
Clique Relaxations in Social Network Analysis:

The Maximum k-plex Problem

Balabhaskar Balasundaram
School of Industrial Engineering and Management,

Oklahoma State University, Stillwater, OK 74078, USA.

baski.balasundaram@okstate.edu

Sergiy Butenko
Department of Industrial and Systems Engineering,

Texas A&M University, College Station, Texas 77843, USA.

butenko@tamu.edu

Illya V. Hicks
Computational and Applied Mathematics Department,

Rice University, Houston, TX 77005, USA.

ivhicks@rice.edu

Abstract

This paper introduces and studies the maximum k-plex problem, which arises in social network analysis

and has wider applicability in several important areas employing graph-based data mining. After estab-

lishing NP-completeness of the decision version of the problem on arbitrary graphs, an integer program-

ming formulation is presented followed by a polyhedral study to identify combinatorial valid inequalities

and facets. A branch-and-cut algorithm is implemented and tested on proposed benchmark instances. An

algorithmic approach is developed exploiting the graph-theoretic properties of a k-plex, that is effective

in solving the problem to optimality on very large, sparse graphs such as the power law graphs frequently

encountered in the applications of interest.

Keywords. maximum k-plex problem; maximum clique problem; social network analysis; clique relax-

ations; cohesive subgroups; scale free graphs; power law graphs

1 Introduction

1.1 Graphs and Complex Systems

Network analysis has garnered significant attention from practitioners in diverse fields as an effective

approach to study complex natural and engineered systems [Alderson, 2008, Cook and Holder, 2000,

Washio and Motoda, 2003, Fischer and Meinl, 2004, Nagurney, 2003]. Novel network models of data

arising from applications in internet analytics, systems biology, social network analysis, computational

finance and telecommunication have led to many interesting insights. Cases in point are the recent con-

struction of internet topology maps using trace-route probes [Broido and Claffy, 2001], construction of

gene co-expression networks based on data from micro-array experiments [Peng et al., 2007], protein in-

teraction networks based on data from two-hybrid assays [Ito et al., 2001], social interaction data from

internet communities and data bases [Grossman et al., 1995, Chung and Lu, 2006], stock market networks

in finance [Boginski et al., 2006], and call data in telecommunication [Abello et al., 1999]. Graph mod-

els have become indispensable tools for representing massive data sets arising from complex, multi-scale

systems due to several unique advantages. Possibly the most important is the ability of graph models

1

The Maximum k-plex Problem B. Balasundaram et al., December 8, 2009

to capture a snapshot of system-level properties represented by the data, starting with component-level

pairwise interconnections.

To illustrate this idea, consider the protein interaction networks (PINs) that are built from pairwise in-

teractions of proteins in an organism. Vertices of a PIN represent proteins in an organism, and an edge

between two vertices indicates that the corresponding proteins are known to interact. Pairwise interaction

information is collected from high-throughput biological experiments such as two-hybrid assays [Ito et al.,

2001]. Identifying clusters in PINs helps identify protein complexes and functional modules that influence cel-

lular functions [Spirin and Mirny, 2003]. Protein complexes are groups of proteins that interact at the same

time and at the same place in the cell, acting as a macro-molecular machine to carry out specific cellular

tasks. Functional modules represent groups of proteins that interact during different phases of a cellular

process and in different parts of the cell to carry out specific cellular functions [Spirin and Mirny, 2003].

Thus, a PIN is able to capture multi-scale information from a complex system, and mining a PIN yields

important insights into the cellular processes of the organism.

1.2 Graph-Theoretic Clique Relaxations and Social Network Analysis

A clique in a graph is a set of pairwise adjacent vertices, that is the graph induced by a clique is complete

with all possible edges. Clique has long been considered the standard graph-theoretic cluster model, and

early algorithms for identifying large cliques were motivated by sociological applications [Luce and Perry,

1949, Harary and Ross, 1957]. Social network analysis (SNA) aims to study sociological connections using

graph-theoretic concepts. The notion of a cohesive subgroup which is a “tightly knit” subgroup in a social

network (analogous to clusters in graph-based data mining) is often used to explain and develop sociolog-

ical theories [Wasserman and Faust, 1994].

From sociological and data mining perspectives, the following properties are desirable in a cohesive

subgroup: (i) familiarity among members (few strangers); (ii) reachability among members (quick commu-

nication); and (iii) robustness of the subgroup (it is not easily destroyed by removing members). These

properties are conveniently modeled using the graph theoretic terms of vertex degrees, pairwise dis-

tances/diameter, and vertex connectivity, respectively. Clearly, a clique is ideal with respect to all of the

corresponding requirements since it induces a subgraph in which (i) each vertex has the maximum possi-

ble degree; (ii) any pair of members has the minimum possible distance between them; and (iii) the vertex

connectivity is maximum possible.

Cliques were, hence, the earliest graph models for cohesive subgroups in SNA [Scott, 2000]. However,

requiring the existence of all possible edges between a group of vertices for cohesiveness by the “clique

standard” was soon found to be overly restrictive and impractical [Alba, 1973, Freeman, 1992, Seidman and

Foster, 1978], primarily because real-life cohesive subgroups (or clusters) need not meet the “ideal” notion

of cliques and could be missing a few edges. Furthermore, in a wider application context, large real-life

data sets are prone to errors that could lead to missing edges. The clique model, while being robust against

edges included in error, becomes very sensitive to edges missed in error and is no longer practical.

The need for clique relaxations was apparent not only in SNA, but also in operations research and com-

puter science communities. Approaches developed to address this issue employed the notion of high den-

sity subgraphs, which requires the group of vertices to have at least a threshold number of edges [Corneil

and Perl, 1984, Ravi et al., 1994, Abello et al., 1999, 2002]. Although this is a natural relaxation of the clique

requirement to have all possible edges, unlike the clique model, dense subgraph models are unable to

provide guarantees about the structural properties of the resulting cluster. Structural relaxations of cliques

such as k-cliques [Luce, 1950], k-clubs [Alba, 1973, Mokken, 1979] and k-plexes [Seidman and Foster, 1978]

were introduced in SNA by relaxing the clique requirements for pairwise distances, diameter and degrees

that are desirable from a social perspective. These models are suitable, practical alternatives to the clique

model, as the structural properties they guarantee are meaningful and often necessary in most graph-based

data mining applications. Furthermore, the cohesive subgroup models from SNA are parameterized (with

k), they relax different structural aspects of a clique (when k > 1), and include clique as a special case

(when k = 1). Hence, they provide a systematic sequence of relaxations of a clique (for each positive inte-

ger k) with an appropriate structural characterization of the resulting cluster that aids the critical process

of interpreting a cluster. The focus of this paper is on the degree based model called k-plex, which was orig-

inally introduced by Seidman and Foster [1978]. We describe its key advantages in the next section after

stating a formal definition.

2

The Maximum k-plex Problem B. Balasundaram et al., December 8, 2009

2 Background

Let G = (V, E) be a simple undirected graph representing a social network, dG(u, v) denote the length of

a shortest path between vertices u and v in G, and diam(G) = max
u,v∈V

dG(u, v) be the diameter of G. Denote

by G[S] = (S, E ∩ (S × S)) the subgraph induced by S ⊆ V . Let N(u) and degG(u) denote the set of

neighbors {v : (u, v) ∈ E} of a vertex u ∈ V and the number of neighbors of u in G, respectively. Let N [u]

denote the closed neighborhood of a vertex u, that is N [u] = {u} ∪ N(u).

Seidman [1983] introduced the concept of a k-core, which is designed to capture the cohesive subgroups

as well as regions surrounding them, and is defined as a subgraph with minimum degree at least k. We

will now describe a simple greedy algorithm that finds the largest k-core in a graph in polynomial time.

Pick a vertex v of minimum degree δ(G), if δ(G) ≥ k then we have a k-core. If δ(G) < k, then v cannot be

in a k-core. Hence, delete v from G and continue recursively until δ(G) ≥ k (in which case the vertex set

of G is the maximum k-core) or G is empty (no k-core).

Definition 1 S ⊆ V is a k-plex in G = (V, E) if degG[S](v) = |N(v) ∩ S| ≥ |S| − k ∀ v ∈ S.

That is, a subset of vertices S is said to be a k-plex if the degree of every vertex in the induced subgraph

G[S] is at least |S| − k. Thus, a k-plex corresponds to a clique for k = 1 and relaxes the clique requirement

for k > 1. Note that in contrast to a k-core, the minimum degree requirement varies with S. A k-plex is said

to be maximal if it is not strictly contained in any other k-plex. We call the cardinality of a largest k-plex

in the graph as the k-plex number and denote it by ωk(G). The maximum k-plex problem is to find a largest

k-plex of the given graph.

Seidman and Foster (1978) proposed an equivalent characterization of k-plexes. Namely, they have

shown that G is a k-plex if and only if for any k-element subset of vertices {v1, . . . , vk} ⊆ V , V =
⋃k

i=1 N [vi]. In other words, G is a k-plex if and only if any k vertices form a dominating set in G [Harary,

1988]. Some basic graph theoretic properties of a k-plex are stated next. Note that the vertex connectivity

κ(G) is defined as the minimum number of vertices whose removal results in a disconnected or trivial

graph [Harary, 1988].

Theorem 1 (Seidman and Foster, 1978) Let graph G be a k-plex on n vertices. Then, (1) Any vertex-induced

subgraph of G is a k-plex; (2) If k < (n+2)
2

, then diam(G) ≤ 2; (3) κ(G) ≥ n − 2k + 2.

Members of a k-plex S can have at most k − 1 non-neighbors inside S. Hence, k-plexes with low k

values (k = 2, 3) provide good relaxations of a clique that closely resemble the cohesive subgroups that

can be found in real-life social networks. The k-plex also retains other desirable properties of a clique such

as low diameter (reachability) and high connectivity (robustness) for low values of k.

The maximum clique problem is closely related to the well known maximum independent set problem. An

independent set (or stable set) is a subset of pairwise nonadjacent vertices. A subset of vertices forms a

clique in G = (V, E) if and only if it forms an independent set in the complement graph Ḡ = (V, Ē). We

relate k-plex to a similar complementary structure in the following manner.

Definition 2 S ⊆ V is a co-k-plex in G = (V, E) if degG[S](v) = |N(v) ∩ S| ≤ k − 1 ∀ v ∈ S.

In other words, the induced subgraph G[S] has a maximum degree of k − 1 or less. It should be noted

that S is a co-k-plex in G if and only if S is a k-plex in the complement graph Ḡ. In particular, 1-plex

is a clique and a co-1-plex is an independent set. Thus, k-plexes and co-k-plexes provide parameterized

relaxations of two classical combinatorial optimization problems. The k-plex model is extremely practical

as it provides a realistic alternative to the popular, but idealistic clique model in graph-based data mining

applications. By varying k, one can balance the sensitivity of the model to edges missed in error and

the reliability of the detected cluster under edges included in error. Detailed discussions of the clique

relaxations from SNA and their applications in diverse fields, such as criminal/terrorist network analysis,

systems biology, telecommunication, finance, and organizational management among others can be found

in [Balasundaram, 2007].

Our contributions. We first demonstrate the NP-completeness result for the decision version of the

maximum k-plex problem as this is the first formal study of this problem. A polyhedral study is then

carried out in Sec. 3 focusing on extending two well known classes of valid inequalities for the maximum

clique problem into three distinct families of valid inequalities for the maximum k-plex problem. Facet

results are obtained for specialized support graphs, and whenever possible, for arbitrary graphs. Two of

the families of inequalities are subject to extensive computational testing in a branch-and-cut framework

(Sec. 4), following which we develop an iterative scheme with the branch-and-cut as its core subroutine,

3

The Maximum k-plex Problem B. Balasundaram et al., December 8, 2009

that exploits graph theoretic properties of a k-plex through decomposition and preprocessing (Sec. 5). This

algorithm is designed to solve the maximum k-plex problem on very large, sparse graphs. Our interest

in such graphs stems from the ubiquitous presence of power law degree distribution [Chung and Lu,

2006] in natural and man-made networks including social and biological networks, well documented in

the past decade [Barabási and Albert, 1999, Barabási et al., 2000b, Almaas and Barabási, 2006, Albert et al.,

2000, Barabási et al., 2000a]. This approach is used to solve the maximum k-plex problem to optimality

on real-life networks that exhibit a power law degree distribution with 400–13000 vertices and 0.0025%–

1.18% edge density for k = 1, . . . , 5. These instances cannot be solved directly using branch-and-cut due

to extremely dense integer programs that result from extremely low edge density.

2.1 Computational Complexity

Consider the decision version of the the maximum k-plex problem, k-PLEX: Given a simple undirected

graph G = (V, E) and positive integers c, k, does there exist a k-plex of size c in G?

Theorem 2 k-PLEX is NP -complete for any fixed positive integer k.

PROOF. See Appendix A.

This result shows that the maximum k-plex problem is hard not only as a generalization of the maxi-

mum clique problem, but for any fixed k it is a hard problem in its own respect.

3 The k-plex Polytope

Given a graph G = (V, E) with |V | = n, let d̄i = |V \N [i]| denote the degree of vertex i in the complement

graph Ḡ = (V, Ē). We will further assume that k > 1 since k = 1 yields the well known maximum clique

problem. The k-plex polytope Pk(G) is given by

Pk(G) = conv({x ∈ {0, 1}n|
∑

j∈V \N[i]

xj ≤ (k − 1)xi + d̄i(1 − xi) ∀ i ∈ V }).

Then, ωk(G) = max{
∑

i∈V xi|x ∈ Pk(G)}. The following theorem establishes the basic properties.

Theorem 3 Let Pk(G) denote the k-plex polytope of a given graph G = (V, E), where k > 1. Then, (1)

dim(Pk(G)) = n; (2) xi ≥ 0, and xi ≤ 1 induce facets of Pk(G) for every i ∈ V .

PROOF. See Appendix A.

3.1 Valid Inequalities

We introduce three types of valid inequalities for the k-plex polytope: independent set inequalities, co-k-plex

inequalities, and hole inequalities. The first two generalize the well known stable set inequalities for the

clique polytope, and the third generalizes the hole inequality for the clique polytope [Padberg, 1973]. We

also show that the maximal independent set inequalities and hole inequalities (under some conditions)

induce facets of the k-plex polytope for the support graph on which they are based. These could be lifted

to yield facets for the graph containing the support graph as an induced subgraph. Furthermore, we show

that maximal co-k-plex inequalities induce facets of the k-plex polytope when k = 2 and discuss the case

when k ≥ 3.

3.1.1 Independent Set Inequalities.

Note that k + 1 or more independent vertices do not form a k-plex and cannot be contained in one. Let I

denote a maximal independent set (MIS) of size k + 1 or more in G. The inequality
∑

i∈I xi ≤ k is valid

for Pk(G).

Theorem 4 Let G = (V, ∅) with |V | ≥ k + 1. The inequality
∑

i∈V

xi ≤ k induces a facet of Pk(G).

PROOF. Let F = {x ∈ Pk(G) :
∑

i∈V xi = k} denote the face induced. Suppose there exists a valid

inequality ax ≤ b such that F ⊆ {x : ax = b}. Let S ⊆ V such that |S| = k, and let xS denote the incidence

vector of S. Since xS ∈ F we have axS = b. Consider v ∈ S and w ∈ V \ S. Let T = S ∪ {w} \ {v}, with

xT defined as before we have axT = b implying av = aw. Since S, v and w were arbitrary, ai = λ, i ∈ V

and b = kλ for some scalar λ. Since F is a maximal face, it is a facet. 2

4

The Maximum k-plex Problem B. Balasundaram et al., December 8, 2009

Lifting MIS Inequalities. Let I be an MIS in G,
∑

i∈I
xi ≤ k induces a facet of Pk(G[I]). Let j ∈ V \ I

(then |N(j)∩I | ≥ 1) and let aj = k−max{
∑

i∈I
xi : x ∈ Pk(G[I ∪{j}]), xj = 1}. Then ajxj +

∑

i∈I
xi ≤ k

induces a facet of Pk(G[I ∪ {j}]). Further assume |N(j) ∩ I | ≥ k, then we can pick k neighbors of j

along with j to form a k-plex. Hence, the maximum in that expression is k and aj = 0. By sequentially

lifting every j outside I such that |N(j) ∩ I | ≥ k, we see that
∑

i∈I
xi ≤ k induces a facet of Pk(G[I ∪ Ĩ]),

where Ĩ = {j ∈ V \ I : |N(j) ∩ I | ≥ k}. Consider v ∈ V \ (I ∪ Ĩ) with |N(v) ∩ I | ≤ k − 1 and let

av = k −max{
∑

i∈I
xi : x ∈ Pk(G[I ∪ Ĩ ∪ {v}]), xv = 1}. To form a k-plex, we cannot pick k vertices from

I in addition to v as at least one of the k vertices (one not adjacent to v) has zero degree. However, we can

pick k−1 vertices from I and hence, av = 1. Now consider u ∈ V \(I∪ Ĩ∪{v}) with |N(u)∩I | ≤ k−1 and

let au = k −max{xv +
∑

i∈I
xi : x ∈ Pk(G[I ∪ Ĩ ∪ {v, u}]), xu = 1}. Firstly, u along with k vertices from I

does not form a k-plex (since, u has at most k−1 neighbors in I). Clearly, we can pick k−1 vertices from I

along with u to form a k-plex. If |(N(u)∩ I)∪ (N(v)∩ I)| ≥ k−1, then we can pick k−1 vertices from this

union of neighbors in I , each of which is adjacent to at least one of u and v. Hence, these k−1 vertices along

with u and v form a k-plex. Otherwise, in every (k − 1)-tuple from I , there exists at least one vertex that is

not adjacent to both u and v. Hence, we have, au = 1 if |(N(u)∩ I)∪ (N(v)∩ I)| < k−1, and 0 otherwise.

Clearly, for lifting further combinatorial enumeration becomes tedious and will not be pursued. But note

that for a subset I ⊆ V , maximally lifting any inequality of the form
∑

i∈I
xi ≤ k that is valid for Pk(G[I])

will result in valid inequalities with 0,1 coefficients for Pk(G).

3.1.2 Co-k-plex Inequalities.

Lemma 1 The maximum size of a k-plex in a co-k-plex is at most rk = 2k − 2 + (k mod 2).

PROOF. Let k be even and let G be a co-k-plex on n vertices. Assume that n ≥ 2k − 1 as the result is trivial

otherwise. Now suppose that S is a k-plex of size 2k − 1 in G. Then we have |N(i) ∩ S| ≥ 2k − 1 − k =

k − 1 ∀i ∈ S. Since G is co-k-plex, we have |N(i) ∩ S| ≤ |N(i)| ≤ k − 1 ∀i ∈ S. The two conditions then

imply that the induced graph G[S] is (k − 1)-regular of order 2k − 1. But k − 1 is odd and we cannot have

an odd number of vertices of odd degree. This contradiction establishes that S does not exist. Now let k

be odd and let G be a co-k-plex on n vertices (n ≥ 2k). Suppose that S is a k-plex of size 2k in G. Then we

have |N(i) ∩ S| ≥ 2k − k = k ∀i ∈ S. Since G is co-k-plex, we have |N(i) ∩ S| ≤ |N(i)| ≤ k − 1 ∀i ∈ S.

This contradiction establishes that S does not exist. 2

This bound is sharp since the union of complete graphs Gk = Kk ∪ Kk−1 for each even k forms a

co-k-plex of size 2k − 1 that contains Kk−1 ∪ Kk−1, a k-plex of size 2k − 2. For odd k, the following

family of graphs have 2k vertices forming a co-k-plex containing a k-plex of size 2k − 1. Construct the

graph Gk = (V, E), where V = V ′ ∪ {2k}, V ′ = {1, . . . , 2k − 1}, and E = {(i, j) : i ∈ V ′ and j =

i + 1, . . . ,
(

i + k−1
2

)

mod (2k − 1)}. Maximum degree in Gk is k − 1 and it is a co-k-plex of order 2k. The

induced subgraph Gk[V ′] is a (k−1)-regular k-plex of order 2k−1 in which every vertex has exactly k−1

neighbors and non-neighbors. It is also known as an antiweb and its complement is known as a web. Webs

were introduced by Trotter [1975] to generalize odd hole and antihole inequalities developed by Padberg

[1973] for the stable set polytope.

Lemma 1 implies that if J is a maximal co-k-plex of size more than rk in G, the inequality
∑

i∈J xi ≤ rk

is valid for Pk(G). If J is a maximal co-k-plex, for every v ∈ V \ J at least one of the following conditions

must hold: (1) ∃ j ∈ J ∩ N(v) such that |N(j) ∩ J | = k − 1 and including v would cause degree of j in the

induced subgraph to be k; (2) |N(v) ∩ J | ≥ k and upon inclusion v would have degree k or more in the

induced subgraph. The next theorem uses this observation to show that for k = 2 the co-2-plex inequalities

form facets of the 2-plex polytope.

Theorem 5 For a subset J ⊆ V such that |J | ≥ 3, the inequality
∑

i∈J

xi ≤ 2, induces a facet of P2(G) if and only

if J is a maximal co-2-plex.

PROOF. See Appendix A. 2

Some important remarks on the dominance relationship between MIS and co-k-plex inequalities for

k ≥ 3 can be found in Appendix B.

3.1.3 Hole Inequalities.

Let H ⊆ V be a hole (induced chordless cycle). If |H | ≤ k + 2, then H is a k-plex. Suppose |H | > k + 2,

then H is not a k-plex and for every proper subset S ⊂ H , we have δ(G[S]) ≤ 1. Hence, if |S| − k ≥ 2, S is

5

The Maximum k-plex Problem B. Balasundaram et al., December 8, 2009

not a k-plex. Thus, any k-plex can contain at most k + 1 vertices from a hole and this bound is sharp. The

inequality
∑

i∈H
xi ≤ k + 1 is valid for Pk(G).

Theorem 6 Let G = (V, E) be a cycle on n vertices with n ≥ k + 3 such that n and k + 1 are relatively prime.

Then, the inequality
∑

i∈V

xi ≤ k + 1 induces a facet of Pk(G).

PROOF. Consider the n × n circulant matrix A(n, k + 1) = {aij}, where aij = 1 for i = j, j + 1, . . . , j + k(

mod n) and j = 1, . . . , n; aij = 0 otherwise. The columns of A(n, k + 1) correspond to n incidence vectors

of k-plexes (paths) of size k + 1 that satisfy the above valid inequality as equality. By the result of Trotter

[1975], A(n, k + 1) is invertible since n and k + 1 are relatively prime. Hence, the n incidence vectors are

linearly independent, and the above valid inequality is facet inducing. 2

The hole inequalities are not facet inducing in general, when n and k + 1 are not co-primes. Consider

for instance a 6 vertex cycle, V = {1, 2, . . . , 6} and E = {(i, i + 1 mod 6) : i ∈ V } with k = 2. Inequality
∑

i∈V
xi ≤ 3 is valid, but not facet inducing. Sets {1, 2, 4, 5}, {2, 3, 5, 6}, {3, 4, 6, 1} form maximal co-2-

plexes in this graph and we can obtain the hole inequality as a positive linear combination of the three

facet inducing co-2-plex inequalities. In fact, this example can be generalized for any n, multiple of k + 1,

when k = 2. However, there are cases where the hole inequalities with n and k + 1 not coprime induce

facets for the support graph.

Theorem 7 Let G = (V, E) be a cycle on n = t(k + 1) vertices with t ≥ 2, k ≥ 3 such that k + 1 is odd. Then the

inequality
∑

i∈V

xi ≤ k + 1 induces a facet of Pk(G).

PROOF. See Appendix A. 2

Theorem 8 Let G = (V, E) be a cycle on n = t(k + 1) vertices with t ≥ 2, k ≥ 5 such that k + 1 is even. Then

the inequality
∑

i∈V

xi ≤ k + 1 induces a facet of Pk(G).

PROOF. See Appendix A. 2

The hole inequalities are clearly an interesting family of inequalities, given the above results. Anti-

webs [Trotter, 1975] can lead to a further class of facet defining inequalities, as they generalize holes, and

present an interesting topic for future research.

4 Branch & Cut

In this section, we describe our branch-and-cut (BC) implementation and study the performance of the MIS

and co-k-plex inequalities for the maximum k-plex problem when k = 1, 2. Since the separation heuristics

for holes are very different from the greedy heuristics we use for MIS and co-k-plex inequalities, we do

not attempt them in this paper. Recall that for the cases we consider, k = 1, 2, facet defining co-k-plex

inequalities are equivalent to MIS inequalities when k = 1 and dominate them when k = 2. However,

when k = 2, our computational experiments illustrate the benefits of using strong MIS cuts generated

quickly as opposed to stronger co-2-plex cuts generated by expensive separation heuristics. Also, when

k = 2, we do not consider lifting MIS inequalities as they will only lead to co-2-plex inequalities. The aim

of this part of the paper is to judge the effectiveness of the cuts in solving the problem of interest, the order

and size of instances that can be solved under this framework, and to provide some benchmark instances.

4.1 General Implementation Details

All numerical experiments were conducted on Dell Precision PWS690 R© computers with 2.66GHz XEON
R©

processor, 3GB RAM and 120GB HDD . The core of all our algorithms is a BC implemented using ILOG

CPLEX 10.0 R© [ILOG]. The advantage of using the framework provided by CPLEX is the effective default

settings that take care of the branching process, node selection, variable selection, primal heuristics, pre-

solving among others, while the bounding is done by solving the LP relaxation with the user specified

cuts. Local cuts that are valid at the node in which they are generated and for the sub-tree rooted at that

node are implemented using the CPLEX goals feature. Cuts were generated every SKIPFACTOR number of

nodes in the BC tree. We ensure that the round of cuts added are distinct, violated by the LP optimum, and

at most MAXLOCALCUTSPERNODE many most violated cuts are added to the system. CPLEX re-solves the

problem at that node and handles the cut management from that point onwards.

6

The Maximum k-plex Problem B. Balasundaram et al., December 8, 2009

Greedy Separation Heuristics. For generating local cuts, a graph G is obtained from the original

graph after deleting vertices that are fixed to zero in the BC node where cuts are generated. To generate

a round of cuts, we initialize I with every vertex from this graph and call one of the following greedy

algorithms. For finding an MIS in G, we find a vertex v of minimum degree in G[V \ N [I]]. Vertex v is

added to I , and we repeat the previous step until V \N [I] is empty. Note that N [I] is the union of vertices

in I and their neighbors. For finding a co-2-plex in G, we start with an MIS I found using the greedy

algorithm described above. I is deleted from G, and a vertex v of minimum degree in the residual G is

found. If I ∪ {v} is a co-2-plex, then v is added to I . The vertex v is deleted from G and the process is

repeated until no more vertices are left.

Non-dominated Variable Fixing. In the BC tree, when k variables are fixed to one for the first time

at a BC node, every vertex that is not adjacent to any of the k vertices can be fixed to zero for the subtree

rooted at that BC node. This is valid since these vertices cannot belong to a k-plex containing the k fixed

vertices as they are not dominated by them (recall the alternate characterization of k-plexes).

Note that CPLEX generates its own classes of cuts to solve any given MIP. All CPLEX cuts were turned

off for experiments evaluating our BC implementation. However, we compare our BC implementation

against the CPLEX MIP solver under its default settings. Apart from regular termination of an MIP (opti-

mal or infeasible), CPLEX can terminate gracefully returning the best integer feasible solution and objective

(if found) as well as a bound on the optimum when an upper time limit is reached, by setting the CPLEX

parameter TiLim to the desired value (set at 3 hours). By setting CPLEX parameter NodeFileInd to 2, CPLEX

can be forced to write the BC tree to hard disk without any compression. This enabled CPLEX to proceed

without any memory shortage as the BC tree grows exponentially in size, without significant increase in

runtime [ILOG].

The test-bed for these experiments consists of graphs of various order and size generated using Sanchis

generators [Sanchis and Jagota, 1996], used to get a sense of the influence of order and density of graphs

on our BC implementation’s running times. The Sanchis generator available at [DIMACS, 1995] produces

graphs with known maximum clique size with a specified number of vertices, edges and a construction

parameter, r. In our experiments, the maximum clique size was fixed at ⌈n
5
⌉ (where ⌈a⌉ is the smallest

integer greater than or equal to a) and the construction parameter r, which has to be an integer from

interval [0, n
ω(G)

− 1], was set at ⌊0.75(n
ω(G)

− 1)⌋ (where ⌊a⌋ is the largest integer less than or equal to

a). The number of vertices in the generated Sanchis graphs was varied from 100 to 1000 in steps of 100,

and the edge density (d) was varied from 0.4 to 0.9 in steps of 0.1. The number of edges was calculated as

⌊ dn(n−1)
2

⌋. Benchmark clique instances from the Second DIMACS Challenge [DIMACS, 1995, Johnson and

Trick, 1996] are also used. Description of these instances can be found in [Hasselberg et al., 1993, Bomze

et al., 1999].

4.2 Computational Experience

The BC(MIS) implementation was used for k = 1 and k = 2, while BC(co2plex) was also used when

k = 2. The non-dominated variable fixing technique was used in all our implementations. The parameter

SKIPFACTOR was set at 64 for edge densities d = 0.4, 0.5, 0.6 and SKIPFACTOR was 0 for d = 0.7, 0.8, 0.9

(meaning separation heuristics were attempted at every node of the BC tree). In all experiments MAXLO-

CALCUTSPERNODE was set at ⌈0.6n⌉. We arrived at these values after preliminary experimentation on

Sanchis instances. The largest order up to which optimal resolution was possible on Sanchis instances

within the 3-hour time limit, using the specified algorithm, for each density is presented in Table 1. Note

that “< 100” indicates that the smallest instance in our test bed with 100 vertices was not solved optimally.

Tables 6 and 7 in Appendix C present the total running time (excluding read/write time) and number of

BC nodes enumerated for solving maximum 1-plex problem on Sanchis graphs using BC(MIS) implemen-

tation. Running times and number of BC nodes enumerated by BC(MIS) for k = 2 is presented in Tables 8

and 9 in Appendix C. The size of the largest 2-plex found and an upper bound on the 2-plex numbers

obtained from the BC(MIS) implementation is provided in Table 10 in Appendix C. Running times and

number of BC nodes enumerated by BC(co2plex) for k = 2 is presented in Tables 11 and 12 in Appendix C.

Results for the DIMACS benchmarks are provided in Table 13 in Appendix C.

Exponential growth in the number of BC nodes and running time was observed, which is not surprising

given the intractability of the problem. We are able to perform better than CPLEX default MIP solver with a

basic BC(MIS) implementation. Generally speaking, our ability to optimally solve larger Sanchis instances

7

The Maximum k-plex Problem B. Balasundaram et al., December 8, 2009

Table 1: Summary of results on Sanchis instances

k Algorithm d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9

1 CPLEX default 800 900 900 900 700 200

1 BC(MIS) 1000 1000 900 1000 800 300

2 CPLEX default 1000 600 200 100 < 100 < 100

2 BC(MIS) 1000 900 600 200 < 100 100

2 BC(co2plex) 400 300 200 < 100 < 100 < 100

decreases with increase in edge density when k = 2. We also observe that for all algorithms, on all Sanchis

instances we perform better when k = 1 compared to k = 2. This could be explained by noting that the

number of feasible solutions, as well as possibility of alternate optima is higher when k = 2 compared to

k = 1. Finally, between the two versions for k = 2, BC(MIS) is consistently better compared to BC(co2plex)

despite the fact that co-2-plex inequalities are theoretically stronger. This observation clearly demands

further investigation.

Table 2: BC(MIS) and BC(co2plex) comparison with k = 2 on Sanchis graphs of order 100 using global cuts

Algorithm d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9

Running time (secs)
BC(MIS) 1.469 3.703 33.234 1419.25 Tilim 140.969

BC(co2plex) 0.906 2.063 23.172 1283.92 Tilim 118.078

No. of BC nodes
BC(MIS) 675 1955 20754 498479 714206† 68253

BC(co2plex) 335 1019 15842 482644 748666† 68261

2-plex numbers
BC(MIS) 20 20 20 20 [24,30] 38

BC(co2plex) 20 20 20 20 [24,29] 38

In order to understand this observation, we solve maximum 2-plex problem on Sanchis graphs of order

n = 100, using BC(MIS) and BC(co2plex) implementations. To ensure a meaningful comparison, we gener-

ate and add global cuts instead of local cuts. Global cuts (MIS or co-2-plex) are generated using the original

input graph, by applying the aforementioned greedy heuristics starting from every vertex. CPLEX applies

the cuts that are violated by the LP optimum at a BC node and resolves the LP relaxation. This guarantees

that, for every MIS cut generated for the BC(MIS) implementation, there is a dominating co-2-plex cut that

is generated for the BC(co2plex) implementation. Note that this cannot be guaranteed in an implemen-

tation using local cuts. It can be seen from the results in Table 2 that BC(co2plex) enumerates fewer BC

nodes as predicted by theory, requires less running time, and obtains better bound (in the nonoptimal case)

compared to BC(MIS). However, in all three respects a local cut based BC(MIS) is significantly better for

the more difficult denser instances and comparable for the easier sparser instances. Local cuts are typically

more effective since they exploit “local information” at a BC node that is not considered by global cuts

generated a priori. We believe the reason for poorer performance of BC(co2plex) using local cuts is the fact

that the greedy co-2-plex heuristic is computationally much more expensive compared to the greedy MIS

heuristic. When a vertex is added to an independent set, we can delete all its neighbors and repeat until

we find an MIS. On the other hand, the only vertices that can be deleted while finding a maximal co-2-plex

are the vertices that have already been added and the ones outside the current set that cannot be added.

Both neighbors and non-neighbors that do not belong to either of those cases must be considered until all

the vertices have been classified into one of the two groups. Due to this simple fact, even though we take

a fast and greedy approach, the separation heuristic is relatively expensive. A local cut implementation

that periodically invokes this scheme hence becomes relatively inefficient. This suggests that future BC

implementations for this problem should employ global co-k-plex cuts and local MIS cuts. Data structures

for co-k-plexes that speed up the steps of the heuristic could also make them competitive as local cuts.

8

The Maximum k-plex Problem B. Balasundaram et al., December 8, 2009

5 Iterative Peel-Branch-and-Cut

Considering the motivation behind the maximum k-plex problem, in this section we develop an exact al-

gorithm that is able to optimally solve the problem on numerous large-scale real-life social and biological

networks on which the straightforward BC implementation fails. The collaboration network of authors in

computational geometry is available from [Batagelj and Mrvar, 2006], where for every pair of authors, the

number of joint works is available. The instances named GEOM-t have vertices representing authors from

this area, and two authors are connected by an edge if they have (strictly) more than threshold (t = 0, 1, 2)

joint works. In Erdös collaboration networks, vertices represent mathematicians and an edge indicates

that the mathematicians represented by the endpoints have published together. The collaboration net-

works of this type are centered around Paul Erdös, and Erdös number of a mathematician is his or her

shortest distance to Erdös in this network. We used the following Erdös collaboration networks available

from [Batagelj and Mrvar, 2006, Grossman et al., 1995] in our experiments: ERDOS−x − y, where x rep-

resents the last two digits of the year for which the network was constructed, and y represents the largest

Erdös number of a mathematician in that graph. We considered six such networks for years 1997-1999 and

y = 1 and 2. Note that in the instances we used, the vertex corresponding to Erdös himself is excluded.

Two biological networks, protein interaction networks of H. Pylori and S. Cerevisiae, were also used in test-

ing. In these graphs, the vertices represent proteins and edges indicate that the pair of proteins forming the

end points are known to interact. The text-mining network from [Batagelj and Mrvar, 2006] is based on all

stories released during 66 consecutive days beginning at 9:00 AM EST 9/11/01 by the news agency Reuters

concerning the September 11 attack. The network is based on information compiled by Steve Corman,

Kevin Dooley and Robert McPhee at the LOCKS labs in Arizona State University [Corman et al., 2006,

2002]. The vertices of the network are selected words that appeared in the news. There is an edge between

two words if they appear in the same text unit (sentence), and the edges are weighted with the number of

co-appearances of its end-points. We use a threshold model for DAYS-t with edges of weight at least t + 1

included, for t = 3, 4, 5.

Apart from the fact that these graphs are constructed from real-life data, they are also extremely large

and extremely sparse graphs that obey a power law degree distribution. Such graphs are called scale-free

graphs studied extensively recently [Barabási and Albert, 1999, Barabási et al., 2000b, Almaas and Barabási,

2006, Albert et al., 2000, Barabási et al., 2000a]. However, since these are extremely large and extremely

sparse graphs, the integer program has an extremely dense constraint matrix, even though it is of size

n × n. This resulted in memory crashes while CPLEX was building the integer program, well before any

solution technique could be attempted. This challenge led to the development of a decomposition and

preprocessing scheme that exploits graph theoretic properties of a k-plex and utilizes the developed BC

implementation as its core subroutine.

Iterative Peel-Branch-and-Cut (IPBC) Algorithm. The basic idea here is to find a maximum k-plex

containing a fixed vertex in each iteration. If we assume that the maximum k-plex S∗ satisfies |S∗| > 2k−2,

and the vertex v ∈ S∗ is fixed, then by Theorem 1, S∗ ⊆ N2[v] = {i ∈ V : dG(v, i) ≤ 2}. As we iterate over

v ∈ V , we only need to consider vertices in N2[v] assuming that there is a large enough k-plex. Then for

each v ∈ V , a peeling procedure is called on the graph induced by N2[v]. The peeling procedure, similar to

the one used in [Abello et al., 1999] for the maximum clique problem, removes vertices of low degree based

on the size of a known k-plex S. Vertices that cannot belong to k-plex of size at least |S| + 1 are identified

and removed recursively. In our implementation, S is initialized with a greedily found maximal clique,

and updated during the iterations. Observe that given a k-plex S, any maximum k-plex in this graph is a

part of its maximum (|S| − k)-core, so we can use the algorithm described in Section 2 for peeling. BC is

used on the graph obtained after peeling to find a maximum k-plex containing v by adding the additional

constraint xv = 1 to the system. The resulting solution is used to update the current best k-plex S if

necessary. At the end of every iteration, vertex v can be removed from the graph, since from that point

we are not interested in k-plexes containing v. Once the iterations are complete, if the best known k-plex

was larger than 2k − 2, our assumption was right and it can be returned as the optimal solution. If our

assumption was incorrect, the solutions from the iterative procedure are not applicable and we re-solve

the maximum k-plex problem on the original graph with the additional constraint
∑

v∈V
xv ≤ 2k − 2.

Finally, the vertices are fixed in non-increasing order of their degrees in an attempt to find a large k-plex

early in the algorithm, so that the subsequent preprocessing was effective. Algorithm 1 is the pseudo-code

for the IPBC algorithm. The approach taken in the IPBC algorithm, such as simple checks on sizes in

9

The Maximum k-plex Problem B. Balasundaram et al., December 8, 2009

Table 3: Number of vertices, edges, edge density, and k-plex numbers for k = 1, 2, 3, 4, 5.

Graph |V | |E| d ω1(G) ω2(G) ω3(G) ω4(G) ω5(G)

H. Pylori 1570 1399 0.001136 3 5 6 7 8

S. Cerevisiae 2112 2203 0.000988 6 6 7 7 8

ERDOS-97-1 472 1314 0.011821 7 8 9 11 12

ERDOS-98-1 485 1381 0.011766 7 8 9 11 12

ERDOS-99-1 492 1417 0.011732 7 8 9 11 12

ERDOS-97-2 5488 8972 0.000596 7 8 9 11 12

ERDOS-98-2 5822 9505 0.000561 7 8 9 11 12

ERDOS-99-2 6100 9939 0.000534 8 8 9 11 12

GEOM-0 7343 11898 0.000441 22 22 22 22 22

GEOM-1 7343 3939 0.000146 10 10 11 12 13

GEOM-2 7343 1976 0.000073 8 8 10 11 11

DAYS-3 13332 5616 0.000063 8 10 11 13 13

DAYS-4 13332 3251 0.000037 7 8 9 11 11

DAYS-5 13332 2179 0.000025 7 7 8 10 11

combination with peeling and the assumption of a large k-plex, are designed to enable us to handle large,

sparse instances by decomposing the graph. Note that the diameter-2 assumption is critical to facilitate the

iterative scheme, and to focus on smaller graphs induced by the 2-neighborhood in each iteration.

Algorithm 1 Iterative Peel-and-Branch-and-Cut Algorithm: IPBC(G)

1: initialize V (G) = {v1, . . . , vn} degG(vi) ≥ degG(vi+1); S ← greedy maximal clique; Gcopy ← G;

2: for i = 1 to n do

3: if |N2[vi]| > |S| then H ← PEEL(G[N2[vi]], S); else H ← G;
4: if |V (H)| > |S| then S̃ ← BRANCH-AND-CUT(H, xvi

= 1);

5: G← G− vi; if |S̃| > |S| then S ← S̃;
6: end for

7: if |S| > 2k − 2 then return S; else return S ← BRANCH-AND-CUT(Gcopy,
∑

v∈V xv ≤ 2k − 2);

We use the BC(MIS) implementation described before, which employs MIS cuts and non-dominated

variable fixing, as the core for the IPBC implementation. We set SKIPFACTOR to 0 and MAXLOCAL-

CUTSPERNODE is ⌈0.6n⌉. The 3-hour time limit in the BC(MIS) implementation was removed. Table 3

presents the k-plex numbers, and Table 4 presents detailed results for the text-mining instances to illus-

trate our observations. These instances took the longest to resolve optimally. Tables 14, 15, 16 and 17 in

Appendix C present the complete set of results. The column titled “IPBC Time” presents the total running

time (in seconds) of the IPBC algorithm, “BC Time” presents the cumulative time (in seconds) spent on

all BC calls to CPLEX, and “#BC Calls” is the number of BC calls made to CPLEX for each instance. It is

clear from the results that very few BC calls are made compared to the number of vertices in each instance

and the BC runtimes are often relatively low. In the cases where BC running time is significant, it was

almost entirely due to the first BC call that received a poor initial solution from the greedy maximal clique

initialization procedure. This encourages the use of better heuristics to obtain an initial k-plex to ensure

significant speed-up. The burden of runtime shifted from the BC procedure to the preprocessing as we ex-

pected. The decomposition approach appears to be effective in reducing the size of the instance solved in

each BC call. The IPBC algorithm was successful in optimally resolving these large-scale real-life instances

that obey a power law degree distribution.

6 Conclusion & Future Work

This paper introduces and studies the maximum k-plex problem, where a k-plex is a graph-theoretic re-

laxation of clique originally introduced in the context of social network analysis. We establish the in-

10

The Maximum k-plex Problem B. Balasundaram et al., December 8, 2009

Table 4: Runtime in seconds for the Reuters terror news networks using IPBC algorithm.

k Graph IPBC Time BC Time #BC Calls

1

DAYS-3 3110.8 0.1 3

DAYS-4 2940.8 0.2 1

DAYS-5 2758.0 0.0 0

2
DAYS-3 3367.8 4.1 1
DAYS-4 2635.7 0.3 1

DAYS-5 2462.9 0.1 2

3
DAYS-3 3395.4 45.5 1
DAYS-4 2625.1 4.7 1

DAYS-5 2445.5 0.2 2

4

DAYS-3 3489.8 203.0 1

DAYS-4 2642.3 51.4 1
DAYS-5 2426.3 2.7 1

5

DAYS-3 15336.9 12329.1 1

DAYS-4 6201.4 3316.8 1
DAYS-5 2820.8 113.1 1

tractability of this problem for every fixed k. The problem is formulated as a binary integer program and

polyhedral results are presented. Classes of valid inequalities and facets are developed for the problem

and implemented in a branch-and-cut framework. The results of computational experiments indicate the

effectiveness of the cuts and the framework used. Iterative peel-branch-and-cut algorithm is then devel-

oped that exploits graph theoretic properties of a k-plex in preprocessing and decomposition that permits

optimal resolution of the maximum k-plex problem in large-scale real-life networks that obey a power law

degree distribution.

Several research problems and directions have been identified through the course of the paper that

need attention. In particular, new facets of the k-plex polytope need to be discovered and the branch-and-

cut algorithm may be modified and tuned to be able to solve larger instances to optimality. Development

of meta-heuristics capable of finding good solutions in massive networks in a reasonable amount of time

would be of practical value. Combinatorial algorithms for finding a maximum k-plex extending the max-

imum clique algorithms, e.g., by Carraghan and Pardalos [1990] and Östergård [2002] would also be ben-

eficial. While a maximum k-plex size can be viewed as a global measure characterizing the cohesiveness

of a network, in practice one may be interested in finding all maximal cohesive subgroups. Designing

algorithms for detecting all maximal k-plexes is another issue to address in the future. In addition, related

k-plex and co-k-plex partitioning problems seeking to partition the vertices of a graph into a minimum

number of k-plexes and co-k-plexes, respectively, could be of interest. These are natural generalizations of

the well-known minimum clique partitioning and graph coloring problems.

Acknowledgment. We thank the area/associate editors and the anonymous referees for their com-

ments and suggestions that greatly improved the content and presentation of this paper. Contribution of

Sandeep Sachdeva to the proof of Theorem 2 is gratefully acknowledged. We thank Benjamin McClosky

for pointing out the simpler proof of Theorem 4, and Hannes Moser for pointing out some typos in the

computational results in an earlier version of this manuscript. The research of S. Butenko was partially

supported by AFOSR (FA9550-09-1-0154) and NSF (OISE-0553513). The research of I. V. Hicks was par-

tially supported by NSF grant DMI-0521209.

References

J. Abello, P.M. Pardalos, and M.G.C. Resende. On maximum clique problems in very large graphs. In

J. Abello and J. Vitter, editors, External memory algorithms and visualization, volume 50 of DIMACS Series

11

The Maximum k-plex Problem B. Balasundaram et al., December 8, 2009

on Discrete Mathematics and Theoretical Computer Science, pages 119–130. American Mathematical Society,

1999.

J. Abello, M.G.C. Resende, and S. Sudarsky. Massive quasi-clique detection. In S. Rajsbaum, editor, LATIN

2002: Theoretical Informatics, pages 598–612, London, 2002. Springer-Verlag.

R.D. Alba. A graph-theoretic definition of a sociometric clique. Journal of Mathematical Sociology, 3:113–126,

1973.

R. Albert, H. Jeong, and A.-L. Barabási. Error and attack tolerance of complex networks. Nature, 406:

378–382, 2000.

D. L. Alderson. Catching the “network science” bug: Insight and opportunity for the operations researcher.

Operations Research, 56(5):1047–1065, 2008.

E. Almaas and A.-L. Barabási. Power laws in biological networks. In E. Koonin, Y. I. Wolf, and G. P. Karev,

editors, Power Laws, Scale-Free Networks and Genome Biology, pages 1–11. Springer Science + Business

Media, New York, 2006.

B. Balasundaram. Graph Theoretic Generalizations Of Clique: Optimization and Extensions. PhD thesis, Texas

A&M University, 2007.

A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286:509–512, 1999.

A.-L. Barabási, R. Albert, and H. Jeong. Scale-free characteristics of random networks: The topology of the

World Wide Web. Physica A, 281:69–77, 2000a.

A.-L. Barabási, R. Albert, H. Jeong, and G. Bianconi. Power-law distribution of the World Wide Web.

Science, 287:2115a, 2000b.

V. Batagelj and A. Mrvar. Pajek datasets: Reuters terror news network, 2006. Online:

http://vlado.fmf.uni−lj.si/pub/networks/data/CRA/terror.htm. Accessed March 2008.

V. Boginski, S. Butenko, and P. Pardalos. Mining market data: a network approach. Computers & Operations

Research, 33:3171–3184, 2006.

I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo. The maximum clique problem. In D.-Z. Du and

P. M. Pardalos, editors, Handbook of Combinatorial Optimization, pages 1–74, Dordrecht, The Netherlands,

1999. Kluwer Academic Publishers.

A. Broido and K. C. Claffy. Internet topology: connectivity of ip graphs. In S. Fahmy and K. Park, editors,

Scalability and Traffic Control in IP Networks, pages 172–187, Bellingham, WA, 2001. SPIE Publications.

R. Carraghan and P. Pardalos. An exact algorithm for the maximum clique problem. Operations Research

Letters, 9:375–382, 1990.

F. Chung and L. Lu. Complex Graphs and Networks. CBMS Lecture Series. American Mathematical Society,

Providence, RI, 2006.

D. J. Cook and L. B. Holder. Graph-based data mining. IEEE Intelligent Systems, 15(2):32–41, 2000.

S. Corman, T. Kuhn, R. McPhee, and K. Dooley. Studying complex discursive systems: Centering resonance

analysis of organizational communication. Human Communication Research, 28(2):157–206, 2002.

S. Corman, K. Dooley, and R. McPhee. LOCKS: Analysis of media coverage of the terrorist attacks, 2006.

Online: http://locks.asu.edu/terror/. Accessed June 2006.

D. Corneil and Y. Perl. Clustering and domination in perfect graphs. Discrete Applied Mathematics, 9:27–39,

1984.

G. Cornuéjols. Combinatorial Optimization: Packing and Covering. CBMS-NSF Regional Conference Series in

Applied Mathematics. SIAM, Philadelphia, 2001.

12

The Maximum k-plex Problem B. Balasundaram et al., December 8, 2009

DIMACS. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, 1995. Online:

http://dimacs.rutgers.edu/Challenges/. Accessed March 2007.

I. Fischer and T. Meinl. Graph based molecular data mining - an overview. In W. Thissen, P. Wieringa,

M. Pantic, and M. Ludema, editors, Proceedings of the 2004 IEEE International Conference on Systems, Man

and Cybernetics, pages 4578–4582, Piscataway, NJ, 2004. IEEE.

L. C. Freeman. The sociological concept of “group”: An empirical test of two models. American Journal of

Sociology, 98:152–166, 1992.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-completeness. W.H.

Freeman and Company, New York, 1979.

J. Grossman, P. Ion, and R. De Castro. The Erdös Number Project, 1995. Online:

http://www.oakland.edu/enp/. Accessed March 2007.

F. Harary. Graph Theory. Narosa Publishing House, New Delhi, 1988.

F. Harary and I. C. Ross. A procedure for clique detection using the group matrix. Sociometry, 20:205–215,

1957.

J. Hasselberg, P. M. Pardalos, and G. Vairaktarakis. Test case generators and computational results for the

maximum clique problem. Journal of Global Optimization, 3:463–482, 1993.

ILOG. ILOG CPLEX. http://www.ilog.com/products/cplex/, 1987-2009. Accessed May 2009.

T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki. A comprehensive two-hybrid analysis

to explore the yeast protein interactome. Proceedings of the National Academy of Sciences of the USA, 98(8):

4569–4574, 2001.

D.S. Johnson and M.A. Trick, editors. Cliques, Coloring, and Satisfiablility: Second DIMACS Implementation

Challenge, volume 26 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American

Mathematical Society, Providence, RI, 1996.

R.D. Luce. Connectivity and generalized cliques in sociometric group structure. Psychometrika, 15:169–190,

1950.

R.D. Luce and A.D. Perry. A method of matrix analysis of group structure. Psychometrika, 14:95–116, 1949.

R.J. Mokken. Cliques, clubs and clans. Quality and Quantity, 13:161–173, 1979.

A. Nagurney, editor. Innovation in Financial and Economic Networks. Edward Elgar Publishers, London,

2003.

P. R. J. Östergård. A fast algorithm for the maximum clique problem. Discrete Applied Mathematics, 120:

197–207, 2002.

M. W. Padberg. On the facial structure of set packing polyhedra. Mathematical Programming, 5:199–215,

1973.

X. Peng, M. A. Langston, A. M. Saxton, N. E. Baldwin, and J. R. Snoddy. Detecting network motifs in gene

co-expression networks through integration of protein domain information. In P. McConnell, S. M. Lin,

and P. Hurban, editors, Methods of Microarray Data Analysis V, pages 89–102. Springer, New York, 2007.

S. S. Ravi, D.J. Rosenkrantz, and G. K. Tayi. Heuristics and special case algorithms for dispersion problems.

Operations Research, 42:299–310, 1994.

L. A. Sanchis and A. Jagota. Some experimental and theoretical results on test case generators for the

maximum clique problem. INFORMS Journal on Computing, 8(2):103–117, 1996.

J. Scott. Social Network Analysis: A Handbook. Sage Publications, London, 2 edition, 2000.

S. B. Seidman. Network structure and minimum degree. Social Networks, 5:269–287, 1983.

13

The Maximum k-plex Problem B. Balasundaram et al., December 8, 2009

S. B. Seidman and B. L. Foster. A graph theoretic generalization of the clique concept. Journal of Mathematical

Sociology, 6:139–154, 1978.

V. Spirin and L. A. Mirny. Protein complexes and functional modules in molecular networks. Proceedings

of the National Academy of Sciences, 100(21):12123–12128, 2003.

L. E. Trotter. A class of facet producing graphs for vertex packing polyhedra. Discrete Mathematics, 12:

373–388, 1975.

T. Washio and H. Motoda. State of the art of graph-based data mining. SIGKDD Explor. Newsl., 5(1):59–68,

2003.

S. Wasserman and K. Faust. Social Network Analysis. Cambridge University Press, New York, 1994.

M. Yannakakis. The effect of a connectivity requirement on the complexity of maximum subgraph prob-

lems. Journal of the ACM, 26(4):618–630, 1979.

14

The Maximum k-plex Problem B. Balasundaram et al., December 8, 2009

Appendices

A Proofs

Theorem 2 k-PLEX is NP -complete for any fixed positive integer k.

PROOF. Since the k-plex definition is nontrivial, interesting and hereditary on induced subgraphs the maximum

k-plex problem is NP-hard by the result of Yannakakis [1979]. Here, we provide a more direct proof by

reducing CLIQUE [Garey and Johnson, 1979], a well-known NP-complete problem, to k-PLEX. Given an

instance 〈G = (V, E), c〉 of CLIQUE, we construct an instance 〈G′ = (V ′, E′), c′〉 in polynomial time such

that G has a clique of size c if and only if G′ has a k-plex of size c′. To construct G′, we expand G by

adding k − 1 copies of the complete graph of order n = |V |. Denote the vertex set of the rth such copy by

Vr, r = 1, . . . , k − 1, where Vr = {1r, . . . , nr}, and let R =
⋃k−1

r=1 Vr. Put V ′ = V ∪ R and E′ = E ∪ Ê ∪ Ẽ,

where Ê = {(i, jr) : i ∈ V, jr ∈ Vr, i 6= j, r = 1, . . . , k − 1} and Ẽ = {(ip, jr) : ip ∈ Vp, jr ∈ Vr, i 6=

j, p, r = 1, . . . , k − 1}. The set Ê represents the edges between V and R, where every vertex u ∈ V is

connected to every vertex in every complete graph except its copies, i.e., u is adjacent to every vertex in

R \ {u1, . . . , uk−1}. The set Ẽ includes the cross edges between distinct Vp and Vr , as well as all possible

edges between vertices in Vp, p = 1, . . . , k − 1. In other words, every vertex up ∈ Vp, p = 1, . . . , k − 1 is

adjacent to all the vertices in Vr \ {ur}, r = 1, . . . , k− 1. Putting c′ = c+(k− 1)n completes the reduction.

Note that the instance 〈G′ = (V ′, E′), c′〉 can be constructed in polynomial time.

We now show that if there exists a clique of size c in G then G′ has a k-plex of size c′. Let C ⊆ V

induce a clique of size c = |C| in G. We claim that the set S = C ∪ R, where |S| = c + n(k − 1) = c′, is a

k-plex. For any u ∈ C, there exist c − 1 neighbors inside C, and (n − 1)(k − 1) neighbors in R. Thus, for

u ∈ C, degG[S](u) = c − 1 + (n − 1)(k − 1) = c′ − k. For any vr ∈ R, there exist (n − 1)(k − 1) neighbors

in R and c neighbors in C if v /∈ C, and c − 1 neighbors in C if v ∈ C. Again, for vr ∈ R, degG[S](vr) ≥

c − 1 + (n − 1)(k − 1) = c′ − k. Hence, S induces a k-plex of size c′.

We now establish the other direction stating that if there exists a k-plex of size c′ in G′ then G has a

clique of size c. Let S be a k-plex of size c′ = c + n(k − 1). Let P = R \ S denote the set of vertices from R

not included in the k-plex and let |P | = p. Then, the c′ vertices in S consist of n(k−1)−p vertices in S ∩R

and c+p vertices in S∩V . Without loss of generality, suppose that S∩V = {1, . . . , c+p} and further assume

that for each i ∈ S ∩ V there exist qi copies of i in P that are left out of the k-plex. Since every i ∈ S ∩ V

has p − qi neighbors in P , we know that |N(i) ∩ (S ∩ R)| = (n − 1)(k − 1) − (p − qi). Since S is a k-plex,

∀ i ∈ S∩V : degG[S](i) = |N(i)∩(S∩R)|+|N(i)∩(S∩V)| ≥ c+n(k−1)−k,⇒ |N(i)∩(S∩V)| ≥ c+p−1−qi.

Recall that each qi is a non-negative integer counting copies of vertex i ∈ S ∩ V in P and note that P can

contain vertices that are not copies of any vertex in S ∩ V . Thus, we have
∑c+p

i=1 qi ≤ p . Hence, there

can exist at most p terms, qi, in that sum that are strictly greater than 0, meaning that there exist at least c

terms in that sum that are equal to 0. Without loss of generality, suppose that qi = 0, i ∈ {1, . . . , c}. Now,

let C = {1, . . . , c}. We already know that for all i ∈ C ⊆ S ∩ V = {1, . . . , c + p} : |N(i) ∩ (S ∩ V)| ≥

c + p − 1 − qi = c + p − 1. But |S ∩ V | = c + p, so for all i ∈ C, |N(i) ∩ (S ∩ V)| = c + p − 1. Thus, every

vertex in C ⊆ S ∩ V is adjacent to every vertex in S ∩ V . Hence, every vertex in C is adjacent to every

other vertex in C and |C| ≥ c. 2

Theorem 3 Let Pk(G) denote the k-plex polytope of a given graph G = (V, E), where k > 1. Then, (1)

dim(Pk(G)) = n; (2) xi ≥ 0, and xi ≤ 1 induce facets of Pk(G) for every i ∈ V .

PROOF. Let ei be the unit vector with ith component 1 and the rest 0; eij = ei+ej . The points 0, e1, e2, . . . , en

are clearly n + 1 affinely independent points in Pk(G) ⊂ R
n. Hence, dim(Pk(G)) = n.

Let F = {x ∈ Pk(G) : xi = 0}. Since an empty set or any vertex by itself is a k-plex, we have 0, ej for

all j ∈ V \ {i} forming n affinely independent points in F . This shows that dim(F) = n − 1 and it is a

facet. Let F ′ = {x ∈ Pk(G) : xi = 1}. We first observe that every vertex and any pair of vertices form a

k-plex for any k such that 1 < k < n. Then ei and eij for all j ∈ V \ {i} form n affinely independent points

in F ′, indicating that dim(F ′) = n − 1 and it is a facet. 2

Theorem 5 For a subset J ⊆ V such that |J | ≥ 3, the inequality
∑

i∈J

xi ≤ 2, induces a facet of P2(G) if and only

if J is a maximal co-2-plex.

PROOF. Let J be a maximal co-2-plex. First, recall that any 2 vertices from J form a 2-plex. Second,

for every v ∈ V \ J , the above two conditions for a maximal co-2-plex imply the existence of two vertices

15

The Maximum k-plex Problem B. Balasundaram et al., December 8, 2009

u, w ∈ J such that {v, u, w} is a 2-plex. Indeed, if the first case holds, let u ∈ J∩N(v), then N(u)∩J = {w}

and {v, u, w} is a 2-plex. If the second case holds, {u, w} ⊆ J ∩ N(v) and again {v, u, w} is a 2-plex. We

use these observations to construct n affinely independent (a.i.) vectors that lie on the face defined by

F = {x ∈ P2(G) :
∑

i∈J
xi = 2}, so F is (n − 1)-dimensional and hence, a facet. W.l.o.g. assume that

J = {1, . . . , r} and V \ J = {r + 1, . . . , n}, where r ≥ 3. Let ei ∈ R
n denote the unit vector with i-th

component one and all others zero. The a.i. vectors are constructed as: xv = ev + er, ∀ v = 1, . . . , r − 1;

xr = e1 + e2 (note that xr is distinct from x1, . . . , xr−1 as r ≥ 3); xv = ev + eu + ew, ∀ v = r + 1, . . . , n,

where for each v ∈ V \ J , u, w ∈ J are particular vertices described before. Clearly, xv ∈ F and it is easy

to verify that they are a.i.

For the converse, suppose
∑

i∈J
xi ≤ 2 induces a facet of P2(G). If J is not a co-2-plex, there exists

some v ∈ J with 2 neighbors in J which form a 2-plex. The incidence vector of this 2-plex violates the

facet inducing inequality, leading to a contradiction. Hence, J must be a co-2-plex. If J is not maximal,

then there exists a valid maximal co-2-plex inequality that dominates the given facet inducing inequality.

Hence, J must be a maximal co-2-plex. 2

Theorem 7 Let G = (V, E) be a cycle on n = t(k + 1) vertices with t ≥ 2, k ≥ 3 such that k + 1 is odd. Then the

inequality
∑

i∈V

xi ≤ k + 1 induces a facet of Pk(G).

PROOF. Let V = {1, 2, . . . , n} and E = {(i, i + 1 mod n) : i ∈ V }. Suppose there exists a valid inequality

ax ≤ b that contains the face induced by the hole inequality, we show that ai = λ, i ∈ V and b = (k + 1)λ

for some scalar λ. Note that the union of a path on k−1 vertices (k ≥ 3) and a path on 2 vertices forms a k-

plex (this includes one path on k + 1 vertices) that satisfies the hole inequality at equality. In the following

arguments, we first fix a path on k − 1 vertices and consider every 2-vertex path, with two consecutive

k-plexes so constructed, differing by one vertex. That is, if S is such a k-plex with (v, u) as the 2-vertex

path, the next k-plex is constructed as T = S∪{w}\{v} where v ∈ S, w ∈ V \S, (u, w) is the new 2-vertex

path, and hence, av = aw.

Case I: n is odd. Fix the path (1, 2, . . . , k − 1) in every solution. We consider 2-vertex paths in the

order (k, k + 1), then (k + 1, k + 2) and so on. Thus we obtain ak = ak+2 = · · · = an−3 = an−1 and

ak+1 = ak+3 = · · · = an−2 = an. Fix the path (n − k + 2, . . . , n) in the following solutions, and vary

the 2-vertex path sequentially starting with (1, 2). Here we obtain a1 = a3 = · · · = ak−1 = ak+1 and

a2 = a4 = · · · = ak−2 = ak. Together we have all odd index coefficients to be equal and all even index

coefficients to be equal. Consider paths (1, 2, . . . , k + 1) and (2, 3, . . . , k + 2) to obtain a1 = ak+2.

Case II: n is even. The fixed paths are chosen as in Case I to obtain a1 = a3 = · · · = an−1 and

a2 = a4 = · · · = an. Considering paths (1, 2, . . . , k + 1) and (2, 3, . . . , k + 2) we obtain a1 = ak+2. 2

Theorem 8 Let G = (V, E) be a cycle on n = t(k + 1) vertices with t ≥ 2, k ≥ 5 such that k + 1 is even. Then

the inequality
∑

i∈V

xi ≤ k + 1 induces a facet of Pk(G).

PROOF. Note that when k + 1 is even, so is n. The fixed paths are chosen as in Theorem 7 to obtain

a1 = a3 = · · · = an−3 = an−1 and a2 = a4 = · · · = an−2 = an. In order to connect an odd coefficient to an

even coefficient, we require k ≥ 5. Then consider the paths (1, 2, 3, 4, 5, . . . , k +1) and (1, 2, 3, 5, . . . , k +2)

(4 is deleted and k + 2 is added). We obtain a4 = ak+2. 2

B Some Remarks on Valid Inequalities

B.1 Co-k-plex Inequalities for k ≥ 3.

Although co-k-plex inequalities form facets of Pk(G) for k = 1, 2, they do not in general for k ≥ 3. Consider

G = (V, ∅) with at least k vertices. Note that G is a co-k-plex and the corresponding inequality
∑

i∈V
xi ≤

rk is not supporting since ωk(G) = k < rk and there is no x ∈ Pk(G) that satisfies it at equality. Hence,

these inequalities do not form facets of Pk(G) for all G. This is in contrast to the results known for k = 1, 2.

The reason is rk = k for k = 1, 2 and every graph G with at least k vertices has a k-plex of size rk = k.

The next natural question, if they form facets when G is a co-k-plex with ωk(G) = rk, k ≥ 3, is also

settled in the negative by the following counterexamples. Assume that k is even. Construct graph G of

16

The Maximum k-plex Problem B. Balasundaram et al., December 8, 2009

arbitrary order n ≥ rk as the union of n− rk clique components of size one and two clique components of

size k − 1 = rk/2. Then G is a co-k-plex with the two “large” clique components forming a k-plex of size

rk. Suppose F = {x ∈ Pk(G) :
∑

i∈V
xi = rk} is a facet of Pk(G). Since Pk(G) is an integral polytope,

the extreme points of F are also integral. Consider one such binary vector xo ∈ F . If xo
i = 1 for some

i that is a one-vertex clique component of G, for xo to be feasible we have
∑

j∈V \N[i] x
o
j ≤ k − 1. Since

V \ N [i] = V \ {i}, we have
∑

i∈V xo
i ≤ k, which contradicts the fact that xo ∈ F as rk > k. Hence, the

components of extreme points of F corresponding to one-vertex components of G are all zeros. Hence,

there exists exactly one extreme point in Pk(G) that satisfies
∑

i∈V
xi ≤ rk at equality, which is the incidence

vector of Kk−1 ∪ Kk−1. Thus, F is 0-dimensional and not a facet. For odd k, we can have arbitrarily large

graphs by adding single vertex components to the antiweb Gk[V ′] constructed before. By using similar

arguments, we can again show that there exists only one point in the k-plex polytope that satisfies the

co-k-plex inequality at equality.

From these observations we can conclude that ωk(G) = rk is only a necessary condition for the co-k-

plex inequality to induce a facet of Pk(G). Identifying graph classes for which the co-k-plex inequalities

and rank inequalities
∑

i∈J
xi ≤ ωk(G[J]) induce facets of the k-plex polytope when k ≥ 3 is an important

problem for future research. It is also a well-known fact that a graph is perfect if and only if its clique

polytope is completely characterized by all the maximal independent set inequalities and non-negativity

constraints [Cornuéjols, 2001]. Similarly, we could explore k-plex perfectness of graphs whose k-plex poly-

tope can be completely described by the co-k-plex inequalities described here and the trivial facets. This is

also an interesting topic for future research.

B.2 MIS and Co-k-plex Inequalities.

Both MIS and (maximal) co-k-plex inequalities generalize the MIS inequalities for the clique polytope. For

k = 1 they are identical, and for k = 2, co-2-plex inequalities induce facets and dominate the MIS inequali-

ties as the right-hand side bounds are equal. But based on Theorem 5 and the observation that every lifted

MIS inequality has 0 or 1 variable coefficients, every lifted MIS facet of P2(G) is a co-2-plex facet. For k ≥ 3

however, there could exist facets of Pk(G) obtained by sequentially lifting an MIS inequality that are dif-

ferent from any inequality co-k-plexes produce. Similarly, although co-k-plex inequalities do not produce

facets in general for k ≥ 3, they could provide stronger inequalities compared to MIS in some cases. As a

result, for k ≥ 3 neither inequality dominates the other in general. Consider the graph G3 in Figure 1 when

k = 3. The vertex set is a co-3-plex and the co-3-plex inequality is
∑7

i=1 xi ≤ 5 (note that we could tighten

the RHS bound as ω3(G3) = 4). The MIS inequality on the other hand is x1 + x3 + x5 + x7 ≤ 3, which

cuts off the point [1, 0, 1, 0, 1, 0, 1]T that is not cut-off by the co-3-plex inequality. Lifting the MIS inequality

following the sequence (x2, x4, x6) yields x1 + x2 + x3 + x5 + x6 + x7 ≤ 3, and following the sequence

(x4, x2, x6) yields x1 + x3 + x4 + x5 + x7 ≤ 3. Both are facets, as the variables were maximum lifted.

Consider the graph G4 in Figure 1 when k = 3. The independence number is 3 and the MIS inequalities

are implied by variable bounds, while the co-3-plex inequality
∑6

i=1 xi ≤ 5 is not.

1 32 4 5

1

3

2

45

G
3
:

G
4
:

6 7

6 7

Figure 1: Example graphs for comparing MIS and co-3-plex inequalities.

17

The Maximum k-plex Problem B. Balasundaram et al., December 8, 2009

C Numerical Results: Sanchis Graphs

The largest order up to which optimal resolution was possible on Sanchis instances within the 3-hour

time limit, using the specified algorithm, for each density is presented in Table 5. Note that “< 100”

indicates that the smallest instance in our test bed with 100 vertices was not solved optimally. Tables 6

and 7 present the total running time (excluding read/write time) and number of BC nodes enumerated

for solving maximum 1-plex problem on Sanchis graphs using BC(MIS) implementation. Non-optimal

termination is indicated by the dagger symbol (†). Running times and number of BC nodes enumerated by

BC(MIS) for k = 2 is presented in Tables 8 and 9. The size of the largest 2-plex found and an upper bound

on the 2-plex numbers obtained from the BC(MIS) implementation is provided in Table 10. Running times

and number of BC nodes enumerated by BC(co2plex) for k = 2 is presented in Tables 11 and 12 up to

n = 500 and d = 0.6. Note that none of the other instances were solved optimally.

Table 5: Summary of results on Sanchis instances

k Algorithm d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9

1 CPLEX default 800 900 900 900 700 200

1 BC(MIS) 1000 1000 900 1000 800 300

2 CPLEX default 1000 600 200 100 < 100 < 100

2 BC(MIS) 1000 900 600 200 < 100 100

2 BC(co2plex) 400 300 200 < 100 < 100 < 100

Table 6: Running time (secs) of BC(MIS) for k = 1 on Sanchis instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9

100 0.203 0.422 1.812 0.797 0.328 0.14

200 2.172 4.109 10.734 9.86 27.047 22.171

300 8.891 13.922 52.625 52.484 220.422 2.219

400 30.235 47.766 322.235 182.266 681.5 TiLim

500 69.86 90.5 807.296 322.953 1402.66 TiLim

600 169.171 226.813 2148.77 605.219 3570.42 TiLim

700 332.813 453 5594.47 1078.2 6591.23 TiLim

800 560.125 2041.39 5623.413252 1750.89 7028.73 TiLim

900 1057.34 1269.95 4995.91 3358.47 TiLim TiLim

1000 1894.39 2349.67 TiLim 4260.28 TiLim TiLim

Table 7: Number of nodes enumerated by BC(MIS) for k = 1 on Sanchis instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9

100 29 199 1126 86 39 4

200 354 1152 4022 170 1440 4065

300 511 2041 13547 303 3554 5

400 1613 5474 50350 442 4794 250409†

500 1626 4910 94790 373 4575 104917†

600 4199 10788 183446 402 6616 60535†

700 6979 15313 314525 406 7384 38725†

800 6774 83045 423327 458 5377 25228†

900 14221 26694 158301 654 5459† 17790†

1000 21789 40319 276913† 570 3684† 11660†

18

The Maximum k-plex Problem B. Balasundaram et al., December 8, 2009

Table 8: Running time (secs) of BC(MIS) for k = 2 on Sanchis instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9

100 1.266 2.562 12.203 320.125 TiLim 18.312

200 10.297 17.859 61.797 4075.13 TiLim TiLim

300 47.844 76.36 286.235 TiLim TiLim TiLim

400 141.61 248.125 999.922 TiLim TiLim TiLim

500 377.422 688.25 2495.25 TiLim TiLim TiLim

600 820.344 1466.3 5525.61 TiLim TiLim TiLim

700 1610.06 2981.74 TiLim TiLim TiLim TiLim

800 3083.42 5478.7 TiLim TiLim TiLim TiLim

900 6058.16 9204.52 TiLim TiLim TiLim TiLim

1000 9926.52 TiLim TiLim TiLim TiLim TiLim

Table 9: Number of nodes enumerated by BC-MIS for k = 2 on Sanchis instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9

100 523 1467 7946 169319 1851177† 10850

200 1574 4762 24859 283774 753120† 699101†

300 2910 9525 59309 106882† 238681† 597044†

400 3976 15987 119868 38867† 81804† 242840†

500 5249 23613 174602 16181† 34463† 101949†

600 6411 29417 247807 7115† 17901† 52399†

700 8918 41936 269150† 4022† 9490† 30193†

800 10095 45481 141117† 2426† 5713† 19134†

900 15997 50779 92591† 1622† 3693† 12578†

1000 19197 24291† 58027† 1109† 2528† 8579†

Table 10: 2-plex numbers found by BC(MIS) on Sanchis instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9

100 20 20 20 20 [24, 25] 38

200 40 40 40 40 [40, 60] [50, 75]

300 60 60 60 [60, 90] [60, 103] [59, 116]

400 80 80 80 [80, 130] [80, 148] [76, 159]

500 100 100 100 [100, 176] [100, 191] [99, 201]

600 120 120 120 [120, 222] [120, 231] [117, 245]

700 140 140 [140, 146] [140, 266] [140, 280] [136, 297]

800 160 160 [160, 236] [160, 306] [160, 324] [155, 339]

900 180 180 [180, 292] [180, 349] [180, 370] [180, 388]

1000 200 [200, 333] [200, 352] [200, 386] [200, 414] [196, 440]

Table 11: Running time (secs) of BC(co2plex) for

k = 2 on Sanchis instances

n d = 0.4 d = 0.5 d = 0.6

100 6.781 7.985 35.5

200 189.797 485.625 1667.7

300 1658.7 4966.11 TiLim

400 9486.86 TiLim TiLim

500 TiLim TiLim TiLim

Table 12: Number of nodes enumerated by

BC(co2plex) for k = 2 on Sanchis instances

n d = 0.4 d = 0.5 d = 0.6

100 607 1515 8445

200 1779 5780 27896

300 3754 12932 13899†

400 7492 3541† 3490†

500 1109† 1452† 762†

19

The Maximum k-plex Problem B. Balasundaram et al., December 8, 2009

Table 13: DIMACS benchmarks.
Graphs |V | |E| d ω(G) BC(MIS) (secs) ω2(G) BC(MIS) (secs)

c-fat200-1.clq 200 1534 0.077 12 17.1 12 148.9

c-fat200-2.clq 200 3235 0.163 24 10.4 24 19.1

c-fat200-5.clq 200 8473 0.426 58 2.1 58 2.1

c-fat500-1.clq 500 4459 0.036 14 1334.4 14 1356.1

c-fat500-2.clq 500 9139 0.073 26 535.7 26 605.3

c-fat500-5.clq 500 23191 0.186 64 141.6 64 141.5

c-fat500-10.clq 500 46627 0.374 126 39.3 126 76.5

hamming6-2.clq 64 1824 0.905 32 0.0 32 0.0

hamming6-4.clq 64 704 0.349 4 0.2 6 0.3

hamming8-2.clq 256 31616 0.969 128 0.0 128 189.5

hamming8-4.clq 256 20864 0.639 16 52.2 16 8115.2

hamming10-2.clq 1024 518656 0.990 512 0.8 [512,530] TiLim

hamming10-4.clq 1024 434176 0.829 [36,234] TiLim [41,153] TiLim

johnson8-2-4.clq 28 210 0.556 4 0.0 5 0.0

johnson8-4-4.clq 70 1855 0.768 14 0.1 14 4.4

MANN a9.clq 45 918 0.927 16 0.0 26 0.0

MANN a27.clq 378 70551 0.990 126 430.3 236 79.8

MANN a45.clq 1035 533115 0.996 [344,347] TiLim [662,668] TiLim

keller4.clq 171 9435 0.649 11 129.8 15 365.4

brock200 1.clq 200 14834 0.745 [20,31] TiLim [25,53] TiLim

brock200 2.clq 200 9876 0.496 12 152.5 [13,24] TiLim

brock200 4.clq 200 13089 0.658 17 6617.5 [19,41] TiLim

brock400 2.clq 400 59786 0.749 [24,68] TiLim [27,133] TiLim

brock400 4.clq 400 59765 0.749 [23,69] TiLim [27,133] TiLim

brock800 2.clq 800 208166 0.651 [19,116] TiLim [23,253] TiLim

brock800 4.clq 800 207643 0.650 [19,108] TiLim [23,252] TiLim

p hat300-1.clq 300 10933 0.244 8 127.0 [9,66] TiLim

p hat300-2.clq 300 21928 0.489 [25,51] TiLim [28,85] TiLim

p hat300-3.clq 300 33390 0.744 [35,71] TiLim [43,108] TiLim

p hat700-1.clq 700 60999 0.249 [11,40] TiLim [10,291] TiLim

p hat700-2.clq 700 121728 0.498 [44,208] TiLim [50,298] TiLim

p hat700-3.clq 700 183010 0.748 [62,201] TiLim [73,311] TiLim

20

The Maximum k-plex Problem B. Balasundaram et al., December 8, 2009

Table 14: Runtime in seconds for Erdös net-

works using IPBC algorithm.

k Graph IPBC Time BC Time #BC Calls

1

ERDOS-97-1 1.4 0.0 5

ERDOS-98-1 1.4 0.1 6

ERDOS-99-1 1.5 0.0 6

ERDOS-97-2 367.5 0.1 7

ERDOS-98-2 445.4 0.0 7

ERDOS-99-2 491.9 0.0 4

2

ERDOS-97-1 1.5 0.2 5

ERDOS-98-1 1.7 0.2 6

ERDOS-99-1 1.8 0.3 6

ERDOS-97-2 392.9 0.5 7

ERDOS-98-2 464.3 0.6 7

ERDOS-99-2 526.5 0.4 9

3

ERDOS-97-1 1.8 0.4 5

ERDOS-98-1 1.8 0.3 6

ERDOS-99-1 1.8 0.3 6

ERDOS-97-2 394.1 8.7 7

ERDOS-98-2 457.1 1.1 7

ERDOS-99-2 520.0 3.2 9

4

ERDOS-97-1 2.2 1.0 4

ERDOS-98-1 2.8 1.5 4

ERDOS-99-1 1.8 0.3 4

ERDOS-97-2 424.0 39.6 3

ERDOS-98-2 614.7 159.8 3

ERDOS-99-2 526.3 10.6 4

5

ERDOS-97-1 5.7 4.5 4

ERDOS-98-1 7.9 6.6 4

ERDOS-99-1 9.9 8.5 4

ERDOS-97-2 1042.8 688.2 3

ERDOS-98-2 1664.6 1244.6 3

ERDOS-99-2 653.5 178.1 4

Table 15: Runtime in seconds for biological net-

works using IPBC algorithm.

k Graph IPBC Time BC Time #BC Calls

1
H. Pylori 11.5 0.0 13

S. Cerevisiae 44.1 0.0 0

2
H. Pylori 12.6 1.3 2

S. Cerevisiae 46.4 0.0 0

3
H. Pylori 37.8 26.6 2

S. Cerevisiae 45.1 0.0 1

4
H. Pylori 29.3 18.3 2

S. Cerevisiae 45.0 0.0 1

5
H. Pylori 133.1 123.0 3

S. Cerevisiae 41.8 0.0 3

Table 16: Runtime in seconds for computational

geometers collaboration networks using IPBC
algorithm.

k Graph IPBC Time BC Time #BC Calls

1

GEOM-0 2287.6 0.0 0

GEOM-1 701.2 0.0 0

GEOM-2 479.6 0.0 0

2

GEOM-0 2384.4 0.0 0

GEOM-1 753.2 0.1 2

GEOM-2 530.6 0.1 4

3

GEOM-0 2387.1 0.0 0

GEOM-1 747.7 0.1 2

GEOM-2 524.3 0.0 1

4

GEOM-0 2383.7 0.0 0

GEOM-1 743.7 0.4 2

GEOM-2 522.2 0.1 1

5

GEOM-0 2298.1 0.0 0

GEOM-1 691.6 1.8 2

GEOM-2 472.6 0.5 4

Table 17: Runtime in seconds for the Reuters ter-

ror news networks using IPBC algorithm.
k Graph IPBC Time BC Time #BC Calls

1

DAYS-3 3110.8 0.1 3

DAYS-4 2940.8 0.2 1

DAYS-5 2758.0 0.0 0

2

DAYS-3 3367.8 4.1 1

DAYS-4 2635.7 0.3 1

DAYS-5 2462.9 0.1 2

3

DAYS-3 3395.4 45.5 1

DAYS-4 2625.1 4.7 1

DAYS-5 2445.5 0.2 2

4

DAYS-3 3489.8 203.0 1

DAYS-4 2642.3 51.4 1

DAYS-5 2426.3 2.7 1

5

DAYS-3 15336.9 12329.1 1

DAYS-4 6201.4 3316.8 1

DAYS-5 2820.8 113.1 1

21

