
CLIQUES: A New Approach to Group Key Agreement

Michael Steiner Gene Tsudik Michael Waidner

IBM Z�urich Research Laboratory USC Information Sciences Institute IBM Z�urich Research Laboratory

CH-8803 R�uschlikon, Switzerland Marina del Rey, CA 90292 CH-8803 R�uschlikon, Switzerland

sti@zurich.ibm.com gts@isi.edu wmi@zurich.ibm.com

Abstract
This paper considers the problem of key agreement

in a group setting with highly-dynamic group mem-
ber population. A protocol suite, called CLIQUES, is
developed by extending the well-known Di�e-Hellman
key agreement method to support dynamic group oper-
ations. Constituent protocols are provably secure and
e�cient.

1 Introduction
Popularity of group-oriented applications and pro-

tocols is currently on the increase and, as a result,
group communication occurs in many di�erent set-
tings: from network layer multicasting to application
layer tele- and video-conferencing. Regardless of the
underlying environment, security services are typically
necessary to provide communication privacy and in-
tegrity.

While peer-to-peer security is a mature and well-
developed �eld, secure group communication remains
comparatively unexplored. Contrary to a common ini-
tial impression, secure group communication is not
a simple extension of secure two-party communica-
tion. The greatest di�erence is due to group dynam-
ics. Two-party communication can be viewed as a
discrete phenomenon: it starts, lasts for a while and
ends. Group communication, in contrast, is more com-
plicated: it starts, the group mutates (members leave
and join) and there might not be a well-de�ned end.
This complicates attendant security services { most
importantly, key agreement.

Key distribution (or key agreement in this context)
is the cornerstone of secure communication irrespec-
tive of the application domain. In this paper, we de-
velop a protocol suite, called CLIQUES, for key agree-
ment in dynamic groups. However, this paper does not
consider other security services such as key integrity,
entity authentication, non-repudiation and access con-
trol.

Research supported by the Defense Advanced Research
Project Agency, Information Technology O�ce (DARPA-ITO),
under contract DABT63-97-C-0031.

Copyright c
1998 IEEE. Published in the Proceedings of

ICDCS'98, May 1998 Amsterdam, The Netherlands. Personal
use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redis-
tribution to servers or lists, or to reuse any copyrighted com-
ponent of this work in other works, must be obtained from the
IEEE. Contact: Manager, Copyrights and Permissions / IEEE

Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway,
NJ 08855-1331, USA. Tel. 908-562-3966.

2 Dimensions of Key Agreement
We distinguish among Initial Key Agreement (IKA)

and Auxiliary Key Agreement (AKA) operations.
IKA refers to the initial group key agreement, a sort
of a group genesis. AKA encompasses all subsequent
key agreement operations.

We also consider two types of group key agreement:

� Centralized: entire key generation is performed
by a single entity; typically, a group leader. A
special case is the scenario where the key is gen-
erated by some trusted third party (TTP) which,
itself, is not a group member. (This actually
translates into key distribution, not key agree-
ment.)

� Contributory: each group member makes an in-
dependent contribution to the group key. We
make a further distinction among two slightly
di�erent
avors of contributory key agreement:

Partially Contributory: some operations result
in contributory and others, in centralized, key
agreement.
Fully Contributory: all key agreement opera-
tions are contributed to by each group member.

Centralized key agreement is the most intuitive and
the most natural. It has been used in a number of past
and current mechanisms and its use is commensurate
with important advantages as well as certain draw-
backs. One such drawback is the overall reliance on a
single party.

In the domain of group communication, contribu-
tory key agreement, has been, for the most part, re-
stricted to the cryptographic literature [5, 11, 3, 6,
12, 7] and has remained of largely theoretical inter-
est. However, the aesthetics of symmetry, the intrinsic
guarantee of key freshness and suitability to group-
wide mutual authentication makes it worthwhile to
explore.

3 Design Rationale
In this section we provide justi�cation for certain

choices made in the development of CLIQUES proto-
cols.

� Why Di�e-Hellman?
Several factors motivate our choice of using
Di�e-Hellman (DH) key agreement as a basic
building block. First, since it was proposed in
1976, DH has been scrutinized by many able
cryptographers, implemented in many crypto li-
braries and software packages and deployed in a

1

variety of settings. Thus far, it withstood the
test of time rather well. Second, DH is simple,
requiring no complex arithmetic outside of ex-
ponentiation in �nite �elds. Third, DH is demo-
cratic, i.e., both parties contribute equally to the
shared secret.

� Why partially contributory model?
From the choice of DH key agreement it follows
that centralized model is essentially ruled out.
On the other hand, fully contributory model,
while desirable, is impractical since it implies
that all AKA operations would have to mimic
IKA, i.e., there would be little (if any) distinc-
tion between IKA and AKA.1 Partially contrib-
utory model represents a workable compromise.

� Why have group controllers?
The main reason for having group controllers
is, once again, to support e�cient AKA oper-
ations. As will be seen in section 8, some IKA
protocols support leaderless (or symmetric) op-
eration. However, we argue that group con-

troller is necessary if only for the purposes
of adding and excluding members, i.e., manag-
ing group membership. The alternative appears
rather complex and unattractive.

4 Initial Key Agreement
As de�ned in section 2, IKA takes place at the time

of group genesis. It is the time when protocol over-
head must be minimized since key agreement must
naturally precede any kind of secure group communi-
cation. On the other hand, for dynamic groups, cer-
tain allowances can be made: for example, extra IKA
overhead can be tolerated in exchange for lower AKA
(subsequent key agreement operations) costs.

Note that it is the security of the IKA, not its over-
head costs, that is the overriding concern. In this con-
text, security{as in the original 2-party Di�e-Hellman
key agreement{means resistance to passive attacks.
Or, equivalently, the inability to recover the key by
mere eavesdropping.

Naturally, IKA requires contacting every group
member-to-be. Contributory key agreement also calls
for a key share to be solicited from each member.
Hence, it may be possible to coincide (or interleave)
with the IKA other security services such as authen-
tication, access control and non-repudiation. This is
something to keep in mind for the follow-on work.

We also note that, in some environments, IKA alone
is su�cient. For example, if group membership is
static or changes are infrequent, no AKA protocols
may be necessary. The exception might be key refresh
but this can be mimicked (though expensivly) with
IKA.

5 Auxiliary Key Agreement
As mentioned above, the initial full-blown group

key agreement is only a part, albeit a major one, of
the protocol suite needed to support secure communi-
cation in dynamic groups. In this section we discuss

1All types of group key changes would be equally expensive;
more on this below.

the other, auxiliary group key operations and the at-
tendant security issues. (See also �gure 1.)

Member Addition

Member Exclusion

Group Fusion

Group Fission

Mass Join

Mass Leave

Figure 1: AKA Operations

5.1 Single Member Operations
The AKA operations involving single group mem-

bers are member addition and member exclusion. The
former is a seemingly simple procedure of admitting
a new member to an existing group. We can assume
that member addition is always multi-lateral or, at
least, bilateral (i.e., it takes at least the group leader's
and the new member's consent to take place.) Member
exclusion is also relatively simple with the exception
that it can be performed either unilaterally (by expul-
sion) or by mutual consent. In either case, the security
implications of member exclusion are the same.

The security property crucial to all AKA operations
is key independence. Informally, it encompasses the
following two requirements:

� Old, previously used group keys must not be dis-
covered by new group member(s), i.e., a group
member must not have knowledge of keys used
before it joined the group.

� New keys must remain out of reach of former
group members.

A related term found in the security literature is resis-
tance to known key attacks (KKA) [8, 2]. A protocol
is said to be KKA-resistant if knowledge of one or
more past session (short-term) keys cannot be used to
compute a current session key or a long-term secret.
Generally, a known-key attack can be passive or ac-
tive. The latter is addressed in detail by Burmester [2].
Since this paper (and our protocol model) is concerned
with key agreement without any related services (e.g.,
implicit key authentication) we only consider passive
known-key attacks on short-term session keys.

Along the same lines, we are not considering per-
fect forward secrecy (PFS) [10, 8] since no long-term
secrets are assumed in this context. (Recall that PFS
is premised on the possibility of compromise of long-
term secrets.)

To be more precise, our communication model as-
sumes all communication to be authentic but not pri-
vate. An adversary is assumed to be strictly passive,
i.e., it may eavesdrop on arbitrary communication but
may not, in any way, interfere with it. Furthermore,

2

an adversary in the IKA/AKA protocols can be an
outsider or a quasi-insider. An outsider is a passive
adversary not party to the protocols. A quasi-insider
is a one-time group member who wants to (passively)
discover group session keys used outside of its mem-

bership interval.

While the requirement for key independence is
fairly intuitive, we need to keep in mind that, in
practice, it may be undesirable under certain circum-
stances. For example, a group conference can com-
mence despite one of the intended participants run-
ning late. Upon his arrival, it might be best not to
change the current group key so as to allow the tardy
participant to catch up. However, this decision should
be determined by local policy.

5.2 Subgroup Operations
Subgroup operations are group addition and group

exclusion. Group addition, in turn, has two variants:

� Mass join: the case of multiple new members
who have to be brought into an existing group
and, moreover, these new members do not al-
ready form a group of their own.

� Group fusion: the case of two groups merging to
form a super-group; perhaps only temporarily.

Similarly, subgroup exclusion can also be thought of
as having multiple
avors:

� Mass leave: multiple new members must be ex-
cluded at the same time.

� Group division: monolithic group needs to be
broken up in smaller groups.

� Group �ssion: previously merged group must be
split apart.

Although the actual protocols for handling all sub-
group operations may di�er from those on single mem-
bers, the salient security requirements (PKS, FKS) re-
main the same.

5.3 Group Key Refresh
For a variety of reasons it is often necessary to per-

form a routine key change/refresh operation. This
may include, for example, local policy that restricts
the usage of a single key by time or by the amount
of data that this key is used to encrypt or sign. To
distinguish it from key changes resulting from mem-
bership changes, we will refer to this operation as key
refresh.

6 CLIQUES Protocol Suite
We now turn to the actual protocols employed in

the CLIQUES suite. Their initial derivation can be
found in [12]. Also included in [12] is a blanket
proof for an entire protocol class collectively referred
to as the generic n-party Di�e-Hellman (DH) key
agreement.2 In brief, it is shown that:

If a 2-party DH key is indistinguishable
from a random value then an n-party DH
key is also indistinguishable from a random
value.

2Of course, where n > 2.

In the rest of this section we walk through the entire
protocol suite and, in the process, discuss and evaluate
the proposed mechanisms.

n number of protocol participants (group members)
i; j; k indices of group members
Mi i-th group member; i 2 [1; n]

q order of the algebraic group
g exponentiation base; generator in the

algebraic group delimited by q
Ni random (secret) exponent generated by Mi

S; T subsets of fN1; . . . ; Nng

�(S) product of all elements in set S
Kn group key shared among n members

Table 1: Notation used in the remainder of the paper.

6.1 Initial Key Agreement
The cornerstone of the CLIQUES protocol suite is

the IKA protocol called GDH.2 depicted in �gures 2.
(The name GDH.2 is kept for historical reasons; see
[12].) This protocol executes in n rounds. In the �rst
stage (n � 1 rounds) contributions are collected from
group members and in the second stage (round n) the
group keying material is broadcast.

Mi Mi+1

�
fg

N1...Ni
Nk j k 2 [1; i]g;gN1...Ni

������������������������!

Stage 1 (Up
ow): round i; i 2 [1; n � 1]

Mi Mn

 �
fg

N1...Nn
Ni j i 2 [1; n]g

�������������������������

Stage 2 (Broadcast): round n

Figure 2: Group Initial Key Agreement: GDH.2

In more detail, the i-th round of stage 1 is as fol-
lows:

1. Mi (0 < i � 1) receives a sequence of (i � 1)
intermediate key values and one cardinal value.
(M1 can be thought of as implicitly receiving an
empty set of intermediate values and a cardinal
value of K0 = g.)

For each subset of i � 2 lower-indexed members
(and there are i � 1 of those) an intermediate
value is the group key for that subset.

The cardinal value is essentially the group key
for all (i � 1) preceding group members, i.e.,

Ki�1 = gN1...Ni�1 .

2. Mi generates its own contribution Ni.

3. Raises each received intermediate value to the
power of Ni thus producing a set of new inter-
mediate values.

3

4. The old cardinal value is added to the set of new
intermediate values.

5. Mi computes the new cardinal value Ki =
(Ki�1)

Ni .

6. If i < n, Mi sends Ki and the new intermediate
values to Mi+1.

The highest-indexed group memberMn plays a special
role of a group controller; it is required to complete
stage 1 and initiate stage 2. However, despite the
communication asymmetry, GDH.2 is computation-
ally symmetric, i.e., even Mn performs the sequence
of n exponentiations in the same order as described
above.

The last round is Mn broadcasting n � 1 interme-
diate values to the entire group. (Of course, the last
cardinal value cannot be broadcast as it is the actual
group key.) Each receivingMi identi�es its intermedi-
ate value (i.e., a group key corresponding to the other
n � 1 members) and exponentiates it with Ni thus
computing the �nal group key.

It is important to note that stage 2 does not have
to be a true broadcast. If broadcast services are either
unavailable or the size of the last message is an issue,
Mn may choose to perform (n � 1) unicasts instead.
The unicasts can be simultaneous or serial depending
on the underlying network technology.

6.2 Member Addition
The member addition protocol is shown in �gure 3.

The protocol's main premise is that the new member
Mn+1 becomes the new group controller. It is assumed
that the \old" controller Mn saves the contents of the
last Up
ow message that it received in round n� 1 in
the IKA protocol of �gure 2.3

In e�ect, Mn extends Stage 1 of the IKA protocol

by one round: it generates a new exponent cNn and

creates a new up
ow message (with cNn instead of Nn)
using the contents of the previously received Up
ow
message. It then forwards the message to the new
member which, in turn, takes the same sequence of
steps as Mn in the IKA protocol.

The role of the group controller is thus passed on
to the newest group member. Although this protocol
�ts in nicely with the IKA, its basic assumption of a

oating group controller might be unrealistic in some
environments. For example, the new member may, in
fact, be the one least trusted by the rest of the group.4

In order to address this concern, we modify the present
protocol to support a �xed group controller. For the
sake of clarity, we assume that, while the controller
stays �xed, its index keeps growing. In other words,
the new member becomesMn and the group controller
assumes the index n+ 1.

3This is only the case for the very �rst member addition;
subsequent member additions require the current controller to
save the most recent Up
ow message from the preceding mem-
ber addition protocol.

4On the other hand, it can be argued that this approach

is fair since it o�-loads the bulk of the computation to the
newcomer.

Mn Mn+1

�
fg

N1...cNn
Nk j k 2 [1; n]g; gN1...cNn

�������������������������!

Up
ow: round 1

Mi Mn+1

 �
fg

N1...cNnNn+1
Ni j i 2 [1; n]g

���������������������������

Broadcast: round 2

Figure 3: Member Addition:
oating group controller

The resultant protocol is shown in �gure 4. The
�rst message is a duplicate of either the up
ow mes-
sage in round (n � 1) of the original IKA protocol
(only if this is the �rst member addition) or the up-

ow message in round 2 of the last member addition
protocol.

Mn { new member Mn+1 { formerlyMn

Mn Mn+1

 �
fg

N1...Nn�1

Ni j i 2 [1; n� 1]g;gN1 ...Nn�1

��������������������������������

����
fg

N1...Nn
Ni j i 2 [1; n]g; gN1...Nn

����������������������������!

Simulated Up
ow : rounds 1 &2

(Nn - new member's contribution)

Mi Mn+1

 �
fg

N1...Nn+1
Ni j i 2 [1; n]g

�������������������������������

Broadcast: round 3

Figure 4: Member Addition: �xed group controller

One interesting and useful feature of the two mem-
ber addition protocols is their ability to co-exist within
a group. Consequently, a group may start out with a
�xed group controller and, later, switch over to the

oating controller mode or viceversa.

6.3 Mass Join
Distinct from both member and group addition is

the issue of mass join. When is mass join neces-
sary? In cases when multiple new members need to
be brought into an existing group. In most cases, the
new members are disparate (i.e., have no prior com-
mon association) and need to be added in a hurry.
Alternatively, the new members may already form a

4

subgroup but policy might dictate that they should be
treated individually.

It is, of course, always possible to add multiple
members by consecutive runs of a single-member addi-
tion protocol. However, this would be ine�cient since,
for each new member, every existing member would
have to compute a new group key only to throw it
away soon thereafter. To be more speci�c, if m new
members were to be added in this fashion, the cost
would be:

� 3m (2m) rounds with �xed (
oating) controller

� Included in the above are m rounds of broadcast

� m exponentiations by every \old" group member

The overhead is clearly very high. A better approach
is to chain the member addition protocol as shown
in �gure 5. The idea is to capitalize on the fact that
multiple, but disparate, new members need to join the
group and chain a sequence of Up
ow messages to tra-
verse all new members in a certain order. This allows
us to incur only one broadcast round and postpone it
until the very last step, i.e., the last new member be-
ing mass-joined performs the broadcast. The savings,
compared with the naive approach, amount to m � 1
broadcast rounds.

For brevity's sake �gure 5 shows only the
oating
controller model. A chained �xed controller model can
be trivially and similarly constructed from the proto-
col in �gure 4.

Mn+j Mn+j+1

fg

N1...Nn+j

Nk j k 2 [1; n+ j]g

���
gN1 ...cNnNn+1 ...Nn+j

�������������������!

Up
ow: round j 1 � j � m

Mi Mn+m

 �
fg

N1...Nn+m

Ni j i 2 [1; n +m]g
�����������������������

Broadcast: round m+ 1

Figure 5: Mass Join (
oating controller)

6.4 Group Fusion
Group fusion, as de�ned above, occurs whenever

two groups merge to form a super-group. The only
real di�erence with respect to mass join is that group
fusion assumes pre-existing relationships within both
groups. Thus, it is important to recognize from the
outset that the most expedient way to address group
fusion is to treat it as either: 1) special case of mass
join as in �gure 5 or, 2) creation of a new super-group
via IKA of �gure 2

The �rst choice is appropriate if one of the groups is
small. (Recall that mass join takes m+1 rounds where

m is the smaller group's size.) On the other hand, cre-
ating a new group from scratch may be more secure5

and not too expensive if both groups are relatively
small. Another reason can be the need to re-assign
the group controller's role.

It is certainly possible to end the discussion of
group fusion at this point. The outcome would be
a heuristic- or policy-driven decision to use (1) or (2)
on a case-by-case basis. However, if only for purely
academic reasons, it might be worthwhile to inves-
tigate more e�cient, or at least more elegant, solu-
tions geared speci�cally towards group fusion. Al-
though this remains a subject for future work, we
brie
y sketch one possible solution below.

One promising approach to group fusion is a tech-
nique fashioned after the one developed by Steer et
al. in [11]. In brief, suppose that two groups G1 and
G2 currently using group keys K1 and K2, respec-
tively, would like to form a super-group. To do so,
the two groups exchange their respective key residues:
gK1 and gK2 and compute a new super-group key
K12 = gK1K2 . The actual exchange can be under-
taken by the group controllers. Note that this type
of fusion is very fast since it can in principle be ac-
complished in one round of broadcast. Furthermore,
reverting to the original group structure is easy since
each group can simply fall back to using K1 and K2

at any time thus e�ectively reversing the fusion.

6.5 Member Exclusion
The member exclusion protocol is illustrated in �g-

ure 6. The chief assumption here is that the only
entity having the authority to exclude group members
is the current group controller.

In the present protocol, Mn e�ectively \re-runs"
the last round of the IKA: as in member addition, it

generates a new exponent cNn and constructs a new

Broadcast message{but with cNn instead of Nn{using
the most recently received Up
ow message. (Note that
the last Up
ow message can be from an IKA or mem-
ber addition, depending which was the latest to take
place.) Mn then broadcasts the message to the rest of
the group. The private exponents of the other group
members remain unchanged.

Mn Mi

�
fg

N1...cNn
Ni j i 2 [1; n� 1] ^ i 6= pg

���������������������������������!

Broadcast: round 1

Figure 6: Member Exclusion

Let Mp be the member to be excluded from the
group. We assume, for the moment, that p 6= n. (Ex-
cluding a group controller is a special case addressed
below.) Since the following sub-key:

5Because re-running an IKA involves a liveness test of all
group members.

5

gN1...Np�1Np+1 ...Nn�1cNn

is conspicuously absent from the set of broadcasted
sub-keys, the newly excludedMp is unable to compute
the new group key:

Knew = gN1 ...Np ...Nn�1cNn

A notable side-e�ect is that the excluded member's
contribution Np is still factored into the new key.
Nonetheless, this in no way undermines the new key's
secrecy.

In the event that the current group controller Mn

has to be excluded, Mn�1 must assume its role. Bar-
ring a complete group rekey (i.e., re-running the IKA
or somehow soliciting fresh contributions from other
group members) onlyMn�1 has the material su�cient
to perform a fast key update and deposeMn. This ma-
terial is the last Up
ow message seen by Mn�1. The
protocol itself is identical to the one in �gure 6.

Conceptually, requiringMn�1 to assume the group
controller's role is reasonable in the
oating controller
model sinceMn�1 is always the most recent controller.
It is less clear in the �xed controller model. Perhaps,
the original indexing of group members should take
into account their abilities to function as group con-
trollers. In other words, higher numbered members
are more trusted, better equipped and more likely to
be, group controllers.

6.6 Subgroup Exclusion
In most cases, subgroup exclusion is even simpler

than single member exclusion. The protocol for mass
leave is almost identical to that in �gure 6. The only
di�erence is the group controller having to compute
and send fewer sub-keys in the �nal broadcast mes-
sage. (Only those sub-keys corresponding to remain-
ing members are computed and broadcast.)

A slightly di�erent scenario is that of group division
when a monolithic group needs to be split into two or
more smaller groups. The obvious way of address-
ing this is to �rst exclude the future members of the
smaller group via the mass leave protocol and, then, to
create a new group made up of those excluded mem-
bers. In contrast to its counterpart (group fusion),
we argue that group �ssion does not warrant special
treatment, i.e., a mechanism distinct from those illus-
trated thus far. The chief reason is that, in this case,
the obvious solution works well.

The remaining case is that of group �ssion: split-
ting a group that was formed as a result of group fu-
sion. Ideally, the group controllers of all previously
fused groups are still alive and well at the time of �s-
sion. If so, the entire task can be reduced to each for-
mer group controller broadcasting a key update much
as in the mass leave or member exclusion scenarios.
If a former controller is unavailable for some reason,
its role must be assumed by the next highest indexed
(within the original group) member. This has some
implications for state retention, i.e., group members
must keep state pertaining to the group before fusion.

7 Security Considerations
In order to demonstrate security of the AKA pro-

tocols, we need to consider a snapshot in a life of a
group, i.e., the lifespan and security of a particular
short-term key.

The following sets are de�ned:

� C = fM1; . . . ;Mpg denotes all current group
members and Mp is the group controller.

� P = fMp+1; . . . ;Mqg denotes all past (excluded
before) group members.

� F = fMq+1; . . . ;Mng denotes all future (sub-
sequently added) group members.

Note that the term future is used relative to the spe-
ci�c session key. The issue at hand is the ability of all
past and future members to compute the current key.

K = gN1 ...cNpNp+1 ...Nq

To simplify our discussion we collapse all members of
P and F into a single powerful adversary (Eve). (This
is especially �tting since P and F are not necessarily
disjoint.) The result is that Eve = P [F and she
possesses fNj ; jMj 2 (P;F)g.

We can thus rewrite the key as:

K = gB(�E)

where B is a constant known to Eve, E =

fN1; . . . ; Np�1;
cNpg are the secret exponents (contri-

butions) of current group members and cNp is the
group controller's exponent. In Eve's view, the only

expressions containing cNp are in the last Broadcast
round of either member addition or member exclusion
protocols:

fg
N1...Np�1 bNp

Ni jMi 2 Cg

We can further assume that Eve also knows all:
fg�S j S � Eg

However, Eve's knowledge is a subset of what in [12]
is called view(p; E). The following theorem is proven
in [12]:
Theorem: For each constant n, A2�polyD2 implies
An�polyDn.
where:

� "�poly" denotes polynomial indistinguishability

� An := (view(n;X); y), for a randomly chosen
y 2 G,

� Dn := (view(n;X);K(n;X)).

� view(n;X) := ordered set of all gNi1
��� Nim for

all proper subsets fi1; . . . ; img of f1; . . . ; ng,

� K(n;X) := gN1 ��� Nn .

� X = fN1; . . . ; Nng

If we substitute n with p, X with E , and K(n;X) with
K, it follows that K is polynomially indistinguishable
from a random value. 2

Consequently, all AKA protocols presented above
fall into the class of \natural" DH extensions de�ned
in [12] and bene�t from the same security properties.

8 Related Work
The earliest attempt to extend DH to groups is

due to Ingemarsson et al. [5] The protocol in �g-
ure 7 (called ING) requires synchronous startup and
executes in (n � 1) rounds. The members must be
arranged in a logical ring. In a given round, every

6

participant raises the previously-received intermediate
key value to the power of its own exponent and for-
wards the result to the next participant. After (n�1)
rounds everyone computes the same key Kn.

Mi M(i+1)mod n

�
g(�fNj j j2[(i�k)mod n;i]g)

���������������������!

Figure 7: ING Protocol: Round k; k 2 [1; n� 1]

We note that this protocol falls into the class of
natural DH extensions as de�ned in [12]. It is, thus,
suitable for use as an IKA protocol. However, because
of its symmetry6 (no group leader) it is di�cult to use
it as a foundation for auxiliary key agreement proto-
cols.

Another DH extension geared towards teleconfer-
encing was proposed by Steer et al. in [11]. This
approach (STR) requires all members to have broad-
casting facilities and takes n rounds to complete. In
some ways, STR is similar to GDH.2 IKA. Both take
the same number of rounds and involve asymmetric
operation. Also, both accumulate keying material by
traversing group members one per round. However,
the group key in STR has a very di�erent structure:

Kn = gNng
Nn�1g :::N3g

N1N2

Interestingly, STR is well-suited for adding new mem-
bers; see �gure 8. It takes only two rounds to add a
new member just like its counterpart in GDH.2 (with

oating controller). Moreover, this protocol is compu-
tationallymore e�cient than GDH.2 member addition
since fewer exponentiations take place. are based on
a structure where they assume Member exclusion, on

Mi Mn+1

 �
gNn+1

�������

Mn Mn+1

�
gKn

�������!

Figure 8: Member Addition in STR.

the other hand, is di�cult in STR since there is no nat-
ural group controller. For example, excluding M1 or
M2 is problematic since their exponents are used in the
innermost key computation. In general, re-computing
a common key (when Mi leaves) is straight-forward
for all Mj, j < i. While, allMp, p > i need to receive
input from lower-numbered members.

One notable recent work is due to Burmester and
Desmedt [3]. They designed a much more e�cient
protocol (BD) which executes in only three rounds:

1. Each Mi generates its random exponent Ni and
broadcasts zi = gNi .

6It is also not very e�cient.

2. Each Mi computes and broadcasts Xi =
(zi+1=zi�1)

Ni

3. EachMi can now compute7 the key Kn = z
nNi

i�1 �

X
n�1
i �X

n�2
i+1 � � �Xi�2 mod p

The key de�ned by BD is di�erent from the previous
protocols, namely Kn = gN1N2+N2N3+���+NnN1 . Nev-
ertheless, the protocol is proven secure provided the
DH problem is intractable.

Some important assumptions underlying this pro-
tocol are:

1. the ability of eachMi to broadcast to the rest of
the group

2. the ability to of eachMi to receive n�1 messages
in a single round

3. the ability of the system to handle n simultane-
ous broadcasts.

While the BD protocol is e�cient and secure, we claim
that it is not as suitable as GDH.2 for dynamic groups.
To demonstrate this claim, we brie
y consider what is
takes to add a new member in BD. Note that, like in
GDH.2, at least one of the current members needs to
generate a new exponent whenever a member is added.
Assuming synchronized clocks among members, the
addition protocol takes two rounds:

� �rst round to distribute individual contributions
czn and zn+1 generated byMn andMn+1 respec-
tively.

� second round for each of: M1;Mn+1;Mn;Mn�1

to generate and broadcast to the rest of the

group: cX1;
dXn+1;

cXn;
dXn�1, respectively. Fi-

nally, all group members compute a new key in
the usual fashion.

Despite the small number of rounds, every group
member8 needs to receive four messages from four dif-
ferent sources in the second round. This translates
into relatively high overhead. Another point of con-
cern is the necessity for all members to keep transient
state while the protocol executes, i.e., receiving the
four messages in the second round is not an atomic
operation.

On the other hand, member addition in BD is com-
putationally lighter since no one member performs the
bulk of the computation as in GDH.2. This is a def-
inite bene�t especially whenever low-power hardware
is used.

Member exclusion in BD is similar in spirit. As
before, at least one remaining member (say,Mn) must
generate a new exponent. Assuming that M1 is to be
excluded, a two-round protocol is executed:

� during the �rst round, Mn distributes its new

contribution,czn = g bNi , toM2 andMn�1. Then:

7All indexes are modulo n.
8Except M1;Mn+1;Mn;Mn�1 each of which receives three

in the second round but at least one in the �rst.

7

{ Mn computes cXn = (z2=zn�1)
bNi

{ M2 computes cX2 = (z3=czn)
N2

{ Mn�1 computes cX2 = (czn=zn�2)
Nn�1

� during the second round : M2;Mn�1; and
Mn each broadcast to the rest of the group:
cX2;

dXn�1; and cXn, respectively. Finally, all
group members compute a new key in the usual
fashion.

Although it is computationally e�cient, this protocol
requires each member to receive three messages from
three sources and to keep transient state in the pro-
cess.

9 On-going and Future Work
In summary, this paper represents only an initial

attempt to analyze the requirements for, and specify,
key agreement protocols for dynamic groups. There
remain a number of issues and topics for future work:

� Better group fusion
Group fusion has not yet been addressed in a
satisfactory manner. More e�cient and elegant
solutions need to be investigated.

� Key integrity provisions
IKA and AKA protocols discussed above pro-
vide nothing but key agreement in the spirit of
raw DH. To be truly useful, key integrity must
be o�ered, i.e., the protocols need to achieve au-
thenticated key agreement.

� Member authentication
It is certainly possible to treat entity (member)
authentication as being orthogonal to key agree-
ment. However, if only for e�ciency's sake, it
pays to combine member authentication with
authenticated key agreement.

� Scaling issues
This paper carefully side-stepped the issue of
scale. Clearly, CLIQUES protocols can become
prohibitively expensive as group sizes grow and
so does the rate of membership change. The tra-
ditional answer to scale has been the imposition
of some kind of a hierarchy [9, 4, 1]. However, it
is unclear how to construct a key agreement hi-
erarchy without unpleasant consequences, such
as having to do key translation.

� API de�nition
One of the long-term goals of the CLIQUES
project is the development of a generic toolkit
for group-oriented security services. (Key agree-
ment forms the foundation thereof.) Service
primitives within the toolkit must be accessible
via a well-de�ned and
exible API.

10 Acknowledgements
We thank Giuseppe Ateniese and the anonymous

referees for many useful comments.

References
[1] A. Ballardie. Scalable multicast key distribu-

tion. In INTERNET Request for Comments:
RFC 1949, May 1996.

[2] M. Burmester. On the risk of opening distributed
keys. In Advances in Cryptology { CRYPTO'94,
pages 308{317, 1994.

[3] M. Burmester and Y. Desmedt. A secure and
e�cient conference key distribution system. In
Advances in Cryptology { EUROCRYPT'94, May
1994.

[4] H. Harney, C. Muckenhirn, and T. Rivers. Group
key management protocol (gkmp) architecture.
In INTERNET-DRAFT, work in progress, Ver-
sion 1.0 1996.

[5] I. Ingemarsson, D. Tang, and C. Wong. A confer-
ence key distribution system. IEEE Transactions
on Information Theory, September 1982.

[6] M. Just. Methods of multi-party cryptographic
key establishment. Master's thesis, Carleton Uni-
versity, Computer Science Department, August
1994.

[7] M. Just and S. Vaudenay. Authenticated multi-
party key agreement. In Advances in Cryptology
{ EUROCRYPT'96, May 1996.

[8] A. Menezes, P. Van Oorschot, and S. Vanstone.
Handbook of applied cryptography. CRC Press se-
ries on discrete mathematics and its applications.
CRC Press, 1996. ISBN 0-8493-8523-7.

[9] S. Mittra. Iolus: A framework for scalable secure
multicasting. In ACM SIGCOMM'97, September
1997.

[10] H. Orman. The oakley key determination proto-
col. In INTERNET-DRAFT, work in progress,
Version 1.0 1996.

[11] D. Steer, L. Strawczynski, W. Di�e, and
M. Wiener. A secure audio teleconference sys-
tem. In Advances in Cryptology { CRYPTO'88,
August 1990.

[12] M. Steiner, G. Tsudik, and M. Waidner. Di�e-
hellman key distribution extended to groups. In
ACM Symposium on Computer and Communica-
tion Security, March 1996.

8

