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Abstract

Introduction: The traditional staging system is inadequate to identify those patients with stage II colorectal cancer (CRC) at
high risk of recurrence or with stage III CRC at low risk. A number of gene expression signatures to predict CRC prognosis
have been proposed, but none is routinely used in the clinic. The aim of this work was to assess the prediction ability and
potential clinical usefulness of these signatures in a series of independent datasets.

Methods: A literature review identified 31 gene expression signatures that used gene expression data to predict prognosis
in CRC tissue. The search was based on the PubMed database and was restricted to papers published from January 2004 to
December 2011. Eleven CRC gene expression datasets with outcome information were identified and downloaded from
public repositories. Random Forest classifier was used to build predictors from the gene lists. Matthews correlation
coefficient was chosen as a measure of classification accuracy and its associated p-value was used to assess association with
prognosis. For clinical usefulness evaluation, positive and negative post-tests probabilities were computed in stage II and III
samples.

Results: Five gene signatures showed significant association with prognosis and provided reasonable prediction accuracy in
their own training datasets. Nevertheless, all signatures showed low reproducibility in independent data. Stratified analyses
by stage or microsatellite instability status showed significant association but limited discrimination ability, especially in
stage II tumors. From a clinical perspective, the most predictive signatures showed a minor but significant improvement
over the classical staging system.

Conclusions: The published signatures show low prediction accuracy but moderate clinical usefulness. Although gene
expression data may inform prognosis, better strategies for signature validation are needed to encourage their widespread
use in the clinic.
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Introduction

Colorectal cancer (CRC) is the third most common cancer

worldwide and the second leading cause of cancer death. During

the last decades, incidence has been increasing, while mortality has

slowly been decreasing [1]. A remarkable feature of CRC is the

difference in prognosis of the early and late stages of the disease:

stage I and II have moderate risk of relapse after surgical resection,

whereas patients with stage III have a higher chance of recurrence

[2]. Recognized clinical risk factors for recurrence are emergency

presentation, poorly differentiated tumor, depth of tumor invasion,

and adjacent organ involvement (T4) [3–5]. However, these

factors are insufficient to identify those patients with stage II CRC

at high risk of recurrence and posterior metastasis or those patients

with stage III CRC at low risk [6], leading to potential under-

treatment or over-treatment [3].

Colon cancer metastasis is a tightly regulated process that

requires aberrations in gene expression allowing cancer cells to
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progress through various steps until they colonize a distant organ

[7]. Probably the alterations necessary for recurrence are already

present in the primary colon carcinoma, which should allow

identifying prognostic signatures [8–10]. Gene-expression profil-

ing-based assays have been successful as prognostic tool in breast

cancer [11,12]. However, no signature has been adopted in

routine clinical practice in CRC despite a large number of gene

expression profiling studies on prognosis have been performed.

The aim of this work was to test the predictive ability of these

published signatures as prognostic markers in a significant number

of independent datasets, in order to understand their strengths and

weakness and identify if any of them can be used clinically to guide

decisions about adjuvant therapy for patients with stage II or III

CRC.

Materials and Methods

Published Gene Expression Signatures and Validation
Datasets

A systematic literature review was performed to identify studies

that used gene expression data to predict prognosis in CRC [13].

The search was based on the PubMed database and was restricted

to recent papers to increase validity (from January 2004 to

December 2011). Files S1–S2, Table S1 and Figure 1 detail the

selection protocol and PRISM checklist. Articles that provided a

list of differentially expressed genes in primary tumor samples

associated with CRC prognosis were included in our study. We

indistinctly refer to these lists of genes as ‘signatures’ or ‘profiles’.

Studies based on tissue microarray and those that exclusively were

focused on differences between stages or between primary tumor

and metastases were excluded. The studies finally included for

analysis are described in Table 1 [14–43]. Publicly available

datasets with whole-genome gene expression measures in CRC

primary tumor samples were identified and downloaded from

GEO [44] and ArrayExpress [45] microarray data repositories

(Tables 2 and 3). Pre-processed series matrixes originally provided

by the authors were used in our analysis.

Because different platforms and feature identifiers were used in

signatures and gene expression datasets, a translation into the

official Gene Symbol was done in order to have a common

annotation. This translation was performed using the Universal

Protein Resource annotation database [46], the online repository

of HUGO Gene Nomenclature Committee [47] and the chip

annotation files from the Affymetrix web site [48]. Unavoidably,

no match was found for some features in some datasets and they

were lost for subsequent analysis (File S3).

Statistical Analysis
Since follow-up time was not available for most of the datasets, a

binary outcome was defined as a prognosis status (Table 2).

Whenever possible, a minimum of three years of follow up was

required for patients without tumor recurrence. Nevertheless, two

datasets with no follow up information were included (GSE5206

and GSE10402) to increase the sample size. Stage IV individuals

were included in the analysis as recurrence events as it was

expected that the specific expression changes in poor prognostic

samples remain unaltered in the primary tumor once the

metastases has occurred. When data was available, subgroup

analysis were performed according to stage and microsatellite

instability status (MSS/MSI).

Each signature’s ability to predict prognosis was independently

tested in each dataset with a binary classification approach using

the Random Forest ensemble classifier (RF) [49,50]. Forests were

grown with a high number of trees (5.000) in order to assure out-

of-bag error convergence. The minimum size of terminal nodes

was set to one. For signatures evaluation, accuracy measures were

computed from a 10-fold cross-validation (10CV) process in which

partitions were stratified based on outcome. Nested in this process,

the number of candidate variables at each split was selected to

minimize the out-of-bag error. As suggested in [51], sub-sampling

was carried out without replacement and using the same number

of observations in each prognosis group (0.632 times frequency of

the smallest group). Due to lack of balance in outcome groups in

some datasets, RF showed a trend to preferably classify into the

most frequent group. To correct this artifact, the classification vote

cutoff was modified according to the corresponding prognosis

group frequencies. All these analyses were performed using the R

package randomForest [52].

To confirm our results, a radial kernel Support Vector Machine

(SVM) based classifier was also used [53,54]. Due to unbalance,

the same artifact described above was observed when applying the

standard SVM classifier. So, we tried to correct it using an under-

sampling strategy as follows [55]: i) select all samples from the less

frequent group; ii) randomly select the same number of samples

from the more frequent group; iii) repeat the process 25 times; iv)

define the predicted labels using the outcome group frequencies as

vote proportion cutoff for the classification rule. A 10CV process

was carried out to compute accuracy measures with a nested

10CV for parameter tuning, both of them stratified by outcome

groups. A wide range of values for cost and radial kernel

parameters were evaluated during the tuning process (20

equidistant values from 0.001 to 1.000 in logarithm scale; 11

equidistant values ranging 0.056p to 206p, being p the number of

features in each case). All these analysis were conducted with the R

package svmpath [56].

The Matthews Correlation Coefficient (MCC) [57] was chosen

as measure of classification accuracy [58]. This index combines

test sensitivity and specificity. It ranges from 21 to 1 and its

interpretation is similar to the Pearson’s correlation coefficient. In

the context of a classification problem it is expected that MCC

ranges from 0 (no prediction ability at all) to +1 (perfect prediction)

with negative values near zero possibly occurring in random

classifiers due to sample variability. MCC values lower than 0.3

can be considered as indicative of low predictive value as they

correspond to less than 65% accuracy in balanced data.

Sensitivity, specificity and overall accuracy rates were also

computed for interpretation purposes.

The potential usefulness of the signatures on clinical practice

was evaluated by means of the positive and negative likelihood

ratios (LR+, LR-) and the predicted positive and negative post-test

recurrence probabilities (PPTpr, NPTpr) in stage II and III

samples separately [59].

To summarize signature’s global performance, each of the

measures above was pooled across datasets to a unique index using

weights proportional to each dataset sample size. In order to

attenuate instability and bias in the cross-validation estimations,

datasets with less than 10 samples per group and those used in the

derivation of the profile in the original study were excluded from

these computations [60].

Significance of MCC, accuracy, sensitivity, specificity, LR+,

LR-, and differences of PPTpr and NPTpr were assessed using

null distributions based on 100.000 permutations. Computations

were done in the context of the theoretical framework for

permutation tests [61] as implemented in the R package coin

[62]. Intervals at 95% were built using the Bias Corrected and

Accelerated bootstrap (BCa) method with 5.000 resamples

stratified by prognosis group [63]. Empirical influence values

were estimated by the usual jackknife method. These calculations
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were done using the R package boot [64]. In all cases, permutations

and resampling were performed directly on the predicted values

provided by the original models and no remodeling was done.

Since this strategy doesn’t take into account the dependence in

predictions implicitly imposed by the 10CV, it could potentially

retain some bias towards refusing null hypothesis in the statistical

tests when effects are small [65].

Results

Global Prognosis Performance of the Published Signatures
The literature search identified 29 papers reporting 31

signatures proposed as valid multi-gene tumor-outcome classifica-

tion tool (Table 1 and File S4). Almost all signatures were based on

microarray experiments with the exception of three signatures

obtained from PCR experiments (OC10, PL10, SC09). The

number of genes (signature size) ranged from 3 to 537.

Despite recommendations to provide raw data for microarray

experiments, training datasets were publicly available only for five

signatures: ST09, SM09, BD07, LN07, and VL10. Six additional

gene expression datasets with information about recurrence were

identified in GEO and ArrayExpress, for a total of 11 datasets

available for analysis (Table 2).

For all combinations of signatures and datasets, the MCC and

the corresponding p-value was computed. Figure 2 shows a color

map of the MCC values (details provided in File S5 and Figure

S1). As expected, the five signatures for which the training was

available showed significant association and a reasonable predic-

tive accuracy in their training datasets (black-highlighted cells at

the top left quadrant in the plot in Figure 2). For all these

signatures, MCC values were greater than 0.35 except for VL10

and dataset GSE17536 (MCC = 0.32). Nevertheless, in the

independent datasets the performance was heterogeneous and

none of these five signatures could reproduce the degree of

predictive ability shown in the training datasets. When the

remaining 26 signatures (those without training set available) were

evaluated in the 11 datasets, similar results were obtained: some

signatures showed a significant association with patient outcome

but discrimination accuracy was low or moderate.

A global MCC was computed for each signature to summarize

their predictive ability across datasets (see Figure 2). Signatures

BT04 and KN11 emerged as the most predictive, both with a MCC

value of 0.25 (95% CI 0.19 to 0.31 and 0.19 to 0.30 respectively,

p-values ,105). Although nearly all the signatures reached the 5%

significance level in this pool estimate that combines 396 events in

1077 patients, only three signatures exceed a 0.20 global MCC.

The maximum value obtained for the proportion of correctly

classified cases was only 63% (BT04, sensitivity = 65% and

specificity = 61%) and it ranged from 52 to 61% for the remaining

profiles (Table 4, File S6).

To assess influence of the statistical methodology in the results, a

re-analyses was performed using an alternative method (SVM).

Although some variations in the signatures ranking of performance

were observed, similar results were obtained in terms of pooled

MCCs (Figure S2 and File S7).

Subgroup Analysis: Prognosis Performance of Published
Signatures Stratified by Stage or MSI Status

In order to assess the signatures’ performance in specific

subgroups of tumors, a stratified analysis was done according to

stage (stage II/stage III) and microsatellite instability status (MSS/

MSI), when this information was available (see Table 3). Datasets

contributing with less than 10 events were excluded.

Similar to the analysis including all samples, the performance of

the signatures was heterogeneous when stage II and III tumor

samples were analyzed separately (Figures S3 and S4). In the

pooled MCC, 17 signatures in stage II and 22 signatures in stage

III showed a significant association with prognosis (p-value ,0.05).

Six signatures ranked in the top ten in both sub-analyses. The

MCC values obtained in stage II were much lower than those in

stage III. In stage II, the best global MCC were achieved by YM06

(MCC = 0.21; 95%CI 0.11 to 0.31) and BT04 (MCC = 0.20;

95%CI 0.10 to 0.31). In stage III, the two best signatures were

AJ08 (MCC = 0.42; 95%CI 0.28 to 0.55) and VL10 (MCC = 0.40;

95%CI 0.23 to 0.55). Table 4, Files S5, S6 and S7; and Figures S3,

S4, S5, S6, S7 and S8 contain more details.

MSI status information was only available for two datasets

(GSE13294 and GSE18088). In the analysis of MSS samples,

those MCC values that reached significance were moderate (0.19

to 0.38) and only three signatures showed association in both

datasets (p-value ,0.1). Regarding the MSI subset, only signature

HO09 provided a reasonably classification accuracy (MCC = 0.30)

(File S5).

Potential Clinical Value of Signatures in Stage II and III
Tumors

Despite the low discrimination ability (shown by their pooled

MCC), the signatures could still have usefulness in clinical

practice. Briefly, a useful clinical test typically shows large LR+
and low LR- which translate into more discriminant post-test

event probabilities: high PPTpr and low NPTpr compared to the a

priori expected event proportion. So, even tests with low

discrimination ability according to pure statistic criteria could still

be useful in clinical practice if PPTpr and NPTpr are significantly

far enough from the probability expected in population when no

test is performed. To explore this issue, positive and negative post-

test probabilities of recurrence were calculated for stages II and

III. The prior recurrence risk in patients with CRC was assumed

to be 20% in stage II and 34% in stage III [4,66].

For the best signature in stage II (YM06), the post-test

recurrence probability for the high-risk group increased to 28%,

and for the low-risk group the prediction was 12% probability of

recurrence (16% absolute difference, Figure 3A). The best profile

in stage III (AJ08) increased to 56% the post-test probability of

recurrence for the high-risk group, while the post-test probability

was 18% for the low-risk group (38% absolute difference,

Figure 3B). Detailed results for all signatures are shown in Files

S6 and S7.

Discussion

The identification of molecular prognostic tools to facilitate

treatment decisions is an important step for individualized patient

therapy [10]. Here we report an exhaustive analysis of published

multi-gene prognostic classifiers in colorectal cancer, analyzing

their external validity in a large number of independent datasets

that total more than 1.000 patients. The present work is focused in

two objectives which are addressed by the two main parts of the

analysis: to evaluate the global performance of the signatures from

a statistical point of view, in which all stages were included, and to

Figure 1. PRISMA Diagram which depicts the flow of information through the different phases of the prognosis signatures studies
systematic review.
doi:10.1371/journal.pone.0048877.g001
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assess their potential clinical usefulness, restricted to stage II and

III CRC patients, by means of appropriate accuracy measures

(post-test probabilities).

A meta-analysis of gene expression profiles in stage II CRC has

been previously reported by Lu et al. [67]. In that study, promising

results were reported regarding predictive accuracy, but the

analysis was confined to the same datasets and predictions used in

the original studies. To our knowledge, our study is the first meta-

analysis in which prediction accuracy of many signatures is

measured in a large number of independent CRC samples to

assess external validity and their subsequently potential usefulness

in clinics.

In terms of global performance, our results indicate that in their

training dataset, most signatures showed a significant association

with prognosis and could reasonably predict the outcome.

However, none of the signatures performed satisfactorily when

the prediction ability was assessed in independent datasets. The

best pooled MCC was 0.25 (BT04), which should be considered a

low classification value. As a reference, stage provides an MCC of

0.23 (data not shown).

Next, we focused in specific performance of signatures in stage

II and III patients, who could benefit more of an accurate

prognosis prediction since adjuvant chemotherapy could be

tailored to their predicted recurrence risk. Although association

with outcome was observed for 17 signatures in stage II, their

predictive ability can only be considered poor from a statistical

point of view. Otherwise, MCC values in stage III were observed

to be near double those in stage II. Nevertheless, only eight

signatures achieved a 0.30 pooled MCC value, considered as

indicative of moderate predictive value.

Although poor results were observed in terms of classification

accuracy, almost all profiles (30) showed a significant association

with prognosis when tested in independent datasets (p-value

,0.05). Notice however that significant association only means

that a signature prediction is not completely random (MCC = 0).

Association is not sufficient to be useful since, with enough sample

size, small effects can be significant. Better indicators of potential

usefulness than significance are magnitude of the sensitivity and

specificity or derived measures like the MCC or likelihood ratios,

Figure 2. Heatmap showing Matthews Correlation Coefficient (MCC) values for each signature in each dataset as result of analyses
with Random Forest. Rows correspond to signatures and columns to datasets. Last column shows a pooled MCC across datasets using sample size
as weights. Black lines delimit the first five signatures for which training datasets were available (cells highlighted in black). Cells representing
signatures and datasets used to validate them are highlighted in blue. Color scale represents the MCC values: the darker the color, the higher MCC
(see the legend). Negative values were collapsed to zero.
doi:10.1371/journal.pone.0048877.g002
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which measure the ability to correctly classify patients by their

outcome.

Despite these disappointing results according to pure statistic

criteria of discrimination ability, signatures might still be useful in

clinical practice if they provide additional risk stratification within

known sub-populations defined by relevant clinical variables. The

positive and negative post-test probabilities of recurrence were

calculated stratified by stage to identify the degree of prognosis

discrimination beyond stage. The results for the best signature in

stage II samples (YM06) moderately modified the 20% a priory

recurrence probability to a 28% and 12% for the positive and

negative post-test result, respectively. This discriminating ability is

not completely satisfactory given the large false negative and

positive rates that it would induce, but might contribute to the

identification of stage II patients at high risk for recurrence leading

to a better indication of adjuvant chemotherapy [6]. The best

signature for stage III patients (AJ08) resulted in a larger

discrimination of risk groups, with a difference between positive

and negative post-test probabilities of 38%. However, the low risk

group still showed a relatively large recurrence probability of 18%,

too high to recommend avoiding adjuvant chemotherapy as it is

indicated nowadays.

Potential explanations for these modest results must be

considered. From a statistical point of view, technical problems

such as low sample size, the number of genes included in the

classifier, translation between platforms or cohort heterogeneity,

among others, have been reported as potential explanations for the

lack of clinical translation of genomic classifiers (see references

[68,69,70]). In our case and for some signatures, only association

with prognosis was reported in the original work, thus the authors

implicitly recognized poor classification ability. In those profiles

that were reported to be highly discriminative, the reason could be

a poor control of over-fitting in the training methodology, since

external validation was performed only in three studies and the test

samples sizes were small (JG08, WN10 and YM06, see Table 1).

The need to map probes to genes for signatures that had used

different platforms may also have affected the results, since it is

known that even multiple probes of the same gene in the same

platform may show important variability. We could not detect,

however, that platform had a relevant effect in the MCC

estimates.

Low availability of information and heterogeneity in clinical

data is inherent to the use of public datasets and this is a major

impediment for repeatability and integration of published micro-

array studies [71]. Datasets differ in patient characteristics,

inclusion criteria and outcome definitions. A precise and

homogeneous definition of the outcome across datasets would be

desirable in order to obtain an accurate estimation of the

signatures’ prognosis ability. Nevertheless, heterogeneity of

datasets allows for a more pragmatic analysis and the estimates

should reflect the expected results when profiles were used in real

practice, since hospital settings are also heterogeneous. Since

different outcomes are supposed to be highly correlated [72], we

decided to prioritize a minimum sample size availability to get

more precise estimates and avoid uncertainty introduced by

datasets with less than 10 events [60]. The requirement of a three

years minimum follow up also allowed maximizing sample size

and was supported by the literature: it has been described that

most of these relapses occur within 3 years after surgery and it is

recommended to be used as endpoint in adjuvant clinical trials

[73]. Therapy regimen followed by treated patients was not

considered, as this information was not available for most of the

analyzed datasets.T
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Patients diagnosed at stage IV were included and considered

recurrent events to assess global performance. This implicitly

assumes that the molecular changes playing a driver role to disease

relapse remain unchanged in primary tumor after recurrence has

occurred. Though this underlying hypothesis could be question-

able, it was shared by many of the original studies analyzed that

included stage IV subjects in their training and test datasets (AJ08,

BT04, EC05, HO09, JS09, LN07G, LN07NZ, PL10, SC09, SL10,

SM09, ST09, VL10 and YM06).

From a biological perspective, this moderate prognosis ability

could be explained by heterogeneity in tumor cell populations that

might dilute the prognosis molecular signal. It is well known that

CRC tumors are composed not only by tumor epithelial cells but

also by cancer-associated stromal fibroblasts (CAFs), endothelial

cells or inflammatory cells, among others [74]. Moreover, those

cancer cells at the invasive front are different from those in the

main tumor mass [75]. The problem of the tumor bulk

heterogeneity can be overcome by isolating specific cells popula-

tions by laser microdissection technology [76]. In this regard, one

out of the eleven sample sets used in this study (GSE12945) used

this technique to specifically hybridize RNA from tumor cells.

Surgical specimens from other sample sets were reviewed by a

pathologist to assess a minimum tumor content of 80% (GSE5206,

GSE18088, E-MEXP-1245). However, we did not observe

significant differences in signatures performance regarding the

tumor-cell enrichment method used.

The gene lists included in this study had little overlap: out of

1.530 genes reported in the 31 profiles, only two were shared by

four signatures; 10 were shared by three signatures and 102 were

present in two profiles. This result was not unexpected, since it has

previously been reported [77,78]. The lack of gene overlap is

generally interpreted as if each signature is random sampling of a

small subset of genes from a larger signature that represent the

involved pathways [79,80].

Colon and rectum tumors have been included indiscriminately

in this work since in a previous report we showed that no

significant differences exist between colon and rectum tumors at

transcriptomic level [81]. However, this decision might explain

some of the poor performance of the signatures, since it is known

that surgery quality is an important prognostic factor in rectal

cancer and less important in colon [82]. In the data used in this

work, no significant association was found between prognosis and

tumor location (data not shown).

The choice of the statistical tools for analyses was an important

matter. The intention of this analysis was to test the performance

of published prognostic signatures in independent datasets rather

than trying to reproduce them using the original methodology. In

this context, Random Forest arises as an efficient method that

performs very well compared with other competitors [49,83]. As

expected, the signatures tested in their training dataset showed the

highest accuracy. Moreover, we succeeded in reproducing the

validation results of three out of the five signatures for which data

was available (SM09, VL10 and JS09). However, association with

prognosis was not observed for profile ST09 in dataset GSE12945,

and it was only observed in one out of the three independent

validation datasets that are included in this work for profile SL10,

although good performance was originally reported (see Table 1,

Figure 2 and File S5). A reason could be that the methodology we

used does not capture well the prognosis value of some signatures,

which might have been developed with more elaborated

algorithms to define the risk prediction in the original study.

Because this was a recognized limitation of this work, analyses

were redone using an alternative methodology (SVM), which

provided similar results (Figures S2, S5 and S6, File S7). In ST09

profile, a semi-supervised approach was used while in SL10 a

nearest-centroid approach was applied which was not properly

described in the paper. SL10 was developed in an Agilent platform

and the mapping of the probes to different validation platforms

used in the datasets might be an addition source of divergence.

Figure 3. Differences between positive and negative post-test
probabilities of recurrence and their 95% confidence interval
for stage II (A) and stage III (B). Prevalence probability of recurrence
for stage II and III were assumed to be 20 and 34% respectively.
Signatures are listed in decreasing order of post-tests probability
differences.
doi:10.1371/journal.pone.0048877.g003
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Although some works reported that simpler methods for

supervised learning in the context of high-dimensional molecular

data could perform equally than those used in this paper which are

more elaborated [84], we chose RF and SVM because they are

reported to be robust to over-fitting and the presence of noise, and

they capable to learn complex classification functions. These

properties are especially desirable in our study as we try to capture

the hypothetical prediction ability of signatures created with very

heterogeneous methodologies [49,50,52,53]. So, our choice of

these methodologies reflects our efforts in finding the prognosis

information reported in the original works, though we may have

failed in some complex signatures.

It is worth noting that two of the analyzed signatures correspond

to current available commercial test for CRC prognosis. Oncotype

DX was derived from OC10 profile [85] and, interestingly, the

reported risk estimations for strata in stage II in their validation

study [43] were similar to those obtained in our work

(PPTpr = 25% and 22%, NPTpr = 12% and 16% respectively).

The algorithm for risk estimation with Oncotype DX implies the

use of additional clinical information as tumor extent and

mismatch repair status, which substantially improves its risk

stratification. To our knowledge, no validation results for stage III

patients have been published yet. Coloprint test was derived from

SL10, which showed a low performance in our analysis, possibly

for the reasons discussed above.

The characteristics of the available test datasets could be other

reason of poor performance. Intriguingly, in some datasets (e.g.

GSE17537) the performance of signatures was better than for

others. This effect was not due to sample size neither tumor cell

enrichment: Datasets with the largest number of events

(GSE14333 and GSE13294) were not well classified by any of

the tested signatures, and datasets with high tumor cell content

showed uneven performance (e.g. GSE12945, GSE5206).

Conclusions
Although most of the published signatures of prognosis in CRC

tested in this analysis have shown significant statistical association

with prognosis, their ability to accurately classify independent

samples into high-risk and low-risk groups is limited. Thus, even

when prognosis differences exist in expression data, higher

accuracy is needed to consider a signature useful for the clinical

practice. Well-designed studies, with large sample size, and

preferably prospective are needed to accurately identify those

patients at risk of recurrence, especially among patients with stage

II CRC tumors.

Supporting Information

Figure S1 Boxplots showing signatures’ MCC values in each

dataset and pooled MCC. Dataset GSE2630 was excluded from

pooled analysis due to low sample size.

(PDF)

Figure S2 Heatmap showing Matthews Correlation Coefficient

values (MCC) for each signature in each dataset as result of

analyses with Support Vector Machine. Rows correspond to

signatures and columns to datasets. Last column shows a pooled

MCC across datasets using sample size as weights. Black lines

delimit the first five signatures for which training datasets were

available (cells highlighted in black). Cells representing signatures

and datasets used to validate them are highlighted in blue. Color

scale represents the MCC values: the darker the color, the higher

MCC (see the legend). Negative values were collapsed to zero.

(PDF)

Figure S3 Heatmap showing Matthews Correlation Coefficient

(MCC) in stage II tumors as result of analyses with Random

Forest. Empty columns are placed in case of no available data and

datasets with less than 10 events, which were excluded from

analyses.

(PDF)

Figure S4 Heatmap showing Matthews Correlation Coefficient

(MCC) in stage III tumors as result of analyses with Random

Forest. Empty columns are placed in case of no available data and

datasets with less than 10 events, which were excluded from

analyses.

(PDF)

Figure S5 Heatmap showing Matthews Correlation Coefficient

(MCC) in stage II tumors as result of analyses with Support Vector

Machine. Empty columns are placed in case of no available data

and datasets with less than 10 events, which were excluded from

analyses.

(PDF)

Figure S6 Heatmap showing Matthews Correlation Coefficient

(MCC) in stage III tumors as result of analyses with Support

Vector Machine. Empty columns are placed in case of no available

data and datasets with less than 10 events, which were excluded

from analyses.

(PDF)

Figure S7 Example of outcome association in stage II samples

using disease free survival information: Kaplan-Meier estimates for

risk groups predicted by signature YM06 in GSE13294 dataset

(Random Forest results).

(PDF)

Figure S8 Example of outcome association in stage III samples

using disease free survival information: Kaplan-Meier estimates for

risk groups predicted by signature AJ08 in GSE14333 dataset

(Random Forest results).

(PDF)

Table S1 Excluded papers by eligibility criteria in the literature

review.

(PDF)

File S1 Details on the prognosis signatures studies systematic

review containing inclusion and exclusion criteria at each step.

(PDF)

File S2 The 27 PRISMA checklist items corresponding to the

prognosis signatures studies systematic review.

(PDF)

File S3 Signatures translation results. Translation results for

each signature to the platforms of public datasets used in this work:

Affymetryx, Hs-OperonV2-vB2.2, Human 19 K Oligo array,

MWG 30 K Oligo set and Rosetta custom human 23 K array.

Translation was performed via Gene Symbol when necessary,

using the Universal Protein Resource annotation database, the

online repository of HUGO Gene Nomenclature Committee and

the chip annotation files from the Affymetrix official web site.

Signature: signature name; Platform: platform used to derive

the signature; Reported size: size of signature reported in the

original paper (genes or features); Extracted size: size of

signature after extraction from the original paper (genes or

features); Gene Symbols: size of signature in terms of official

Gene Symbol when translation was possible; Not found: number

of signature features not found in the platform; % not found:
percentage of signature features not found in the platform (respect

to extracted size); Platform features: signature size in the
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platform after translation. Signatures are listed in decreasing order

of % not found.

(XLS)

File S4 Signatures official Gene Symbols and overlapping.

Signatures Gene Symbol: signatures in terms of Gene Symbol.

For each signature, official Gene Symbols to which some of their

original feature was translated are listed. Translation was

performed using the Universal Protein Resource annotation

database, the online repository of HUGO Gene Nomenclature

Committee and the chip annotation files from the Affymetrix

official web site. Signatures overlap: official Gene Symbols

shared by four, three and two of the signatures used in this work.

List of no shared Gene Symbols (Genes in 1 signatures) is also shown.

(XLS)

File S5 Random Forest classification results. Random Forest

classification results for each signature and dataset are shown for

all, stage II, stage III, Microsatellite Stable and Microsatellite

instable samples analyses. MCC: Matthews Correlation Coeffi-

cient (MCC) and 95% confidence interval; p-value: permutation

p-value associated with MCC; Acc: accuracy rate; Sens:

sensitivity; Spec: specificity; No events/events: number of

samples with good and bad prognosis respectively. Last column

shows the same values for the pooled analyses across datasets using

sample size as weights.

(XLS)

File S6 Global performance of signatures for all, stage II and

stage III samples using Random Forest classifier. For each

signature, sample size used in the analysis (separately for good

and bad prognosis between brackets), pooled Matthews Correla-

tion Coefficients (MCC) with 95% confidence intervals, accuracy

rates, sensitivities and specificities are shown. For stage II and stage

III analyses, also positive and negative likelihood ratios, negative

and positive post-test probabilities, differences between post-test

probabilities and 95% confidence interval are reported. Signatures

are listed in decreasing order of MCC. Those with significant

MCC at 5% level are highlighted in bold letters.

(XLS)

File S7 Support Vector Machine classification results. Sheets
All samples, Stage 2 and Stage 3: Support Vector Machine

classification results for each signature and dataset are shown for

all, stage II and, stage III analyses sheets respectively. MCC:

Matthews Correlation Coefficient (MCC) and 95% confidence

interval; p-value: permutation p-value associated with MCC;

Acc: accuracy rate; Sens: sensitivity; Spec: specificity; No
events/events: number of samples with good and bad prognosis

respectively in that dataset. Sheets All samples global, Stage 2
global and Stage 3 global: Global performance results of

signatures for all, stage II and stage III samples using Support

Vector Machine are extended. Signatures are listed in decreasing

order of MCC. Those with significant MCC at 5% level are

highlighted in bold letters.

(XLS)
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