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A B S T R A C T

Purpose
The Microarray Innovations in Leukemia study assessed the clinical utility of gene expression
profiling as a single test to subtype leukemias into conventional categories of myeloid and
lymphoid malignancies.

Methods
The investigation was performed in 11 laboratories across three continents and included 3,334
patients. An exploratory retrospective stage I study was designed for biomarker discovery and
generated whole-genome expression profiles from 2,143 patients with leukemias and myelodys-
plastic syndromes. The gene expression profiling–based diagnostic accuracy was further validated
in a prospective second study stage of an independent cohort of 1,191 patients.

Results
On the basis of 2,096 samples, the stage I study achieved 92.2% classification accuracy for all 18
distinct classes investigated (median specificity of 99.7%). In a second cohort of 1,152 prospec-
tively collected patients, a classification scheme reached 95.6% median sensitivity and 99.8%
median specificity for 14 standard subtypes of acute leukemia (eight acute lymphoblastic leukemia
and six acute myeloid leukemia classes, n � 693). In 29 (57%) of 51 discrepant cases, the
microarray results had outperformed routine diagnostic methods.

Conclusion
Gene expression profiling is a robust technology for the diagnosis of hematologic malignancies
with high accuracy. It may complement current diagnostic algorithms and could offer a reliable
platform for patients who lack access to today’s state-of-the-art diagnostic work-up. Our comprehen-
sive gene expression data set will be submitted to the public domain to foster research focusing on
the molecular understanding of leukemias.

J Clin Oncol 28:2529-2537. © 2010 by American Society of Clinical Oncology

INTRODUCTION

Microarray studies have identified gene expression

signatures associated with distinct clinical subtypes

of leukemia.1 In studies of both pediatric and adult

acute lymphoblastic leukemia (ALL), patients can be

classified according to specific gene expression

profiles.2-10 Characteristic signatures, for example,

those identified in acute myeloid leukemia (AML)

subtypes with t(15;17), t(8;21), inv(16), or t(11q23)/

MLL, have been confirmed not only with different

DNA oligonucleotide microarray designs,11,12 but

also by using a principally different microarray tech-

nology.13 Furthermore, gene expression analyses of

nearly 1,000 patients led to the discovery of distinct

expression signatures, not only specific among adult

acute and chronic leukemia subtypes, but also in

comparison to nonleukemia and healthy bone mar-

row specimens.14

Because microarray assays can analyze the ex-

pression of multiple genes in parallel, they have been

proposed as a robust test method for diagnostic us-

age in a clinical laboratory. However, published data

in this area have been derived from relatively small,

single-center studies involving archival samples.

Here, we report results from 3,334 patients who

were analyzed as part of an international study

group formed around the European LeukemiaNet
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(ELN) in 11 laboratories across three continents (seven from the ELN,

three from the United States, and one in Singapore). The collaborative

Microarray Innovations in Leukemia (MILE) study program was de-

signed to assess the clinical accuracy of gene expression profiles (com-

pared with current routine diagnostic work-up) of 16 acute and

chronic leukemia subclasses, myelodysplastic syndromes (MDSs),

and a so-called “none of the target classes” control group that included

nonmalignant disorders and normal bone marrow.

METHODS

Study Design
There were two stages in the MILE research study: a retrospective bi-

omarker discovery phase (stage I) using commercially available whole-
genome microarrays (HG-U133 Plus 2.0; Affymetrix, Santa Clara, CA) and an
independent validation phase (stage II) that was performed in a prospective
manner using a newly designed custom chip (AmpliChip Leukemia; Roche
Molecular Systems, Pleasanton, CA). Before each stage of the study, designated
laboratory operators at each site were trained on the corresponding sample
preparation protocol and had demonstrated proficiency in the technology.15

The individual steps of the sample preparation workflow are available online.
All samples in this study were obtained from untreated patients at the time of
diagnosis. Cells used for microarray analysis were collected from the purified
fraction of mononuclear cells after Ficoll density centrifugation. The study
design adhered to the tenets of the Declaration of Helsinki and was approved
by the ethics committees of the participating institutions before its initiation.
The sponsor collected the anonymized patient data and performed the final
statistical analysis. All authors had full access to both the primary local mi-
croarray data and the final analysis.

Microarray Data Preprocessing and Exploratory Analyses
Data preprocessing included a summarization and quantile normaliza-

tion step to generate probe set level signal intensities for each microarray

experiment and was performed as previously described.16 Data visualization
and exploratory analyses were performed with Partek Genomics Suite soft-
ware version 6.3 (Partek, St Louis, MO) and R software version 2.5.1 (http://
www.r-project.org), including the Affy, MADE4, and Heatplus packages.17 A
margin tree graph was generated following a method previously established in
the use of high-dimensional classification of cancer microarray data.18 The
margin tree is learned in an unbiased manner and emerges naturally in a
mathematical procedure. All microarray raw data were deposited in Na-
tional Center for Biotechnology Information’s Gene Expression Omnibus
database (http://www.ncbi.nlm.nih.gov/geo/) under series accession num-
ber GSE13204.19

Custom Chip Design
The AmpliChip Leukemia research microarray was specifically custom-

ized for the classification of leukemias.20 The chip contained 1,480 distinct
probe sets with 11-�m feature size. The source of the probe set design was
based on the commercially available Affymetrix HG-U133 Plus 2.0 microar-
ray. One thousand four hundred fifty-seven probe sets were used for generat-
ing normalized signal intensities of disease-related genes, and 23 probe sets
interrogated control sequences and housekeeping genes. Three hundred
ninety-eight probe sets were tiled in triplets to increase the robustness of the
algorithm performance.

Algorithm Training for Classification Analysis
For multiclass classification, an all-pairwise approach was performed

using trimmed mean of differences between perfect match and mismatch
intensities with quantile normalization (DQN) signals.16 For 18 classes, there
were 153 distinct class pairs. For every class pair, a linear binary classifier was
formed with support vector machines.21,22 For this classifier, n was the number
of used probe sets. The classifier for class pair (i, j) (i � j) consisted of (n � 1)
coefficients, w[0; i, j], w[1; i, j], …, w[n; i, j]. Normalized expression signals
were denoted by x[1], …, x[n]. The decision function for class pair (i, j) was f(x;
i, j) � w[0; i, j] � w[1; i, j] * x[1] � … � w[n; i, j] * x[n]. If f(x; i, j) � 0, a vote
was added to class i; if f(x; i, j) � 0, a vote was added to class j. If f(x; i, j) � 0, 0.5
votes were added to class i, and 0.5 votes were added to class j. This process was
repeated for all class pairs to obtain the votes for all classes. If there was a unique

Table 1. Overview of Stage I Samples

Class Diagnosis

Study Center (No. of samples)

Total No. of Samples1 2 3 4 5 6 7 8 9 10 11

C1 Mature B-ALL with t(8;14) 2 2 2 5 1 1 13

C2 Pro-B-ALL with t(11q23)/MLL 6 12 10 1 33 5 1 2 70

C3 c-ALL/pre-B-ALL with t(9;22) 27 10 15 7 8 39 4 12 122

C4 T-ALL 42 1 19 17 4 38 44 9 174

C5 ALL with t(12;21) 16 23 1 18 58

C6 ALL with t(1;19) 5 11 2 9 3 1 5 36

C7 ALL with hyperdiploid karyotype 1 14 2 14 2 7 40

C8 c-ALL/pre-B-ALL without t(9;22) 50 29 28 2 59 42 3 24 237

C9 AML with t(8;21) 7 1 2 13 5 1 11 40

C10 AML with t(15;17) 2 2 8 5 4 3 13 37

C11 AML with inv(16)/t(16;16) 6 4 3 4 6 3 2 28

C12 AML with t(11q23)/MLL 4 4 5 6 17 1 1 38

C13 AML with normal karyotype � other abnormalities 2 60 1 12 63 117 19 9 41 27 351

C14 AML complex aberrant karyotype 4 3 2 28 2 1 6 2 48

C15 CLL 15 35 41 81 45 32 199 448

C16 CML 5 44 15 12 76

C17 MDS 28 71 3 1 56 44 3 206

C18 Non-leukemia and healthy bone marrow 19 19 17 16 3 74

Total 2,096

NOTE. Two thousand ninety-six high-quality analyses were performed by 11 different study centers from seven countries across three continents. Eighteen
diagnostic gold standard categories are given by their class subtype labels of C1 to C18 and are listed for each participating laboratory (laboratories 1 to 11).

Abbreviations: B-ALL, B-cell acute lymphoblastic leukemia; MLL, myeloid/lymphoid or mixed-lineage leukemia; pre, precursor; c-ALL, childhood acute lymphoblastic
leukemia; T-ALL, T-cell acute lymphoblastic leukemia; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CLL, chronic lymphocytic leukemia; CML,
chronic myelogenous leukemia; MDS, myelodysplastic syndrome.
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class with the maximal vote, the call was this particular class. If there was a tie of
two or more classes with the maximal vote, an indeterminable call was as-
signed. The step of probe set selection was included in every cross-validation
run and was performed to select the top 100 differentially expressed probe sets
with the maximal absolute values of t statistic for every class pair. Subsequently,
the union of the selected probe sets of all class pairs was used for every
binary classifier.

RESULTS

Marker Discovery Phase Using

Whole-Genome Microarrays

During stage I of the study, 2,143 whole-genome microarray

analyses were performed. Each center had previously diagnosed the

samples as part of their daily routine diagnostic work-up, using their

local gold standard diagnostic methods, including cytomorphology,

immunophenotyping, cytogenetics, and other molecular genetic

tests. Each specimen then was assigned based on these previous

diagnostic test reports to one of the 18 MILE study categories (C1 to

C18) for microarray analysis. Seventeen classes had been selected as

representing standard subclasses of acute and chronic leukemias, as

well as MDS. Class 18 included healthy bone marrow specimens and

nonleukemia conditions, such as megaloblastic anemia, hemolysis,

iron deficiency, or idiopathic thrombocytopenic purpura, and was

considered to be none of the target classes.

Despite strict quality criteria, 47 samples (2.2%) had to be ex-

cluded as a result of low technical quality of the gene expression

profiles. The remaining 2,096 samples are listed in Table 1. The sam-

ples were not equally distributed among the participating laboratories

but were variably contributed depending on each center’s expertise

(eg, center 10 included chronic lymphocytic leukemia [CLL] speci-

mens and center 7 analyzed cases of pediatric leukemias). Consistent

with the actual incidence of the respective categories, lower sample

numbers were submitted for certain uncommon subtypes, including

mature B-cell ALL with t(8;14) (C1) and AML with inv(16)/t(16;16)

(C11). All other classes comprised more than 30 samples each (range,

36 to 448 samples).

Several approaches were selected to perform exploratory data

analyses. First, supervised hierarchical clustering was performed to

confirm whether the selected classes would indeed harbor distinct

gene expression signatures for the 2,096 whole-genome gene expres-

sion profiles. Strong differences were observed in the respective signa-

tures for classes C1 to C18 (Fig 1).

Next, a method developed by Tibshirani and Hastie,18 estab-

lished for high-dimensional classification of cancer microarray data,

was applied. This method not only produces a classifier, but also gives

output graphs, so-called margin trees, that indicate the relatedness of

different disease entities.18 A hierarchical data tree applied to our data

set of 2,096 samples is shown in Figure 2, where two major branches

can be observed, one that contains mainly the B-lineage ALL catego-

ries and a second larger branch that contains the myeloid and chronic

leukemias. MDS samples and nonleukemia specimens were also lo-

cated in this larger branch. The binary decision tree and the hierarchi-

cal relationship among the classes can be interpreted in a top-down

manner and demonstrated a meaningful organization of the 16 leuke-

mia classes and MDS on the basis of their respective gene expres-

sion signatures.

The series of 1,292 acute leukemia samples represented in the

stage I cohort were further evaluated for gene signatures that would

serve as a so-called virtual immunophenotype. Fourteen distinct types

of acute leukemias (C1 to C14) are displayed in a heat map of the genes

encoding 21 differentiation antigens routinely used for flow cytometry

(Fig 3A). For each of the three major lineages involved in leukemia (B

Class:

C18C17C16C15C14C13C12C11C10C9C8C7C6C5C4C3C2C1

Fig 1. Supervised hierarchical cluster-

ing. The exploratory whole-genome clus-

tering analysis was performed for all

classes (C1 to C18 in ascending order)

including 2,096 samples from stage I. For

every class pair, the top 100 differentially

expressed probes sets with the largest

absolute values of t statistic were se-

lected. The union of these sets contained

3,556 probe sets used in the clustering.

Microarray-Based Subclassification of Leukemias

www.jco.org © 2010 by American Society of Clinical Oncology 2531

Downloaded from jco.ascopubs.org on November 8, 2012. For personal use only. No other uses without permission.
Copyright © 2010 American Society of Clinical Oncology. All rights reserved.



cells, T cells, and myeloid cells), distinct clusters were observed based

on the gene expression signature of the corresponding antigens.

Subtype-specific patterns were identifiable, for example, the low ex-

pression of HLA-DR � and � antigens in AML with t(15;17) (C10).

Such subtype-specific patterns became even more obvious when vir-

tual immunophenotype data were represented as a series of individual

box plots for each of the 14 classes of acute leukemias (Fig 3B).

Algorithm Training for Classification Analysis

The classification performance of retrospective samples of stage I

was investigated next by developing a prediction algorithm based on

linear discriminant classification. To estimate the performance of the

classifiers, three independent 30-fold cross-validations were used. For

every possible pair of comparisons between the 18 distinct classes, the

top 100 probe sets with the largest absolute values of t statistics were
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Mature B-ALL with t(8;14)C1: Fig 2. Exploratory margin tree analysis.

Margin tree classification is a supervised

multiclass support vector machine classi-

fication method.18 The margin tree pro-

gram was applied to the stage I data set

of 2,096 samples, characterized by their

18 class subtype labels (C1 to C18), and

was based on 54,630 probe sets. B-ALL,

B-cell acute lymphoblastic leukemia; MLL,

myeloid/lymphoid or mixed-lineage leuke-

mia; pre, precursor; c-ALL, childhood acute

lymphoblastic leukemia; T-ALL, T-cell acute

lymphoblastic leukemia; ALL, acute lympho-

blastic leukemia; AML, acute myeloid leuke-

mia; kt., karyotype; abn., abnormality; CLL,

chronic lymphocytic leukemia; CML, chronic

myelogenous leukemia; MDS, myelodysplas-

tic syndrome.

Class C1 C2 C3 C5 C6 C7 C8 C4 C9 C10 C11 C12 C13 C14Leukemia Type B-ALL T-ALL AML

Leukemia Type

Class

CD10 (203435_s_at)

CD10 (203434_s_at)

CD22 (204581_at)

CD19 (206398_s_at)

CD79a (205049_s_at)

CD79a (1555779_s_at)

CD22 (38521_at)

CD22 (217422_s_at)

HLA-DRG (1567628_s_at)

HLA-DRG (209619_at)

HLA-DRG (208894_at)

HLA-DRG (210982_s_at)

CD5 (206485_at)

CD7 (214049_x_at)

CD7 (214551_s_at)

CD2 (205831_at)

CD8 (205758_at)

CD3G (206804_at)

CD3D (213539_at)

CD3E (205456_at)

CD5 (230489_at)

CD1a (210325_at)

CD33 (206120_at)

CD64 (216950_s_at)

CD64 (214511_x_at)

CD15 (209893_s_at)

CD15 (209892_at)

CD117 (205052_s_at)

MPO (203948_s_at)

MPO (203949_s_at)

CD13 (202888_s_at)

CD4 (203547_at)

A

Fig 3. Virtual immunophenotypes for 1,292 acute leukemia specimens from stage I of the Microarray Innovations in Leukemia study. (A) Microarray gene expression

signal intensities of 21 differentiation antigens currently tested in flow cytometry for the diagnosis of leukemia represented by 32 probe sets. (B) Gene expression

intensities for CD3G, CD19, CD33, and HLA-DRA. Each dot represents the data from a single microarray profile. B-ALL, B-cell acute lymphoblastic leukemia; T-ALL,

T-cell acute lymphoblastic leukemia; AML, acute myeloid leukemia.
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selected. The union of all selected probe sets was then used for subse-

quent classification of all class pairs.

When all 2,096 samples from stage I were included, the classifi-

cation analysis of their whole-genome gene expression profiles dem-

onstrated that overall, in 92.2% of samples, the gene expression

classification was concordant with the initial gold-standard diagnosis

(99.6% specimens with a unique call). This means that a small number

of samples received indeterminable calls as a result of ties of majority

votes of the classifier (Table 2). In seven of the 18 classes, the concor-

dance was � 94.6%. As detailed in the confusion matrix, lower sensi-

tivities in predicting leukemia types were observed, in particular, for

classes C1, C7, C8, C12, and C14. This can largely be explained by the

biologic heterogeneity within the class and the lack of standardized

gold-standard definitions. However, it is notable that all analyzed

classes showed specificities greater than 98.1% and that, overall, all 18

analyzed classes could be predicted with a median sensitivity of 92.1%

and a median specificity of 99.7%.

Classification Algorithm Testing on an Independent

Patient Cohort

After completion of stage I, the participating laboratories pro-

spectively collected 1,191 samples as an independent validation co-

hort. Similar to stage I, only samples were included where a full gold

standard diagnostic work-up had been completed by the laboratories

so that each specimen would be grouped into one of the 18 study

classes before microarray analysis. Experiments were performed using

a standardized procedure and a customized chip, the AmpliChip

Leukemia microarray. Of the 1,191 stage II gene expression profiles,

1,152 (96.7%) passed the quality criteria and were further processed

for microarray classification. When using a prediction model, trained

on the whole-genome gene expression profiles from stage I, the overall

accuracy for all 18 classes of this independent test cohort using the

custom chip was 88.1% (overall call rate, 99.6%). Similar to the stage I

data set, miscalls were predominantly observed for the interface of

C7/C8 in ALL and in the MDS-AML continuum. The predicted accu-

racies for CLL, chronic myelogenous leukemia, and MDS in stage II

were 98.7%, 93.0%, and 81.5%, respectively.

When focused on an acute leukemia–type diagnostic algorithm,

the overall prediction accuracy for all called samples markedly in-

creased to 91.5% (overall call rate, 98.1%). As shown by the confusion

matrix in Table 3, 100% correct predictions were observed for five

leukemia types (C1, C2, C6, C9, and C11), each of which represented

leukemias with discrete disease-defining fusion genes. Lower accura-

cies were observed for the interface of C7/C8 in ALL, as well as for

more intrinsically heterogeneous subtypes such as C12 and C14 in

AML. Nonetheless, eight of the 14 represented acute leukemia types

were concordant with the gold standard in � 95.0% of the analyses.

When summarized over all acute leukemia subtypes, this focused

classification scheme resulted in a 95.6% median sensitivity and a

99.8% median specificity for the eight ALL and six AML classes

included in the classifier (C1 to C14, n � 693). This result reinforces

the strength of microarray technology, which offers high positive
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prediction accuracy based on a standardized, robust, and objective

molecular assay.

During the process of clarifying discrepant results (ie, comparing

microarray classifier predictions against the gold-standard diagnoses

submitted to the study database), in 51 (7.4%) of 693 acute leukemia

samples, discrepancies could be resolved. A first category of 22 (43%)

of 51 discrepant samples were explained either because of erroneous

entries into case report forms or wrong sample labels (n � 13, 25%) or

Table 2. Whole-Genome Classification Confusion Matrix

GS/Call

Class Prediction

Average No.

of IDC As a

Result of

Ties of

Majority

Votes

Total No.

of

Specimens

in Every

Class CR

Sensitivity

for Called

Specimens

Specificity

for Called

SpecimensC1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18

C1/GS 9.3� — — — — — — 0.7† — — — — 0.3† — — — 0.3† 1† 1.3 13 0.897 0.800 0.999

C2/GS — 70� — — — — — — — — — — — — — — — — 0 70 1.000 1.000 0.998

C3/GS — — 114.3� — — — 0.3† 7.3† — — — — — — — — — — 0 122 1.000 0.937 0.997

C4/GS — — — 166.3� — — — 1.7† — — — — 4† — — — 0.3† 0.7† 1 174 0.994 0.961 0.997

C5/GS — — — — 53.7� — — 4.3† — — — — — — — — — — 0 58 1.000 0.925 0.997

C6/GS — 2† — — — 33� — 1† — — — — — — — — — — 0 36 1.000 0.917 1.000

C7/GS — — — — — — 30.3� 9.7† — — — — — — — — — — 0 40 1.000 0.758 0.995

C8/GS 1† 3† 5.3† 1† 6† — 10.7† 205.3� — — — — 0.3† 1† 1† — 1.7† — 0.7 237 0.997 0.869 0.985

C9/GS — — — — — — — — 40� — — — — — — — — — 0 40 1.000 1.000 1.000

C10/GS — — — — — — — — — 35� — — 1† — — — 1† — 0 37 1.000 0.946 1.000

C11/GS — — — — — — — — — — 28� — — — — — — — 0 28 1.000 1.000 1.000

C12/GS — — — 1† — — — — — — — 32� 5† — — — — — 0 38 1.000 0.842 0.999

C13/GS 1† — — 4.3† — — — 3† — 1† — 2† 311.3� 9.7† 1.3† 0.7† 15.3† — 1.3 351 0.996 0.890 0.982

C14/GS — — — — — — — — — — — — 9.3† 35.7� — — 2.7† — 0.3 48 0.993 0.748 0.995

C15/GS — — — — — — — — — — — — 0.7† — 446� — 0.3† — 1 448 0.998 0.998 0.998

C16/GS — — 1† — — — — — — — — — — — — 72� 0.3† 2.7† 0 76 1.000 0.947 0.999

C17/GS — — — — — — — — — — — — 11† — — — 184.3� 7.7† 3 206 0.985 0.908 0.981

C18/GS — — — — — — — 1† — — — — — — 1† 1† 14† 57� 0 74 1.000 0.770 0.994

NOTE. Classification prediction results for 2,096 samples from stage I as analyzed by three 30-fold cross validations. Gold standard classes are given in rows C1/GS
to C18/GS; the columns C1 to C18 list the average numbers of calls, rounded with up to 1 decimal place, for every class in three independent runs of
cross-validations. This model uses trimmed mean of differences between perfect match and mismatch intensities with quantile normalization (DQN) signal
intensities obtained from HG-U133 Plus 2.0 microarrays.

Abbreviations: IDC, indeterminable calls; CR, call rate �(No. of specimens–IDC)/No. of specimens�; GS, gold standard.
�Values indicate correct prediction results.
†Values represent misclassifications for each class.

Table 3. Independent Testing Set of Acute Leukemias

GS/Call

Class Prediction

Average No.
of IDC As a

Result of
Ties of
Majority
Votes

Total No.
of

Specimens
in Every

Class CR

Sensitivity
for Called

Specimens

Specificity
for Called

SpecimensC1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14

C1/GS 4� — — — — — — — — — — — — — 1 5 0.800 1.000 0.999

C2/GS — 23� — — — — — — — — — — — — 0 23 1.000 1.000 0.998

C3/GS — — 53� — — — — 8† — — — — 1† — 0 62 1.000 0.855 0.995

C4/GS — — — 75� 1† — — 1† — — — — 1† — 1 79 0.987 0.962 0.992

C5/GS — — — — 59� — — 5† — — — — — — 0 64 1.000 0.922 0.995

C6/GS — — — — — 10� — — — — — — — — 0 10 1.000 1.000 0.997

C7/GS — — — — — — 22� 12† — — — — — — 1 35 0.971 0.647 0.989

C8/GS 1† 1† 2† — 2† 2† 7† 141� — — — — — — 2 158 0.987 0.904 0.950

C9/GS — — — — — — — — 16� — — — — — 0 16 1.000 1.000 1.000

C10/GS — — — — — — — — — 19� — — 1† — 0 20 1.000 0.950 0.998

C11/GS — — — — — — — — — — 20� — — — 0 20 1.000 1.000 1.000

C12/GS — — — 1† — — — — — — — 15� 1† — 0 17 1.000 0.882 1.000

C13/GS — — 1† 3† — — — — — 1† — — 148� 1† 6 160 0.963 0.961 0.985

C14/GS — — — 1† — — — — — — — — 4† 17� 2 24 0.917 0.773 0.998

NOTE. Classification prediction results for 693 prospectively collected acute leukemia samples from stage II. Gold standard classes are given in rows C1/GS to
C14/GS; the prediction results are displayed for each sample in columns C1 to C14.

Abbreviations: IDC, indeterminable calls; CR, call rate �(No. of specimens–IDC)/No. of specimens�; GS, gold standard.
�Values indicate correct prediction results.
†Values represent misclassifications for each class.
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because the respective diagnoses were revised after central indepen-

dent expert review of karyotypes using the definition of AML with

complex aberrant karyotypes from Schoch et al23 (n � 9, 18%).

A second category of 29 (57%) of 51 discrepant samples could be

interpreted as samples in which the chip-based prediction had outper-

formed the laboratories’ own gold standard diagnostic result (overall,

29 of 693 samples; 4.2%). These samples were split between specimens

in which subsequent retesting of leftover material confirmed the pre-

dicted acute leukemia subtype as classified by the microarray (n � 14)

and specimens in which re-evaluation of initial diagnostic reports

including morphology or DNA index values led to the confirmation of

the microarray classification result (n � 15). More detailed informa-

tion on the discrepant results analyses performed on these samples is

available online (Appendix Tables A1-A3 and Figures A1-A4, on-

line only).

DISCUSSION

In 2005, the International MILE Study Group was formed around the

ELN (Gene Expression Profiling Working Group) in 11 laboratories

across three continents. In two stages, the clinical accuracy of gene

expression profiles of 16 acute and chronic leukemia subclasses, MDS,

and a so-called “none of the target classes” control group was com-

pared with current routine diagnostic work-up in 3,334 patients. Gold

standard diagnostic methods were not standardized between centers.

Each center integrated the available results from their own laboratory

workflow and assigned each sample into one of the 18 MILE study

microarray categories.

In stage I of the study, only 2.2% of samples failed the strict

quality criteria, leaving 2,096 of 2,143 samples to be used in the train-

ing of a robust diagnostic classification algorithm. As demonstrated by

various exploratory data analyses, each of the 18 diagnostic categories

was characterized by a specific underlying gene expression program.

The accuracy of this training cohort was estimated by cross-validation

and was 92.2% for the 18 classes (median specificity, 99.7%). In seven

of the 18 classes, the concordance was � 94.6%. A high prediction

precision of 100% was observed, in particular, for the group of acute

leukemias with specific chromosomal aberrations [eg, as demon-

strated for pro-B-ALL with t(11q23)/MLL or the core binding factor

leukemias AML with t(8;21) or AML with inv(16)/t(16;16)]. Lower

sensitivities were seen in entities with biologic heterogeneity within the

class (eg, AML with a complex aberrant karyotype [74.8%] or ALL

with a hyperdiploid karyotype [75.8%]). However, it is notable that all

analyzed classes showed specificities greater than 98.1% and that,

overall, all 18 analyzed classes could be predicted with a median sen-

sitivity of 92.1% and a median specificity of 99.7%. Thus, in terms of

sensitivity and specificity, the gene expression results alone compared

favorably with the laboratories’ own gold-standard classification.

The potential clinical utility of microarray-based diagnostics

was then validated in stage II including another 1,152 patients, a

cohort that represented an independent and blinded validation set

for the classification algorithms developed in stage I. Overall, in

stage II, the observed accuracy of the classifier prediction across all

18 classes was 88.1%. The accuracy increased to 91.5% when fo-

cused on acute leukemias, representing all 14 distinct classes. In

eight of the 14 represented acute leukemia classes, microarray diag-

noses were concordant with the gold standard diagnoses in � 95.0%

of the analyses.

To our knowledge, this is thus far the largest gene expression

microarray profiling study in hematology and oncology, and it clearly

underlines the robust performance of this method and demonstrates

the possibility of completely standardized laboratory procedures com-

bined with sophisticated data algorithms. This is in contrast to other,

far more subjective methods routinely used for leukemia diagnosis

today, such as cytomorphology and metaphase cytogenetics. The next

step would now be an objective and unbiased discussion on how to

position microarray technology in a routine diagnostic workflow and

whether it is suitable to helpfully support or even replace some of the

existing gold-standard techniques. For example, an array-based test

cannot, in all cases, replace multiparameter flow cytometry or reverse

transcriptase polymerase chain reaction–based detection of molecu-

lar fusion genes, which is routinely applied to define the starting point

for clinically relevant detection of minimal residual disease.24,25

In one possible scenario, one could restrict the microarray tech-

nique to the classification of acute leukemias because CLL and chronic

myelogenous leukemia are readily diagnosed by standard immuno-

phenotyping, cytogenetics, and molecular tests. An acute leukemia

classification microarray may then have utility in patients for whom a

conventional cytogenetic analysis is not available, either because of no

analyzable mitoses or poor quality of banded chromosomes.26,27

Although our study concept had to define up front the most

necessary leukemia entities and not all recurrent cytogenetic subtypes

according to the new WHO classification of 200828 were represented

by the actual data set, most subtypes with current clinical relevance are

covered. As a further intended use, this microarray technique may also

serve to classify leukemia in developing countries that currently lack

expertise to perform the current labor-intensive and sophisticated

diagnostic approaches.

Finally, the investigators of the MILE study submitted their

gene expression database to the public domain (Gene Expression

Omnibus Accession No. GSE13204) to foster research elucidating

the molecular understanding of leukemias. Future refinements need

to include additional signatures for prognostically important sub-

sets of patients with AML with normal cytogenetics.12,13,29,30 Such

signatures have already been tentatively identified by a number of

groups.31-37 Microarray analysis can even be applied to investigate

expression signatures of other novel markers such as WT1,38 detect a

specific pattern for RUNX1-mutated AML,39 and discover predictive

signatures for response to both currently used and novel targeted

treatment regimens.
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Robin Foà, Roche Molecular Systems Research Funding: Torsten
Haferlach, Roche Molecular Systems; Giuseppe Basso, Roche Molecular
Systems; Geertruy Te Kronnie, Roche Molecular Systems;
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Vos, Jesus M. Hernández, Wolf-Karsten Hofmann, Ken I. Mills, Amanda

Gilkes, Sabina Chiaretti, Sheila A. Shurtleff, Thomas J. Kipps, Laura Z.

Rassenti, Allen E. Yeoh, Peter R. Papenhausen, Robin Foà
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