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Abstract

Polygenic risk scores (PRS) are poised to improve biomedical outcomes via precision medicine. 

However, the major ethical and scientific challenge surrounding clinical implementation is that 

they are many-fold more accurate in European ancestry individuals than others. This disparity is 

an inescapable consequence of Eurocentric genome-wide association study biases. This highlights 

that—unlike clinical biomarkers and prescription drugs, which may individually work better in 

some populations but do not ubiquitously perform far better in European populations—clinical 

uses of PRS today would systematically afford greater improvement to European descent 

populations. Early diversifying efforts show promise in levelling this vast imbalance, even when 

non-European sample sizes are considerably smaller than the largest studies to date. To realize the 

full and equitable potential of PRS, we must prioritize greater diversity in genetic studies and 

public dissemination of summary statistics to ensure that health disparities are not increased for 

those already most underserved.
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Polygenic risk scores (PRS), which predict complex traits using genetic data, are of 

burgeoning interest to the clinical community as researchers demonstrate their growing 

power to improve clinical care, genetic studies of a wide range of phenotypes increase in 

size and power, and genotyping costs plummet to less than US$50. Many earlier criticisms 

of limited prediction power are now recognized to have been chiefly an issue of insufficient 

sample size, which is no longer the case for many outcomes1. For example, polygenic risk 

scores alone already predict breast cancer, prostate cancer, and type 1 diabetes risk in 

European descent patients more accurately than current clinical models2–4. Additionally, 

integrated models of PRS together with other lifestyle and clinical factors have enabled 

clinicians to more accurately quantify the risk of heart attack for patients; consequently, they 

have more effectively targeted the reduction of LDL cholesterol and by extension heart 

attack by prescribing statins to patients at the greatest overall risk of cardiovascular 

disease5–9. Promisingly, return of genetic risk of complex disease to at-risk patients does not 

induce significant self-reported negative behavior or psychological function, and some 

potentially positive behavioral changes have been detected10. While we share enthusiasm 

about the potential of PRS to improve health outcomes through their eventual routine 

implementation as clinical biomarkers, we consider the consistent observation that they are 

currently of far greater predictive value in individuals of recent European descent than in 

others to be the major ethical and scientific challenge surrounding clinical translation and, at 

present, the most critical limitation to genetics in precision medicine. The scientific basis of 

this imbalance has been demonstrated theoretically, in simulations, and empirically across 

many traits and diseases11–22.

All studies to date using well-powered genome-wide association studies (GWAS) to assess 

the predictive value of PRS across a range of traits and populations have made a consistent 

observation: PRS predict individual risk far more accurately in Europeans. than non-

Europeans15,16,18–24. Rather than chance or biology, this is a predictable consequence of the 

fact that the genetic discovery efforts to date heavily underrepresent non-European 

populations globally. The correlation between true and genetically predicted phenotypes 

decays with genetic divergence from the makeup of the discovery GWAS, meaning that the 

accuracy of polygenic scores in different populations is highly dependent on the study 

population representation in the largest existing ‘training’ GWAS. Here, we document study 

biases that underrepresent nonEuropean populations in current GWAS, and explain the 

fundamental concepts contributing to reduced phenotypic variance explained with increasing 

genetic divergence from populations included in GWAS.

Predictable basis of disparities in PRS accuracy

Poor generalizability of genetic studies across populations arises from the overwhelming 

abundance of European descent studies and dearth of well-powered studies in globally 

diverse populations25–28. According to the GWAS catalog, ~79% of all GWAS participants 
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are of European descent despite making up only 16% of the global population (Figure 1). 

This is especially problematic as previous studies have shown that Hispanic/Latino and 

African American studies contribute an outsized number of associations relative to studies of 

similar sizes in Europeans27. More concerningly, the fraction of non-European individuals in 

GWAS has stagnated or declined since late 2014 (Figure 1), suggesting that we are not on a 

trajectory to correct this imbalance. These numbers provide a composite metric of study 

availability, accessibility, and use—cohorts that have been included in numerous GWAS are 

represented multiple times, which may disproportionately include cohorts of European 

descent. However, whereas the average sample sizes of GWAS in Europeans continue to 

grow, they have stagnated and remain several-fold smaller in other populations 

(Supplementary Figure 1).

The relative sample compositions of GWAS result in highly predictable disparities in 

prediction accuracy; population genetics theory predicts that genetic risk prediction accuracy 

will decay with increasing genetic divergence between the original GWAS sample and target 

of prediction, a function of population history13,14. This pattern can be attributed to several 

statistical observations which we detail below: 1) GWAS favor the discovery of genetic 

variants that are common in the study population; 2) linkage disequilibrium (LD) 

differentiates marginal effect size estimates for polygenic traits across populations, even 

when causal variants are the same; and 3) environment and demography differ across 

populations. Notably, the first two phenomena degrade prediction performance across 

populations substantially even when there exist no biological, environmental, or diagnostic 

differences, whereas the environment and demography may interact to drive differential 

forces of natural selection that in turn drive differences in causal genetic architecture. (We 

define the causal genetic architecture as the true effects of variants that impact a phenotype 

that would be identified in a population of infinite sample size. Unlike effect size estimates, 

true effects are typically modeled as invariant with respect to LD and allele frequency 

differences across populations.)

Common discoveries and low-hanging fruit

First, the power to discover an association in a genetic study depends on the effect size and 

frequency of the variant29. This dependence means that the most significant associations 

tend to be more common in the populations in which they are discovered than 

elsewhere13,30. For example, GWAS catalog variants are more common on average in 

European populations compared to East Asian and African populations (Figure 2B), an 

observation not representative of genomic variants at large. Understudied populations offer 

low-hanging fruit for genetic discovery because variants that are common in these groups 

but rare or absent in European populations could not be discovered even with very large 

European sample sizes. Some examples include SLC16A11 and HNF1A associations with 

type II diabetes in Latino populations, as well as APOL1 associations with end-stage kidney 

disease and associations with prostate cancer in African descent populations31–34. If we 

assume that causal genetic variants have an equal effect across all populations—an 

assumption with some empirical support that offers the best case scenario for 

transferability35–40—Eurocentric GWAS biases mean that variants associated with risk are 

disproportionately common and discovered in European populations, accounting for a larger 
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fraction of the phenotypic variance there13. Furthermore, imputation reference panels share 

the same study biases as in GWAS41, creating challenges for imputing sites that are rare in 

European populations but common elsewhere when the catalog of non-European haplotypes 

is substantially smaller. These issues are insurmountable through statistical methods alone13, 

but rather motivate substantial investments in more diverse populations to produce similar-

sized GWAS of biomedical phenotypes in other populations.

Linkage disequilibrium

Second, LD, the correlation structure of the genome, varies across populations due to 

demographic history (Figure 2A,C–E). These LD differences in turn drive differences in 

effect size estimates (i.e. predictors) from GWAS across populations in proportion to LD 

between tagging and causal SNP pairs, even when causal effects are the same35,37–40 

(Supplementary Note). Differences in effect size estimates due to LD differences may 

typically be small for most regions of the genome (Figure 2C–E), but PRS sum across these 

effects, also aggregating these population differences. While it would be ideal to use causal 

effects rather than correlated effect size estimates to calculate PRS, it may not be feasible to 

fine-map most variants to a single locus to solve issues of low generalizability, even with 

very large GWAS. This is because complex traits are highly polygenic, meaning most of our 

prediction power comes from small effects that do not meet genome-wide significance 

and/or cannot be fine-mapped, even in many of the best-powered GWAS to date42.

Complexities of history, selection, and the environment

Lastly, other cohort considerations may further worsen prediction accuracy differences 

across populations in less predictable ways. GWAS ancestry study biases and LD differences 

across populations are extremely challenging to address, but these issues actually make 

many favorable assumptions that all causal loci have the same impact and are under 

equivalent selective pressure in all populations. In contrast, other effects on polygenic 

adaptation or risk scores such as long-standing environmental differences across global 

populations that have resulted in differing responses of natural selection can impact 

populations differently based on their unique histories. Additionally, residual uncorrected 

population stratification may impact risk prediction accuracy across populations, but the 

magnitude of its effect is currently unclear. These effects are particularly challenging to 

disentangle, as has clearly been demonstrated for height, where evidence of polygenic 

adaptation and/or its relative magnitude is under question43,44. Comparisons of 

geographically stratified phenotypes like height across populations with highly divergent 

genetic backgrounds and mean environmental differences, such as differences in resource 

abundance during development across continents, are especially prone to confounding from 

correlated environmental and genetic divergence43,44. This residual stratification can lead to 

over-predicted differences across geographical space45.

Related to stratification, most PRS methods do not explicitly address recent admixture and 

none consider recently admixed individuals’ unique local mosaic of ancestry; further 

methods development is needed. Additionally, comparing PRS across environmentally 

stratified cohorts, such as in some biobanks with healthy volunteer effects versus disease 

study datasets or hospital-based cohorts, requires careful consideration of technical 
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differences, collider bias, as well as variability in baseline health status among studies. It is 

also important to consider differences in definitions of clinical phenotypes and heterogeneity 

of sub-phenotypes among countries.

Differences in environmental exposure, gene-gene interactions, gene-environment 

interactions, historical population size dynamics, statistical noise, some potential causal 

effect differences, and/or other factors will further limit generalizability for genetic risk 

scores in an unpredictable, trait-specific fashion46–49. Complex traits do not behave in a 

genetically deterministic manner, with some environmental factors dwarfing individual 

genetic effects, creating outsized issues of comparability across globally diverse populations. 

Among psychiatric disorders for example, whereas schizophrenia has a nearly identical 

genetic basis across East Asians and Europeans (rg=0.98)40, substantially different rates of 

alcohol use disorder across populations are partially explained by differences in availability 

and genetic differences impacting alcohol metabolism50. While non-linear genetic factors 

explain little variation in complex traits beyond a purely additive model51, some 

unrecognized nonlinearities and gene-gene interactions can also induce genetic risk 

prediction challenges, as pairwise interactions are likely to vary more across populations 

than individual SNPs. Mathematically, we can simplistically think of this in terms of a two-

SNP model, in which the sum of two SNP effects is likely to explain more phenotypic 

variance than the product of the same SNPs. Some machine learning approaches may thus 

modestly improve PRS accuracy beyond current approaches for some phenotypes52, but 

most likely for atypical traits with simpler architectures, known interactions, and poor 

prediction generalizability across populations, such as skin pigmentation53.

Limited generalizability of PRS across diverse populations

So far, multi-ethnic work has been slow in most disease areas54, limiting even the 

opportunity to assess PRS in non-European cohorts. Nonetheless, some previous work has 

assessed prediction accuracy across diverse populations in several traits and diseases for 

which GWAS summary statistics are available and identified large disparities across 

populations (Supplementary Note). These disparities are not simply methodological issues, 

as various approaches (e.g. pruning and thresholding versus LDPred) and accuracy metrics 

(R2 for quantitative traits and various pseudo-R2 metrics for binary traits) illustrate this 

consistently poorer performance in populations distinct from discovery samples across a 

range of polygenic traits (Supplementary Table 1). These assessments are becoming 

increasingly feasible with the growth and public availability of global bio banks as well as 

diversifying priorities from funding agencies55,56. We assessed how prediction accuracy 

decayed across globally diverse populations for 17 anthropometric and blood panel traits in 

the UK Bio bank (UKBB) when using European-derived summary statistics (Supplementary 

Note). Consistent with previous studies, we find that relative to European prediction 

accuracy, genetic prediction accuracy was far lower in other populations: 1.6-fold lower in 

Hispanic/Latino Americans, 1.7-fold lower in South Asians, 2.5-fold lower in East Asians, 

and 4.9-fold lower in Africans on average (Figure 3).
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Prioritizing diversity shows early promise for PRS

Early diversifying GWAS efforts have been especially productive for informing on questions 

surrounding risk prediction. Rather than varying the prediction target dataset, some GWAS 

in diverse populations have increased the scale of non-European summary statistics and also 

varied the study dataset in multi-ethnic PRS studies23,24,40. These studies have shown that 

even when non-European cohorts are only a fraction the size of the largest European study, 

they are likely to have disproportionate value for predicting polygenic traits in other 

individuals of similar ancestry.

Given this background, we performed a systematic evaluation of polygenic prediction 

accuracy across 17 quantitative anthropometric and blood panel traits and five disease 

endpoints in British and Japanese individuals23,57,58 by performing GWAS with the exact 

same sample sizes in each population. We symmetrically demonstrate that prediction 

accuracy is consistently higher with GWAS summary statistics from ancestry-matched 

summary statistics (Figure 4, Supplementary Figures 2–6). Keeping in mind issues of 

comparability described above, we note that BBJ is a hospital-based disease-ascertained 

cohort, whereas UKBB is a healthier than average59 population-based cohort; thus, 

differences in observed heritability among these cohorts (rather than among populations) 

due to differences in phenotype precision likely explain lower prediction accuracy from the 

BBJ GWAS summary statistics for anthropometric and blood panel traits, but higher 

prediction accuracy for five ascertained diseases (Supplementary Table 2). Indeed, other East 

Asian studies have estimated higher heritability for some quantitative traits than BBJ using 

the same methods, such as for height (h2 = 0.48±0.04 in Chinese women60). Some statistical 

fluctuations in the relative differences in prediction accuracy across populations are likely 

driven by differences in heritability measured in each population and/or trans-ethnic genetic 

correlation (i.e. of common variant effect sizes at SNPs common in two populations, 

Supplementary Figures 7–10, Supplementary Tables 2–5). These trans-ethnic correlation 

estimates indicate that effect sizes were mostly highly correlated across ancestries, with a 

few traits that were somewhat lower than excepted (e.g. height and BMI, with ρge=0.69 and 

0.75, respectively). Prediction accuracy was far lower in individuals of African descent in 

the UK Bio bank (Supplementary Figures 4 and 11) using GWAS summary statistics from 

either European or Japanese ancestry individuals, consistent with reduced prediction 

accuracy with increasing genetic divergence (Figures 3 and 4). These population studies 

demonstrate the power and utility of increasingly diverse GWAS for prediction, especially in 

populations of non-European descent.

While many other traits and diseases have been studied in multi-ethnic settings, few have 

reported comparable metrics of prediction accuracy across populations. Cardiovascular 

research, for example, has led the charge towards clinical translation of PRS1. This 

enthusiasm is driven by observations that a polygenic burden of LDL-increasing SNPs can 

confer monogenic-equivalent risk of cardiovascular disease, with polygenic scores 

improving clinical models for risk assessment and statin prescription that can reduce 

coronary heart disease and improve healthcare delivery efficiency5–7. However, many of 

these studies have been conducted exclusively in European descent populations, with few 

studies rigorously evaluating population-level applicability to non-Europeans. Those existing 
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findings indeed demonstrate a large reduction in prediction utility in non-European 

populations11, though often with comparisons of odds ratios among arbitrary breakpoints in 

the risk distribution that make comparisons across studies challenging. To better clarify how 

polygenic prediction will be deployed in a clinical setting with diverse populations, more 

systematic and thorough evaluations of the utility of PRS within and across populations for 

many complex traits are still needed. These evaluations would benefit from rigorous 

polygenic prediction accuracy evaluations, especially for diverse non-European 

patients61–63.

Clinical use of PRS may uniquely exacerbate disparities

Our impetus for raising these statistical issues limiting the generalizability of PRS across 

population stems from our concerns that, while they are legitimately clinically promising for 

improving health out comes for many biomedical phenotypes, they may have a larger 

potential to raise health disparities than other clinical factors for several reasons. The 

opportunities they provide for improving health outcomes means they inevitably will and 

should be pursued in the near term, but we urge that a concerted prioritization to make 

GWAS summary statistics easily accessible for diverse populations and a variety of traits 

and diseases is imperative, even when they are a fraction the size of the largest existing 

European datasets. Individual clinical tests, biomarkers, and prescription drug efficacy may 

vary across populations in their utility, but are fundamentally informed by the same 

underlying biology64,65. Currently, guidelines state that as few as 120 individuals define 

reference intervals for clinical factors (though often smaller numbers from only one 

subpopulation are used) and there is no clear definition of who is “normal”64. Consequently, 

reference intervals for biomarkers can sometimes deviate considerably by reported 

ethnicity66–68. Defining ethnicity-specific reference intervals is clearly an important problem 

that can provide fundamental interpretability gains with implications for some major health 

benefits (e.g. need for dialysis and development of Type 2 diabetes based on ethnicity-

specific serum creatinine and hemoglobin A1C reference intervals, respectively)67. Simply 

put, some biomarkers or clinical tests scale directly with health outcomes independent of 

ancestry, and many others may have distributional differences by ancestry but are equally 

valid after centering with respect to a readily collected population reference.

In contrast, PRS are uniformly less useful in understudied populations due to differences in 

genomic variation and population history13,14. No analogous solution of defining ethnicity-

specific reference intervals would ameliorate health disparities implications for PRS or 

fundamentally aid interpretability in non-European populations. Rather, as we and others 

demonstrate, PRS are unique in that even with multi-ethnic population references, these 

scores are fundamentally less informative in populations more diverged from GWAS study 

cohorts.

The clinical use and deployment of genetic risk scores needs to be informed by the issues 

surrounding tests that currently would unequivocally provide much greater benefit to the 

subset of the world’s population which is already on the positive end of healthcare 

disparities. Conversely, African descent populations, which already endure many of the 

largest health disparities globally, are often predicted marginally better, if at all, compared to 
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random (Figure 4F). They are therefore least likely to benefit from improvements in 

precision healthcare delivery from genetic risk scores with existing data due to human 

population history and study biases. This is a major concern globally and especially in the 

U.S., which already leads other middle-and high-income countries in both real and perceived 

healthcare disparities69,70. Thus, we would strongly urge that any discourse on clinical use 

of PRS include a careful, quantitative assessment of the economic and health disparities 

impacts on underrepresented populations that might be unintentionally introduced, and raise 

awareness about how to eliminate these disparities.

How do we even the ledger?

What can be done? The single most important step towards parity in PRS accuracy is by 

vastly increasing the diversity of participants included and analyzed in genetic studies, 

which will improve utility for all and most rapidly for underrepresented groups. Regulatory 

protections against genetic discrimination are necessary to accompany calls for more diverse 

studies; while some already exist in the U.S., including for health insurance and employment 

opportunities via the Genetic Information Nondiscrimination Act (GINA), stronger 

protections in these and other areas globally will be particularly important for minorities 

and/or marginalized groups. An equal investment in GWAS across all major ancestries and 

global populations is the most obvious solution to generate a substrate for equally 

informative risk scores but is not likely to occur any time soon absent a dramatic priority 

shift given the current imbalance and stalled diversifying progress over the last five years 

(Figure 1, Supplementary Figure 1). While it may be challenging or in some cases infeasible 

to acquire sample sizes large enough for PRS to be equally informative in all populations, 

some much-needed efforts towards increasing diversity in genomics that support open 

sharing of GWAS summary data from multiple ancestries are underway. Examples include 

the All of Us Research Program, the Population Architecture using Genomics and 

Epidemiology (PAGE) Consortium, as well as some disease-focused consortia, such as the 

T2D-genes and Stanley Global initiatives on the genetics of type II diabetes and psychiatric 

disorders, respectively. Supporting data resources such as imputation panels, multi-ethnic 

genotyping arrays, gene expression datasets from genetically diverse individuals, and other 

tools are necessary to similarly empower these diverse studies for all populations. The lack 

of supporting resources for diverse ancestries creates financial challenges for association 

studies with limited resources, e.g. raising questions about whether to genotype samples on 

GWAS arrays that may favor European allele frequencies versus sequence samples, and how 

dense of an array to choose or how deeply to sequence71,72.

Additional leading global efforts also provide easy unified access linking genetic, clinical 

record, and national registry data in more homogeneous continental ancestries, such as the 

UK Bio bank, Bio Bank Japan, China Kadoorie Bio bank, and Nordic efforts (e.g. in Danish, 

Estonian, Finnish, and other integrated bio banks). Notably, some of these bio banks such as 

UK Bio bank have participants with considerable global genetic diversity that enables multi-

ethnic comparisons; although minorities from this cohort provide the largest deeply 

phenotyped GWAS cohorts for several ancestries, these individuals are often excluded in 

current statistical analyses in favor of single ancestries, large sample sizes, and the simplicity 

afforded by genetic homogeneity. These considerations notwithstanding, there are critical 
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needs and challenges for expanding the scale of genetic studies of heritable traits in diverse 

populations; this is especially apparent in Africa where humans originated and retain the 

most genetic diversity, as Africans are understudied but disproportionately informative for 

genetic analyses and evolutionary history27,73. The most notable investment here comes 

from the Human Heredity and Health in Africa (H3Africa) Initiative, increasing genomics 

research capacity in Africa through more than $216 million in funding from the NIH (USA) 

and Wellcome Trust (UK) for genetics research led by African investigators55,74. The 

increasing interest and scale of genetic studies in low- and middle-income countries 

(LMICs) raises ethical and logistical considerations about data generation, access, sharing, 

security, and analysis, as well as clinical implementation to ensure these advances do not 

only benefit high-income countries. Frameworks such as the H3ABioNet, a pan-African 

bioinformatics network designed to build capacity to enable H3Africa researchers to analyze 

their data in Africa, provide cost-effective examples for training local scientists in LMICs75.

The prerequisite data for dramatically increasing diversity also hypothetically exist in several 

large-scale publicly funded datasets such as the Million Veterans Project and Trans-Omics 

for Precision Medicine (TOP Med), but with problematic data access issues in which even 

GWAS summary data within and across populations are not publicly shared. Existing GWAS 

consortia also need to carefully consider the granularity of summary statistics they release, 

as finer scale continental ancestries and phenotypes in large, multi-ethnic projects enable 

ancestry-matched analyses not possible with a single set of summary statistics. While there 

is an understandable patient privacy balance to strike when sharing individual-level data, 

GWAS summary statistics from all publicly funded and as many privately funded projects as 

possible should be made easily and publicly accessible to improve global health outcomes. 

Efforts to unify phenotype definitions, normalization approaches, and GWAS methods 

among studies will also improve comparability.

To enable progress towards parity, it will be critical that open data sharing standards be 

adopted for all ancestries and for genetic studies of all sample sizes, not just the largest 

European results. Locally appropriate and secure genetic data sharing techniques as well as 

equitable technology availability will need to be adopted widely in Asia and Africa as they 

are in Europe and North America, to ensure that maximum value is achieved from existing 

and ongoing efforts that are being developed to help counter the current imbalance. 

Simultaneously, ethical considerations require that research capacity is increased in LMICs 

with simultaneous growth of diverse population studies to balance the benefits of these 

studies to scientists and patients globally versus locally to ensure that everyone benefits. 

Methodological improvements that better define risk scores by accounting for population 

allele frequency, LD, and/or admixture differences appropriately are underway and may help 

considerably but will not by themselves bring equality. All of these efforts are important and 

should be prioritized not just for risk prediction but more generally to maximize the use and 

applicability of genetics to inform on the biology of disease. Given the acute recent attention 

on clinical use of PRS, we believe it is paramount to recognize their potential to improve 

health outcomes for all individuals and many complex diseases. Simultaneously, we as a 

field must address the disparity in utility in an ethically thoughtful and scientifically rigorous 

fashion, lest we inadvertently enable genetic technologies to contribute to, rather than 

reduce, existing health disparities.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Ancestry of GWAS participants over time compared to the global population.
Cumulative data as reported by the GWAS catalog76. Individuals whose ancestry is “not 

reported” are not shown.
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Figure 2. Demographic relationships, allele frequency differences, and local LD patterns between 
population pairs.
Data analyzed from 1000 Genomes, in which population labels are: AFR = continental 

African, EUR = European, and EAS = East Asian. a) Cartoon relationships among AFR, 

EUR, and EAS populations. b) Allele frequency distributions in AFR, EUR, and EAS 

populations of variants from the GWAS catalog. c–e) Color axis shows LD scale (r2). LD 

comparisons between pairs of populations show the same region of the genome for each 

comparison (representative region is chr1, 51572kb-52857kb) among pairs of SNPs 

polymorphic in both populations, illustrating that different SNPs are polymorphic across 

some population pairs, and that these SNPs have variable LD patterns across populations.
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Figure 3. Prediction accuracy relative to European ancestry individuals across 17 quantitative 
traits and 5 continental populations in UKBB.
All phenotypes shown here are quantitative anthropometric and blood panel traits, as 

described in Supplementary Table 6, which includes discovery cohort sample sizes. 

Prediction target individuals do not overlap with the discovery cohort and are unrelated, with 

sample sizes shown in Supplementary Table 7. Violin plots show distributions of relative 

prediction accuracies, points show mean values, and error bars show standard errors of the 

means. Prediction R2 for each trait and population are shown in Supplementary Figure 12.
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Figure 4. Polygenic risk prediction accuracy in Japanese, British, and African descent 
individuals using independent GWAS of equal sample sizes in the BioBank Japan (BBJ) and UK 
Biobank (UKBB).
a) Explanatory diagram showing the different discovery and target cohorts/populations, and 

disease endpoints versus quantitative traits. b–f) Genetic prediction accuracy computed from 

independent BBJ and UKBB summary statistics with identical sample sizes (Supplementary 

Tables 6 and 8). Note that y-axes differ, reflecting differences in prediction accuracy. b–c) 

PRS accuracy for five diseases in: Japanese individuals in the BBJ (b) and British 

individuals in the UKBB. d–f) PRS accuracy for 17 anthropometric and blood panel traits 

in: Japanese individuals in the BBJ (d), British individuals in the UKBB (e), and African 

descent British individuals in the UKBB (f). Trait abbreviations are as in Supplementary 

Table 6. Each point shows the maximum R2 (i.e. best predictor) across five p-value 

thresholds, and lines correspond to 95% confidence intervals calculated via bootstrap. R2 

values for all p-value thresholds tested are shown in Supplementary Figures 2–6. Prediction 

accuracy tends to be higher in the UKBB for quantitative traits than in BBJ and vice versa 

for disease endpoints, likely because of concomitant phenotype precision and consequently 

observed heritability for these classes of traits (Supplementary Tables 2–4). Thalassemia and 

sickle cell disease are unlikely to explain a significant fraction of prediction accuracy 

differences for blood panels across populations, as few individuals have been diagnosed with 

these disorders via ICD-10 codes (Supplementary Table 9).
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