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Summary
Background and objectives The increasing number of podocyte-expressed genes implicated in steroid-resis-
tant nephrotic syndrome (SRNS), the phenotypic variability, and the uncharacterized relative frequency of
mutations in these genes in pediatric and adult patients with SRNS complicate their routine genetic analy-
sis. Our aim was to compile the clinical and genetic data of eight podocyte genes analyzed in 110 cases (125
patients) with SRNS (ranging from congenital to adult onset) to provide a genetic testing approach.

Design, setting, participants, & measurements Mutation analysis was performed by sequencing the NPHS1,
NPHS2, TRPC6, CD2AP, PLCE1, INF2, WT1 (exons 8 and 9), and ACTN4 (exons 1 to 10) genes.

Results We identified causing mutations in 34% (37/110) of SRNS patients, representing 67% (16/24) famil-
ial and 25% (21/86) sporadic cases. Mutations were detected in 100% of congenital-onset, 57% of infantile-
onset, 24 and 36% of early and late childhood-onset, 25% of adolescent-onset, and 14% of adult-onset pa-
tients. The most frequently mutated gene was NPHS1 in congenital onset and NPHS2 in the other groups.
A partial remission was observed in 7 of 26 mutation carriers treated with immunosuppressive agents
and/or angiotensin-converting enzyme inhibitors. Patients with NPHS1 mutations showed a faster progres-
sion to ESRD than patients with NPHS2 mutations. None of these mutation carriers relapsed after kidney
transplantation.

Conclusions We propose a genetic testing algorithm for SRNS based on the age at onset and the familial/
sporadic status. Mutation analysis of specific podocyte-genes has a clinical value in all age groups, espe-
cially in children.

Clin J Am Soc Nephrol 6: 1139–1148, 2011. doi: 10.2215/CJN.05260610

Introduction
Nephrotic syndrome (NS) is characterized by protein-
uria, hypoalbuminemia, edema, and dyslipidemia.
Approximately 10% of children and 40% of adults
with idiopathic NS are steroid resistant (SRNS) and
progress to ESRD (1–5). In these cases, renal histology
typically shows focal segmental glomerulosclerosis
(FSGS). The remaining patients are steroid respon-
sive, with a favorable long-term prognosis (6). Mu-
tations in several single genes expressed by glomer-
ular podocytes have been identified in patients with
SRNS (7).

The phenotypic spectrum caused by mutations in
these genes is wider than initially expected. NPHS1,
encoding for nephrin, was identified as the causative
gene in the most common type of congenital NS
(CNS), CNS of the Finnish-type (CNF) (8). Recently,
NPHS1 mutations have also been reported in child-
hood- (9) and adult-onset SRNS (10). NPHS2, encod-
ing for podocin, was identified as the causative gene
in early-onset autosomal-recessive (AR) SRNS (11).
Nevertheless, NPHS2 mutations have also been found

in CNS (12–15) and in a few cases of adult-onset FSGS
(16–18). Mutations of phospholipase C-� (PLCE1)
have been identified in 10 to 50% of patients with NS
and diffuse mesangial sclerosis (DMS) and in 12% of
familial AR FSGS (19–22).Mutations in exons 8 and 9
of the Wilms tumor suppressor gene (WT1) were dis-
covered in patients with syndromic SRNS (23,24) but
can also cause isolated SRNS (25,26). Mutations in
LAMB2, encoding for lamini-�2 and implicated in
Pierson syndrome (27), have been found in one family
with CNS (28). Finally, mutations in TRPC6 (encoding
for transient receptor potential channel 6) (29,30),
ACTN4 (�-actinin-4) (31), CD2AP (CD2-associated
protein) (32), and lately INF2 (33) were detected in
several families with autosomal-dominant (AD) FSGS
and adult-onset NS. However, some studies have re-
ported mutations in these genes in a small number of
patients with childhood-onset FSGS (34–40).

The genetic heterogeneity of SRNS, the significant
phenotypic variability, and the lack of knowledge of
the relative frequency of mutations in these genes in
pediatric and adult patients with NS hinder the rou-
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tine genetic analysis for SRNS. In fact, there are only a few
studies searching for mutations in several of these genes
and only in pediatric patients (14–43). The aim of this
study was to compile the clinical and genetic data of eight
podocyte genes analyzed in our Spanish cohort of patients
with NS (ranging from congenital to adult onset) to pro-
pose an adequate genetic testing approach.

Materials and Methods
Patients

From a cohort of 204 Spanish patients with primary NS,
we excluded patients who responded to steroid or immu-
nosuppressive treatment and those developing steroid re-
sistance at a later stage of the disease or with recurrence
after kidney transplant, because we considered that an
immune pathogenesis was the most likely cause of the
disease in these cases. Thus, 125 patients belonging to 110
families with CNS or primary FSGS/DMS or/and SRNS
were included. Diagnosis of NS and, when applicable,
response to steroid treatment was determined following
published criteria (1). A partial response was defined as
the disappearance of edema, an increase in the serum
albumin concentration, and the persistence of proteinuria
below nephrotic range. Prematurely born patients present-
ing with a large placenta and severe proteinuria at birth or
with proven renal biopsy were considered as CNF (n � 10).
Twenty-eight patients belonging to 18 families were clas-
sified as AR SRNS, defined as families with either two or
more affected children (n � 11) or one affected individual
in consanguineous families (n � 7). Ten patients belonging
to six families showed evidence of AD disease because
multiple generations were affected. The remaining 86 pa-
tients were considered sporadic cases. The age at onset of
NS, response to treatment, histology, and clinical course
from first presentation to last clinical examination are
listed in Table 1. We will refer to patients studied when
assessing clinical data and to families studied when assess-
ing genetic data, because siblings may follow a different
clinical course but should bear the same mutations.

Mutation Analysis
Genomic DNA was isolated from peripheral blood cells

using the salting-out method (44) after obtaining informed
consent from affected individuals or their parents. The
study was approved by the institutional review boards of
each participating hospital. Mutation analysis was per-
formed by direct sequencing of all 29 exons of NPHS1, all
8 exons of NPHS2, all 13 exons of TRPC6, all 34 exons of
PLCE1, all 22 exons of INF2, exons 1 to 10 of ACTN4, and
exons 8 and 9 of WT1. We only tested exons 8 and 9 of WT1
and exons 1 to 10 of ACTN4 because mutations in these
genes have only been reported in these exons (26,37). Ex-
ons were amplified by PCR using intron-flanking primers,
as described previously (11,19,25,29–31,33,45–47). Primer
data are available on request. In addition, total RNA was
extracted from peripheral blood cells with TRIzol (Invitro-
gen, Carlsbad, CA). Total RNA (1 �g) was reverse tran-
scribed with the High-Capacity cDNA Archive Kit (Ap-
plied Biosystems, Foster City, CA) using random
hexamers. The entire CD2AP cDNA was amplified in three
overlapping fragments with primers designed with Primer

Express software (Applied Biosystems). All RT-PCR prod-
ucts and exons were sequenced using the Big Dye DNA
Sequencing kit v1.1 (Applied Biosystems) and an ABI
PRISM 3100-Avant genetic analyzer (Applied Biosystems).

Sequencing of both strands was performed for all se-
quence variants detected. Segregation of these changes
with disease was assessed from all available family mem-
bers. Unpublished missense mutations were screened in
�200 unrelated controls of matched ethnic origin either by
direct sequencing or by restriction enzyme digestion.

We first analyzed the NPHS2 gene in the entire group of
patients. Afterward, we examined WT1 in those cases
without clear causative mutations. The NPHS1 gene was
studied in those cases without WT1 mutations. Then, pa-
tients without pathogenic mutations in the previous genes
were subsequent analyzed for the ACTN4, CD2AP, and
TRPC6 genes. Finally, we analyzed PLCE1 only for the
familial AR cases and INF2 for the AD ones. We did not
evaluate the LAMB2 gene because all our patients with
DMS were explained by causative mutations in other
genes. Partial data of TRPC6, NPHS1, and NPHS2 mutation
analysis have been previously published (10,34,48).

Classification of Amino Acid Substitutions
To evaluate the pathogenicity of amino acid substitu-

tions, we developed an in silico scoring system (10,34,48),
as described previously for other genes (49–51). We clas-
sified patients with two NPHS1 mutations as (1) patients
with two severe mutations and (2) patients with at least
one mild mutation, as suggested elsewhere (9,10). In addi-
tion, we classified patients with two NPHS2 mutations as
(1) patients with two pathogenic mutations and (2) patients
with one pathogenic mutation plus the p.R229Q variant, as
previously reported (52,53). Additional information about
the classification of amino acid substitutions is provided in
Supplementary Table 1.

Statistical Analyses
Data are expressed as mean � SD or median and range.

Comparisons between continuous values were made using
the Mann–Whitney U test (SPSS Software), and P � 0.05
was considered significant.

Results
Podocyte Gene Mutation Frequencies

Mutation analysis of NPHS1, NPHS2, WT1, TRPC6,
CD2AP, ACTN4, PLCE1 (only for AR familial FSGS), and
INF2 (only for AD familial FSGS) showed disease-causing
mutations in 34% (37 of 110) of all SRNS cases (Table 2).
Recessive pathogenic mutations in NPHS1 were found in
13.5% (15 of 110) of cases. Mutations in NPHS2 were de-
tected in 12% (13 of 110) of patients. Dominant mutations
in WT1 and TRPC6 were found in 4.5 and 3% of cases,
respectively. No pathogenic mutations in ACTN4 and
CD2AP genes were identified in our cohort of patients.
Three cases were carriers of a single NPHS1 (n � 1) or
NPHS2 (n � 2) pathogenic mutation, which cannot be
considered causative by itself. In AR FSGS families, no
PLCE1 mutation was found, whereas one INF2 mutation
was identified in one AD family (one of six).
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The frequencies and distribution of mutations in podo-
cyte genes differed depending on the age at onset (Table 2;
Figure 1A). In congenital onset (onset from 0 to 3 months),
mutations were detected in 100% of cases: NPHS1, 80% (12
of 15); NPHS2, 7% (1 of 15); WT1, 13% (2 of 15). In infantile
onset (from 4 to 12 months), mutations were found in 57%
of patients: NPHS1, 14% (1 of 7); NPHS2, 29% (2 of 7); WT1,
14% (1 of 7). However, we only explained 24% of the early
childhood-onset cases (from 13 months to 5 years) caused
by mutations in the NPHS2 (14%, 3 of 21) and WT1 (10%,
2 of 21) genes and 36% of the late childhood-onset patients
(from 4 to 12 years) caused by mutations in the NPHS1
(9%, 1 of 11), NPHS2 (18%, 2 of 11), and TRPC6 (9%, 1 of 11)
genes. Finally, we identified pathogenic mutations for 25%
(1 NPHS2; 1 INF2) of adolescent patients (from 13 to 17
years) and for 14% (7 of 48) of adult patients (�18 years):
NPHS1, 2%; NPHS2, 8%; TRPC6, 4%.

The mutation detection rate for familial cases was 67%
(16 of 24), but only 25% (21 of 86) for sporadic ones (Table
2). In familial cases, the most common mutated gene was
NPHS2 (34%), whereas NPHS1 (11%) was the most com-
mon for nonfamilial cases. If we divide familial cases be-

tween AR and AD SRNS, we identified pathogenic muta-
tions in 78% (14 of 18) and 33% (2 of 6) of cases,
respectively. The frequencies of mutations according to the
age at onset were also different between familial and spo-
radic cases (Figure 1, B and C). In familial cases, we ex-
plained 100% of congenital-onset (NPHS1 83%, 5 of 6;
NPHS2 17%, 1 of 6), 66% of infantile-onset (NPHS1 33%, 1
of 3; NPHS2 33%, 1 of 3), 40% of early childhood-onset
(NPHS2, 2 of 5), 100% of late childhood-onset (NPHS2, 1 of
1), 100% of adolescent-onset (NPHS2, 1 of 2, INF2 1 of 2),
and 43% of adult-onset cases (NPHS2 29%, 2 of 7; TRPC6
14%, 1 of 7). In sporadic cases, we also detected pathogenic
mutations in 100% of congenital cases (NPHS1 78%, 7 of 9;
WT1 22%, 2 of 9) and in 50% of infantile-onset cases
(NPHS2 25%, 1 of 4; WT1 25%, 1 of 4), but only in 19% of
early childhood-onset (NPHS2 6%, 1 of 16; WT1 13%, 2 of
16), 30% of late childhood-onset (NPHS1 10%, 1 of 10;
NPHS2 10%, 1 of 10; TRPC6 10%, 1 of 10), 0% of adolescent-
onset (0 of 6), and 10% of adult-onset cases (NPHS1 2.5%,
1 of 41; NPHS2 5%, 2 of 41; TRPC6 2.5%, 1 of 41).

A description of all of the mutations detected is given in
Supplementary Table 2.

Figure 1. | Age at diagnosis of NS in correlation to detected pathogenic mutations in NPHS1, NPHS2, WT1, TRPC6, and INF2 in 110
families (we did not include the ACTN4 and CD2AP genes because no pathogenic mutations were identified in our cohort). (A) Familial
and sporadic cases. (B) Percentage of mutations in familial cases. (C) Percentage of mutations in sporadic cases.
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Genotype–Phenotype Correlations
Genotype and age at NS onset. Earlier presentation was

found in patients with two severe NPHS1 mutations, fol-
lowed by patients with WT1 mutations and two patho-
genic NPHS2 mutations. Later NS onset was found in
patients with TRPC6 and INF2 mutations or one patho-
genic NPHS2 mutation in compound heterozygosity with
the p.R229Q variant. Patients with NPHS1 mutations
showed significantly earlier onset of NS than patients with
two NPHS2 mutations (median, 0.1 [range, 0.0 to 27.0]
versus 8.0 years [range, 0.02 to 39.0]; P � 0.001; Table 1).
This correlation was also present among patients with two
severe NPHS1 mutations compared with patients with two
pathogenic NPHS2 mutations (median 0.0 [range, 0.0 to
0.1] versus 2.3 years [range 0.02 to 8.0]; P � 0.001). In
addition, patients with at least one mild NPHS1 mutation
also manifested the disease earlier than patients with one
NPHS2 pathogenic mutation plus the p.R229Q variant
(median 6.5 [range, 1 to 27.0] versus 19.0 years [range 10.0
to 39.0]; P � 0.05). In contrast, age at onset of NS was later
in patients with WT1 mutations than in patients with two
severe NPHS1 mutations (P � 0.004), but there was no
significant difference compared with patients with two
pathogenic NPHS2 mutations. Finally, no difference was
observed in the age at onset of NS between patients with
TRPC6 mutations (median, 25.0 years; range, 7.2 to 41.0
years) and patients with at least one mild NPHS1 mutation
or one NPHS2 pathogenic mutation plus the p.R229Q vari-
ant.

Genotype and renal histology. Renal biopsy was per-
formed in 10 of 16 patients (62.5%) belonging to 15 families
with NPHS1 mutations, and the most common histology
pattern was FSGS (55%, 6 of 11; Table 1; Supplementary
Table 1). For patients without FSGS, the histology findings
were as follows: CNF, 3 of 11 (27%); DMS, 1 of 11 (9%).
Renal biopsy was performed in 17 of 19 patients (90%)
belonging to 13 families carrying NPHS2 mutations, and
the histology findings were as follows: FSGS, 16 of 17
(94%); minimal change NS, 1 of 17 (6%). For patients with
WT1 mutations, the histology findings were as follows:
FSGS, 3 of 5 (60%); DMS, 2 of 5 (40%). The three patients
with TRPC6 mutations and renal biopsy performed
showed FSGS. Five patients of the same family carried one
pathogenic INF2 mutation, and two of them showed FSGS,
whereas the remaining three had only four glomeruli in
the biopsy with complete sclerosis in one or two of them
and small foci of tubular atrophy and interstitial fibrosis.

Genotype and response to treatment. One of four pa-
tients with NPHS1 mutations treated with immunosup-
pressive treatment exhibited partial response to tacrolimus
and angiotensin-converting enzyme inhibitors (ACEIs)
(10). Data on response to immunosuppressive and ACEI
treatment were available for 16 patients with NPHS2 mu-
tations, among them being three patients with decreased
nephrotic proteinuria (Table 1; Supplementary Table 1).
Three patients with WT1 mutations received immunosup-
pressive therapy, and none of them experienced a sus-
tained reduction of proteinuria. The remaining two pa-
tients with WT1 mutations were only treated with ACEIs
and they partially responded. Only one patient with a
TRPC6 mutation was treated with immunosuppressive

treatment, and she experienced a sustained reduction of
proteinuria to subnephrotic levels (34). Patients with INF2
mutations did not received steroid or immunosuppressive
treatment.

Genotype and age at ESRD onset. Age at ESRD was
earlier in patients with NPHS1 mutations than in patients
with NPHS2 mutations (P � 0.001; Table 1). Six children
with NPHS1 severe mutations progressed to ESRD within
a median time of 1.0 year after the onset of the disease,
whereas the group of six children with two pathogenic
NPHS2 mutations developed ESRD after a median time of
3.7 years (P � 0.002). Two patients with WT1 mutations
developed ESRD at a median age of 3 years, which was
significantly different from the group of two pathogenic
NPHS2 mutations. Only one patient with a TRPC6 muta-
tion reached ESRD in a time interval of 14 years. Patients
with INF2 mutations reached ESRD in a time interval of 4.5
years.

Discussion
The increasing knowledge of the molecular basis of NS

represents a milestone in nephrology but also adds greater
complexity to clinical nephrologists’ decisions about when
and which genetic tests should be indicated. The aim of
this study was to provide a practical guideline for genetic
testing in SRNS. Our study represents the largest cohort of
patients with SRNS undergoing a multistep molecular
evaluation of eight podocyte genes and the first to include
adult-onset patients with FSGS. Our data confirm not only
that mutations in different genes manifest with NS at dif-
ferent ages but also that different mutations in the same
gene result in distinct ages of onset for NS. We show here
that 34% (37/110) of SRNS patients could be explained by
mutations in one of these genes, of whom 67% (16/24)
were familial cases and 25% (21/86) were sporadic. We
found disease-causing mutations in 100% of congenital-
onset cases and in 57% of infantile-onset cases, which is
higher than previously described (14,15,42,45). Interest-
ingly, in our Spanish cohort of CNS patients, we identified
more pathogenic mutations in NPHS1 than in NPHS2,
whereas an equal mutation rate for these two genes was
reported in central European patients (15), probably be-
cause of the high frequency of the p.R138Q mutation in this
region (53). The percentage of patients with mutations
decreases as the age at onset increases and the distribution
of mutations changes between children with congenital
onset (most of them with mutations in NPHS1) and other
ages of presentation (most of them with mutations in
NPHS2). In childhood onset, we found a lower rate of
mutations than previously published [reviewed by Benoit
et al. (7)], but in adolescent and adult-onset patients, a
higher than expected rate was observed (18,54,55).

The frequency of mutations among these genes in our
Spanish cohort and the revision of the literature allowed us
to propose a genetic testing approach for diagnostic pur-
poses (Figure 2). In congenital-onset cases, it is important
to analyze several podocyte genes in a multistep strategy
because of the high chances of finding mutations in these
cases. The first step should be to screen for NPHS1 and, if
no mutations are found, screening for NPHS2 in familial
cases and for WT1 in the sporadic ones. If negative, in
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sporadic congenital-onset cases, the next step should be to
analyze the NPHS2 gene. The last step for both sporadic
and familial CNS would be PLCE1 analysis (42). In infan-
tile onset and in childhood onset, we propose starting with
the NPHS2 gene and, if no mutations are found, screening
for NPHS1 in familial and sporadic cases and WT1 only in
females with sporadic SRNS. Although we have not found
pathogenic mutations in PLCE1 in early-onset SRNS,
PLCE1 analysis would be indicated in those cases with
familial DMS/FSGS (20,22). Finally, in adolescent- and
adult-onset cases, we suggest screening for p.R229Q in the
NPHS2 gene and, if positive, to analyze the whole gene.
We recommend further TRPC6 and INF2 testing only for
AD late-onset familial FSGS and, if negative, to analyze
ACTN4 (37). Mutations in the TRPC6 gene have been
found in 1 of 41 cases of sporadic adult-onset SRNS, being
a rare cause of adult-onset FSGS. It is worth noting the
incomplete penetrance of TRPC6 mutations, limiting its
diagnostic value (30,34,56). Because CD2AP pathogenicity
has been clearly shown only in one patient (38) and we
have not found any mutation in our Spanish cohort with
SRNS, we do not suggest screening for this gene. Benoit et
al. (7) have recently proposed a similar genetic testing
approach for SRNS, taking into account the renal biopsy. In
our cohort of pediatric patients with SRNS, renal histology
was not a key tool to indicate the most appropriate gene to
analyze because most cases presented with FSGS, but
when available, cases with FSGS must be tested for NPHS1
and NPHS2 and cases with DMS must first be tested for
WT1 followed by PLCE1 (7). However, our study is limited

by the small sample size, especially for each age group
under 18 years, and for the homogeneous geographic ori-
gin/ethnicity of the studied cohort; therefore, larger stud-
ies would help to improve the proposed genetic testing
algorithm for SRNS.

A partial response was observed in 7 of 26 patients
carrying podocyte gene mutations who received either
immunosuppressive and ACEI treatment or only ACEI
treatment. Calcineurin inhibitors induced a partial remis-
sion of proteinuria in several other children with genetic
forms of NS (57). Recently, it has been shown that most
patients with genetic CNS/SRNS presented lower response
to cyclosporine A compared with nongenetic patients and
showed rapid progression to ESRD (43). On the other hand,
three patients with familial FSGS treated with early angioten-
sin inhibition resulted in a partial to complete remission of
proteinuria (58), suggesting that some patients could benefit
from ACEI treatment. Further studies would be necessary to
adequately determine which treatment can be beneficial for
genetic SRNS patients. Patients with NPHS1 mutations
showed a shorter progression time to ESRD than patients
with two NPHS2 mutations. In addition, none of the pa-
tients with pathogenic mutations relapsed after kidney
transplantation.

In conclusion, our data indicate that two main criteria
determine the appropriate genes to test: (1) age at onset
and (2) familial/sporadic status. Because in our cohort of
congenital-, infantile-, and childhood-onset patients with
mutations, renal histology was not a determinant criterion
because most presented with FSGS, we recommend start-

Figure 2. | Genetic approach in children and adults with SRNS.
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ing with genetic testing before renal biopsy because it is a
noninvasive technique. In adults, renal biopsy is the first
step because it allows ruling out other causes of NS such as
membranous nephropathy. Although the analysis of mul-
tiple genes is time-consuming and expensive, the identifi-
cation of pathogenic mutations can help (1) to avoid ad-
verse effects of steroid/immunosuppressive treatment, (2)
to encourage living donor kidney transplantation, (3) to
perform a prognosis depending on which gene is mutated
and which kind of mutations are detected, and (4) to offer
the possibility of presymptomatic, prenatal, and preim-
plantation genetic diagnosis.
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