for clinical trials be formulated by pre-
specifying the posterior error rates. In our view,
the prespecification of the posterior probability er-
ror rates is more appropriate in the clinical trials
setting than the specifications of the usual type I
and II error probabilities. The devotion to a type I
error of α = 0�05 has no empirical or theoretical
basis. However, specifying the posterior error rates
generates the appropriate type I and II error prob-
abilities. Armed with the resulting �α�β�, it is then
possible to determine the trade-off between the sam-
ple size and noncentrality parameters for large sam-
ples. The analysis of the data may proceed in the
usual frequentist way in which the type I error rate
is used to “judge” statistical significance.

Spiegelhalter and Freedman (1986) have also for-
mulated the clinical trial sample size problem as
a Bayesian formulation. They recommend finding a
prior distribution for δ by interviewing physicians.
The prior distribution is then used to calculate an
average power curve based on a two-sided confi-
dence interval. This leads to an appropriate sample
size. Their formulation also allows the possibility
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of reaching no conclusion. One difference between
their formulation and ours is that they keep the con-
fidence coefficient fixed (their example uses a 95%
confidence coefficient) and do not allow the poste-
rior or prior probabilities to affect the choice of the
confidence coefficient.

Although we have only discussed fixed sample
size calculations, our ideas are easily adapted with-
out any change to trials which allow early stopping.
One simply uses the calculated �α�β� generated by
the prespecified posterior error probabilities to de-
termine the early stopping rules.

Our development makes use of both Bayesian and
frequentist ideas. It may be viewed as a compromise
between these two “Schools of Inference.” However
we believe that the reformulation of the sample size
calculation problem in the clinical trials setting re-
quires specifying the posterior error probabilities at
the planning stage of the trial.

The current frequentist practice of choosing α =
0�05 in the context of calculating sample sizes is
clearly subjective. One may argue that choosing the
posterior error probabilities in advance is also sub-
jective. However there is likely to be more agree-
ment about the desired range of the posterior error
probabilities. Because a positive finding from a clini-
cal trial is likely to influence clinical practice, nearly
all clinical investigators would favor a high poste-
rior error probability associated with a true positive
outcome. We favor values of P2 to be in the neigh-
borhood of 0.95 or even higher. Alternatively there
may be more flexibility in choosing a posterior nega-
tive probability. We favor that the value ofP1 should
be at least 0.90. If the clinical trial concludes that
the treatments are comparable, when in reality one
of the treatments is more beneficial, less harm is
likely to be done as both treatments are likely to be
used in practice.

An issue arises in the reporting of a clinical trial.
Suppose the data generated a significance level (p-
value) of α0. If α0 ≤ α, then the results would be
reported as being “statistically significant” and the
posterior probability P1 serves as a lower bound to
the actual posterior probability. However, suppose
the value of α0 is within the interval α < α0 ≤ 0�05.
How should such results be reported?

We suggest that the posterior probabilityP2 be re-
calculated. This can be done by adopting α0 as the
significance level and recalculating a new type II er-
ror, denoted by β0. The recalculated type II error is
carried out by using the actual sample size of the
trial, the significance level α0 and the same non-
centrality parameter δ as in the initial calculation;
consequently, zβ0

= zα/2 + zβ − zα0/2. Using (2), the
new posterior probability, denoted by P∗

2 is readily

calculated. Thus if the investigators declare “statis-
tical significance,” the recalculated posterior proba-
bility reflects the probability of the certainty of the
conclusions. For example, suppose the initial sam-
ple size was calculated on the basis of P1 = 0�92 and
P2 = 0�93 with α = 0�025, β = 0�20 and θ = 0�30.
Suppose the actual trial generated a significance
level of α0 = 0�05. Hence recalculating the type II
error results in β0 = 0�16 and the recalculation of
the posterior probability yieldsP∗

2 = 0�88. Hence the
interpretation would be that if the clinical trial out-
come is regarded as “statistically significant,” there
is a posterior probability of P∗

2 = 0�88 of the conclu-
sions being correct.

The example from the ECOG illustrates that ob-
jective prior probabilities can be found for some
classes of clinical trials. In the U.S., many cancer
clinical trials are carried out with cooperative clin-
ical trial groups of which ECOG is representative.
In general, for any disease there will be trial data
available from past studies that can be used to
calculate prior probabilities.

The cancer cooperative clinical trials groups are a
special situation, as data on past trials is readily ac-
cessible. Such data may not exist for other diseases.
In such cases, the probability Pr�C = +� may be
estimated by using MEDLINE to search for the re-
cent history of clinical trials for the specific disease.
If both negative and positive trials are published,
then Pr�C = +� may be appropriately estimated.
Otherwise subjective modifications have to be made,
if there is an underreporting of negative trials.

In practice, there may be a modification of one-
sided hypothesis as described by Lan and Friedman
(1986). This arises when the trial is evaluating a
new treatment compared to a standard treatment
and the experimental plan allows for early termina-
tion. Operationally the trial will terminate early if
(a) the new treatment generates data showing su-
periority or (b) the new and standard therapies are
comparable and it is unlikely that the new treat-
ment will be shown superior to the standard treat-
ment. This latter action is taken by calculating the
conditional power of concluding that the new treat-
ment is superior if the trial was to continue. Hence
the trial may have been planned with a two-sided al-
ternative, motivated by ethical considerations. How-
ever, the trial may be aborted if the trial is unlikely
to show the superiority of the new treatment. Hence
the statistical hypotheses in practice are H0� δ ≤ 0
versus H1� δ > 0 where δ > 0 indicates superiority
of the new treatments.

In summary, we believe that planning clinical tri-
als by prespecifying the posterior probabilities is the
appropriate way to plan all phase III clinical trials.
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The traditional frequentist approach does not seem
relevant in the planning stages. Even though the
planning of the clinical trial uses a Bayesian for-
mulation, we do not necessarily advocate the use of
Bayesian methods of statistical analysis. Our devel-
opment leads to assigned type I and type II errors
as well as the required sample size. The assigned
type I error should be used to assess statistical sig-
nificance. Thus we have a sample size formulation
which is Bayesian, but the analysis may proceed in
the usual frequentist mode.

ACKNOWLEDGMENTS

We thank the Editors and reviewers for many
helpful comments. Work supported in part by re-
search grants from the National Cancer Institute,
National Institutes of Health.

REFERENCES

Berger, J. O., Boukai, B. and Wang, Y. (1997). Unified frequen-
tist and Bayesian testing of a precise hypothesis. Statist. Sci.
12 133–160.

Berger, J. O., Boukai, B. and Wang, Y. (1999). Simultaneous
Bayesian-frequentist sequential testing of nested hypothe-
ses. Biometrika 86 79–92.

Joseph, L. and Belisle, P. (1997). Bayesian sample size deter-
mination for normal means and differences between normal
means. Statistician 44 209–226.

Joseph, L., Wolfson, D. B. and du Berger, R. (1995). Sample
size calculations for binomial proportions via highest poste-
rior density interval. Statistician 44 167–171.

Lan, K. K. G. and Friedman, L. (1986). Monitoring boundaries
for adverse effects in long-term clinical trials. Controlled
Clinical Trials 7 1–7.

Lindley, D. V. (1997). The choice of sample size. Statistician 46
129–138.

Peto, R., Pike, M. C., Armitage, P., Breslow, N. E., Cox, D. R.,
Howard, S. V., Mantel, N., McPherson, K., Peto, J. and
Smith, P. G. (1976). Design and analysis of randomized clin-
ical trials requiring prolonged observation of each patient.
British Journal of Cancer 34 585–612.

Pham-Gia, T. (1997). On Bayesian analysis, Bayesian decision
theory and the sample size problem. Statistician 46 139–
144.

Spiegelhalter, D. J. and Freedman, L. S. (1986). A predictive
approach to selecting the size of a clinical trial, based on
subjective clinical opinion. Statistics in Medicine 5 1–13.

Comment
Richard Simon

The paper by Lee and Zelen (L&Z) provides a nice
framework for thinking about important aspects of
the planning of clinical trials and the interpretation
of results of such trials. The interaction of frequen-
tist and Bayesian concepts in the paper also pro-
vides an opportunity to highlight the contrasts and
similarities of these approaches.

Determination of sample size is an important as-
pect of planning a clinical trial. The sample size is
usually established to obtain a specified statistical
power for rejecting the null hypothesis when a spec-
ified alternative hypothesis is true. This formalism
is often abused by specifying unrealistically large
alternative hypotheses for the power calculation.
This is done in order to attempt to justify doing a
trial by an organization that does not have sufficient
patient accrual potential to conduct independent

Richard Simon, D.Sc., is Chief, Biometric Research
Branch, National Cancer Institute, Building EPN,
Room 739, Bethesda, Maryland 20892 (e-mail:
rsimon@nih.gov).

clinical trials. As a result, in some fields there is a
glut of small clinical trials with inadequate power
for detecting treatment effects that might realisti-
cally be expected to exist. In such a setting, many
of the “positive” trials reporting statistically signifi-
cant differences are likely to be false positives. This
phenomenon was also previously noted by Staquet,
Rozencweig, Von Hoff and Muggia (1979) and Simon
(1982), using the sensitivity–specificity derivation
employed by Lee and Zelen in their current paper. I
have previously referred to this phenomenon as the
“thermodynamics of clinical trials” (Simon, 1982).

In the current paper, L&Z propose to use this
same approach to establish the sample size of a clin-
ical trial. The accept–reject formulation employed
by L&Z is not adequate, however, for ensuring that
frequentist interpretations of clinical trial results
are associated with strong Bayesian support for the
acceptance or rejection of hypotheses about treat-
ment differences. I would like to present a sim-
ple alternative development of the ideas raised by
L&Z which I believe is more appropriate for aligning
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Bayesian and frequentist analyses and for planning
sample size.

Let δ denote the true treatment effect, as in L&Z.
Let δ̂ denote the maximum likelihood estimate of
δ. We will assume that δ̂ is sufficient for δ and
that δ̂ � δ ∼ N�δ� s2�, where the experimental vari-
ance s2 depends on the sample size but is other-
wise known. In practice, s2 will be estimated, but
we will ignore this additional variability. In order to
present the concepts involved in a clear manner that
avoids technical complexities, we will assume that
δ has a two-point prior distribution which assigns
probability 1 − θ to the null hypothesis that δ = 0
and probability θ to an alternative hypothesis that
δ = δ1. More complex prior densities are easily ac-
commodated but the development is more complex
and will not be reported here. L&Z argue that the
prior distribution must be symmetric about zero for
the clinical trial to be “ethical.” Not all biomedical
ethicists agree with this position. The statistics of
the outcomes of large numbers of randomized clini-
cal trials are not likely to be symmetric about zero
and in that sense a symmetric prior is inappropri-
ate. Clinical trials have multiple endpoints. Most
major clinical trials compare a new treatment to a
standard treatment. Frequently for trials of cancer
treatments, the new treatment is more toxic and
will not be adopted unless it is better by a non-
negligible amount compared to the control regimen.
Often the new treatment is expensive and will only
be adopted if it is superior to the standard. Often
the new regimen is not approved for marketing and
is only available in a clinical trial. There is also the
issue of whose prior should be used for planning the
trial. Different audiences have different a priori de-
grees of skepticism or enthusiasm for the effective-
ness of the new treatment relative to the control
(Spiegelhalter, 1994). Hence, it seems inadequate to
assume that the prior for the primary endpoint of
an “ethical” clinical trial must be symmetric about
zero.

L&Z claim to present a Bayesian analysis, but
they do not specify a prior on specific values other
than δ = 0. They also do not utilize a proper like-
lihood. A likelihood specifies the probability density
of the data for a specified value of the parame-
ters. The sensitivity–specificity derivation used by
L&Z specifies the probability of an infinite interval
�δ̂/s > k1−α/2�, but this is not a likelihood function.

The posterior probability of the null hypothesis
having observed δ̂ is easily shown to be

{
1+

(
θ

1− θ
)
φ��δ̂− δ1�/s�
φ�δ̂/s�

}−1

�(1)

where φ denotes the standard normal density func-
tion. The ratio of normal densities is the Bayes fac-
tor

BF = φ��δ̂− δ1�/s�
φ�δ̂/s� �

In order to have the posterior probability of the null
hypothesis given the data be less than 0.1, expres-
sion (1) implies that

θ

1− θBF ≥ 9�(2)

Most major clinical trials are planned to have 80%
or 90% power for rejecting the null hypothesis at
a two-sided 5% significance level when the alterna-
tive hypothesis is true. Using the usual sample size
formula, this implies

δ1/s = k1−α/2 + k1−β�

Hence for most major clinical trials, δ1/s ≈ 3.
The probability of obtaining a “positive” result fa-

voring the new treatment and statistically signifi-
cant at the two-sided 5% level is approximately

Pr�δ̂/s ≥ 2� = �1− θ� �−2s/s� + θ 
(
δ1 − 2s
s

)
�

where  denotes the standard normal distribution
function. For δ1/s ≈ 3, we obtain

Pr�δ̂/s ≥ 2� = �1− θ� �−2� + θ �1��(3)

L&Z report that about 30% of phase III trials of
the Eastern Cooperative Oncology Group are statis-
tically significant. Assuming that the vast majority
of these are significantly in favor of the new treat-
ment, equating (3) to 0.30 and solving for θ gives
approximately θ = 0�33.

For θ = 0�33, it follows from (2) that in order to
have the posterior probability of the null hypothe-
sis 0.1, we require BF = 17�7. If the sample size
is planned in the frequentist manner as described
above for most trials, then δ1/s ≈ 3 and BF =
17�7 corresponds to δ̂/s = 2�46. Hence, in order to
have any “statistically significant” result favoring
the new treatment be associated with a posterior
probability of the null hypothesis of no greater than
0.1, the critical value of 2.46 should be used for sta-
tistical significance. This corresponds to a two-sided
significance level of 0.014. This is somewhat differ-
ent from the claim of L&Z that a value of α in the
range of 0.025–0.030 is appropriate.

L&Z have proposed two requirements for plan-
ning sample size. The first is that the finding of
“statistical significance” be associated with a small
posterior probability for the null hypothesis. The
preceding paragraphs indicate that this leads to the
requirement that the significance level should be no
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greater than a two-sided 0.014. L&Z also proposed
that the lack of finding of statistical significance
should be associated with a large posterior probabil-
ity for the null hypothesis. This is not uniformly pos-
sible because an outcome that is almost statistically
significant carries approximately the same posterior
probability as one that is just barely statistically
significant. It is an inherent flaw in the Neyman–
Pearson theory of hypothesis testing to sharply dis-
tinguish between falling just barely on one side of
the rejection region boundary compared to falling
just barely on the other side. It is an embarrass-
ment to many biostatisticians to see biomedical in-
vestigators infer that since p = 0�06, the results
are not statistically significant and the null hypoth-
esis should be accepted. The embarrassment should
not be for statistical naivete of the investigator, but
rather for the inadequacy of the inferential frame-
work that the field of statistics has provided for in-
terpreting data. We should be careful not to force
this defect onto Bayesian methods.

There are some outcomes that result in a high
posterior probability for the null hypothesis. What
is the largest value of the outcome δ̂ that results in
a posterior probability of the null hypothesis of 0.9?
With θ = 0�33, we obtain from (2) that the outcome
should correspond to a BF of 0.22 or less. This is less
evidence against δ1 than was required for rejecting
the null hypothesis (i.e., 1/0�22 = 4�6 < 17�7) be-
cause the prior probabilities favor the null hypoth-
esis. For a trial designed in the conventional way
with δ1/s ≈ 3, BF = 0�22 corresponds to δ̂/s ≈ 1. So
an outcome corresponding to a “z value” no greater
than 1 provides strong support against the alterna-
tive hypothesis used to design the trial when one
considers the prior probabilities.

It follows from the above, that for a convention-
ally designed clinical trial, an outcome with a “z
value” z = δ̂/s greater than 2.46 provides adequate
support for rejecting the null hypothesis, and a z
value less than 1.0 provides adequate support for re-
jecting the alternative hypothesis. Whether the con-
ventionally defined sample size is adequate may be
addressed by computing the probability that the
clinical trial provides a result that represents strong
support for rejecting either the null or alternative
hypothesis. As noted above, an inconclusive result
corresponds to 1 ≤ δ̂/s ≤ 2�46. We compute the prob-
ability of an inconclusive result with regard to the
prior probability distribution, and find it to equal
0.197. If this is deemed too large, one can select a
smaller value of s, corresponding to a larger sam-
ple size, recalibrate the upper and lower limits of
δ̂/s that correspond to strong posterior support for

either the null or alternative hypothesis and then
recompute the probability of an inconclusive result.
One can automate this process to obtain any desired
probability of an inconclusive result.

The above analysis provides a consistent Bayes-
ian approach to planning the interpretation of re-
sults and planning sample size. The inference is
based on the posterior probability of the null hy-
pothesis given the data, as is required by Bayes
theorem, not given that the test statistic was at an
unspecified location in a semiinfinite interval. The
approach is also Bayesian because the sample size
is determined based on a figure of merit, the prob-
ability of obtaining conclusive results, which is an
average with regard to the prior distribution. For
the calculations above, this results in a frequentist
power of only 0.71, but power is a non-Bayesian no-
tion. The approach of L&Z uses the frequentist ap-
proach of establishing sample size to achieve a spec-
ified power under the alternative hypothesis.

The conclusion of the analysis presented here is
that clinical trials whose sample size is based on the
frequentist approach with δ1/s ≈ 3 provide about
an 80% probability of providing strong enough
evidence to reject either the null or alternative hy-
pothesis, where the evidence is based on Bayesian
analysis. Although the conventional sample size
planning approach appears adequate, our analysis
indicates that the usual frequentist interpretations
of the data are not adequate. Our analysis also
shows that a critical value for significance should
be about 2.46 and that only z values less than 1
represent sufficient support for rejecting the alter-
native hypothesis in favor of the null. Of course,
whether the approach to sample size planning is
sensible depends on whether a sensible value of
the alternative hypothesis is specified. This value
should represent the smallest treatment difference
which is of medical significance, given the costs
and toxicities of the new treatment. For example,
in the comparison of survival distributions with
proportional hazards, δ may represent the natural
logarithm of the hazard ratio and a δ1 = ln�1�33�,
representing a 25% reduction in the hazard rate is
often used and considered reasonable. In this case,
if δ1/s ≈ 3, then s = 0�095 and this corresponds
to observing approximately 444 events, using the
approximation s2 = 4/�# events�. The conclusions
derived here are based on the simple two-point
prior distribution used. This approach to sample
size planning and results interpretation can be
carried out with more general prior distributions.
The simple two-point model was used here only to
clarify the concepts involved.
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Comment
John Bryant and Roger Day

Lee and Zelen propose an interesting approach to
the design of Phase III clinical trials, and make a
number of intriguing points. They correctly argue
that the usual selection of type I and type II error
rates is rarely predicated on rational consideration
of losses or prior experience, but rather is usually
based on tradition. Because the consequences of in-
correct decisions are conditional on the trial results,
they argue that α and β are not the appropriate er-
ror rates to (directly) control. Instead, they propose
to design the trial in such a way that posterior false
negative and false positive error probabilities are
controlled. Their analysis suggests that using the
“traditional” 0.05 type I error rate may result in
an excessive number of false positives, leading to
the introduction of ineffective therapies into clinical
practice. Based on similar arguments, Simon [(1982,
1994); see also Staquet, Rozencweig, Von Hoff and
Mugia (1979)] has noted that, in studies of com-
mon diseases for which the success rate of clinical
trials has been historically low, use of adequately
powered 0.01-level tests might be preferable. Berger
and Sellke (1987), from a different perspective, have
also argued for using smaller type I error rates in
many circumstances, based on computing bounds
for Bayes factors. Below, we will discuss ways to
incorporate the need for eventual clinical consensus
into the trial design process, and show that a sim-
ple approach based on the notion of prior robustness
also leads to similar conclusions.

Lee and Zelen’s development treats both the null
and alternative hypotheses as point hypotheses.
This is both a strength and a weakness. In reality,
the alternative is composite (and indeed the null
hypothesis is also). By ignoring this, Lee and Zelen
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Project Biostatistical Center at the University of
Pittsburgh, Pittsburgh, Pennsylvania 15213 (e-mail:
bryant@nsabp.pitt.edu). Roger Day is Associate Pro-
fessor, Department of Biostatistics, and Director of
the University of Pittsburgh Cancer Center Biosta-
tistical Center, University of Pittsburgh, Pittsburgh,
Pennsylvania 15213.

greatly simplify the method and make it more prac-
tical to perform computations. This approach also
facilitates the specification of prior information,
making possible a rough assessment such as their
estimate of θ based on the ECOG experience. On the
other hand, unless one believes that the true prior
is actually tightly concentrated about points repre-
senting the null and alternative hypotheses, diffi-
culties of interpretation and implementation may
occur, for two reasons: (i) For composite hypotheses,
type I and type II error rates as defined in Sec-
tion 2, which are conditional on the truth ofH0 and
HA, respectively, differ from the “usual” definitions
used in the frequentist formulation of the hypothe-
sis test, which are conditional on specific values of
δ, and (ii) If the prior places significant probabil-
ity on a region in which δ is nonzero but of neg-
ligible clinical import, then one would not want to
equate the acceptance of conclusions that are only
“marginally” false with acceptance of those which
are egregiously false. A complete Bayesian analy-
sis would take this into acount by the specification
of an appropriate loss function. The authors note
that one might adopt the notion of “indecisive” re-
gions separating H0 and HA, which would be more
in keeping with the philosophy of frequentist sig-
nificance testing, but this idea is not explicitly de-
veloped in the paper. The discontinuous loss func-
tion that their method implicitly uses, when cou-
pled with a smooth prior, may lead to much larger
sample sizes than would be practical. For these rea-
sons, when the prior is believed to be smooth rather
than sharply bi- or tri-modal, it may not always be
apparent how their method should be applied.

It may be of concern that the posterior probabili-
ties which are controlled by Lee and Zelen’s method
are not the ones which would be of interest after the
trial is completed. Assuming that the test statistic
is sufficient, the posterior probability that T = +
(i.e., that HA is true) is Pr�T = +�Z = z�, where z
is the observed value of the standardized test statis-
tic Z. The probabilities Pr�T = +�C = −� and
Pr�T = −�C = +� are relevant only if one knew
only that the hypothesis test was “significant” or
“not significant.” These controlled probabilities are
averages of the appropriate posterior probabilities,
weighted by the predictive distribution g�·� of Z; for
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example,

Pr�T = −�C = +�
=

∫
�z�>zα/2

Pr�T = −�Z = z�g�z�dz
/∫

�z�>zα/2
g�z�dz�

Thus posterior use of the controlled probabilities
Pr�T = +�C = −� and Pr�T = −�C = +� implies
a disregard of much relevant available information,
namely the value ofZ. For example, suppose we test
H0� δ = 0 against HA� �δ� = δALT, assuming that
Pr�δ = 0� = 1−θ = 0�75 and Pr�δ = δALT� = Pr�δ =
−δALT� = θ/2 = 0�125. To control the posterior er-
ror rates β∗ = 0�05 and α∗ = 0�10, we choose type I
and type II error rates α = 0�0118 and β = 0�3294
from Table 1 in Lee and Zelen. However, if the trial
results are only marginally significant (p-value just
slightly less than 0.0118; �Z� slightly greater than
2.52), computations show that the posterior proba-
bility that H0 is true given the value of z is about
0.22, not 0.05. (For a one-sided test, the posterior
probability for H0 would be about 0.20).

We suggest that directly bounding relevant pos-
terior probabilities may be preferable to control-
ling average posterior probabilities. Consider a one-
sided hypothesis test H0� δ ≤ 0 versus HA� δ > 0.
We focus on the one-sided case primarily for nota-
tional convenience. However, as has been noted by
the authors, in the common situation of a trial com-
paring an experimental regimen B to an accepted
standard A, the hypotheses are generally altered in
practice to be one-sided, by adoption of asymmet-
ric early stopping rules that would terminate the
trial prior to accumulating sufficient evidence that
δ < 0, if early results were to strongly favor A. Let
δ1 be a “minimally clinically significant” treatment
effect, perhaps equal to the “planning δ” used by the
frequentist to power the hypothesis test. In lieu of
bounds on Pr�T = +�C = −� and Pr�T = −�C = +�,
one may determine α and n in such a way that quan-
tities such as

M1 = max
z≤zα

Pr�δ > δ1�Z = z�

and

M0 = max
z>zα

Pr�δ ≤ 0�Z = z�
are suitably small. In this case, ifH0 were rejected,
we would be assured that the posterior probability
of at least some effect was acceptably high, whereas
if H0 were accepted, we would be assured that the
posterior probability of a “material” effect (defined
as δ > δ1) was acceptably low. This bounding of
posterior probabilities more closely conforms with
the basic intent of frequentist significance testing
(which essentially bounds these probabilities under
a noninformative prior).

It may be advisable to use two different priors
to compute these bounds: M1 might be determined
under a prior favoring the hypothesis of a material
treatment effect, whereas M0 might be computed
under a prior favoring the null. This is because the
trial will have limited practical consequence unless
a broad consensus exists among the clinical commu-
nity regarding its findings. Thus its design should
take into account the goal of achieving consensus.
A good design should have sufficient sample size to
overcome prior differences of opinion, so that effec-
tive consensus can be achieved.

To elaborate, one should consider the study data
in light of prior distributions representing the be-
liefs of both a very skeptical observer, who a pri-
ori assigns little probability to the possibility that
the new treatment will be materially more effec-
tive than the currently available standard, and a
very optimistic observer, who believes this possibil-
ity to be rather likely. Substantive posterior agree-
ment between these two observers, either to the ef-
fect that the new treatment is highly likely to be
superior to the control, or that it is highly unlikely
to be materially superior to the control, would give
reason to conclude that the trial results will compel
consensus. The use of “skeptical” and “optimistic”
priors in clinical trial design and monitoring is dis-
cussed by Kass and Greenhouse (1989), Freedman,
Spiegelhalter and Parmar (1994) and Spiegelhal-
ter, Freedman and Parmar (1994); Their applica-
tion to an assessment of the need for confirmatory
trials is addressed by Parmar, Ungerleider and Si-
mon (1996). These references also address the con-
struction of more-or-less canonical skeptical and op-
timistic priors that may be useful in practice. Freed-
man, Spiegelhalter and Parmar (1994) suggest that
an optimistic prior may be approximated by a nor-
mal distribution centered at value δ1, the planning
value or alternative hypothesis at which the trial is
powered. The optimist believes that the new treat-
ment is quite likely to show at least some bene-
fit relative to the control, so that according to his
or her prior Pr�δ > 0� is large, perhaps 0.95. In
this case, the prior standard deviation is found be
to δ1/1�645. On the other hand, the skeptic believes
that the new treatment is unlikely to offer mate-
rial improvement over the control. Thus his or her
normal prior is centered at δ = 0, and assuming a
prior standard deviation of δ1/1�645, according to
this prior Pr�δ < δ1� = 0�95.

Therefore, in designing a hypothesis test of
H0� δ ≤ 0 versus HA� δ > 0, the following require-
ments operationally define the notion of posterior
consensus:



108 S. J. LEE AND M. ZELEN

(i) Given any test result Z = z leading to the
rejection of H0, both the skeptic and the op-
timist must agree that the new treatment is
superior to the control, in the sense that both
must assign a posterior probability ≥ 1 − β∗

to the event δ > 0.
(ii) Given any test result Z = z leading to the ac-

ceptance of H0, both the skeptic and the op-
timist must agree that the new treatment is
not materially superior to the control, in the
sense that both must assign a posterior prob-
ability greater than or equal to 1 − α∗ to the
event δ ≤ δ1.

We now show how to design a test meeting these
requirements, using as an example a one-sided com-
parison of an experimental treatment B to an estab-
lished standard A. We suppose that efficacy is mea-
sured by survival time, and that the final analysis
of results will take place after d deaths have been
observed. The efficacy of the proposed treatment rel-
ative to control is summarized by the logged hazard
ratio δ, assumed to be time independent. δ is defined
so that values of δ > 0 imply that treatment B is su-
perior to A, while values of δ < 0 favor treatment A.
The test statistic is the maximum partial likelihood
estimator of δ (asymptotically, this is equivalent to
using the logrank test). The variance of this estima-
tor ∼= 4/d, assuming equal randomized allocation of
patients to either treatment arm and �δ� moderately
close to 0. In the notation of Lee and Zelen, d = 2n,
so that σ2 = 1. In this situation, an application of
Bayes theorem leads to the required sample size
and type I and II error rates, as follows:

(i) Compute the “prior sample size” d0 = �2 ·
1�645/δ1�2. (This is the number of deaths
which would be required to generate informa-
tion equivalent to that reflected by the priors
of either the skeptic or the optimist.)

(ii) Compute the number of required events d by
solving the quadratic equation

d2 − �d+ d0� · 4�zα∗ + zβ∗�2/δ21 = 0�

[The formula for d can be written as d =
�1+d0/d� ·4�zα∗ +zβ∗�2/δ21, which is identical
to the “usual” formula (5) (with d = 2n and
σ = 1) except for the factor �1+ d0/d�.]

(iii) The type I and type II error rates for the hy-
pothesis test are found from

zα = �1+ d0/d�1/2zβ∗� zβ = �1+ d0/d�1/2zα∗ �
As an example, suppose α∗ = 0�10� β∗ = 0�05

and δ1 = � log�0�75�� = 0�2877, that is, a 25% re-
duction in hazard rate is considered to be a “mate-
rial” or clinically significant treatment effect. Then
d0 = 131� d = �1 + 131/d� · 414=>d = 519�
α = 0�033� and β = 0�076� The required number
of deaths is about 25% larger than called for by
the usual frequentist calculation. The prior sample
size d0 is a measure of prior discordance of opin-
ion, which influences the required sample size d.
For example, if both the skeptic and the optimist
were a priori willing to admit as much as a 10%
chance of the correctness of the other’s position,
then d0 = �2 ·1�282/δ1�2 = 79. In this case the usual
sample size is increased by only 16%, to d = 482.

Consistent with the recommendations of Lee and
Zelen, this approach leads to a more stringent
Type I error requirement than the traditional 0.05
level. In contrast, the power requirements are also
more stringent. The method we have described uti-
lizes priors to model the notion of discordance, and
Bayes theorem provides a model for convergence of
opinion. The method can also be thought of as re-
quiring a robustness of conclusions over a range of
priors. This is in contrast to traditional Bayesian ex-
perimental design, and to Lee and Zelen’s method,
which are intended to allow a particular prior to in-
fluence the study design and the inference.

Rejoinder
Sandra J. Lee and Marvin Zelen

We thank Drs. Bryant, Day and Simon for their
comments on our paper. It is worth noting that all
agree that it might be more appropriate to plan clin-
ical trials on humans in a Bayesian context. Fur-
thermore the discussants have concluded that the

standard 5% significance level is too liberal and
should be made more stringent.

Our basic philosophy is that the special circum-
stances associated with clinical trials require ethical
concerns as well as providing preliminary informa-



CLINICAL TRIALS AND SAMPLE SIZE 109

tion which cannot be ignored. As we have shown,
it is straightforward to use this information in the
planning of trials. The strength of our formulation of
utilizing the posterior probabilities, P1 and P2, lies
in its simple relationship to α and β for a specified
prior θ. This relationship leads to an easy way of
calculating the sample size for specified P1 and P2.

One point that we wish to elaborate further re-
lates to the prior distribution. Although the prior
distribution is formally defined to be θ = Pr��δ� >
0�, when one chooses the pair �δ�n� from (5), it is es-
sentially recasting the alternative to beH1� �δ� = δ1
with θ = Pr��δ� = δ1�. Therefore, we are assum-
ing a three-point prior distribution; that is, 1− θ =
Pr�δ = 0� under H0 and θ/2 = Pr�δ = δ1� or
θ/2 = Pr�δ = −δ1� under H1 in a two-sided test-
ing setting. As a result, different values of n will
generate different values of δ1, but the prior proba-
bility is fixed at θ.

Both discussants note the earlier references to
Staquet, Rozencweig, von Hoff and Mugia (1979)
and Simon (1982). It is of some interest that, in
1979, the National Cancer Institute conducted a
review of the Cancer Clinical Trials Cooperative
Group Program in which one of us (MZ) made a pre-
sentation which gave tables of the ratios of posterior
false positive to posterior true positive probabilities;
see Zelen, Gehan and Glidewell (1980).

Bryant and Day present a somewhat different ap-
proach to the formulation of the sample size prob-
lem. We are at a loss to comprehend the remark in
which with α = 0�0118 and β = 0�3294, they claim
that if the p-value is slightly less than 0.0118, the
posterior probability that H0 is true is about 0.22,
not 0.05. Our calculations show that the posterior
probability is in the neighborhood of 0.05; that is,
for 0�005 ≤ α ≤ 0�01 the value of α∗ = 0�05�

We view with amusement that employment of a
“skeptical” and “optimistic” observer. It appears to
be a game. There will always be one more extreme
skeptic or optimist, which may change how one pro-
ceeds. However, the sample size calculations in Ta-
bles 2 and 3 show that for the range of prior proba-
bilities from θ = 0�25 to 0.75, the calculated sample
sizes do not change very much. However, skeptics
and optimists having prior probabilities close to zero
or unity will greatly affect the sample size calcula-
tions.

Bryant and Day suggest using two different pri-
ors in computing posterior probabilities. They il-
lustrate their methods with a numerical example
which results in a d = 519 (number of deaths)
to detect a 25% reduction in failure rates among
two populations, with a one-sided test using pos-
terior error rates α∗ = 0�10 and β∗ = 0�05. We

have also used our proposed methodology to esti-
mate the required sample size for the same param-
eters, but varying the prior probability. Over the
range (0�25 ≤ θ ≤ 0�75), the value of d does not
change very much (335 ≤ d ≤ 415). It is only with
an extreme value of θ that the value of d is in the
neighborhood of 500. According to our calculations,
a value of θ = 0�14 generates d = 510 and a value
of θ = 0�93 results in d = 533. These values in-
crease rapidly as θ approaches the boundary values
1 − P1 < θ < P2. Hence Bryant and Day’s calcula-
tion corresponds to having a low prior probability
that δ �= 0. We do not consider θ = 0�93 to be realis-
tic as it places too small prior probability on �θ = 0�
for a trial to be initiated. Also we could conjecture
that a prior probability of θ = 0�14 is too small to
generate a clinical trial.

Simon’s contributions mainly relate to the analy-
sis of the trial. Our view is that any suitable method
is appropriate for analysis whether it be frequentist,
Bayesian or likelihood. Whichever analysis method
is utilized does not affect our recommendation on
sample size. Simon comments on the inadequacy of
small trials and the illogic of adopting a hypothesis
testing point of view. We concur with his criticisms.
The significance level of a test is not sacrosanct. It
would be difficult to ignore a p-value of p = 0�03
if the predesigned level was α = 0�025. Our rec-
ommendation is to recalculate the posterior error
probabilities with the observed α.

Simon takes issue with our formulation that the
prior distributions must be symmetric about δ = 0
for the clinical trial to be ethical. If this is not so,
then there is an advantage to the patients to be
assigned to the treatment with the highest prob-
ability of benefit. We find this position difficult to
defend and are surprised that some biomedical ethi-
cists may agree with this position. Not that we deny
the fact that in many clinical trials, the prior dis-
tributions are asymmetrical. Of course, there may
be issues of defining benefit, in that overwhelming
toxicity may negate positive advantages. It is pos-
sible that a series of informal studies, pilot studies
and phase II trials may have built up a body of ev-
idence that a therapy is beneficial. Then it may be
impossible to carry out a randomized phase III trial
comparing new therapy with standard therapy as
the prior distribution on benefit is so high.

Simon criticizes our proposal on two points; that
is, there is no prior on specific values other then
δ = 0 and we did not use a proper likelihood. We
have answered the first criticism earlier by point-
ing out that the choice of �δ�n� in (5) essentially
reformulates the problem by having prior probabil-
ities on the chosen �δ� = δ1. We also note that the
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calculation of the test may use a statistic based on
the likelihood function.

Simon presents a Bayesian analysis of a trial from
which a sample size can be calculated. In the con-
text of ECOG trials, Simon computes θ to be 0.33
based on assumptions of two-sided α level of 0.05,
80–90% power and δ1/s = 3. His formulation results
in a two-sided test with α = 0�014 and β = 0�29.
This contrasts to our method of initially choosing
P1 = 0�95 and P2 = 0�90 (based on the two-sided
α = 0�05 and β = 0�10). Since Simon focuses on
“positive” results in the two-sided setting, he is es-
sentially formulating the problem to be one-sided
with an α level of 0.025 in his analysis.

In summary, we propose that sample size for all
clinical trials be estimated according to our meth-
ods. Not to do so may continue to introduce an ex-
cessive number of false positive therapies in the
practice of medicine. Error rates should be focused
on posterior probabilities which are important in
extending the conclusions from a trial to the prac-
ticing physician. Our method is easy to implement
and makes use of prior information. It serves to ra-
tionalize the choice of significance levels and power
in planning clinical trials. Calculations have shown
that the sample sizes are reasonably robust with
regard to prior probabilities in the middle range
(0�25 ≤ θ ≤ 0�75). The nonrobustness occurs at the
extreme ranges of the prior probabilities which are
unlikely to generate a clinical trial to test hypothe-
sis for which there is very strong belief or disbelief.

In order to be more focused, we have not elabo-
rated on the principal idea. As we have noted, one
can use indifference regions or even attempt to con-
struct a complete prior distribution on δ. These gen-

eralizations are straightforward. Realistically, the
more one attempts to make use of detailed prior
distributions the more likely the conclusions will be
nonrobust due to the issues in specifying detailed
prior distributions.

There are some statistical applications which can
only be carried out using Bayesian ideas. In our
opinion, this is one of them. It is not an issue of
faith or adherence to Bayesian ideas. It is simply
doing the right thing.
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