
Clinically Relevant Modeling of Tumor Growth and Treatment

Response

Thomas E. Yankeelov1,2,3,4,5,6,*, Nkiruka Atuegwu1,2, David Hormuth1,2,3, Jared A. Weis1,2,

Stephanie L. Barnes1,2, Michael I. Miga1,2,3,7, Erin C. Rericha4, and Vito Quaranta5,6

1Institute of Imaging Science, Vanderbilt University, Nashville, TN 37212, USA

2Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37212,

USA

3Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA

4Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37212, USA

5Department of Cancer Biology, Vanderbilt University, Nashville, TN 37212, USA

6Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37212, USA

7Department of Neurological Surgery, Vanderbilt University, Nashville, TN 37212, USA

Abstract

Current mathematical models of tumor growth are limited in their clinical application because they

require input data that are nearly impossible to obtain with sufficient spatial resolution in patients

even at a single time point—for example, extent of vascularization, immune infiltrate, ratio of

tumor-to-normal cells, or extracellular matrix status. Here we propose the use of emerging,

quantitative tumor imaging methods to initialize a new generation of predictive models. In the

near future, these models could be able to forecast clinical outputs, such as overall response to

treatment and time to progression, which will provide opportunities for guided intervention and

improved patient care.

NEXT-GEN MODELS

At the turn of the 20th century, meteorology was in its infancy, and weather forecasts were

based on historical trends, experience, intuition, and guesswork. It was not until the

development of realistic mathematical models of atmospheric phenomena, as well as

advances in computation, that accurate weather prediction became a reality. At the onset of

the 21st century, our approach to “tumor-specific treatment” of cancer and personalized

patient prognosis resembles the early days of weather forecasting. However, with proper

deployment of noninvasive imaging and appropriate investment in the development and

validation of mathematical models, momentous advances in forecasting an individual

patient’s treatment outcomes are within reach. To make this vision a reality requires realistic

mathematical models of tumor growth initialized and constrained by patient-specific data.

Although much progress has been made building mathematical models of tumor growth,

they have not been centered on clinical data. Consequently, these models have had limited

impact on clinical practice. It is not enough to test the effect of various assumptions

mathematically (in silico); if they are to be of clinical value, these models must make
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predictions based on data that can be readily measured in people and that can be readily

tested (falsified) in the clinic.

In this Perspective, we argue that the development of clinically relevant mathematical

models of tumor growth and treatment response should meet a fundamental prerequisite: the

ability to incorporate quantitative, spatiotemporal data from the individual patient. Advances

in noninvasive imaging technologies make this possible. Such data integration into models

will catalyze acceptance of tumor-model–based forecasting into clinical practice.

A MODEL IMPASSE

There is an extensive literature on the mathematical modeling of tumor growth and

treatment response. Proposed models range in complexity from exponential growth of an

avascular tumor to complex equations describing molecules that promote invasion and

angiogenesis. Although these approaches have provided insights into tumor biology (1–4),

progress in this field has been somewhat overlooked by cancer biologists and clinical

practitioners (5). Furthermore, modelers are frequently not involved in experimental design

or data interpretation (6). In short, the measure-model feedback loop that is vital for model

refinement and traction has not been closed.

We suspect that a reason for the lack of interactions between modelers and experimentalists

is the way that models are constructed, studied, and presented. Briefly, papers reporting on

mathematical modeling of tumors contain a theoretical section in which the model is

described. Immediately after this exposition, there is frequently a table listing the model

parameters (sometimes dozens) and how parameter values are assigned. With these values

assigned, the papers then illustrate how model simulations evolve in time and how various

perturbations to the parameters lead to distinct outcomes. In principle, the structure of these

papers is correct and should produce powerful insights into tumor biology. In practice, there

are (at least) two translational weaknesses: (i) model parameter values are constrained from

published literature, often from different biological systems; and (ii) model predictions

depend sensitively on these parameters, yet they are frequently unable to be measured in an

actual patient. These limitations dampen enthusiasm from both the cancer biology and

oncology communities.

The impasse in the application of mathematical modeling to cancer therapy may be

overcome by alternative frameworks. For example, certain patient-specific, imaging-based

measurements obtained before and during therapy could be used to initialize, constrain, and

update models of tumor growth. The model predictions could then be directly compared

with clinical outcomes iteratively and the patient-specific model refined and adjusted.

Rigorous testing and subsequent adoption of this approach will require greater

communication between imaging scientists, modelers, cancer biologists, and oncologists and

will be hastened by the recent advances in both the quality and quantity of data available

from emerging medical imaging techniques.

QUANTITATIVE IMAGING

There are several quantitative, noninvasive imaging methods that are now capable of

reporting on biologically relevant, complementary tumor variables or parameters. Magnetic

resonance imaging (MRI) and positron emission tomography (PET) have matured to the

point where they offer patient-specific measures of tumor status at the physiological,

cellular, and molecular levels. The methods described below have independently proven

clinical utility. It is therefore natural to explore their integration into computational models.
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Tumor-cell density

The microscopic, thermally induced behavior of molecules moving in a random pattern is

referred to as self-diffusion or Brownian motion. The rate of diffusion in cellular tissues is

described by means of an apparent diffusion coefficient (ADC), which largely depends on

the number and separation of barriers that a diffusing water molecule encounters. Diffusion-

weighted MRI (DW-MRI) methods have been developed to map the ADC and have been

shown to correlate inversely with tissue cellularity (7, 8). ADC measurements can report on

the early effects of cytotoxic therapies and have therefore been widely deployed in clinical

trials as a surrogate biomarker of treatment response.

Tumor vascular characteristics

In dynamic contrast-enhanced MRI (DCE-MRI), images are collected before, during, and

after a contrast agent is injected into a peripheral vein. The signal can be analyzed over time

with a pharmacokinetic model so as to estimate physiological parameters related to vessel

perfusion and permeability, the extravascular volume fractions, and the plasma volume.

DCE-MRI methods are routinely used in clinical trials exploring the effects of

antiangiogenic therapies (9).

Tumor glucose metabolism

The PET radiotracer most frequently used in clinical practice is fluorodeoxyglucose (FDG).

As a glucose analog, FDG is taken up by tumor cells and phosphorylated to FDG-6-

phosphate. However, FDG-6-phosphate is not metabolized further and therefore remains

trapped intracellularly. PET quantification of FDG accumulation in tumors is a method of

assessing and, in some cases, predicting therapeutic response by providing a surrogate for

the metabolic activity of the tumor (10).

Tumor oxygen status

It is well known that hypoxia can induce changes in gene expression in tumor cells that lead

to a more aggressive phenotype, including stimulation of angiogenesis, inhibition of

apoptosis, and cell invasion. Clinical detection of hypoxia became available with the

introduction of radiotracers, such as fluoromisonidazole and copper diacetyl-bis(N4-

methylthiosemicarbazone), as well as blood oxygen level–dependent MRI methods (11). To

date, the most common uses for hypoxia imaging are for selecting patients who may benefit

from therapies designed to overcome hypoxia and for longitudinally assessing reduction in

hypoxia (12).

These are but a few examples of quantitative, dynamic tumor variables or parameters that

are currently obtained in the clinic with noninvasive imaging. As multimodal imaging of

tumors continues to develop and combined PET/MRI scanners come online in the clinic,

availability of tumor data from patients is bound to expand at a fast pace. Yet, harnessing the

predictive power of these data remains a challenge. The paradigm described in this

Perspective represents a realistic approach to optimizing the use of imaging data for

predicting the response of tumors on an individual patient basis.

INTEGRATING IMAGING AND MATHEMATICAL MODELS

There is preliminary evidence that mathematical models of tumor growth, if conceived

stringently with translational application as a goal, can be driven by data from noninvasive,

patient-specific imaging studies.
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Step 1: Cell number

Figure 1 provides an example of how clinically acquired, quantitative MRI data of an

invasive ductal carcinoma can be incorporated into a simple mathematical model of tumor

growth. The top row of three images depicts ADC maps of a tumor locus superimposed on

anatomical T1-weighted images obtained at three time points: before, after one cycle, and at

the conclusion of chemotherapy. These data can be transformed to an estimation of cell

number on a voxel-by-voxel basis. Then, the change in tumor cellularity from the

pretreatment to the post-one-cycle treatment is used to calculate proliferation or death rate

(depending on whether this value is positive or negative, respectively) for each voxel via the

logistic model of tumor growth. In both equations in Fig. 1, the carrying capacity θ is the

total number of tumor cells that fit within a given section of tissue. In imaging, the relevant

length scale is the voxel, which has a well-defined size; thus, assuming a reasonable

(measurable) mean tumor cell size fixes θ. Using the tumor cellularity (N) measured after

one therapeutic time point in conjunction with the proliferation/death rate (k), one can

predict cellularity at a future time point—and this predicted map can then be directly

compared with experimental data (13, 14).

Step 2: Incorporating cell motility

To improve the previous example of imaging correlating with tumor cell number, one could

incorporate the movement of tumor cells. A natural extension would include the random

diffusion of tumor cells as a function of both space and time—an approach studied by Wang

et al. (15) in human glioma. They used a reaction-diffusion partial differential equation that

described the rate of change in density of glioma cancer cells as the sum of a motility term

(random diffusion) and a proliferation term (similar to the logistic model of Fig. 1). By

analyzing serial MRI scans, the net proliferation and invasion rates can be estimated, and

these rates can then be used to grow in silico an “untreated virtual control,” which can be

compared directly with patient data. The authors showed that only patients with a low

velocity of radial expansion or a low net proliferation rate survive longer than the median

prognosis. Extending this approach for low-grade gliomas, Jbabdi et al. used diffusion

tensor imaging (DTI) to allow for anisotropic movement of tumor cells along fiber tracts,

which yielded improved shape and kinetic evolution of the brain tumors (16).

Step 3: Adding in mechanics

Tumor cell movement can be mechanically coupled to the surrounding tissue structure (17).

As shown in Fig. 2, we express the rate of change of tumor cell number (NTC) at a particular

location (x) and time (t) as the sum of random cell diffusion and logistic growth. Cell

diffusion (D) is also linked to the nascent mechanical stress environment as described by the

von Mises stress (σvm) and to an empirical coupling constant (γ). The mechanical stress

tensor (σ) in Fig. 2 is influenced by an expansive force originating from mass changes

associated with the proliferation of tumor cells and an empirical coupling constant (λ).

Prediction of tumor cellularity at the conclusion of therapy is analogous to that presented in

Fig. 1. Namely, the ADC maps obtained at three time points are transformed to estimates of

cell number. Using cellularity data from the first two time points and a model, the

proliferation parameter (k) can be estimated. As in Fig. 1, these initial cell number maps, the

model, and the extracted proliferation parameter are then used to predict the cell number and

distribution found in a human breast cancer patient at the conclusion of therapy and

compared with experimental data. A similar approach was offered by Clatz et al. (18), who

simulated the mechanical interaction of an invading glioblastoma into healthy brain

parenchyma, albeit without considering the mechanotransductive effects on tumor growth

mentioned here.
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MULTISCALE IMAGING = MULTISCALE MODELING

Multiscale data from combined PET-MRI could be used to initialize mathematical models

incorporating many realistic tumor properties. A simulation of one such example is

presented in Fig. 3: a coupled set of partial differential equations describing tumor cell

proliferation, angiogenesis, and glucose consumption. T is system, although currently

untested, closely resembles previous efforts (19–21) and has been recast to accept data from

DCE-MRI, DW-MRI, and FDG-PET studies to initialize the model and lead to patient-

realistic outcomes. Equations describing the rate of change of tumor cells, endothelial cells,

and glucose at point x and time t take values of the above imaging data to initialize the

model in order to predict distributions of these same parameters at future time points, which

can then be directly compared with experimental data. The diffusion of tumor cells (DTC)

can be estimated by using sequential anatomical MRI data (15). Similarly, sequential blood

volume maps available from DCE-MRI can potentially inform the diffusion of endothelial

cells (DEC). Once an estimate is obtained for DEC, chemotaxis of ECs (χEC) can be

estimated as the value that results in a local blood volume increase equal to what is seen in

vivo. MRI data can provide an estimate of NTC and θ. By adding a third imaging scan, the

equation describing rate of change of tumor cells (Fig. 3) can be fit to sequential DW-MRI

data in order to estimate kp,TC and kd,TC, which are the proliferation and death rates of the

tumor cells, respectively. Chemotaxis of tumor cells (χTC) can be estimated to provide an

equal tumor cell migratory/chemotaxic response to blood volume gradients as compared

with literature studies of migratory/chemotaxic response to oxygen gradients.

The diffusion value of glucose (DG) is a physical constant and can be safely assumed from

literature values. Glucose uptake by tumor cells (TG) can be estimated by the product of the

number of tumor cells and the glucose consumption rate per tumor cell. Although the

number of tumor cells can be estimated from ADC data (Fig. 1), glucose consumption is

more difficult to capture and may have to be assigned an empirical value. The delivery of

glucose to tumor cells (FG) can be written as the product of glucose delivery to a given

voxel, glucose in the blood, and the extraction fraction of glucose. Delivery is estimated

from DCE-MRI data, blood glucose concentration (CG) is readily accessible by a blood

draw, and the extraction fraction can be estimated by the difference between the

concentration of FDG in the voxel and blood glucose levels.

LINKING THE SCALES

If we take the macroscopic-scale structure of the tumor to be its volume, surface area, and

gross morphological features, then the mesoscopic-scale structure can be taken to be tumor

cellularity (or cell density) and vascularity (Fig. 1). At finer scales, we encounter cellular

properties such as glucose metabolism, proliferation, motility, or stress response (Figs. 2 and

3). Current, clinically available medical imaging methods report on all of these scales. [The

Cancer Imaging Archive (www.cancerimagingarchive.net) provides a range of imaging data

types available.] Although routinely available in vivo medical imaging approaches do not

offer adequate spatial or temporal resolution at finer scales (such as the gene scale) to

completely link all scales, it may be possible to link data accessible from imaging to the

genomic and histopathology data available from, for example, biopsies (22). In short, every

effort should be made to incorporate all available patient-specific data to more completely

constrain a predictive model.

The models presented above are informed by recent work in cancer cell biology, but efforts

are required to ensure measurements and associated predictions are consistent with the

growing understanding at the microscopic level. We do not yet have a thorough

understanding of how the biological properties not measured through imaging affect tumor
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modeling. Indeed, there are many ongoing efforts to understand the physical and biological

principles at the microscopic scales, perhaps most notably by the members of the National

Cancer Institute–National Science Foundation Physical Sciences in Oncology program (23).

However, phenomenological, macroscopic models have been successful in other disciplines

in both managing practical applications and providing lampposts for microscopic theories.

The methodology we suggest could bring mathematical modeling to immediate clinical

relevance through the use of phenomenological models that predict patient outcome from

currently available patient measurables and thus can be used to improve patient care.
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Fig. 1. Modeling cell number
ADC maps of a tumor can be superimposed on anatomical T1-weighted MR images

obtained at three time points during neoadjuvant chemotherapy. These data are first

transformed to an estimation of cell number. So transformed, these data enable the

calculation of the associated proliferation (k > 0) or death (k < 0) rate. The carrying capacity

θ is estimated as the total number of tumor cells that fit within a voxel. Then by using the

tumor cellularity measured at the second time point, the proliferation/death rate, and the

logistic model of growth, one can predict future cellularity, which enables explicit

comparison with experimental data (scatter plot).
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Fig. 2. Modeling cell number and biomechanics
Similar to Fig. 1, the top row of three images depicts color-coded ADC maps of a tumor

superimposed on (fat-saturated) T1-weighted MR images obtained at three time points

during chemotherapy. Again, the initial and intermediate data are transformed to an

estimation of cell number that, in conjunction with a biomechanical model (set of

equations), is used to estimate the proliferation k. Using the estimated k and the

biomechanical model, one can make predictions related to future cellularity, which can then

be compared directly with experimental data (in this case, the acquired third time point acts

as a comparator).
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Fig. 3. Multimodal outputs to describe tumor and vessel dynamics
Multimodal (PET and MRI), multiparametric imaging data (estimates of glucose utilization,

tumor cellularity, vascularity, perfusion, and tissue volume fractions) could be used to

initialize and constrain a coupled set of partial-differential equations describing tumor cell

proliferation, angiogenesis, and glucose utilization. The far left column represents the type

of data that would be available from routine DW-MRI (k, NTC), DCE-MRI (NEC), and FDG-

PET imaging (CG). These data can then be input into the equations provided to predict

distributions of these parameters at future time points (intermediate and final outcomes). As

with Figs. 1 and 2, the model outcomes can be directly compared with experimental data.
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