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Abstract
Head and neck squamous cell carcinomas (HNSCCs) are an aggressive, genetically complex and difficult to treat group

of cancers. In lieu of truly effective targeted therapies, surgery and radiotherapy represent the primary treatment

options for most patients. But these treatments are associated with significant morbidity and a reduction in quality of

life. Resistance to both radiotherapy and the only available targeted therapy, and subsequent relapse are common.

Research has therefore focussed on identifying biomarkers to stratify patients into clinically meaningful groups and to

develop more effective targeted therapies. However, as we are now discovering, the poor response to therapy and

aggressive nature of HNSCCs is not only affected by the complex alterations in intracellular signalling pathways but is

also heavily influenced by the behaviour of the extracellular microenvironment. The HNSCC tumour landscape is an

environment permissive of these tumours’ aggressive nature, fostered by the actions of the immune system, the

response to tumour hypoxia and the influence of the microbiome. Solving these challenges now rests on expanding

our knowledge of these areas, in parallel with a greater understanding of the molecular biology of HNSCC subtypes.

This update aims to build on our earlier 2014 review by bringing up to date our understanding of the molecular

biology of HNSCCs and provide insights into areas of ongoing research and perspectives for the future.

Facts

● The heterogeneous nature of HNSCC at the

molecular level has hindered both the identification

of specific targets and development of targeted

therapeutics for this group of tumours.
● Advances in strategies in dissecting the features of

the HNSCC genome, transcriptome and

metabolome have revealed new altered targets. But

this has not yet resulted in clinical improvements in

the management of these cancers.
● Current treatment strategies are very toxic,

highlighting the need for treatment stratification

using validated biomarkers to improve treatment

outcome and reduce toxicity and cost of HNSCC

treatment.
● Radiotherapy resistance remains a major cause of

HNSCC poor survival rates. Understanding the

underlying molecular mechanism of RT resistance

should significantly impact patient survival

outcomes, but requires a multidisciplinary approach

combining imaging and molecular profiling.
● EGFR inhibitors, the only approved targeted drugs,

have limited efficacy with the mechanisms of

inherent and acquired resistance remaining

unresolved.
● There has been a significant increase in the

incidence of HPV-positive HNSCC, a subgroup with

more favourable prognosis. Strategies for treatment

de-escalation to reduce toxicity are urgently

required.
● New, tailorable treatments such as immunotherapy

have become highly valuable in the treatment of
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HNSCC. However, the importance of both the

tumour microenvironment and the role of tumour

immunity in pathogenesis and treatment response

needs further understanding.
● A possible relationship between the oral microbiome

and HNSCC has been reported, warranting further

research into the influence of the oral microbiome

on subsequent development of HNSCC.

Open questions

● How can HNSCC therapies, alone or in combination

(radiotherapy, chemotherapy, targeted drugs and

immunotherapy) be made more effective, to achieve

a good prognosis while minimising undesirable

treatment effects?
● For individuals with HPV-linked HNSCC, is it safe

and effective to use less aggressive treatment than

the usual highly toxic therapies?
● How can advances in precision medicine (and

identification of biomarkers) help clinicians to

personalise treatment and predict outcomes, based

on the patient’s unique biochemistry and genetic

profile?

● Can the relationship between tumour and

microenvironment (including the input of the

immune system and influence of the microbiome)

help us either treat, stratify patients or prevent

oncogenesis?
● To what extent is the HNSCC epigenome

contributing to evolution of the tumour? Will the

epigenome be the next-generation pharmacological

target for HNSCC?

Introduction
Head and neck squamous cell carcinomas (HNSCCs)

are the sixth most common malignancy worldwide,

accounting for over 500,000 new cases annually. Long-

term tobacco use, consumption of alcohol and infection

with high-risk types of Human Papilloma Virus (HPV) are

considered the main oncogenic drivers1,2. Treatment

involves surgical eradication, radiotherapy (RT) and che-

motherapy (CT). All modalities severely reduce quality of

life, and are largely ineffective. Most of the developments

towards understanding this disease have occurred in the

past few decades, but have fallen short of clinically

meaningful discoveries (Fig. 1). Efforts to improve treat-

ment efficacy have been largely without success,

Fig. 1 Timeline of the molecular characterisation and therapeutic innovations in head and neck cancers, and future perspectives.

Interestingly, the major advances in our understanding of HNSCCs have only been made in the past 20–30 years. Also, some major discoveries

concerning the molecular characterisation of HNSCCs have been made almost 20 years after similar discoveries in other cancers. For example, where

HPV was proven unequivocally to cause cervical cancers around 1983, the same discovery was not made for HNSCCs until around the year 2000. It is

not so hard to understand therefore why therapeutic options for HNSCCs are so far behind, when our understanding of the molecular biology of

these diseases only began to develop over the past 2–3 decades. Dates are not exact, and the details presented are by no means exhaustive10–22
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highlighting an urgent need for more effective therapies,

alongside clinically relevant biomarkers to stratify patients

and improve treatment outcomes.

HNSCCs have a high rate of genetic heterogeneity3,

resulting in loss-of-function mutations in tumour-

suppressor genes such as p53 and p16INK4a, and activa-

tion of oncogenes, such as the epidermal growth factor

receptor (EGFR)4 and PIK3CA5. Until the recent FDA

approval of immunotherapies, Cetuximab, a monoclonal

antibody (mAb) targeting EGFR, has been the only tar-

geted drug approved for both HPV-positive and -negative

subtypes6. However, Cetuximab, and other therapies

designed to target EGFR, has limited efficacy7 (Fig. 2).

In the absence of targeted therapies, radiotherapy

remains the main treatment modality for HNSCC, and

preferable for organ preservation8. HPV-positive patients

respond better to RT, a trait not fully understood. The use

of HPV as a biomarker for dose de-escalation has been

considered, but the value of this approach has not been

proven and concerns of under-treating these patients have

taken precedence9.

The efficacy of RT is also substantially constrained by

the presence of tumour hypoxia. Hypoxia is a biomarker

of an aggressive phenotype, with higher rates of metastasis

and recurrence10. Again, a full molecular understanding

of this condition in HNSCC is lacking.

HNSCC subtypes are clinically, histologically and

molecularly distinct. Yet, these diseases are treated uni-

formly, and with limited success. Despite research efforts,

survival rates are at a deadlock. The lack of biomarkers for

personalised treatment suggests an urgent need for better

understanding of the intricate molecular biology of

HNSCC, alongside an understanding of

tumour–microenvironment interactions. This review will

Fig. 2 The genetic alterations in HPV-negative HNSCCs. EGFR, MET and NOTCH alterations promotes proliferation, migration and cellular survival

via signalling through the RAS/RAF/ERK, PI3K and JAK/STAT pathways, all of which are regularly dysregulated in HNSCC. Disruption of the p53

pathway also leads to high levels of genomic instability. Green boxes show possible therapeutic agents either approved (*) or under investigation for

clinical use in HNSCC. Information about the percentage of HNSCC cases showing either mutations or overexpression of the pathway as a whole

shown in red boxes, where this data are available. Note, though activation of the JAK/Stat pathway is regularly seen in HNSCC, no mutations have yet

been found1–9
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explore the current knowledge of HNSCC biology and

highlights areas of ongoing research towards improving

treatment outcomes.

The genetic landscape in HNSCC and its clinical
implications
The TP53/RB pathway

TP53 is a tumour-suppressor gene encoding a tran-

scription factor11 with roles in maintaining genomic sta-

bility, cell cycle, DNA repair, apoptosis and

senescence12,13. p53 is a major cellular stress sensor for

DNA damage or oncogene activation14–16. Over 80% of

HPV-negative HNSCCs have p53 mutations resulting in

the loss of function17,18. Mutations in TP53 occur early in

carcinogenesis, and are mostly associated with HPV-

negative cases, due to degradation of p53 by the HPV E6

oncoprotein19. In both subtypes, p53 mutations are

associated with poor overall survival, therapy resistance

and increased rate of recurrence17. In response to DNA

damage, p53 is regulated in a MDM2-dependent man-

ner20 and activated by cell cycle checkpoint kinases CHK1

and CHK2 resulting in cell-cycle arrest and apoptosis12.

Amplification or overexpression of another p53 family

member, TP63, is observed in around 80% of HNSCCs21–23.

Of the two major isoforms produced by TP63 (TAp63 and

ΔNp63), ΔNp63 plays a major role in HNSCC pathogenesis,

regulating key pathways, including cell survival and renewal,

senescence suppression (by suppressing p16/INK4A) and

growth factor signalling24–26. Recent evidence indicates that

ΔNp63 influences the HNSCC metabolic microenviron-

ment via a transcriptional programme involving HAS3 and

HYAL genes, and the signalling of hyaluronic acid via

CD44, activating pro-proliferative and pro-survival path-

ways in HNSCC27. Another p53 family member, p73, and

its isoform TAp73 can indirectly influence growth arrest or

apoptosis by regulating p53 target genes. Despite the

retained DNA-binding activity of the other isoform ΔNp73,

it cannot transactivate p53 reporter genes28. In HNSCC,

TAp73 has been shown to suppress EGFR transcription and

induce cell death in EGFR-overexpressing cell lines28. In

cancers with mutant p53, proinflammatory cytokine TNF-

α-induced c-REL/ΔNp63α interactions, inactivate tumour

suppressor TAp73 function, promoting TNF-α resistance

and survival. c-REL depletion enhanced TAp73 promoter

interaction and expression of genes mediating growth arrest

and apoptosis29. However, while amplification of P63 is

frequent in HNSCC and the consequent oncogenic func-

tion of ΔNp63 has been sufficiently understood, the extent

of p73 contributions to the disease needs further

investigation.

The retinoblastoma tumour suppressor (RB) regulates

cell-cycle progression at the restriction point between

early and late G1. As with TP53, mutations in the RB

pathway are an early alteration in HNSCC carcinogenesis.

The combined mutations of p53 and RB pathways result

in unlimited replication potential of cancer cells30. In

HPV-positive cancers, binding of viral protein E7 to pRb

results in degradation leading to E2F release and uncon-

trolled cellular proliferation30,31.

Several strategies for p53-targeted therapies have been

developed, such as adenoviral p53 gene therapy or use of

small molecules to restore TP53 function or disrupt

inactivation of wild-type p53. But, these have not proved

effective in clinical trials32. Other small molecules tar-

geting p53 for reactivation of p53 are in early-stage

investigations. COTI-2 (a derivative of thiosemicarba-

zones) showed activity in refolding mutant p53 and

restoring wild-type p53 function. A clinical trial

(NCT02433626) will soon test efficacy of COTI-2 in

HNSCC33.

NOTCH pathway

A 2015 genomic analysis by the Cancer Genome Atlas

(TCGA) showed inactivating mutations in NOTCH1-3 to

be present in 17% of HPV-positive and 26% of HPV-

negative HNSCCs17. These aberrations predominantly

occur in NOTCH1 and include mis-sense mutations in

functional regions, non-sense mutations resulting in

truncated proteins and frameshift insertions or dele-

tions34. A recent HNSCC cohort study revealed poor

prognosis in NOTCH1 mutation cases, where direct

downstream targets HES1 and HEY1 were over-

expressed35,36. NOTCH1 signalling can contribute to the

maintenance of cancer stem cell traits responsible for

recurrence and metastasis through Wnt signalling37. The

crosstalk between Notch and Wnt signalling has been

reported in different types of cancers38. Loss of Notch

signalling was shown to increase transcriptional activity of

a β-catenin-responsive reporter construct in colon cancer

stem and progenitor cells39. In HNSCC, concurrent

NOTCH1 and FAT1 inactivating mutations drives carci-

nogenesis by activating β-catenin17. Importantly, loss of

Notch signalling was found to promote tumorigenesis in

HNSCC by upregulating ΔNp63, but the precise

mechanisms of Notch-ΔNp63 regulation remain to be

elucidated. Interestingly, Notch signalling in keratinocytes

could be impaired by ΔNp63 expression, suggesting a

reciprocal process between Notch and p63 in the

epidermis34.

The data from genomic and functional studies in the

lung, bladder and oesophagus support a tumour-

suppressor role for Notch signalling in epithelial SCCs

tumorigenesis40. Moreover, several in vivo models provide

results consistent with sequencing data from patient

samples that support a tumour-suppressive role of Notch.

However, in vitro studies using HNSCC cell lines

demonstrated that increased activity of Notch signalling is

required for maintaining malignant behaviour41. It is
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essential to functionally validate the role of Notch sig-

nalling in HNSCC using robust in vivo models, as in vitro

studies are unlikely to represent patient disease develop-

ment. Collectively, whether NOTCH mutations are acti-

vating or inactivating in HNSCC remains debatable42,43. It

may be that different types of mutations occur in different

subtypes of HNSCC35. This therefore must be carefully

considered when taking inhibitors or activators of this

pathway into clinical trials44,45.

PI3K/Akt/mTOR pathway

Recent molecular characterisation showed that in

HNSCC, PI3K/Akt/mTOR seems to be the most fre-

quently deregulated pathway. In HNSCC, the PI3KCA

gene harbours mutations at a rate of ~16%30. PI3Ks are a

class of enzymes vital for cellular growth, differentiation

and survival, activated by RTKs, such as EGFR. Other

members of the pathway include the mTOR complexes

(mTORC1 and mTORC2), and Akt. mTORC2 is essential

for Akt phosphorylation and activation of other signalling

molecules of the PI3K pathway, including SGK146.

Clinical trials have assessed the value of targeting this

pathway with drugs, including rapamycin, everolimus and

temsirolimus with encouraging outcomes47. Emergence of

resistance to mTOR inhibitors has been encountered in

HNSCC, though the mechanisms behind this resistance

are still being investigated48. In one such example, a

possible feedback loop between Akt and ERK/MAPK

signalling by mTOR inhibition was found to act as a

survival mechanism in tumour cells. Co-targeting mTOR

and EGFR, thus inhibiting upstream activation of the Akt

and ERK signalling pathway, has been suggested to

overcome this resistance49.

Epidermal growth factor receptor (EGFR) pathway

The epidermal growth factor receptor (EGFR, HER1 or

ErbB1) belongs to the HER/ErbB family of receptor tyr-

osine kinases (RTKs), which also includes HER2-4. EGFR

is overexpressed in 80–90% of HNSCC cases and corre-

lates with poor prognosis and treatment outcomes50.

EGFR signalling is a complicated and multidimensional

network, involving many individual players and overlap

with other pathways. As such, the potential for ther-

apeutic targeting of EGFR signalling is vast, representing

both a daunting challenge and tantalising opportunity for

HNSCC research.

EGFR is a transmembrane receptor with tyrosine kinase

activity51. Ligand binding triggers homo- or hetero-

dimerisation with other HER members and subsequent

phosphorylation of tyrosine residues, activating down-

stream signalling cascades. These pathways control pro-

liferation, differentiation, survival, angiogenesis, invasion

and metastasis in cancer52. EGFR can also translocate to

the nucleus where it may function as a transcription

factor. This translocation has been found to be triggered

by ionising radiation, resulting in radiotherapy resis-

tance53. EGFR has also been shown to interact with other

receptors, such as Axl, enhancing oncogenic potential54.

Targeting EGFR can be achieved either by blocking the

ligand-binding domain using monoclonal antibodies

(mAbs), or by inhibiting the activity of the tyrosine kinase

domain using small-molecule tyrosine kinase inhibitors

(TKIs). Cetuximab, a chimeric monoclonal antibody with

high specificity and affinity to EGFR, remains the only

approved targeted therapy for HNSCC in combination

with RT/CT7,55,56. Despite high rates of EGFR over-

expression,Cetuximab has shown limited efficacy in

HNSCC. This may be due to aberrations in other HER

family members and their ligands, and/or activation of

other downstream signalling components57,58.

The mechanisms behind inherent and acquired resis-

tance toCetuximab remain unsolved59. Several new tar-

geted therapies have been developed to target EGFR or its

signalling partners. So far, these have shown only modest

improvements in progression-free survival (PFS), and

none have been approved for treatment in HNSCC (see

Table 1).

Small TKIs of EGFR have been ineffective in HNSCC

although some early results from trials with combination

therapies have shown promise. Erlotinib, for example,

demonstrated modest improvements in PFS when used in

combination with an anti VEGF antibody (Bevacizumab)

in recurrent/metastatic (R/M)-HNSCC60. However, when

used for locally advanced (LA)-HNSCC in combination

with cisplatin and radiotherapy, the study group demon-

strated no improvements in disease progression. Afatinib,

a pan-HER TKI, has also been shown to have positive

anti-tumour activity comparable with Cetuximab61,62. In a

study comparing Afatinib to methotrexate, it was noted

that patients who experienced improvements in disease

outcomes had EGFR amplification, low HER3, no

expression of p16 and high PTEN63, highlighting the

importance of identification of biomarkers in patients

who show favourable response.

MET pathway

One proposed mechanism for resistance to EGFR-

targeted therapies is upregulation or activation of other

RTKs, such as c-MET (hepatocyte growth factor recep-

tor). C-MET encodes mesenchymal–epithelial transition

factor associated with increased migration, invasion and

metastasis in cancer64. C-MET mutations are reportedly

rare in HNSCC (2–13%), while gain in MET copy number

and overexpression of its ligand hepatocyte growth factor

(HGF) is common in HNSCCs65. The roles of HGF/c-

MET in HNSCC invasion and metastasis have been

investigated in many studies. C-MET has been found

overexpressed in lymph node metastasis, and HGF has
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been shown to promote anoikis resistance in HNSCC, an

essential step for nodal metastasis66. In patients, over-

expression is associated with worse prognosis and lower

overall survival67.

EGFR and c-MET share common downstream path-

ways, including the RAS-RAF-MAPK and PI3K-AKT-

mTOR pathways. Therefore, the MET-HGF axis could

represent a valuable therapeutic target in HNSCC, of

particular relevance to patients with resistance to EGFR-

targeted therapies64. Studies on dual blockade of EGFR

and c-MET have reported promising anti-tumor activity

of combined treatment67. Co-targeting both receptors has

demonstrated ability to sensitise cells to EGFR-targeted

therapies68. Capmatinib (INC-280) is a c-MET inhibitor

with anti-tumour activity in mouse models. A phase I trial

assessing Capmatinib safety in advanced solid tumours

(NCT01324479) is completed and awaiting results69.

Ficlatuzumab, a mAB that targets the HGF/c-MET axis, is

also being tested in clinical trials for HNSCC in combi-

nation with Cetuximab in R/M-HNSCC (NCT02277197).

Promising results from pre-clinical models of HNSCC

showed inhibition of proliferation, migration, invasion

and EMT70.

JAK/STAT pathway

In both HPV-positive and HPV-negative HNSCCs,

aberrant regulation of the signal transducer and activator

of transcription (STAT) family has been reported. Upre-

gulation of STAT3 and its gene targets is thought to

contribute to the malignant behaviour of HNSCCs,

resistance to chemo/radiotherapy and EGFR-targeted

therapy71–74.

STAT3 signalling is considered immunosuppressive and

may protect cancer cells from recognition and lysis by

cytotoxic T lymphocytes, achieved by triggering production

of cytokines, including IL-6, IL-10, VEGF and TGF- β175.

STAT3 is activated in response to upstream signals of the

IL-6 cytokine receptor family, RTKs such as EGFR, VEGFR,

Jenus-activated kinases (JAK) and Src family kinases

(SFK)76. Following activation, nuclear phospho-STAT3

promotes expression of target genes including pro-survival

factors, such as cyclin D1, survivin and Bcl-xL71.

In the context of STAT3 targeting, Ruxolitinib is an

approved JAK inhibitor for myelofibrosis. A clinical trial

currently in the recruitment phase aims to test efficacy of

Ruxolitinib in HNSCC (NCT03153982). AZD9150, a

synthetic anti-sense oligonucleotide molecule targeting

STAT3 by inhibiting mRNA translation, has demon-

strated anti-tumour activity in xenograft models. It is

currently being tested in clinical trials of metastatic

HNSCC cases as a monotherapy or combined with

MED14736, an immunotherapy blocking the interaction

of PD-1 and PD-L1 (NCT02499328)77.
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RAS/RAF/MAPK pathway

The mitogen-activated protein kinase (MAPK) pathway

regulates expression of proteins involved in cell pro-

liferation, differentiation, apoptosis, angiogenesis, inva-

sion and metastasis78. It comprises four sub-pathways of

which the Erk1/2 pathway has received most attention in

HNSSCC. Upon binding of growth factors (such as EGF),

a signalling cascade results in activated Erk1/2 that dis-

sociates from the Ras-Raf-MEK-ERK1/2 complex and

phosphorylates a number of cytoskeletal proteins, kinases

and transcription factors, including NF-κB, AP-1, ETS-1

and c-Myc79. Mutations in the MAPK pathway have been

implicated in other cancers, however, in HNSCC muta-

tions only represent 4% of cases17,80. MEK inhibitors, such

as Trametinib, are currently approved for melanoma

treatment, and are being investigated in clinical trials for

HNSCC81.

HPV-associated HNSCC

HPV is a risk factor associated with 22% of orophar-

yngeal (OPSCC) and 47% of tonsillar squamous cell car-

cinomas (TSCC). The incidence of HPV-positive HNSCC

increased 225% from 1984 to 2004, and has now sur-

passed the incidence of HPV-induced cervical cancer5.

This increase is thought to be a consequence of changes

in sexual behaviour82. Of the 200 types of HPV viruses,

HPV-16 is the most common type found in HNSCCs

(90% of HPV-OPSCC), followed by HPV-18 (3%).

Clinically, HPV-positive patients often present with

small tumours, but with advanced nodal metastasis. The

epidemiological profile for HPV-positive patients is

unique, with the majority of patients being young, white

and male9. Crucially, HPV-positive HNSCC patients

demonstrate favourable prognosis, with a 28% reduced

risk of death and almost 50% reduced risk of local

recurrence when compared with HPV-negative patients83.

HPV-positive patients show improved response to radio-

therapy and chemotherapy84. Whether this is due to the

molecular pathogenesis, or related to age and better

overall health of patients remains unclear.

In contrast to HPV-derived cervical cancers, in HNSCC,

dysplastic lesions are rarely found before cancers are

diagnosed. The HPV virus is also not commonly found in

non-malignant tonsil tissue samples85. Evidence suggests

that the tonsillar crypt epithelium on its own might not be

permissive of the viral reproductive cycle. Despite this, the

microenvironment is such that some 47% of infections

within the tonsillar crypts can progress to cancer. Notably,

only 3.9% of HPV infections in the oral cavity lead to

cancer9.

Genetic alteration in HPV-derived HNSCC is primarily

characterised by inactivation of p53 and pRB by viral

proteins E6 and E7, respectively (Fig. 3). E5 is also

implicated in carcinogenesis through activation of

signalling pathways, involving EGFR, immune recognition

and regulation of apoptosis86. PI3K mutations are

observed in 30% of HPV-associated HNSCC87, based on

current genomic data, mutation hotspots of PIK3CA vary

between HPV-positive and negative tumours. Mutations

predominantly occur in the helical domain of the gene in

the HPV-positive subtype, whereas mutations occur

throughout the gene in HPV-negative tumours88. These

differences may have an impact on clinical outcomes to

PI3K/mTOR inhibitors, and even have predictive value48.

TCGA data demonstrates the presence of several other

genetic differences, including, loss of TRAF (a tumour-

suppressor gene implicated in anti-viral immunity

response) and aberrant activation of cell-cycle genes89.

The most frequently altered genes in HPV-negative

HNSCCs are often unaltered in HPV-positive HNSCCs.

However, the alteration of p53, p16INK4A and RB as a

result E6 and E7 in HPV-positive cases is functionally

similar5. A recent study using TCGA data, sought to

further classify HNSCC tumours based on HPV status

and TP53/CDKN2A mutation status. The results

demonstrated that genes involved in DNA mismatch

repair were upregulated in HPV-positive tumours, a

pathway implicated in the cytotoxicity of chemo/radio-

therapy90, thus providing a possible insight into the

improved response of these patients to radiotherapy91.

Currently, there are no subtype-specific treatment

regimens available9. Several trials have assessed de-

intensification of treatment of HPV-positive cancers

using various methods, including reducing total dose of

radiation, RT as a monotherapy and replacing conven-

tional chemotherapy with targeted therapies. The results

of some phase III clinical trials aiming to assess efficacy of

replacing platinum-based chemotherapy with Cetuximab

and radiotherapy, including RTOG 1016, TROG 12.01

and the De-ESCALaTE trial92–95, are published. These

trials report that EGFR inhibition by Cetuximab conferred

a reduction in overall survival and tumour control when

compared with cisplatin. The authors of the De-

ESCALaTE trial also recommend caution when con-

sidering reducing the dose of radiotherapy for HPV-

positive patients. Additional efforts have been made

towards the development of therapeutic HPV vaccines96.

Database analysis of head and neck squamous cell

carcinomas

Following the omics revolution, the amount of data

generated with the aim of uncovering biomarkers, net-

work motifs and susceptibility markers has soared. The

development of databases to the structure and sharing of

these data has been critical. See Sepiashvili et al. for

detailed biomarker data with respect to HNSCC97.

Both genomic and proteomic data can be accessed, with

databases such as the GEO omnibus98 and Array
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Express99 containing microarray data, DNA- and RNA-

sequencing, and DNA methylation studies (Table 2) and

The Human Protein Atlas containing results from tumour

tissue staining100,101. These databases have their own

merits and pitfalls. Whereas GEO and Array Express

comprehensively gather all species and cell types, the

Cancer Genome Atlas (TCGA) specifically focuses on

patient-derived samples and contains information about

genomic changes in different cancer types. For head and

neck, this includes 44 healthy and 504 cancer samples102.

TCGA comprises mRNA, miRNA and protein expression

data as well as DNA methylation status. The Leipzig

Health Atlas contains gene expression profiling and tar-

geted sequencing of 50 genes of 290 consecutively

recruited HNSCC patients103. For metabolic alterations

observed in HNSCC a variety of medium and small-scale

data sets have been generated as summarised by Shin

et al.104. Furthermore, a genomic information portal for

HNSCC cell systems has been set up, detailing clinical and

genomic information of 44 cell lines105.

The Danish Head and Neck Cancer group

(DAHANCA) established in 1976, was set up with the aim

Fig. 3 Aberrant signalling in HPV-positive HNSCC. HPV oncogenesis occurs mainly in the tonsillar crypt epithelium of the oropharynx. Upon HPV

infection, viral DNA is either integrated or exists in the cells in episomes. Regardless, this allows for transcription of viral oncoproteins E5, E6 and E7.

The main dysregulation attributed to carcinogenesis in HPV-positive cases stems from the inhibition of p53 by the E6 viral protein, and of Rb by E7.

This leads to entry into the cell cycle via release of E2F, and inhibition of p53-mediated cell death. It also results in the accumulation of p16, which

subsequently acts as a surrogate marker of HPV infection in HNSCC. Though previously considered a minor player, E5 has also been shown to activate

EGFR leading to further oncogenic potential. Amongst the signalling pathways shown to be activated in HPV-HNSCC, the PI3K pathway has been

found to be significantly upregulated. This may in part be due to activation by ErbB family members, including both EGFR and Her31,7,23–26
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of generating guidelines for the treatment of HNSCCs

based on patient cases. To date, they have compiled data

from more than 33,000 patients containing variables

incorporating symptoms, aetiological factors, diagnostic

evaluation and involvement in clinical trials106. This

database is a valuable resource for longitudinal studies,

which have clear advantages over single case studies.

However, the accessibility of DAHANCA to the scientific

community is limited by the use of the Danish language in

all reports. The National Cancer Database (NCDB), based

in the USA, collects information submitted from hospitals

detailing the state of cancer care throughout the country.

Between 1990 and 2004, information of around 800,000

head and neck tumours were collected107.

In contrast to these large studies, some databases have

attempted to group all decentralised information into a

single source. One such database for head and neck

cancer is HNdb, which was established with the aim to

combine genomics, transcriptomics and proteomics data,

literature citations, and cross-references from external

databases. For this purpose, Henrique et al. established a

text mining procedure to identify genes in literature

related to HNSCC. Their database provides user-friendly

access to information on HNSCC-related genes and their

different biological data resources108. Overall, the large

amounts of data amassed so far offer a great foundation

for the identification of possible biomarkers, to begin

working towards personalised medicine for HNSCC.

The microenvironmental landscape

Hypoxia in HNSCC

Hypoxia is a well-established cause of poor response to

treatment, metastasis and recurrence. It develops as a

result of progressive tumour growth leading to impair-

ment of oxygen supply within tumour tissues. This results

in the development of areas starved of oxygen30. Within

these regions, central areas (experiencing oxygen levels <

0.1% O2) will likely become necrotic. The cells within

regions of acute hypoxia (< 2% O2) that survive these

extreme conditions adapt a programme of gene expres-

sion leading to treatment resistance and metastasis109–111.

The hypoxic response is primarily mediated by the

heterodimeric hypoxia-inducible factors (HIF-1-3). Under

normal oxygen conditions, the HIFα subunits undergo

rapid degradation by the E3-Ubiquitin Ligase Von-

Hippel-Lindau protein (VHL). Under hypoxic condi-

tions, HIFα is stabilised and binds to HIFβ in the nucleus,

where the activated HIF complex binds to hypoxia

response elements (HREs), allowing for adaption of the

tumour. HREs are present in genes responsible for alter-

ing metabolism (CA9, GLUT1), EMT (Vimentin), extra-

cellular matrix remodelling (LOX, MMPs), angiogenesis

(VEGF), immune modulation and inflammation (TNFα,

IL1β)112–116.

The state of hypoxia is not clear-cut, with several

examples of stabilisation of HIFs in normoxic conditions.

mTOR has been shown to induce expression of HIF-1α in

tumour areas that are not significantly hypoxic, and has

been attributed to various oncogenic mechanisms, such as

inactive p53 mutations, excessive accumulation of oxygen

radicals, RAS mutations, inactivation of PTEN and inef-

fective degradation of HIF-1α by mutations in VHL112.

Gain-of-function mutations in p53 have shown a syner-

gism with HIF signalling. A recent study in hypoxic

NSCLC found p53 mutations that regulate a selective

gene signature including extracellular matrix (ECM)

components, such as type VIIa1 collagen and laminin-γ2.

This study illustrated the impact of p53 mutants on the

microenvironment in co-operation with HIF-1 to pro-

mote cancer progression117,118. By considering the high

frequency of p53 mutations in HPV-negative HNSCC and

the hypoxia observed in these tumours, the co-operation

between p53 mutants and HIF-1 signalling might repre-

sent a meaningful avenue for clinical investigation.

Hypoxic tumours represent a distinct subtype of

HNSCCs with poor prognosis and treatment resistance.

Attempts have been made to make clinical use of this

information. Hypoxic modulation has been suggested to

revert the changes that occur in low oxygen and restore

sensitivity to treatment. Hyperbaric oxygen therapy is one

such method which aims to improve tumour oxygena-

tion119,120. Hypoxia-activated pro-drugs including

Table 2 Some examples of publicly available data from studies involving genomic profiling of HNSCC samples

Study by Type Array identifier

Farah et al.126 microRNA profiling by array E-MTAB-6470

Hess et al.127 microRNA profiling by array E-MTAB-5198

Bossi et al.128 Transcription profiling by array E-GEOD-65021

Wood et al.129 RNA-seq of coding RNA E-GEOD-72536

Selvi et al.130 Transcription profiling by array E-GEOD-75029

Wichmann et al., Leipzig Head and Neck Group, 2015120 Transcription profiling by array https://www.health-atlas.de/en/
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Tirapazamine and Nimorazole are thought to act as

oxygen-mimetic radiosensitizers. The latter is now

included in the standard of care for Danish HNSCC

patients, following guidelines from DAHANCA110,121.

A trial using Nimorazole alongside RT for patients

with R/M-HNSCC is currently recruiting in the UK

(NIMRAD)122.

Targeting hypoxia therapeutically to overcome treat-

ment resistance needs accurate and reliable detection

methods. Several approaches including needle electrodes,

endogenous or exogenous hypoxia tissue markers and

hypoxia imaging have been tested, but have limitations.

Needle electrodes are an invasive method limited to

accessible tumours, albeit with demonstrable prognostic

value in HNSCC tumours123. To overcome these limita-

tions, endogenous hypoxia biomarkers have been identi-

fied in patient tissues and serum, the most commonly

used being GLUT-1, CA9, VEGF and serological bio-

marker OPN124. Several hypoxia-specific gene signatures

(HGS) have been developed125–127, with evidence of HGS

having prognostic and predictive values. Notably, a 15-

gene HGS from human HNSCC xenografts has been

identified and further validated in a cohort of 302 HNSCC

patients with successful discrimination between low and

high hypoxic tumours127.

Positron emission tomography (PET)/computer tomo-

graphy (CT) using hypoxia-specific radiotracers, com-

bined with assessment of endogenous or exogenous

hypoxia markers could provide a reliable clinical method

for both detection and measurement of tumour hypoxia

during treatment126,128. In HNSCC, PET imaging using

the hypoxia radiotracer 18F-MISO has been investigated,

demonstrating successful identification of HNSCC

patients who benefited from addition of Tirapazamine

with prediction of recurrence after radiotherapy129.

Likewise, a recent study by Suh et al. combined hypoxia

imaging with PET/CT using 64Cu-ATSM and gene

expression of patient tumours to validate a HGS, linked to

prognosis126.

The immune-microenvironment in HNSCC

Immune evasion is considered a key hallmark of cancer,

generating an environment permissive of survival and

progression. HNSCCs are immune-suppressive, with the

ability to avoid recognition and clearance by immune

cells. This evasion of immunosurveillance is achieved by

alterations, including loss or downregulation of human

leucocyte antigens (HLAs) expression, impaired recogni-

tion of cancer cells by T cells and activation of MAPK,

STAT3 and β-catenin/Wnt signalling pathways130. The

HNSCC tumour microenvironment has also been shown

to have impaired function of tumour-infiltrating lym-

phocytes (TILs)131.

Both HPV-negative and HPV-positive tumours show

high levels CD8+ cytotoxic T cells and activated NK

cells132. However, these tumours still evade their cytotoxic

mechanisms. For clinical purposes, research is ongoing to

investigate efficacy of enhancing immune cell targeting of

tumours. A potential method for this could be to exploit

the presence of tumour-associated neoantigens expressed

on cancer cells resulting from genetic reconfigurations133.

Adoptive immunotherapy, which involves administra-

tion of genetically modified T cells targeting specific

antigens expressed on the surface of tumour cells, is a

recent revolutionary advance in cancer immunotherapy.

The synthetic chimeric antigen receptor (CAR)-T cell

therapy has shown remarkable success in haematological

cancers134. An FDA-approved CD19-targeting CAR-T cell

therapy has demonstrated success in leukaemias and

lymphomas, encouraging the development of similar

therapies for solid tumours135. However, these therapies

face multiple challenges such as a need to identify specific

tumour-associated antigens that are overexpressed in

tumours, but not in normal tissues136. A recent ongoing

trial developed a pan-ErbB-targeted CAR-T cell therapy

for HNSCC (NCT01818323)137.

The momentous discovery that certain proteins act as

“immune checkpoints” by regulating the T-cell response

has spurred efforts to develop treatments to reverse this

effect and restore anti-tumour immune responses138,139.

In normal circumstances proteins including programmed

death protein (PD-1), its ligand (PD-L1) and cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4), function to

prevent autoimmunity140,141. PD-L1 has been detected in

most human cancers and leads to anergy and apoptosis of

activated T cells and subsequent immune evasion of the

tumour cells142–145. These proteins are often over-

expressed and co-opt this protective mechanism to inhibit

immune activation. Immune checkpoint blockade thera-

pies have shown remarkable clinical success for some

cancers, including metastatic melanoma140,146,147. In

2016, anti-PD1 mAb Nivolumab was FDA-approved for

recurrent/metastatic HNSCC patients with progressive

disease or failure of platinum-based therapy. The approval

followed the promising results of the CheckMate 14 trial,

demonstrating a statistically significant improvement in

OS and quality of life in patients treated with nivolu-

mab148. Pembrolizumab, another anti-PD1 mAb, was in

the same year approved in R/M-HNSCC treatment after

the positive results of the KEYNOTE-12 trial149. Studies

to approve these drugs as mono or combination therapies

for different cancer types is ongoing.

Cancer-associated fibroblasts

Cancer-associated fibroblasts (CAFs) are fibroblast-like

cells associated with the tumour that develop an activated

phenotype, expressing markers such as α-smooth muscle
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actin (α-SMA) and fibroblast activation protein (FAP)150.

These fibroblasts, alongside infiltrating immune cells, can

resemble the architecture of a wounded tissue. However,

unlike wound fibroblasts, CAFs are often resistant to cell

death mechanisms and remain activated151–153. Commu-

nication, through direct contact and secretion of signal-

ling molecules between CAFs and tumour cells is vital for

their function154. With perpetual activation of CAFs, the

tumour can benefit from CAF secretion of proteins for

ECM remodelling155, growth factors152, cytokines, che-

mokines and recruitment of immune-suppressive cells156.

This environment supports tumour growth, migration,

invasion, angiogenesis, colonisation of distant tissues by

way of the CAF-supported “pre-metastatic niche” and

evasion of the immune system157–161. An additional

danger engendered by this stroma–tumour communica-

tion has been the reported changes in responsiveness to

cancer therapy161–163. This is particularly relevant in

HNSCC, as CAFs have been shown to regulate response

to Cetuximab164 and radiotherapy165,166. Research has

shown that these treatments in turn impact CAF

activation167,168.

A number of potential targeting strategies exist to block

CAF-mediated tumour support, including inhibition of

CAF cell-surface proteins (such as the anti-FAP antibody

Sibrotuzumab169), blocking CAF activation or by targeting

CAF-tumour signalling159. Tumour cells are also thought

to contribute to activation of CAFs via a transformation

process involving exosomes containing nucleic acids like

microRNAs170,171, chemokines and cytokines like TGFβ,

CXCL12 (CXC-Chemokine ligand 12 also known as

SDF1) and IL-6, as well as local stimuli like hypoxia and

oxidative stress154,156,172. Though research within this

field with respect to HNSCC is somewhat under-

developed, many of these factors have independently been

implicated in its oncogenesis173–177. Recent work by Hersi

et al. showed that low expression of the tumour-

suppressive miR-9, which targets the CXCL12 receptor

CXCR4, was linked to aggressive behaviour of HNSCC

cells, counteracted by targeting of this interaction with

Plerixafor (a CXCR4 inhibitor)178. Likewise, IL-6, its

receptor and downstream JAK/STAT signalling have all

been strongly implicated in HNSCC prognosis71,179. A

recent study showed that IL-6 was responsible for both

promoting oncogenesis when secreted from CAFs and

CAF activation when secreted from tumour cells180.

Importantly, targeting some of these mechanisms, such

as the CXCL12-CXCR4 and IL-6 pathways, could result in

inhibition of both the tumour stroma and the tumour

itself. One challenge associated with targeting CAFs in the

HNSCC microenvironment relates to their heterogeneity.

Their biology is complex, and CAFs likely originate from a

number of different cell types181. In practice, this non-

uniform pool of cells has been difficult to characterise

completely. One benefit of CAFs is that they are geneti-

cally stable, unlike tumour cells, which may make long-

term treatment plans more viable159. As with much of

what has been reviewed herein, holistic approaches

involving combinations of immune therapy, conventional

therapy and CAF-targeted therapy may prove most useful

for future treatment.

The oral microbiome

Changes in the oral microbiome have been proposed to

contribute to oncogenesis in the 7–15% of oral cancer

cases, which cannot be explained by known risk fac-

tors182–184. The microbiome denotes the collective gen-

ome of complex communities of bacteria, archaea, viruses,

fungi and protists, each with crucial roles to play in sta-

bilising microbial diversity185,186. The clinical relevance of

the oral microbiome lies in the statistical association

between dysbiosis (often a result of poor oral health) and

the prevalence of many types of cancer187–189. Within the

multifarious environment of the human mouth, with its

mucosal surfaces and deep-tissue crevices, both healthy

and malignant sites contain distinct microbial

populations190,191.

Several bacterial species have been associated with oral

cancer. A potential biomarker signature has been sug-

gested for oral cancer and consists of the three bacterial

species Capnocytophaga gingivalis, Prevotella melanino-

genica and Streptococcus mitis. These bacteria are found

in 80% of OSCC cases, and the signature has demon-

strated a diagnostic sensitivity of 80% and a specificity of

82%192. Another three-fungal signature of Rhodotorula,

Geotrichum and Pneumocystis, as well as the micro-

sporidia Phialophora and Cladophialophora are specifi-

cally seen in OCSCC183.

Risk factors for HNSCCs including tobacco and alcohol

consumption and HPV infection have been shown to

affect the oral microbiome193–196. A shift towards differ-

ent genera of bacteria has been associated with exposure

to these risk factors. Oral microbes have also been shown

to contribute to acetaldehyde (the carcinogenic meta-

bollite of ethanol) production, which can induce muta-

genesis, and hyperproliferation of the epithelium197.

Bacterial strains show significant differences in their

ability to produce acetaldehyde, for instance, S. mitis

produces high amounts of acetaldehyde and has sig-

nificant alcohol dehydrogenase activity198. Concurrently,

elevated levels of S. mitis have been detected in OSCC192.

Acetaldehyde and malondialdehyde production from

Streptococcus species such as Streptococcus gordonii

V2016 significantly increased bacterial attachment to

keratinocytes, facilitated HPV infection by enhanced

expression of furin and resulted in malignant transfor-

mation of infected keratinocytes199. Oral Streptococcus

species and HPV seem to co-operate in order to infect and
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transform oral keratinocytes after exposure to alcohol.

Cleavage of the minor capsid protein L2 by furin is

required for HPV infection200,201. Since only a subset of

bacteria contains enzymes with furin-like activity, this

might contribute to HPV tissue tropism202.

The carcinogenic potential of several bacteria has been

demonstrated in vitro and in animal models184. Chronic

infection of P. gingivalis or F. nucleatum have been shown

to augment the IL-6-STAT3 inflammatory cascade and

promote HNSCC development203. Interactions between

periodontopathogenic bacteria and single-nucleotide

polymorphisms (SNPs) of Toll-like receptors (TLRs)

such as TLR2 and TLR4 have also been shown to influ-

ence OSCC risk204–206. Virulent P. gingivalis strains can

induce expression of PD-L1 and PD-L2 receptors in

squamous carcinoma cells, mediated by the membrane

fraction of P. gingivalis207,208.

Particularly relevant for HNSCC and its treatment

options, some microbiota such as C. albicans and E. fae-

calis can activate EGFR signalling209–211. In addition, E.

faecalis can drive tumorigenesis by hydrogen peroxide-

mediated DNA damage, chromosomal instability and

mutagenesis211. The compositional and functional varia-

tions of oral microbiota have been associated with the

mutational changes in oral cancer. Yang et al. investigated

the oral microbiome composition of OSCC patients in

association with their mutational profile and identified

three patient clusters, which varied in their bacterial

species richness and their relative abundance of Firmi-

cutes and Bacteroidetes212.

The clinical relevance of the microbiome is important as

treatments such as radiotherapy cause alterations in

healthy oral microflora, partially due to treatment-

induced xerostomia213–215. Ultimately these alterations

can result in exacerbation of mucositis and systemic

infections. Patients who have good oral care during cancer

therapy have better outcomes213. Different treatments in

oral cancer patients have distinct effects on microflora216.

Opportunistic pathogens such as staphylococci, enteric

rods and Candida sp. tend to increase in prevalence after

radiotherapy (IMRT) with or without chemotherapy217. C.

albicans was found in one or more sites in 54% of patients

who received radiotherapy in comparison with 15% of

controls188.

A new avenue for personalised treatment could involve

targeting the microbiome for therapeutic purposes with

microbial supplements, such as synbiotics (probiotics and

prebiotics), diet or microbial suppression strategies using

antibiotics218–223. Probiotics have the potential to protect

against cancer development in animal models, and some

probiotic strains diminish the incidence of postoperative

inflammation in cancer patients224–229. Importantly, most

commercial probiotic products are generally safe and can

improve the health of the host by modulating the

intestinal microbiota and immune response230. Therefore,

probiotic strains might be useful adjuvants for cancer

prevention and/or treatment231. Lactobacillus brevis CD2

lozenges have been shown to reduce the severity and

incidence of radio/chemotherapy-induced mucositis in

HNSCC patients, thereby increasing the rate of anticancer

treatment completion232,233.

In brief, the emerging fields of microbiomics and

metagenomics will help to identify the presence of

HNSCC-specific microbes and help us understand234 the

development of accurate and cost-effective diagnostic and

therapeutic strategies.

Conclusion
The heterogeneous nature of HNSCCs has hindered the

identification of specific targets for the development of

targeted therapies. Over the past 30 years we have

developed a better understanding of the genomic, pro-

teomic, microbiomic and metabolomic alterations in

HNSCCs. This knowledge is helping to move us closer to

personalised therapy, where each subtype can be treated

as a separate disease. The significant problems associated

with high toxicities as well as resistance to current

treatments, and low quality of life for patients, make these

efforts particularly crucial. Since our last clinical update in

20144, our understanding of these diseases has broadened

to not only consider the endogenous alterations as key

contributors to oncogenesis but also to consider the

microenvironmental factors that build an environment

permissive of these oncogenic mechanisms. How the

integration of microenvironmental factors and genetic

backgrounds reshapes the HNSCC epigenome is largely

unclear and represents one of the new priorities in the

field. It is likely that interdisciplinary approaches seeking

to link the genetic and microenvironmental biology of

HNSCC will allow us to better treat HNSCC in the future.
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