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ABSTRACT
The success of StyleGAN has enabled unprecedented semantic edit-

ing capabilities, on both synthesized and real images. However, such

editing operations are either trained with semantic supervision or

annotated manually by users. In another development, the CLIP

architecture has been trained with internet-scale loose image and

text pairings, and has been shown to be useful in several zero-shot

learning settings. In this work, we investigate how to effectively

link the pretrained latent spaces of StyleGAN and CLIP, which in

turn allows us to automatically extract semantically-labeled edit

directions from StyleGAN, finding and naming meaningful edit op-

erations, in a fully unsupervised setup, without additional human

guidance. Technically, we propose two novel building blocks; one

for discovering interesting CLIP directions and one for semantically

labeling arbitrary directions in CLIP latent space. The setup does

not assume any pre-determined labels and hence we do not require

any additional supervised text/attributes to build the editing frame-

work. We evaluate the effectiveness of the proposed method and

demonstrate that extraction of disentangled labeled StyleGAN edit

directions is indeed possible, revealing interesting and non-trivial

edit directions.

CCS CONCEPTS
•Neural Rendering→ Face and Car Editing; •Visual-Linguistic
Models→ CLIP ; • Generative Modeling→ GANs.
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Figure 1: We propose CLIP2StyleGAN, an unsupervised
framework to both extract and label disentangled direc-
tions in StyleGAN. The figure shows some fine-grained edits
and corresponding labels extracted by the CLIP2StyleGAN
framework for faces and cars. No additional textual hints or
image annotations were available to the algorithm.
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1 INTRODUCTION
Generative adversarial networks (GANs) are able to synthesize

new images similar to a given set of existing images. After ini-

tial research in the foundational aspects of GAN architecture and

training [Arjovsky et al. 2017; Gulrajani et al. 2017a,b; Mao et al.

2017; Radford et al. 2015], StyleGAN [Karras et al. 2018] emerged

as the most popular architecture. Building on pre-trained GANs,

recent advances in GAN inversion [Abdal et al. 2019; Richardson

et al. 2020; Tewari et al. 2020b; Zhu et al. 2020b,a] and semantic

control [Abdal et al. 2021b; Härkönen et al. 2020; Shen et al. 2020]

together has enabled semantic editing of existing photographs. One

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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class of algorithms to provide semantic editing capability is super-
vised using training data to define these semantic concepts, e.g.,

age, gender, pose, and lighting for portrait images. Alternatively,

GANSpace [Härkönen et al. 2020] finds latent space manipulations

in an unsupervised manner but then the directions themselves are

manually labeled and curated in a post process. In this work, start-

ing with pretrained GANs, we ask if it is possible to both extract
and label disentangled semantic controls without any supervision. In
particular, we algorithmically determine which attributes of a set of

images are important, and propose meaningful words to describe

edit operations.

There aremultiple motivations for this work: (i) It is hard to know

what variations are present in the data set beforehand and which

edits are possible in high quality; (ii) While experts might already

have specific edits in mind, many casual users would prefer to select

from a list of given edits. While some edits might be obvious, such

as adding a smile or changing the age of a face, other edits like

going from scrap metal to a complete car are unexpected and a user

would not really consider the availability of such an edit unless

they are explicitly told such an edit is possible; (iii) Without some

information of what edits are possible in the data, a user might have

to try many unsuccessful text prompts before finding something

that works.

In another recent advancement (CLIP [Radford et al. 2021]), em-

bedding spaces have been learned for image/text embedding on

very large internet-scale data. The learned spaces, although trained

using only loose image-keyword association, have been shown to

be rich and effective for several zero-shot tasks, i.e., not requiring

any further training or fine-tuning for new tasks. For example, in

the context of image manipulation, CLIP and StyleGAN have been

utilized for text-guided editing [Patashnik et al. 2021] or zero-shot

domain transfer [Gal et al. 2021; Zhu et al. 2021b].

Given the success of the above approaches, we investigatewhether

the salient attributes of an image dataset can be automatically iden-

tified directly based on CLIP embeddings. Specifically, we explore

the following: (i) how can we identify interesting directions, in a

data-driven way, by analyzing the CLIP image space; (ii) if the above

directions are entangled according to textual concepts, i.e., accord-

ing to the CLIP text space, then how to disentangle the directions;

and finally, (iii) how to transfer the disentangled directions, along

with their concept labels, to the StyleGAN space. By developing

methods to answer the above questions, we enable unsupervised

extraction of labeled StyleGAN edit directions, a process we term

as CLIP2StyleGAN to highlight the joint analysis of the CLIP and

StyleGAN spaces.

We evaluate CLIP2StyleGAN on two datasets of portraits and

cars (see supplementary materials for more datasets), access the

quality of the extracted edit directions, and conduct a user study to

compare the words we automatically choose to describe our edits to

human labels. Note that, as a byproduct, our method provides unsu-

pervised classifiers for concepts that are discovered as disentangled

directions. In summary, as language is correlated with our ability to

perceive attributes such as gender, age, or color [Maier and Rasha

2018], so by extracting attributes in a joint text/image space we

automatically suggest attributes that are perceptually important

for editing, data augmentation, and evaluation of image processing

models. Figure 1 shows the top few extracted and labeled directions

for the face and the car StyleGAN spaces.

Code for this paper is available at

https://github.com/RameenAbdal/CLIP2StyleGAN

2 RELATEDWORK
High-Quality GANs. Two state of the art architectures for GANs

are BigGAN [Brock et al. 2019] for ImageNet and StyleGAN for

specific classes, such as faces, cars, and human bodies. StyleGAN

was developed over a series of papers by Karras and various co-

authors [Karras et al. 2017, 2020a, 2021, 2018, 2020b]. The qual-

ity of the StyleGAN output is particularly impressive for well cu-

rated high-resolution datasets, most importantly FFHQ [Karras

et al. 2018] which focuses on human faces, but also AFHQ [Choi

et al. 2020] focusing on animals, and LSUN objects [Yu et al. 2015]

which includes images of cars among others. On all of these themed-

datasets, StyleGAN yields very good results. In this work, we do

our analysis on the FFHQ [Karras et al. 2018] dataset trained on

StyleGAN2 [Karras et al. 2020b] because it is considered state of the

art for face image generation and because as humans we are espe-

cially tuned to understand and describe images of faces. Currently,

it is unclear if StyleGAN3 [Karras et al. 2021] is better than Style-

GAN2 in image quality. Several people report the best results using

the slightly improved StyleGAN2 implementation in the official

StyleGAN3 code base.

Joint Visual-Linguistic Models. Computer vision and NLP re-

searchers have been interested in generating diverse representa-

tions of images by combining natural language and image represen-

tations, for example DeVISE [Frome et al. 2013] was an early work

that showed how language could improve a model. Such methods

combine visual and language models to perform many interesting

downstream tasks such as visual question answering and image cap-

tioning. ICMLM [Sariyildiz et al. 2020] learns visual representations

over image-caption pairs to inject global and localized semantic

information into visual representations. ViLBERT [Lu et al. 2019]

extends the BERT [Devlin et al. 2019] architecture for learning

task-agnostic joint representations of image content and natural

language. VL-BERT [Su et al. 2020] also learns a joint representa-

tion that is effective for many visual-linguistic downstream tasks.

Other notable works in this domain [Chen et al. 2020; Desai and

Johnson 2021; Li et al. 2020; Tan and Bansal 2019] also perform

joint image-text embedding for multi-modal visual and textual un-

derstanding. A very recent development in this domain is OpenAI’s

CLIP [Radford et al. 2021] model. With its powerful image and text

representations, it is able to perform zero-shot transfer in many

downstream tasks. We use the CLIP model to analyze the latent

space of StyleGAN due to its zero-shot classification/regression and

labeling properties which we explore in the Sec. 3.

GAN-Based Semantic Editing and Layer Interpretation. Under-
standing and manipulating the latent spaces of GANs has been

a topic of recent research interest. Specifically in the StyleGAN

domain, various works [Bau et al. 2018, 2019; Härkönen et al. 2020;

Shen et al. 2020; Tewari et al. 2020a; Wang et al. 2021] explore la-

tent spaces to enable high quality image editing applications. To

enable image editing, image embedding is used as a technique to

https://github.com/RameenAbdal/CLIP2StyleGAN
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project real images into the GAN’s latent space. The latent-codes of

embedded images have the convenient property that simple manip-

ulations of the latent codes seem to enable the user to edit the real

images using the semantic properties of GANs. Related to Style-

GAN, Image2StyleGAN [Abdal et al. 2019] embeds the images into

an extendedW + latent-space to which is capable of representing a

diverse set of images with more variety and detail than the original

GAN. Other works [Alaluf et al. 2021; Richardson et al. 2020; Tewari

et al. 2020b; Tov et al. 2021; Zhu et al. 2020b,a] in this domain use

regularizers and encoders built on top of the StyleGAN latent space

to maintain the semantic meaning of the embedding by finding

the representations close to the original space of StyleGAN. They

often include loss terms designed to preserve specific attributes

that are meaningful to a particular dataset (e.g. identity for faces)

when finding a latent-code.

Image editing frameworks in the StyleGAN domain [Abdal et al.

2021b; Härkönen et al. 2020; Shen et al. 2020; Tewari et al. 2020a]

analyze the latent space to identify linear and non-linear paths

for semantic editing. InterfaceGAN [Shen et al. 2020] finds lin-

ear directions to edit latent codes in a supervised manner, while

GANSpace [Härkönen et al. 2020] extracts unsupervised linear di-

rections for editing using PCA in theW space. Similar to GANspace,

some other notable works [Jahanian et al. 2020; Peebles et al. 2020;

Shen and Zhou 2021; Voynov and Babenko 2020] also perform un-

supervised analysis on the GAN latent space to perform editing.

Another framework, StyleRig [Tewari et al. 2020a], constructs a rig-

gable 3D model on top of StyleGAN. StyleFlow [Abdal et al. 2021b],

extracts non-linear paths in the latent space to enable sequential im-

age editing. In the area of text-based image editing. StyleSpace [Wu

et al. 2020] proposes to use style parameters for disentangled edits

using StyleGAN. StyleCLIP [Patashnik et al. 2021] uses the CLIP

embedding vectors to adjust the latent codes of a GAN. Another

CLIP based framework, StyleGAN-NADA [Gal et al. 2021], uses

the CLIP framework for zero-shot domain adaptation. However,

the existing CLIP based image editing approach requires a user

to provide a textual description of the edit as input. We aim to

automatically identify such descriptions.

Investigations into the layer representations of GANs have broad-

ened the application of GANs beyond image editing. In the domain

of GAN layer interpretation, more recent works have shown that

GANs can be used to perform various downstream tasks including

few-shot and unsupervised image segmentation [Abdal et al. 2021a;

Bielski and Favaro 2019; Collins et al. 2020; Tritrong et al. 2021;

Zhang et al. 2021] , extraction of 3D models [Chan et al. 2020; Meng

et al. 2021; Pan et al. 2021] and other novel local image edits such

as hairstyle manipulation [Tan et al. 2020; Zhu et al. 2021a].

3 METHOD
Our proposed method for unsupervised discovery and labeling of

StyleGAN edit-directions is divided into three steps. First, using

the CLIP image space, we compute semantic directions based on

the analysis of a set of images, e.g., from a dataset or real images

like FFHQ (70k images) or synthetic StyleGAN-generated images

(arbitrarily many, e.g. 100K). Second, we disentangle the candidate

directions and label them using the CLIP text encoder. Third, we

map the labeled disentangled directions to the StyleGAN latent

space to perform various unsupervised semantic edits. Fig. 2 shows

the pipeline of our framework.

3.1 CLIP Based Direction Extraction
Given a set of n different images, the goal of this stage is to compute

a set of directions in the CLIP latent space that capture statistically

significant variations within the dataset. The set of images is em-

bedded into CLIP latent space using the pre-trained image encoder

with the ViT-B/32 implementation, which embeds the images (or

alternatively text) into 512 dimensional space. We first describe mul-

tiple options to compute such directions, and then provide analysis

specific to our application.

Dominant CLIP Embedding. The CLIP image encoder [Radford

et al. 2021] is trained on the common-crawl dataset, an internet-

scale set of images that encompasses a broad range of visual con-

cepts. However, a typical high-quality GAN would be trained on a

more specific set of images, for example human faces in FFHQ [Kar-

ras et al. 2018], or vehicles in LSUN-Cars [Yu et al. 2015]. Images

in such datasets are expected to share a common directional com-

ponent in CLIP space, a vector pointed at the center of the CLIP

embeddings of images in the dataset. The theme of these datasets

exhibits itself in the mean vector, µ, of their CLIP embeddings. For

the FFHQ dataset, the vector µ is most similar to CLIP embedded

tokens of a picture of a person, individual, adult, or headshot. Hence,
these are not useful as edit directions, so we subtract the mean

from the CLIP vectors. Hence, for each (candidate) edit direction û,
the CLIP embeddings associated with that direction are the latent

codes of the ray µ + α û with α ∈ R.

Direction Computation. We consider three different options to

extract CLIP latent space directions from a set of images: (i) ran-

dom, (ii) PCA, and (iii) ICA, or hybrid sets that combined directions.

The common assumption of these algorithms is that the CLIP la-

tent space is a semantic directional space, and we expect to see

an evolution of attributes along the extracted directions, e.g., age

progression from a young person to an old person. We discuss the

random and ICA approaches in the supplemental, and focus here

on PCA.

PCA. Principal Component Analysis (PCA) assumes the under-

lying data comes from an approximately Gaussian distribution. The

output of the PCA is a set of 512 orthogonal principle component

axes, which we will use as editing directions. In addition, each

direction is associated with a variance, used to sort the directions.

PCA + Random Directions (Hybrid). In principle, our approach

works for any set of candidate vectors. For example, one can use

the initial 10 PCA axes, and then pick random vectors from the

remaining subspace as additional directions. We do this by picking

examples that have low correlation with the initial PCA axes (e.g.,

Beard + Glasses in Sec. 4).

3.2 CLIP Based Unsupervised Labeling
Let the set X := {x ∈ R512} indicate a set of n different CLIP

embeddings of images either from a real dataset (e.g., FFHQ) or by

random sampling of StyleGAN. In our experiment, we used n = 70k

in case of FFHQ and n = 100k in case of StyleGAN generated



SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Rameen Abdal, Peihao Zhu, John Femiani, Niloy J. Mitra, and Peter Wonka

Figure 2: Overview of CLIP2StyleGAN pipeline. We produce disentangled and semantically-labeled image edit directions via
an unsupervised joint analysis of the CLIP latent spaces, both image and text, and the StyleGAN latent space. Empirically, we
found the extracted directions to be universal and can directly be used to edit real images (see Fig. 1).

images . We use the notation x̂ to indicate a normalized vector

x̂ := x/∥x∥. We also use a set of directions U := {û ∈ R512}
indicating potential semantic-attributes predicted using one of the

methods described in Sec. 3.1. In the following, given an arbitrary

candidate edit-direction û ∈ U, our goal is to find a set of words,

from the CLIP vocab lexicon, that describe the edit direction. In

addition, we find subsets of X that are positive examples X+ and

negative examples X− of the attribute.

As described earlier, we use a translational component, −µ, to
subtract away any common attributes of the dataset as a whole.

We identify samples in X that are not relevant for a given attribute

direction. Specifically, we ignore any vectors x ∈ X as irrelevant

if, after translation by −µ, they are not positively correlated with

the direction û. Then, we leverage the CLIP text encoder to label

Figure 3: The first and second principal direction extracted
from the PCA analysis of CLIP image embeddings of the
FFHQ dataset.

the directions. First, all the relevant vectors are sorted based on the

projection û · (x − µ) and then we sample 100 top and bottom CLIP

image embeddings based on these projections. These two groups

of CLIP embeddings form the positive and negative examples of a

given attribute, X+ and X−, and are the basis of a potential edit.

Rather than naively use û as the edit direction, we instead use

a modified vector that more directly aligns with the vectors in

X+. Motivated by zero-shot classification approaches[Radford et al.

2021], we find the centroid of the normalized values x̂ in the CLIP

image space, and project the centroid onto a hypersphere as,

x+m = ⟨x̂⟩ /∥ ⟨x̂⟩ ∥, x ∈ X+ (1)

where ⟨·⟩ is the expected value operator, yielding target of our edit

as the direction x+m .

Next, we define an optimization that uses the CLIP text encoder

and the CLIP vocab lexicon ofm = 49408 [Radford et al. 2021] differ-

ent potential labels to automatically generate textual descriptions

of the directions. Our aim is different from captioning or explaining

images, we are only interested in finding individual tokens as words

to use as a label for an edit direction in clip space. The input to text

encoder TE is a vector sequence from token-space, including a pre-

fix such as ‘a picture of a’ or ‘a picture of a person with a’ followed

by the embedding of a word-token (e). Then, the CLIP-embedding

is

t = TE (prefix ⊕ e), (2)

where ⊕ concatenates the sequence of prefix tokens and ends with

a token e from the CLIP vocab lexicon. Our goal is to find a word

token e so that its CLIP embedding t is aligned with an edit direction
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Figure 4: Editing real images using the labeled directions produced by CLIP2StyleGAN. Additionally, we evaluate the corre-
lation of the edits with extracted text attributes via a user study. All edits are applied to the corresponding projected images.
Note that, in contrast to previous works, both the edit directions and their semantic descriptions were automatically extracted
without human supervision.

in CLIP space (x+m ). However, the token vector ewhich best matches

may or may not correspond to a meaningful label (see Appendix A

and B in supplementary materials). To address this issue, we define

a soft selection variable vector (z ∈ Rm ) such that,

e = ET σ (z), (3)

where σ is the sigmoid function and E is the embedding layer of

the CLIP text encoder, a matrix withm rows and 512 columns.

Our goal is to find as-sparse-as-possible of a selection vector z.
We consider the entropy of the selection vector z to be an indication

of the complexity of the edit described by e, and so regularization

by the entropy will bias the corresponding edit vector t in CLIP

space towards simpler concepts. This loss function (L) is used to

minimize the cosine distance between t and xm while also keeping

the entropy of z low. The objective function can be written as :

z = argmin

zk
L(z, xm) = argmin

zk
(dcos (t, xm) + λH (σ (z))) (4)

where z is the soft-selection vector, t is defined by equation (2),

and H is the entropy. Although similar, the vector t , xm due to



SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Rameen Abdal, Peihao Zhu, John Femiani, Niloy J. Mitra, and Peter Wonka

ALGORITHM 1: Text prediction using CLIP text encoder

Input: A CLIP vector x ∈ R512;
Input: Token embeddings E ∈ Rm×512

Input: The number of GD steps (maxit)
Output: the predicted set of labels L

1 /* Gradient Descent */

2 Initialize z ∈ Rm ← ®0;
3 for i ∈ 1 . . . maxit do
4 z← z − η∇zL(z, xm );
5 end
6 e← ET σ (z);
7 si = eTi e, ei ∈ rows(E);
8 {i1, . . . , ik } ← TopK-Indices(si );
9 L ← {ei1, . . . eik };

regularization, and we use t as an improved edit direction because it

is a mixture of a small number of tokens in the CLIP vocab lexicon.

Once a suitable token (e) and the corresponding clip vector

(t) have been chosen, we identify a set of candidate words L =

{ei1 . . . eik } where i1 . . . ik are the indices of the top-k tokens in

the CLIP vocab lexicon in descending order of their inner product

with e. Note that we use an inner product and not the cosine simi-

larity so that we give preference to word embeddings with a larger

magnitude, which often corresponds to the specificity and impor-

tance of a word [Schakel and Wilson 2015]. In addition, several

prefixes can be considered in equation 2. In this case, we repeat

our entire process for each prefix, and then set L to the union over

all prefix prompts. Our approach for extracting labels is shown in

Algorithm 1.

3.3 Refining Labels
The CLIP directions, by themselves, can represent multiple attribute

changes, e.g., change in age and expressions predicted by Algo-

rithm 1. The edit-direction we automatically identify in this case

may combine them into a single vector, and the list L will contain

tokens describing each attribute. To encourage disentanglement, we

instead represent that direction as the sum of two or more atomic

directions. We do this by clustering words in L that have similar

meanings, and then replacing the original edit direction with a

set of edit directions aligned to each subset of words. Specifically,

we use a Wu-Palmer word similarity score [Wu and Palmer 1994]

(maximized over all potential senses of a word) to determine if

textual labels are related (e.g., synonyms or child-concepts) or not.

Then, greedily we select a word from the list and then remove all

similar words with (matching) scores greater than 0.9. We repeat

the process for the next word in the modified list, until we exhaust

the list. If more than one word remains in the list, then we consider

the edit-direction to be entangled because it combines multiple

linguistic concepts. Our aim is to replace it by multiple (atomic)

vectors that are each better aligned to the CLIP embeddings of the

individual words in L. We consider two approaches for generating

edits based on the new tokens.

In the first approach, we simply abandon the direction û by re-

moving it from the setU, and then adding new directions based

on the words in L. Then the process can simply resume with the

additional edit directions which represent more refined and disen-

tangled concepts. In the second approach, we use gradient descent

to find new vectors corresponding to semantically different words

in L. The objective function for this optimization is represented

by:

B = argmin

B
L
split
(B, û,w,T) (5)

= argmin

B
βLrec(B, û,w) + Lindep(B) + Ltok(B,T),

where B is a matrix representing the disentangled vectors along

columns, û represents the given principal direction, w represents

a row vector of confidence scores predicted by the CLIP text en-

coder for the attributes to be disentangled, and T is a matrix whose

columns are the CLIP embedding of the reduced set of words in L.

The loss function combines a reconstruction term

Lrec(B, û,w) := ∥û − Bw∥ (6)

which is minimized when the original vector û is in the column

space of B; an independence term

L
indep
(B) := ∥BT B − I∥F (7)

which is minimized then the columns of B are independent; and a

token-alignment term

L
tok
(B,T) := −Tr

(
BT T

)
, (8)

which is minimized when the new directions are parallel to the

vectors ti corresponding to the different words in L.

3.4 Image Editing using the Extracted
Directions

Once an extracted CLIP direction has been disentangled and labeled,

we use Layer Masking [Richardson et al. 2020] to restrict the edits

to certain portions of theW+ latent-code based on the scale of the

change (coarse, medium, or fine details). In order to project CLIP

extracted labeled directions, we simply embed the corresponding

negative and positive example images in X+ and X− in the Style-

GANW + space using the pSp [Richardson et al. 2020] encoder, if

the direction is extracted from the FFHQ dataset. In case of the

StyleGAN generated images, we simply use theW codes of the

corresponding images. Then, we compute a unit direction in the

StyleGAN space using linear SVM on the embedded latents, as was

done in InterFaceGAN [Shen et al. 2020], in order to determine an

edit direction.

4 RESULTS
4.1 Implementation Details
We conduct our experiments on an A100 GPU. For the text optimiza-

tion algorithm we use the ADAM optimizer with an initial learning

rate of 5e−3. We perform optimization for 150 steps with λ set to 1.

Alternatively, an L1 regularizer can also be used on σ (z) for which
λ is set to 1e−4. The algorithm takes under 1 minute to converge.

For the additional disentanglement step in Eq. 5, we selected β to

be 0.1 and we use the ADAM optimizer with initial learning rate of

1e−3.
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Figure 5: Edits performed on cars using the labeled direc-
tions extracted by CLIP2StyleGAN.

Table 1: Evaluation of the labeled directions. The left col-
umn list sets positive examples of an edit using our target
X+ set and two different methods. The remaining columns
are the score of a zero-shot classifier that predicts which of
the three labels is correct. The second column is our auto-
matically chosenword. The third column is fromamanually
chosen keyword, and the last column is a manually chosen
negative keyword. The best score among GANSpace vs. ours
is shown in bold.

Image-Sets CLIP ZS Classifier Score

Kids↑ Teens↑ Adults↓

CLIP(X+) 0.8462 0.1257 0.0281

SG-ours 0.8252 0.1266 0.0480
GANSpace 0.3442 0.4932 0.1626

Beard↑ Facial-Hair↑ Clean-Shaved↓

CLIP(X+) 0.8052 0.1913 0.0033

SG-ours 0.5486 0.4465 0.0146
GANSpace 0.6328 0.3284 0.0386

Smile↑ Happy↑ Sad↓

CLIP(X+) 0.9170 0.0814 0.0019
SG-ours 0.9092 0.0859 0.0047

GANSpace 0.9082 0.0858 0.0059

Male↑ Masculine↑ Female↓

CLIP(X+) 0.7139 0.2751 0.0108

SG-ours 0.6914 0.2837 0.0248
GANSpace 0.5811 0.3870 0.0323

4.2 Qualitative Results
We visualize projections of the data (FFHQ images) based on the

method described in Sec. 3 given a direction in the CLIP space.

Fig. 3 shows some examples of the extracted directions and

predicted labels using the first two principal directions of the PCA

analysis.We then use themethod described in Sec. 3.3 to disentangle

the directions. For example, we derive two directions from the first

principal direction encoding “Kids" and “Smile" which are then

projected to the StyleGANW + space using the method in Sec. 3.4.

Fig. 4 shows the results of disentangled edits performed on real

images projected in theW + space of StyleGAN.

Table 2: Classification scores before and after the disentan-
glement of edits, evaluating how well the directions get dis-
entangled. A + B: Entangled direction; A: First disentangled
direction; B: Second disentangled direction; B + G: Beard +
Glasses; K +S : Kids + Smile; S1, S2: CLIP zero-shot scores pre-
dicting which of the two words match the images.

A + B S1 S2 A S1 S2 B S1 S2

B +G 0.70 0.30 B 1.00 3e−5 G 2e−4 1.00

K + S 0.33 0.66 K 0.99 1e−3 S 1e−3 0.99

Table 3: Top-5 User-generated words for the predicted edit
directions sorted by frequency, which is shown in paren-
thesis. Relevant words are indicated in bold. The total fre-
quency of words that match our labels is shown parenthesis
in the left.

Our Words Top-5 User Generated Words

youth,children (69%) child(45%) mouth(25%) age(24%)
glasses( 1%) old( 1%)

frames,glasses (75%) glasses(75%) hair(10%) look( 9%)

lips( 2%) eyes( 1%)

female,women (63%) gender(34%) female(15%) hair(14%)

woman(14%) mouth( 5%)

haired,bearded (87%) beard(85%) older( 6%) mouth( 2%)

hairier( 2%) masculine( 1%)

male,adult (78%) gender(38%) man(24%) hair(18%)

male(16%) teeth( 4%)

laugh,teeth,smile (88%) smile(66%) teeth(12%) happier(10%)
eyes( 3%) woman( 1%)

Note that the edits in the Fig. 4 show that the algorithm success-

fully transfers high quality edits from CLIP space to the StyleGAN

space. In order to validate our method on another dataset, we re-

peat the same analysis using a StyleGAN2 model trained on the

LSUN-CAR dataset to extract directions and labels. Fig. 5 shows

some edits in the StyleGAN space using our hybrid directions. The

results show some surprising edits of reconstructing cars from

scrap. See supplementary material for details about the extracted

directions.

4.3 Quantitative Results
We perform four types of quantitative evaluation of our method.

First, we evaluate the quality of the edits in StyleGAN space. Second,

we evaluate the disentanglement step of our method. Third, we

perform the user study to evaluate the performance of our labeling

algorithm.We evaluate the performance of the identity preservation

of our edits in supplementary materials.

4.3.1 Editing Quality. To quantitatively evaluate the quality and

accuracy of edits and transfer of directions fromCLIP image space to

theW + space, we perform some evaluations per edit on the pairs of

original and edited real images in theW + latent space. We identify

GANSpace [Härkönen et al. 2020] as the closest (unsupervised)

method to compare with. Note that in GANSpace the labels are

assigned manually and all directions are curated.

First, in order to evaluate if the directions are successfully pro-

jected from the CLIP image space to the StyleGANW + space, we
use the CLIP text encoder scores to classify images that are the

result of applying an edit inW + space. The CLIP [Radford et al.
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2021] method describes a Zero-Shot prediction method that can

be used to assign a score to any set of image embeddings given

a textual prompt. Higher scores mean that the images match the

prompt. We compare these scores for (i) the word we automatically

identified, (ii) a manually chosen word for the edited attribute, and

(iii) a word that does not describe the edit, which we expect to have

low scores. For example, in case of ‘Kids’ direction, we compute the

scores for ‘Kids’, ‘Teens’ and ‘Adult’. We use the Zero-Shot scores

to compare three sets of images; (a) the positive images in X+ as

a baseline, (b) the results of applying an edit using our approach

in StyleGANW + space, and (c) the result of a GANSpace edit that

was labeled with the same attribute by [Härkönen et al. 2020]. The

results are shown in Table 1. Notice that the scores of the CLIP

vectors in X+ and our edits are similar to each other. This shows

that the direction and the corresponding label was successfully

transferred from the CLIP space to the StyleGAN’sW + space.
Second, in order to determine if the output directions from the

refining step Sec. 3.3 lead to disentangled directions, we show in

Table 2 the CLIP zero-shot classification scores for the ‘Beard +

Glass’ and ‘Kids + Smile’ before and after the disentangling step.

The results show that the directions are, in fact, disentangled from

the original entangled vector.

4.3.2 User Study. We compare the quality of our generated labels

using a mechanical turk ‘image tagging’ task. We evaluated six

different automatically generated edit directions and descriptive

tags. Each image was randomly selected from the FFHQ dataset,

and 342 image pairs were produced by applying one of the six edits.

Each image pair was presented to three different turkers, and

the turkers were asked to provide three English words that de-

scribe how the edited image is different from the original. A total

of 1,026 surveys were completed. For each task, we collect all the

words provided by turkers. We count the frequency of each key-

word given by the turkers for a given edit. Then we merge words

whose Wu-Palmer similarity score [Wu and Palmer 1994] exceeds

a threshold (0.8). The top-5 resulting words chosen by turkers are

shown in Table 3. In order to evaluate the relevance of our selected

edit labels, we selected turkers’ words that are compable with the

generated names. For example, if the turkers’ use the word ‘age’

and our method chooses the word ‘youth’ to describe the same edit,

these should be considered matching labels. We compare these

words with labels generated by our method given an edit. Table 3

shows the evaluation of the user study. Here, the sum of the relative

frequencies of all consistent words is an indicator of the disentan-

glement of our direction, and the relevance of our generated label.

Note that a good direction has a high score.

4.4 Limitations
Our method has two important limitations. (i) The keywords used

in CLIP include sensitive words. We manually censor words that

are offensive and do not show such directions in this paper. (ii) The

directions may also be labeled with stereotypical or prejudicial

terms, e.g., race/profession association. This is a noteworthy (bias)

aspect of CLIP space that our method can help to analyze. For

the results in this paper, we also manually censor these offensive

labels and the associated directions. We discuss this issue in more

detail in our section about broader societal impact in supplementary

materials. While our method inherits this limitation, at the same

time, our method is a good tool to reveal and analyze dataset bias.

5 CONCLUSIONS
CLIP2StyleGAN is a framework to extract meaningful editing di-

rections in StyleGAN latent space. We introduce two new technical

building blocks: a method to extract important directions in CLIP

space and an algorithm to label arbitrary directions. After mapping

directions to StyleGAN latent space they can be used for editing

exiting photographs. In future work, we would like to use our tool

for an extensive semantic analysis of CLIP latent space.
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