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Abstract

Objectives We aimed to assess the performance of radiomics and machine learning (ML) for classification of non-cystic benign

and malignant breast lesions on ultrasound images, compare ML’s accuracy with that of a breast radiologist, and verify if the

radiologist’s performance is improved by using ML.

Methods Our retrospective study included patients from two institutions. A total of 135 lesions from Institution 1 were used to

train and test the ML model with cross-validation. Radiomic features were extracted from manually annotated images and

underwent a multistep feature selection process. Not reproducible, low variance, and highly intercorrelated features were re-

moved from the dataset. Then, 66 lesions from Institution 2 were used as an external test set forML and to assess the performance

of a radiologist without and with the aid of ML, using McNemar’s test.

Results After feature selection, 10 of the 520 features extracted were employed to train a random forest algorithm. Its accuracy in

the training set was 82% (standard deviation, SD, ± 6%), with an AUC of 0.90 (SD ± 0.06), while the performance on the test set

was 82% (95% confidence intervals (CI) = 70–90%)with an AUC of 0.82 (95%CI = 0.70–0.93). It resulted in being significantly

better than the baseline reference (p = 0.0098), but not different from the radiologist (79.4%, p = 0.815). The radiologist’s

performance improved when using ML (80.2%), but not significantly (p = 0.508).

Conclusions A radiomic analysis combined with ML showed promising results to differentiate benign from malignant breast

lesions on ultrasound images.

Key Points

• Machine learning showed good accuracy in discriminating benign from malignant breast lesions

• The machine learning classifier’s performance was comparable to that of a breast radiologist

• The radiologist’s accuracy improved with machine learning, but not significantly
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Abbreviations

AI Artificial intelligence

BI-RADS Breast Imaging-Reporting and Data System

GLCM Gray level co-occurrence matrix

ICC Intraclass correlation coefficient

ML Machine learning

NIR No information rate

NPV Negative predictive value

PPV Positive predictive value

RF Forest Ensemble Algorithm

RFECV Cross Validated Recursive Feature Elimination

ROIs Regions of interest

SD Standard deviation

SMOTE Synthetic Minority Oversampling Technique

US Ultrasound
Supplementary Information The online version contains supplementary

material available at https://doi.org/10.1007/s00330-021-08009-2.

Introduction

Ultrasound (US) has gained an established role in the assess-

ment of breast lesions, showing several indications in female

subjects including cases of palpable lumps, as first diagnostic

tool in patients younger than 40, and for the evaluation of

suspicious findings at mammography or magnetic resonance

imaging [1]. According to the Breast Imaging-Reporting and

Data System (BI-RADS) risk assessment and quality assur-

ance tool, lesions are classified into different categories

reflecting malignancy probability [2]. Several BI-RADS US

descriptors are provided to aid in standardizing breast lesion

characterization. According to a recent meta-analysis, the

pooled sensitivity and specificity of US used as primary tool

in detecting breast cancer lesions are 80.1% and 88.4%,

respectively [3].

Radiomics is a complex multi-step process that allows

extracting quantitative data frommedical images, for example

using texture analysis, to build clinically useful prediction

models and decision support tools [4, 5]. In oncologic pa-

tients, radiomics features can be used to non-invasively assess

intratumoral heterogeneity on routinely performed imaging

exams [6]. When applied to medical images, artificial intelli-

gence (AI) techniques employing machine learning (ML) al-

gorithms have shown valuable results in image-recognition

tasks, also being able to extract quantitative parameters

reflecting image heterogeneity [7]. Mainly embraced for clas-

sification tasks, different ML approaches can be considered,

with the most commonly applied in radiology being super-

vised learning (requiring labeled input data) and unsupervised

learning (requiring unlabeled input data) [8]. Furthermore,

several different algorithms are currently available, from those

more easily interpretable (such as decision trees) to more

complicated and harder to interpret ones (such as the

convolutional neural networks used in deep learning) [9]. A

large variety of possible clinical applications for AI in breast

imaging has been described, applied to either US, digital

breast tomosynthesis, or magnetic resonance imaging, ranging

from differential diagnosis of breast lesions to breast cancer

molecular subtype identification and prognosis prediction [10,

11]. According to previous experiences, radiomic analyses

applied to breast US images have shown a good accuracy in

the differential diagnosis of BI-RADS 4 and 5 lesions as well

as to discriminate triple negative breast cancer from

fibroadenomas [12, 13]. Often, these investigations lack ex-

ternal validation as analyzed data originates from a single

institution. Similarly, the added clinical value of the proposed

ML tools is not always assessed, leaving some doubts on the

real-world benefits of AI.

Therefore, the scope of this study was threefold: (1) to

assess the accuracy of a radiomic approach paired to ML ap-

plied to US images acquired in routine clinical practice to

differentiate benign from malignant BIRADS 2–5 breast le-

sions, with internal and external testing; (2) to compare its

diagnostic accuracy with that of a dedicated breast radiologist;

(3) to verify whether the performance of the radiologist could

be improved by the use of the proposed ML algorithm.

Materials and methods

Patient population

The institutional review board approved this retrospective

study and written informed consent was waived. All breast

ultrasound examinations performed between November

2018 and June 2019 at the University Hospital “San

Giovanni di Dio e Ruggi D’Aragona” in Salerno, Italy

(Institution 1), and the Diagnostic Imaging Unit of the

University of Naples “Federico II,” Italy (Institution 2).

Clinical indications for performing breast US were both rou-

tine check-up and assessment of palpable breast lesions or

diagnostic in-depth analysis of breast lesions detected else-

where. US examinations were performed by two radiologists

in each institution, with 8 to 20 years of experience in breast

imaging. Inclusion criteria were as follows: > 18-year-old pa-

tients with at least one BI-RADS 2, 3, 4, or 5 lesion. Exclusion

criteria were as follows: unavailable follow-up for BI-RADS 3

lesions, or pathological confirmation for BI-RADS 4 and 5

lesions; US images not suitable for radiomic analysis due to

artifacts; BI-RADS 2 cystic lesions. Breast lesions from

Institution 1 were used as the training set, while those from

Institution 2 were used as an external test set, to assess the

radiologist’s performance with and without the aid of AI. The

standard of reference consisted of 6 months follow-up (US

and/or mammography) for BI-RADS 3 lesions and pathology
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examination by means of Tru-Cut biopsy or surgical excision

for BI-RADS 4 and 5 lesions.

Image acquisition

US examinations were performed using a LOGIQ S8, GE

Healthcare (Institution 1) and a Logos HiVision E-Hitachi

(Institution 2) US scanners, employing a high-frequency lin-

ear probe with radial, transverse, and longitudinal scans on

both breasts. DICOM images were recorded and stored in

the respective institutional digital archives.

Image conversion and segmentation

US examinations were evaluated by a dedicated breast radiol-

ogist (VR) with 8 years of experience in breast imaging who

selected and retrieved the DICOM image of each breast lesion.

2D B-mode images in which the lesion was fully included,

free from artifact and any measurements, were selected. As

US images were originally encoded as three-channel RGB

images, they were converted to grayscale applying an ITU-R

601-2 luma transform:

L ¼ R*299=1000þ G*587=1000þ B*114=1000

Where L is the luminance value, and R, G, and B the

original values for the red, green, and blue channels for each

pixel. This was performed with the Image module of the

PILLOW Python package (v2.2.1).

Subsequently, the same radiologist performed manual le-

sion segmentation using a dedicated software (ITKSNAP,

v3.8.0) obtaining 2D regions of interest (ROIs) (Fig. 1) [14].

To assess feature stability, manual segmentation was also per-

formed independently by two senior radiology residents (A.V.

and A.V.) on 30 randomly selected patients from the training

set in order to calculate feature intraclass correlation coeffi-

cient (ICC) [15].

Image preprocessing and feature extraction

A dedicated open-source Python-based software

(PyRadiomics, v2.2.0) was employed for image preprocessing

and 2D radiomic feature extraction [16] [17].

As voxels were already isotropic in-plane, no resampling

was necessary prior to feature extraction. On the other hand,

gray-level whole-image normalization was performed to en-

sure comparability of images acquired on different scanners

and with varying settings, with a resulting range of 0–600. As

suggested by the developers, a fixed bin width (= 3) was used

for discretization. Other than from the original images, fea-

tures were also extracted from Laplacian of Gaussian (LoG,

sigma = 1, 2, 3, 4, 5) and wavelet (all high- and low-pass filter

combinations on x and y planes) filtered ones. The use of

image filters can reduce image noise and highlight textural

characteristics. In particular, the LoG filter performs an image

smoothing operation, enhancing structural edges within the

image of interest. In this setting, the sigma value specifies

the desired fineness or coarseness of the resulting output

Fig. 1 Examples of lesion

annotation. The upper row (a, b)

shows placement of a region of

interest on a benign lesion, while

c and d depict a malignant lesion

before and after manual

segmentation.
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(lower values produce finer images and vice versa) [18].

Wavelet decompositions represent an alternative approach to

remove low signal areas from the images (i.e., image smooth-

ing and edge detection). Using high- and low-pass filter com-

binations, the original image is decomposed in distinct com-

ponents, expanding the original signal [19]. As the best prac-

tice for medical image analysis is not established, these alter-

native filtering approaches have been both included in the

investigation.

In regard to feature classes, 2D shape, first order, gray level

co-occurrence matrix (GLCM), gray level run length matrix,

gray level size zone matrix, and gray level dependence matrix

ones were extracted. In particular, as image acquisition could

vary in terms of depth and zoom, only adimensional 2D shape

features were included to avoid biases, in particular perimeter-

surface ratio, sphericity, spherical disproportion, and elonga-

tion. For the remaining classes, all available features were

calculated with the exception of GLCM sum average, as sug-

gested by the PyRadiomics developers due to known redun-

dancy with other GLCM parameters.

Formulas and definitions of the extracted features can be

found on the official documentation (https://pyradiomics.

readthedocs.io/en/latest/features.html).

Data analysis and feature selection

Feature stability testing was performed by calculating a two-

way random effect, single rater, absolute agreement ICC for

each. Only features with good reproducibility (ICC value ≥

0.75) were considered stable and included in the following

steps [15, 20]. ICC calculation was performed using the R

“irr” package [21]. The numbers of patients (n = 30) and

readers (n = 3) as well as the ICC cutoff value were based

on suggestions by recent guidelines and previous ML studies

[15, 20]. A MinMax scaler with 0–1 range was fitted on the

training data alone, to avoid any information leakage, and

used to transform both training and test sets. Successively,

non-informative features showing low variance (≤ 0.01) were

excluded. Similarly, highly intercorrelated features were

discarded based on the pairwise correlation matrix (r ≥ 0.8).

At this point, the Synthetic Minority Over-sampling

Technique (SMOTE) was employed on the training data to

balance the dataset [22, 23]. In detail, SMOTE creates new

instances (i.e., synthetic patients) of the minority class by in-

terpolation of data from k (= 5 in our study) nearest neighbors

from the original population with the same label. The process

is repeated until the two classes are perfectly balanced.

Finally, stratified 10-fold cross-validated recursive feature

elimination (RFECV) with a Logistic Regression (LBFGS

solver) estimator identified the optimal number of parameters

to train the ML algorithm. These data processing steps were

conducted using the pandas and scikit-learn Python packages

[21, 24].

Machine learning analysis

Given the tabular nature of the data, expected number of in-

stances available, and previous experiences, also following

the recommendations made by the scikit-learn developers, a

Random Forest (RF) ensemble algorithm was selected for this

classification task.

Algorithm performance during the random search tuning

process was assessed on the training set through 5-fold strat-

ified cross-validation. This approach is more robust than a

single train-test split and can be expected to give a better

estimation of generalizability [25]. In stratified cross-valida-

tion, each of the folds the data is split preserves the class

balance and is used as a validation set for an algorithm trained

on the remaining (n = 4) data folds. Then, the final model was

fitted on the whole training set and tested on the data from

Institution 2. Its accuracy was also compared to a baseline

reference value (no information rate, NIR) corresponding to

the accuracy obtainable by classifying all lesions as belonging

to the most frequent class (i.e., the mode of the classes). A

p value < 0.05 was considered statistically significant. The

Brier score was calculated for the model on the test set, as

well as a calibration curve, to assess prediction and calibration

loss of predicted probability and lesion class.

The machine learning analysis was performed using the

scikit-learn Python package. Accuracy metrics were comput-

ed with the same Python package and the caret R package [21,

24].

Radiological evaluation

A dedicated breast radiologist (R.B., 8 years of experience)

from Institution 1 evaluated the same US images of the test set

used for the ML analysis and classified each lesion as benign

or malignant, according to the BI-RADS V edition. In detail,

the radiologist assessed lesion shape, margins, orientation,

echo-pattern, and posterior features assigning a score from 2

to 5. BI-RADS scores were then dichotomized as 2–3 =

benign, and 4–5 = malignant for the subsequent analysis.

The radiologist was blinded to patient clinical history and final

diagnosis. After a 4-week washout period, the same radiolo-

gist performed a new evaluation, this time with the availability

of ML predictions and probabilities for each lesion. The

accuracy of the radiologist was calculated using the caret R

package and also compared to the NIR baseline accuracy

reference.

Statistical analysis

Kolmogorov-Smirnov test was first performed to assess

whether data were normally distributed. Accordingly, t-test

and Mann-Whitney U test were performed to assess differ-

ences in terms of age and lesion size (maximum diameter) of
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malignant and benign breast lesions between training and test

sets. Accuracy, sensitivity, specificity, and positive and nega-

tive predictive values of both ML classifier and expert radiol-

ogist were calculated. McNemar’s test was performed to as-

sess differences in the performance between ML and the hu-

man reader and between the reader without and with the use of

ML. A p value < 0.05 was considered statistically significant.

Results

Patient population

Based on inclusion criteria, 441 patients of which 309 were

from Institution 1 and 132 from Institution 2 were reviewed.

Applying our exclusion criteria, a final population of 117 pa-

tients from Institution 1 (mean age 48 years, range 15–94

years), with 135 lesions (91 benign and 44 malignant), and

57 patients from Institution 2 (mean age 52 years, range 12–85

years), with 66 lesions (21 benign and 45 malignant), was

therefore included. The flowchart of patient selection process

is illustrated in Fig. 2. Age was not statistically different be-

tween training and test sets at Student’s t-test (p = 0.177).

Mean size of breast lesions from Institution 1 was 13 mm

(range 4–44 mm), while mean size of breast lesions from

Institution 2 was 16.37 mm (range 4–47 mm). Training and

test sets did not differ in terms of lesion size between benign

andmalignant breast lesions atMann-WhitneyU test (p values

0.794 and 0.325, respectively).

The BI-RADS assessment of the included lesions can be

found in the supplementary materials as Table S1.

Fourteen BI-RADS 4 lesions were revealed as benign,

while the remaining BI-RADS 4 and 2 BI-RADS 3 lesions,

who showed a significant increase of lesion size at follow-up

examinations, resulted in malignant pathology. Final

diagnoses of histologically proven BI-RADS 3, 4, and 5 breast

lesions are reported in Table 1.

Feature extraction, data analysis, and feature
selection

A total of 520 features were extracted. Of these, 198 resulted

unstable after ICC assessment and were discarded, with 322

features left. Then, 10 low variance parameters were also ex-

cluded as well as 278 highly intercorrelated ones, as resulted

from the pairwise correlationmatrix shown in Figure S1. After

class balancing with SMOTE, from the remaining 34 features,

RFECV identified a subset of 10 (Figure S2), including “orig-

inal shape2D PerimeterSurfaceRatio”; “original shape2D

Elongation”; “original glcm Autocorrelation”; “original gldm

DependenceNonUniformityNormalized”; “log-sigma-1-0-

mm-3D glcm Imc2”; “log-sigma-2-0-mm-3D glcm

Co r r e l a t i o n ” ; “ l o g - s i gm a - 3 - 0 -mm - 3D g l r lm

GrayLevelNonUniformityNormalized”; “log-sigma-4-0-mm-

3D glcm Imc1”; “wavelet-H glcm Imc2”; “wavelet-H glrlm

GrayLevelNonUniformityNormalized.” The feature selection

process is summarized in Figure S3.

Machine learning analysis

The RF hyperparameters were set as follows: bootstrap = true,

class weight = none, criterion = Gini, maximum depth = none,

maximum features = 5, maximum leaf nodes = none, mini-

mum impurity decrease = 0.0, minimum impurity split = none,

minimum samples leaf = 1, minimum samples split = 2, min-

imum weight fraction leaf = 0.0, number of estimators = 400.

In the training set, RF obtained an overall mean accuracy of

82% (standard deviation, SD, ± 6%) and positive predictive

value (PPV), sensitivity, specificity, and AUC for malignant

lesions respectively of 78% (SD ± 5%), 89% (SD ± 7%), 75%

(SD ± 5%), and 0.90 (SD ± 0.06).

Fig. 2 Flowchart of the patient

selection process. Pts, patients;

BLs, breast lesions
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In the test set, ML accuracy also was 82% (95% confidence

intervals (CI) = 70–90%) with a PPV and negative predictive

value (NPV) of 82% (95% CI = 74 to 89%) and 80% (95% CI

= 56–93%), sensitivity of 93% (95% CI = 82–99%), and

specificity of 57% (95% CI = 34–78%) for malignant lesions.

RF’s accuracy results are significantly better than the NIR

(p = 0.0098). The AUC was 0.82 (95% CI = 0.70–0.93)

(Fig. 3). Regarding prediction and calibration loss on the test

set, the Brier score was 0.17 and Fig. 4 presents the calibration

curve plot.

Radiological evaluation

The expert radiologist obtained an accuracy of 79.4% (95%CI

= 67–91%) on the test set, not significantly different fromML

Table 1 Diagnosis of

histologically proven BI-RADS

3, 4, and 5 lesions in both training

and test sets

Diagnosis Number of lesions (%) Training (%) Test (%)

Malignant lesions

Invasive ductal carcinoma 66 (75) 32 (73) 34 (76)

Invasive lobular carcinoma 10 (11) 4 (9) 6 (13)

Other* 13 (14) 8 (18) 5 (11)

Total 89 44 45

Tumor grade

G1 15 (17) 7 (16) 8 (18)

G2 47 (53) 25 (58) 22 (49)

G3 26 (30) 11 (26) 15 (33)

Total 88 43 45

Molecular subtype

Luminal A and B 77 (88) 38 (88) 39 (87)

HER2+ 2 (2) 2 (5)

Triple negative 9 (10) 3 (7) 6 (13)

Total 88 43 45

Benign lesions

Fibroadenoma 6 (43) 3 (33) 3 (60)

Intraductal papilloma 4 (29) 3 (33) 1 (20)

Steatonecrosis 3 (21) 2 (22) 1 (20)

Complex cyst 1 (7) 1 (12)

Total 14 9 5

*Intraductal papillary carcinoma, mucinous carcinoma, adenoid-cystic carcinoma; Hodgkin lymphoma, ductal

carcinoma in situ

Fig. 3 Receiver operating characteristic curve of the machine learning

classifier for distinguishing benign and malignant lesions in the test set

Fig. 4 Calibration curve plot of the model in the test set. Average

predicted probability is represented in the x-axis while the proportion of

malignant lesions in the y-axis
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reading at McNemar’s test (p = 0.815). Sensitivity and spec-

ificity in identifying malignant breast lesions were 77.8%

(95% CI = 62.9 to 88.8%) and 81% (95% CI = 58.1 to

94.6%), respectively, while PPV was 89.7% (95% CI = 78.1

to 95.5%) and NPV 63% (95% CI = 48.7 to 75.3%). With the

availability of ML predictions, these metrics improved as fol-

lows: accuracy = 80.2% (95% CI = 67–93%), sensitivity =

88.9% (95% CI = 75.6 to 96.3%), specificity = 71.4% (95%

CI = 47.8 to 88.7%), PPV = 87% (95%CI = 77.1 to 93%), and

NPV = 75% (95% CI = 55.7 to 87.7%). The McNemar test

comparing the ML and expert radiologist’s readings was not

significantly different (p = 0.508). Classification tables of the

comparison between the performance of the expert radiologist

and ML as well as between the expert radiologist without and

with the support of ML are reported in Tables S2 and S3,

respectively. Examples of cases in which the expert radiolo-

gist was aided by the ML algorithm in correctly classifying

benign and malignant lesions are illustrated in Fig. 5.

Accuracy metrics of ML and expert radiologist without and

with the availability of ML prediction are summarized in

Table 2.

Discussion

In this study, we built a radiomic-based ML model to differ-

entiate benign from malignant breast lesions on US. The

resulting RF algorithm obtained an accuracy of 82%, with

high sensitivity (93%) but low specificity (57%) in classifying

benign and malignant breast lesions. It performed significant-

ly better than the baseline NIR (p = 0.0098) and showed

higher accuracy compared to the expert radiologist (82% vs

79.4%), even if this difference did not reach statistical signif-

icance (p = 0.815). Even though the radiologist’s accuracy

increased to 80.2% with the aid of ML predictions, this differ-

ence also proved not statistically significant (p = 0.508).

As with all ML studies, our results should be interpreted by

taking into account the data that was employed to build and

test the model. We wished to focus on challenging lesions,

excluding all cystic lesions which do not pose a real diagnostic

challenge. This design choice is also reflected in the perfor-

mance of the breast radiologist, slightly lower than what could

be expected from the literature [3, 26]. It should be acknowl-

edged that reviewing US images is not the same as performing

a complete examination, but this could not be avoided due to

the study’s retrospective nature. In this setting, RF

outperformed both the baseline reference and the radiologist,

Table 2 Accuracy metrics (95% confidence interval) of ML classifier and expert radiologist without and with the availability of ML reading

Accuracy Sensitivity Specificity PPV NPV TP FN TN FP

ML classifier 82 (70 – 90) 93 (82 – 99) 57 (34 – 78) 82 (74 – 89) 80 (56 – 93) 42 3 12 9

Expert reader 79.4 (67 – 91) 77.8 (62.9 – 88.8) 81 (58.1 – 94.6) 89.7 (78.1 – 95.5) 63 (48.7 – 75.3) 35 10 17 4

Expert reader with ML readings 80.2 (67 – 93) 88.9 (75.6 – 96.3) 71.4 (47.8 – 88.7) 87 (77.1 – 93) 75 (55.7 – 87.7) 40 5 15 6

ML machine learning, PPV positive predictive value, NPV negative predictive value. Data are expressed as percentages

Fig. 5 B-mode US images of a benign (a) and malignant (b) breast lesion

initially misclassified by the expert radiologist and correctly diagnosed

with the availability ofML reading. aA case of a 13-year-old patient with

a 4-cm oval breast lesion with circumscribed margins but heterogeneous

echo-pattern, proved to be a sclerosing papilloma after surgical excision.

b A case of a 59-year-old patient with a 5-mm oval, hypoechoic breast

lesion with circumscribed margins, histologically proved as Luminal A,

G1, ductal invasive carcinoma
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demonstrating promising performance. The improved perfor-

mance of the radiologist with the aid of ML is also suggestive

of its usefulness in clinical practice. Indeed, the sensitivity of

the expert radiologist raised up to 88.9% vs 77.8%, to the

detriment of the specificity that, instead, decreased from 81

to 71%. The increase in terms of sensitivity is advisable as it

could reduce the possibility to miss malignant lesions. It is

interesting to note that the radiologist with ML still performed

worse than ML alone, probably due to lack of trust in the

model’s predictions.

While the model’s accuracy was stable across the cross-

validation and test set assessment, in the latter we observed a

reduction in specificity, compensated by increased sensitivity.

It must be considered that the test set had a different propor-

tion of malignant cases (n = 45/66, 68%) compared to the

training one (44/135, 33%), and overall challenging lesions,

as demonstrated by the radiologist’s performance.

Our findings support a possible clinical role for a US

radiomic-ML tool in the characterization of benign and ma-

lignant breast lesions, in line with previous studies conducted

using US radiomic features with [27–29] and withoutML [12,

13, 30, 31]. For example, logistic regression models were

developed using radiomic features extracted from US images

to discriminate benign frommalignant lesions [31], predict the

presence of cancer in BIRADS 4 and 5 lesions [12], and dif-

ferentiate fibroadenomas from triple negative breast cancer

[13] with AUC values of 0.886, 0.928, and 0.834–0.864, re-

spectively. Furthermore, images obtained from automated

whole breast US were used to extract texture, shape, and el-

lipsoid features and also analyzed using a logistic regression

model, reporting an accuracy of 85% in classifying breast

masses [30]. Deep learning networks were also tested to char-

acterize benign and malignant breast lesions, with AUC

values ranging from 0.80 [28] to 0.95 [29]. ML algorithms

using radiomic features based on US BIRADS lexicon were

also assessed by Fleury et al [32]; the Support VectorMachine

resulted as the best classifier, with an AUC value of 0.84 in

characterizing breast lesions. To the best of our knowledge,

this is the first study assessing the usefulness of a ML classi-

fier using shape, first order, and texture features from both

original and filtered US images to classify benign and malig-

nant breast lesions in a challenging dataset. The possibility to

implement such a tool in the routine clinical practice would

have tremendous implications in the management of breast

lesions, considering that US is the first-level imaging modality

for their assessment. In a future perspective, it would be pos-

sible to non-invasively characterize breast lesions using a

widespread imaging modality, thus reducing the recourse to

breast biopsy, as well as to reserve the use of second level and

more expensive imaging techniques, such as MRI, to selected

cases.

Limitations of our study are represented by its retro-

spective nature and the relatively limited patient

population. However, the multicentric study design

allowed to validate the AI algorithm on an external test

set from a different institution, thus determining its ro-

bustness and generalizability. As stated above, the retro-

spective nature of the study did not allow for a standard

evaluation of patients by the radiologist, who was limited

to reviewing US images. Also, the final populations from

the two institutions showed different proportions of ma-

lignant lesions, also understandable in light of the retro-

spective design of the investigation.

In conclusion, a radiomic approach paired to ML was ac-

curate to differentiate benign from malignant BIRADS 2–5

breast lesions on US, showing a performance comparable to

that of an experienced radiologist. Further studies on a larger

cohort of patients and with a prospective design are necessary

to confirm our promising findings.
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