
https://doi.org/10.1007/s10827-017-0672-6

Cliques and cavities in the human connectome
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Abstract Encoding brain regions and their connections as

a network of nodes and edges captures many of the possible

paths along which information can be transmitted as humans
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process and perform complex behaviors. Because cogni-

tive processes involve large, distributed networks of brain

areas, principled examinations of multi-node routes within

larger connection patterns can offer fundamental insights

into the complexities of brain function. Here, we investigate

both densely connected groups of nodes that could perform

local computations as well as larger patterns of interac-

tions that would allow for parallel processing. Finding

such structures necessitates that we move from consider-

ing exclusively pairwise interactions to capturing higher

order relations, concepts naturally expressed in the language

of algebraic topology. These tools can be used to study

mesoscale network structures that arise from the arrange-

ment of densely connected substructures called cliques in

otherwise sparsely connected brain networks. We detect

cliques (all-to-all connected sets of brain regions) in the

average structural connectomes of 8 healthy adults scanned

in triplicate and discover the presence of more large cliques

than expected in null networks constructed via wiring min-

imization, providing architecture through which brain net-

work can perform rapid, local processing. We then locate

topological cavities of different dimensions, around which

information may flow in either diverging or converging pat-

terns. These cavities exist consistently across subjects, differ

from those observed in null model networks, and – impor-

tantly – link regions of early and late evolutionary origin

in long loops, underscoring their unique role in control-

ling brain function. These results offer a first demonstration

that techniques from algebraic topology offer a novel per-

spective on structural connectomics, highlighting loop-like

paths as crucial features in the human brain’s structural

architecture.
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1 Introduction

Macroscopic computation and cognition in the human brain

are affected by an intricately interconnected collection of

neurophysical mechanisms (Bassett et al. 2010; Sporns

et al. 2005). Unlike modern parallel computers, which oper-

ate through vast numbers of programs running in tandem

and in isolation from one another, neural processes are

supported on anatomically specialized brain regions that

constantly share information among themselves through a

network of white matter tracts (Hagmann et al. 2008). One

approach for understanding the function of such a sys-

tem begins with studying the organization of this white

matter substrate using the language of networks (Sporns

2015; Bassett et al. 2011; Sporns 2013). Collections of

regions that are pairwise tightly interconnected by large

tracts, known as communities (Porter et al. 2009), mod-

ules (Meunier et al. 2009), and rich clubs (van den Heuvel

and Sporns 2011; Senden et al. 2014), have been the sub-

ject of substantial prior study. Moreover, they have given

critical insights into the large-scale structural units of the

brain that give rise to many common cognitive functions

(Chen et al. 2008; Medaglia et al. 2015). Such com-

munities easily and rapidly transmit information among

their members, facilitating local integration of information

(Sporns and Betzel 2016).

Often left implicit in analyzes of structural networks, the

weakness of connections to external regions is equally as

important as the strength of internal connections within the

community. This tendency to focus on strongly connected

local regions arises naturally because standard network

analyzes are based on local properties of the network at

individual vertices, where local edge strength is the primary

feature (Bassett and Bullmore 2006; Bullmore and Sporns

2009; Bullmore and Bassett 2011); the particular choice of

quantitative language serves as a filter that diverts atten-

tion toward certain facets of the system. However, if one

takes a more macro-scale view of the network, the small or

absent white matter tracts intuitively serve to isolate pro-

cesses carried on the strong white matter tracts from one

another. Such structure facilitates more traditional concep-

tual models of parallel processing, wherein data is copied

or divided into multiple pieces in order to rapidly perform

distinct computations, and then recombined (Graham and

Rockmore 2011). Together, the two notions of dense cliques

and information-distributing cavities provide a picture of a

system that performs complex computations by decompos-

ing information into coherent pieces to be disseminated to

local processing centers, and then aggregating the results.

To quantitatively characterize this macroscale structure,

we must move from the language of graph theory to alge-

braic topology, which is sensitive to the interplay between

weak and strong connections in systems (Ghrist 2008,

2014). In order to understand the interplay between strong

and weak connections in the brain, we make use of two

related lenses from algebraic topology. The first is an enu-

meration of the cliques, all-to-all connected subgraphs of

the network, representing strongly-interconnected compu-

tational units. The number and size of such units gives a

general sense for how intense local connections are across

the brain. However, just as important is their context in

the brain network: identical collections of processing units

can be configured to perform very different tasks, depend-

ing on the way they pass information among themselves.

Thus, we consider also how the cliques are arranged on a

mesoscale level by examining the cycles they form. These

structures, and the cavities they enclose, provide potential

pathways along which data is disseminated and collected.

Cycles enclosing voids correspond to extended paths of

potential information transmission along which computa-

tions can be performed serially to effect cognition in either a

divergent or convergent manner (i.e., distribution or integra-

tion of information), and we refer to these “enclosed spaces”

as topological cavities in the network. We hypothesize that

the spatial distributions of cliques and cavities will differ

in their anatomical locations, corresponding to their dif-

ferential putative roles in neural computations. Combined,

these two perspectives provide a more complete view of the

network’s capabilities than either does separately.

To test our predictions, we construct structural brain net-

works from diffusion spectrum imaging (DSI) data acquired

from eight volunteers in triplicate. We measure node partici-

pation in cliques and compare these with a minimally wired

null model (Betzel et al. 2016). To ensure this is an appro-

priate language for the structural connectome and to build

intuition for later methods, we also demonstrate the corre-

spondence between the anatomical location of cliques and

the anatomical location of the brain’s hubs and structural

rich club: a group of hubs that are densely connected to one

another. Next, we study topological cavities using a recently

developed method from algebraic topology which detects

the presence and robustness, summarized by a quantity

called persistence, of cavities in the network architecture.

We recover all minimal length cycles corresponding to four

highly persistent topological cavities in the consensus struc-

ture, and show that these features are robustly present across

subjects through multiple scans. Our results demonstrate

that while cliques are observed in the structural core, cycles

enclosing topological cavities are observed to link regions of

subcortex, frontal cortex, and parietal cortex in long loops,

underscoring their unique role in controlling brain function

(Gu et al. 2015a; Betzel et al. 2016; Muldoon et al. 2016b).
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2 Materials and methods

2.1 Data acquisition, preprocessing, and network

construction

Diffusion spectrum imaging (DSI) data and T1-weighted

anatomical scans were acquired from eight healthy adult

volunteers on 3 separate days (27 ± 5 years old, two

female, and two left-handed) (Gu et al. 2015a). All partic-

ipants provided informed consent in writing according to

the Institutional Review Board at the University of Califor-

nia, Santa Barbara. Whole-brain images were parcellated

into 83 regions (network nodes) using the Lausanne atlas

(Hagmann et al. 2008), and connections between regions

(network edges) were weighted by the number of stream-

lines identified using a determistic fiber tracking algorithm.

We represent this network as a graph G(V, E) on V nodes

and E edges, corresponding to a weighted symmetric adja-

cency matrix A. For clique calculations in the main text,

the original network (ρ = 0.9552) was thresholded at ρ =

0.25 (corresponding to a weight = 261) to remove spurious

connections (Zalesky et al. 2010; Zalesky et al. 2016; van

den Heuvel et al. 2012) and for consistency with previous

work (Sizemore et al. 2016). See Supporting Information

and Refs (Cieslak and Grafton 2014; Gu et al. 2015a) for

detailed descriptions of acquisition parameters, data prepro-

cessing, and fiber tracking. In the supplement, we provide

additional results for the case in which we correct edge

weight definitions for the effect of region size Fig. 23.

2.2 Cliques versus cycles

In a graph G(V, E) a k-clique is a set of k all-to-all con-

nected nodes. It follows that any subset of a k-clique is

a clique of smaller degree, called a face. Any clique that

is not a face we call maximal. To assess how individual

nodes contribute to these structures, we define node partic-

ipation in maximal k-cliques as Pk(v), and we record the

total participation of a node as P(v) =
∑n

k=1 Pk(v).

To detect cycles which enclose topological cavities,

we computed the persistent homology using (Henselman

and Ghrist 2016). We restrict our attention to dimensions

1–2 after finding no persistent features in dimension 3

(Sizemore et al. 2016).

Computing persistent homology involves first decom-

posing the weighted network into a sequence of binary

graphs beginning with the empty graph and adding one

edge at a time in order of decreasing edge weight (also

called a Weight Rank Clique Filtration (Petri et al. 2013a,

b). Formally, we translate edge weight information into a

sequence of binary graphs called a filtration,

G0 ⊂ G1 ⊂ · · · ⊂ G|E|

beginning with the empty graph G0 and adding back one

edge at a time following the decreasing edge weight order-

ing. To ensure all edge weights are unique we added random

noise uniformly sampled from [0, 0.0001]. However, this

has essentially no effect on the persistence diagrams, as

stability theorems ensure that small perturbation of the

filtration leads to small perturbation of the persistent homol-

ogy (Chowdhury and Mémoli 2016; Cohen-Steiner et al.

2007). Noise can have a small effect on cycle representa-

tives but in this study a great majority of edges within the

thresholded networks are unique so the noise is not expected

to largely alter cycle representatives – only to order those

edges with tied edge weights.

Within each binary graph of this filtration, we extract the

collection of all k-cycles, families of (k + 1)-cliques which,

when considered as a geometric object, form a closed shell

with no boundary. Formally, as we are working with coef-

ficients in Z2, these are collections of (k + 1)-cliques

{σ1, . . . σn} such that every k-subclique of some σi (called a

boundary) appears as a subclique in the collection an even

number of times. Two k-cycles are equivalent if they dif-

fer by a boundary of k + 1-cliques. This relation forms

equivalence classes of cycles with each non-trivial equiva-

lence class representing a unique topological cavity. (In the

mathematical literature, these are called non-trivial homol-

ogy classes. However, due to the extensive and potentially

confusing collision with the use of the word “homology”

in the study of brain function, here we elect to use this

new terminology outside of references and necessary math-

ematical discussion in the Methods and Supplementary

Information. Throughout, the word “homology” refers to

the mathematical, rather than the biological, notion.)

Constructing the sequence of binary graphs allows us

to follow equivalence classes of cycles as a function of

the edge density ρ. Important points of interest along this

sequence are the edge density associated with the first Gi in

which the equivalence class is found (called the birth den-

sity, ρbirth) and the edge density associated with the first

Gi in which the enclosed void is triangulated into higher

dimensional cliques (called the death density, ρdeath). One

potential marker of the relative importance of a persistent

cavity to the weighted network architecture is its lifetime

(ρdeath −ρbirth). A large lifetime indicates topological cav-

ities that persist over many edge additions, suggesting a

greater importance of that cavity to the intrinsic structure of the

complex. An alternative measure is the death to birth ratio

π = ρdeath/ρbirth which highlights topological cavities that

survive exceptionally long in spite of being born early, a

feature that is interesting in geometric random graphs (see

Bobrowski et al. 2015 and Supporting Information).

To study the role of each topological cavity in cog-

nitive function, we extract the minimal representatives of

each non-trivial equivalence class at the birth density. For
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unfiltered complexes, the problem of finding a minimal

generator for a given homology class is well known to be

intractable (Chen and Freedman 2011; Dey et al. 2011).

However, leveraging the filtration, we are able to answer the

corresponding question in this context with relative ease.

We used the persistent homology software Eirene (Hensel-

man and Ghrist 2016) which returns the birth density and

consequentially the starting edge of each persistent homol-

ogy class. To recover the minimal cycle, we threshold the

network at the density immediately preceding ρbirth, then

perform a breadth-first search (Rubinov and Sporns 2010)

for a path from one vertex to the other, taking all minimum

length paths as solutions. If for one persistent cavity we find

multiple possible minimum-length paths arising from differ-

ent equivalence classes, we still record and analyze each of the

possible minimal generators, since any could be the homology

class. For higher dimensional cycles we perform a similar

process by hand, but we note that they could be algorith-

mically identified using appropriate generalizations of the

graph search method and other approaches (Dey et al. 2011).

2.3 Standard graph statistics

In addition to the notions of cliques and cavities from alge-

braic topology, we also examined corresponding notions

from traditional graph theory including communicability

and rich-club architecture, computed using the Brain Con-

nectivity Toolbox (Rubinov and Sporns 2010).

We first considered nodes that participated in many maximal

cliques, and we assessed their putative role in brain commu-

nication using the notion of network communicability. The

weighted communicability between nodes i and j is

Ci,j = (exp(D−1/2AD−1/2))ij

with D := diag(si) for si the strength of node i in the

adjacency matrix A, providing a normalization step where

each aij is divided by
√

didj (Crofts and Higham 2009;

Estrada and Hatano 2008). This statistic accounts for all

walks between node pairs and scales the walk contribution

according to the product of the component edge weights.

The statistic also normalizes node strength to prevent high

strength nodes from skewing the walk contributions. We

refer to the sum of a node’s communicability with all other

nodes as node communicability, Ci .

Intuitively, nodes that participate in many maximal

cliques may also play a critical role in the well-known rich

club organization of the brain, in which highly connected

nodes in the network are more connected to each other than

expected in a random graph. For each degree k we compute

the weighted rich club coefficient

φw(k) =
W>k

∑E>k

l=1 wranked
l

where W>k is the summed weight of edges in the sub-

graph composed of nodes with degree greater than k, E>k

is the number of edges in this subgraph, and wranked
l is

the l-th greatest edge weight in A. Rich club nodes are

those that exist in this subgraph when φw(k) is signifi-

cantly greater (one sided t-test) than φw
random(k), the rich

club coefficient calculated from 1000 networks constructed

by randomly rewiring the graph A while preserving node

strength (Rubinov and Sporns 2010).

Furthermore, highly participating nodes may also con-

tribute to a hierarchical organization of the network. To

evaluate this contribution, we compute the k-core and s-

core decompositions of the graph (Hagmann et al. 2008;

Chatterjee and Sinha 2007). The k-core is the maximally

connected component of the subgraph with only nodes hav-

ing degree greater than k. The s-core is similarly defined

with summed edge weights in the subgraph required to be at

least s.

2.4 Null model construction

We sought to compare the empirically observed network

architecture to that expected in an appropriate null model.

Due to the well-known spatial constraints on structural

brain connectivity (Klimm et al. 2014; Lohse et al. 2014;

Bullmore and Sporns 2012; Betzel et al. 2016) as well

as the similarity in mesoscale homological features to the

Random Geometric network (Sizemore et al. 2016) we con-

sidered a minimally wired network in which nodes are

placed at the center of mass of anatomical brain regions.

Each pair of nodes are then linked by an edge with weight

wi,j = 1/d(i, j), where d(i, j) is the Euclidean distance

between nodes i and j . For consistency with the empiri-

cal data, we threshold this complete weighted network at

an edge density of 0.25 for analyzes in which the DSI net-

work is also thresholded. In each scan, the locations of

region centers were collected. Thus, we considered a pop-

ulation of 24 model networks where differences between

model networks arise from differences between scans. This

null model allows us to assess what topological properties

are driven by the precise spatial locations of brain regions

combined with a stringent penalty on wiring length. Note

that defining edge weights to be the inverse pairwise dis-

tance between points creates a filtered complex similar to

that of either the Vietoris-Rips (Vietoris 1927; Hausmann

et al. 1995) or Čech complex with an axis adjusted for

edge rank instead of weight. We use the edge rank filtration

for the null model here for consistency with the empiri-

cal data. Many ways of constructing simplicial complexes

from graphs exist (Bergomi et al. 2017) but we have cho-

sen the above methods because they are reletaively well

understood and do not require further assumptions about the

data.
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2.5 Cycles in individuals

Though we detected persistent cavities in the group-

averaged DSI network using persistent homology, we also

ask whether these patterns of connectivity and the corre-

sponding cavities exist in multiple individuals and in mul-

tiple scans acquired from the same individual. To address

this question, we asked whether a similar geometric loop

is seen and whether a similar topological cavity is present

in each scan. However, identifying similar topological cavi-

ties is not trivial and we next thoroughly discuss our method

including our definition of “similar topological cavities”.

2.5.1 Considerations in per scan cycle validation

Persistent homology is a powerful tool with which to under-

stand the mesoscale homological features of a weighted

network. Determining all minimal generators for each of

the long-lived topological cavities gives a finer resolution

of such features, which can have biological implications as

is the case with our DSI data. Isolating all minimal genera-

tors for each homology class additionally gives a geometric

interpretation to these cavities. Then each cavity can be

viewed from a biological, topological, and to a lesser extent

geometric perspective.

This presents a challenge when looking for the “same”

persistent homology classes in another clique complex.

From the neuroscience perspective, two minimal cycles may

be similar if the cycles include the same brain regions, or if

the group of regions forming the second cycle performs the

same function as those in the first. Geometrically we would

perhaps require the same rigid shape of two cycle repre-

sentatives to call them similar. Finally, through the lens of

topology we might call two minimal cycles in two different

complexes similar if we can find a map between the com-

plexes which takes one cycle to the other. Less abstractly, we

could instead ask if the minimal cycle of a homology class

in the first clique complex exists in the second as a cycle in

a nontrivial homology class but not necessarily as the min-

imal generator. The development of other definitions is an

area of active research (Carlsson and De Silva 2010; Dey

et al. 2014).

Because no universal method is available, we opt for a

domain-specific heuristic to determine whether a persistent

homology class found in an individual scan was the “same”

as the persistent homology class in the average network.

These requirements for similarity adequately capture some

flexibility of topological similarity while being conservative

enough to generally preserve the biological function of the

cycle as well.

We consider each persistent homology class in turn. For

a given persistent homology class found in the average DSI

connectome, we denote the set of minimal generators of

the homology class at ρbirth by L with elements ℓi for

i = 0, 1, 2, ...m. Then for each ℓi there is a set of nodes Ni

containing the nodes within this representative. We require

both a non-trivial cycle formed by connections between at

least one of N0, N1, . . . , Nm and a similar topological cavity

to exist.

1. Nodes connected in a cycle. We first take the sub-

graph on Ni and ask if there is precisely one non-trivial

homology class at any edge density. We then show the

connection pattern at the edge density at which this

class first appears. This first allows us to ask if these

nodes ever form a non-trivial cycle throughout the filtra-

tion, which is possibly of interest from a geometric and

neuroscience perspective. We also use this first test as a

filter to see in which scans could these nodes surround

a topological cavity. Then if we find a non-trivial cycle

formed by any of N0, N1, . . . , Nm, this scan passes to

the next stage.

2. Similar topological cavity. We then ask if a similar topo-

logical cavity exists. The algorithm from Henselman

and Ghrist (2016) returns the birth density (and thus

birth edge) of each persistent homology class. In order

of increasing birth density, we ask if any of the nodes in

N0, N1, . . . , Nm are in the birth edge. If this is true, we

call this a similar cavity in an individual scan if any of

the following hold:

(a) Let m0, . . . , mk be minimal generators of this

homology class in the individual scan at ρbirth.

If any of m0, . . . , mk are the same as one of

ℓ0, . . . , ℓM or are in the same equivalence class,

then we call this a similar topological cavity and we are

done. This is the most straightforward and was most

frequently observed within the unnormalized data.

(b) If there is some cycle within this non-trivial homol-

ogy class at ρbirth formed by at least all but one

node of some Ni , along with no more than two

additional nodes, and nodes from Ni are in the

original order along the cycle, we call this similar.

(c) If either (a) or (b) hold for some ρ with ρbirth ≤

ρ < ρdeath, we call this a similar topological cav-

ity. At ρbirth, a minimal cycle contains seven nodes,

four of which are the thalamus and caudate nucleus

from both hemispheres. Following the minimal

cycles throughout the lifetime of this persistent cav-

ity we find at some edge density before ρdeath, a

minimal representative consists of exclusively the

thalamus and caudate nucleus regions from both

hemispheres.

The first test covers the possibility of the same bio-

logical and geometric feature occurring in the individual

scan. The second is perhaps the most important, however,
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because it allows for matching the topological cavity itself.

It is important to remember that the topological cavities are

the features of interest, not the precise cycles themselves,

though the two are clearly related. With the focus on the

topological holes, the rationale for the three subrules 2a,

2b, and 2c, is more clear. Though labor intensive, this lets

us keep the topological perspective when determining cycle

similarity. Moreover, the rationale for focusing on cavities

and not specific connections is similar to why large-scale

organization such as communities (Betzel et al. 2016), cores

(Hagmann et al. 2008), and rich-club organization (van den

Heuvel and Sporns 2011) are studied with increased inten-

sity. Composed of a plurality of interacting brain regions,

these types of structures, and not the individual brain regions

nor connections, form computational units that theoretically

act to help segregate and integrate information flow across

the brain.

One clear drawback of this method is the possibility of

false negatives. For example, a persistent homology class

may have been born which is similar to the cycle in the

average data, yet the beginning edge did not include any of

the cycle nodes and thus we would not detect this following

the above procedure. This is a first attempt to identify simi-

lar topological cavities across subjects, and we expect more

robust algorithms to be a topic of future research.

3 Results

To extract relevant architectural features of the human

structural connectome, we first encoded diffusion spectrum

imaging (DSI) data acquired from eight subjects in triplicate

as undirected, weighted networks. In this network, nodes

correspond to 83 brain regions defined by the Lausanne

parcellation (Cammoun et al. 2012) and edges correspond

to the density of white matter tracts between node pairs

(Fig. 1a). We initially study a group-averaged network, and

then demonstrate that our results are consistently observed

across individuals in the group as well as across multiple

scans from the same individual.

3.1 Cliques in the human structural connectome

Here, we use the group-averaged network thresholded at an

edge density (ρ) of 0.25 to remove spurious edges (Zalesky

et al. 2010, 2016; van den Heuvel et al. 2012) and for consis-

tency with previous studies (Sizemore et al. 2016). Results

at other densities are similar, and details can be found in the

Appendix. As a null-model, we use minimally wired net-

works (Fig. 1d) created from assigning edge weights to the

inverse Euclidean distance between brain region centers (see

Methods) observed in each of 24 scans. This model mimics

Fig. 1 Cliques are features of local neighborhoods in structural brain

networks. a Diffusion spectrum imaging (DSI) data can be sum-

marized as a network of nodes corresponding to brain regions, and

weighted edges corresponding to the density of white matter stream-

lines reconstructed between them. Here we present a group-averaged

network, where each edge corresponds to the mean density of white

matter streamlines across eight subjects scanned in triplicate. We show

the network at an edge density ρ = 0.25, and display its topology

on the brain (top), and on a circle plot (bottom). This and all brain

networks are drawn with BrainNetViewer (Xia et al. 2013). b All-to-

all connected subgraphs on k nodes are called k-cliques. For example,

2-, 3-, and 4-cliques are shown both as schematics and as features of

a structural brain network. c A maximal 4-clique has 3-, 2-, and 1-

cliques as faces. d For statistical validation, we construct a minimally

wired null model by linking brain regions by edge weights equal to

the inverse of the Euclidean distance between nodes corresponding to

brain region centers. Here we show an example of this scheme on 15

randomly chosen brain regions
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the tendency of the brain to conserve wiring cost by giv-

ing edges that connect physically close nodes higher weight

than edges between distant nodes.

The first step in a topological analysis is an enumeration

of all maximal k-cliques in the average structural network.

Recall that a k-clique is a set of k nodes having all pairwise

connections (see Fig. 1b for 2-, 3-, and 4-cliques repre-

senting edges, triangles, and tetrahedra, respectively.) By

definition, a subgraph of a clique will itself be a clique of

lower dimension, called a face. A maximal clique is one that

is not a face of any other (see Fig. 1c for a maximal 4-clique,

which contains 3-, 2-, and 1-cliques as faces).

To understand the anatomical distribution of maximal

cliques in both real and null model networks, we count

the number of maximal k-cliques in which a node is a

member, and refer to this value as the node participation,

Pk(v) (see Methods). Summing over all k gives the total

participation, P(v). We observe that the distribution of max-

imal clique degrees is unimodal in the minimally wired

null model and qualitatively bimodal in the empirical data

(see Fig. 2a), though we report statistically that we cannot

reject that it is unimodal (p = 0.210, dip test (Hartigan

and Hartigan 1985)). Anatomically, we observe a general

progression of maximal clique participation from anterior

to posterior regions of cortex as we detect higher degrees

(Fig. 2a, bottom and Fig. 8). Indeed, maximal cliques of

12–16 nodes contain nearly all of the visual cortex. This

spatial distribution suggests that large interacting groups of

brain regions are required for early information processing,

while areas of frontal cortex driving higher-order cogni-

tion utilize smaller working clusters. We also observe that

the human brain displays preferences for small (4–6 node),

and large (12–16 node) processing units instead of medium-

sized (approximately 8 node) units as in the minimally

wired null model.

The anterior-posterior gradient of maximal clique size

can be complemented by additionally analyzing regional

variation in the cognitive computations being performed.

Specifically, we ask whether node participation in maximal

cliques differs in specific cognitive systems (Power et al.

2011) (Fig. 2b). We observe that the largest maximal cliques

are formed by nodes located almost exclusively in the sub-

cortical, dorsal attention, visual, and default mode systems,

suggesting that these systems are tightly interconnected

and might utilize robust topologically-local communication.

This spatial distribution of the participation in maximal

cliques differs significantly from the minimally wired null

model, particularly in the cingulo-opercular and subcorti-

cal systems. We hypothesized that these differences may

be driven by the excess of maximal 8-cliques in the mini-

mally wired network (Fig. 2a). Expanding on the difference

in node participation (P DSI
k (v) − P MW

k (v)), we see that

the large discrepancies between empirical and null model

networks in cingulo-opercular and subcortical systems are

caused by a difference in maximal cliques of approximately

eight nodes (Fig. 2b, bottom). Finally, we observe that the

systems involved in the two peaks of the maximal clique dis-

tribution shown in Fig. 2a differ greatly from one another.

The first peak composed of smaller cliques involves regions

from nearly all systems, while the second peak is almost

exclusively composed of regions in the default mode, sub-

cortical, and visual systems. We observe the largest cliques

in the subcortical, default mode, dorsal attention, and visual

systems, though only the visual and dorsal attention sys-

tems have maximal clique distributions with significantly

higher means than the rest of the brain regions (p <<

0.001, p < 0.05, respectively). These data suggest that

small, local processors may be a common feature across sys-

tems, while larger cliques may allow for rapid multi-system

cross-talk.

ba
2

Maximal clique degree (k)

0

20

40

60

80

M
a

x
im

a
l 
k
-c

liq
u

e
s

210350170
k    16k  k1210864

95% CI
MW
DSI

4 6 8 10 12 14 16

21
16k

0

0
4 k k 121086

035
k 1210

017
k 86

DSI Node Participation at ;  = 0.25

Minimally Wired at ;  = 0.25

0

20

40

60

80

100

P
(v

)

5

10

15

Auditory

Cingular-Opercular

Default Mode

Dorsal Attention

Fronto-Parietal

Other

Somatosensory

Subcortical

Visual

Ventral Attention

P(v)k
DSI - P(v)k

MW

M
a

x
im

a
l 
c
liq

u
e

 d
e

g
re

e

24
Brain regions by cognitive system

DSI Participation,  = 0.25
MW Participation,  = 0.25

-16016 8 -8 -24

ρ

ρ

Fig. 2 Spatial distribution of maximal cliques varies between aver-

age DSI and minimally wired null model. a Distribution of maximal

cliques in the average DSI (black) and individual minimally wired

(gray) networks, thresholded at an edge density of ρ = 0.25.

Heat maps of node participation on the brain for a range of clique

degrees equal to 4–6 (left), 8–10 (middle), and 12–16 (right). b Node

participation in maximal cliques sorted by the putative cognitive sys-

tem to which the node is affiliated in functional imaging studies (Power

et al. 2011). We show individual node values (top) as well as the differ-

ence between real and null model (P DSI
k − P MW

k ; bottom) according

to the colormap (right). Individual node labels are listed in Fig. 9
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We next check that the building blocks, here k-cliques,

behave consistently with more common graph theoretic

metrics. A node with high participation in maximal cliques

must in turn be well connected locally (though the converse

is not necessarily true – consider a node that only partici-

pates in one maximal 16-clique). Therefore we expect the

participation of a node to act similarly to other measures of

connectivity. To test this expectation, we examine the corre-

lation of node participation with node strength, the summed

edge weight of connections emanating from a node, as well

as with node communicability, a measure of the strength of

long distance walks emanating from a node (Fig. 3a). We

find that both strength and communicability exhibit a strong

linear correlation with the participation of a node in maxi-

mal cliques (Pearson correlation coefficient r = 0.957 and

r = 0.858, respectively).

These results indicate that regions that are strongly con-

nected to the rest of the brain by both direct paths and

indirect walks also participate in many maximal cliques.

Such an observation suggests the possibility that brain hubs

– which are known to be strongly connected with one

another in a so-called rich-club – play a key role in max-

imal cliques. To test this, we measure the association of

brain regions to the rich-club using notions of coreness.

A k-core of a graph G is a maximal connected subgraph

of G in which all vertices have degree at least k, and an

s-core is the equivalent notion for weighted graphs (see

Methods). Using these notions, we consider how the k-core

and s-core decompositions align with high participation

(Fig. 3b). In both cases, nodes with higher participation

often achieve higher levels in the k- and s-core decompo-

sition. Moreover, we also observe the frequent existence of

rich club connections between nodes with high participa-

tion (Fig. 3b, bottom). Together, these results suggest that

rich-club regions of the human brain tend to participate in

local computational units in the form of cliques.

3.2 Cavities in the structural connectome

Whereas cliques in the DSI network act as neighborhood-

scale building blocks for the computational structure of

the brain, the relationships between these blocks can be

investigated by studying the unexpected absence of strong

connections, which can be detected as topological cavities

in the structure of the brain network. Because connections

are treated as communication channels along which brain

regions can signal one another and participate in shared

neural function, the absence of such connections implies

a decreased capacity for communication which serves to

enhance the segregation of different functions.

To identify topological cavities in a weighted network,

we construct a sequence of binary graphs, each included in

the next (Fig. 4a), known as a filtration. Beginning with the

empty graph, we replace unweighted edges one at a time

according to order of decreasing edge weight, and we index

each graph by its edge density ρ, given by the number of

edges in the graph divided by the number of possible edges.

After each edge addition, we extract motifs of k-cliques

called (non-trivial) (k − 1)-cycles, each of which encloses a

k-dimensional topological cavity in the structure. This shift

in index is due to geometry: a 2-clique is a 1-dimensional

line segment, a 3-clique is a 2-dimensional triangle, etc.

When k is clear or not pertinent, we will suppress it from the

notation, and refer simply to “cycles” and “cavities”. While

any cavity is surrounded by at least one cycle, often multiple

cycles surround the same cavity. However, any two (k-1)-cycles

that detect the same cavity will necessarily differ from one

another by the boundaries of some collection of (k + 1)-

Fig. 3 Maximal clique

participation tracks with

network measures. a Scatter plot

of node participation and node

strength (top) or

communicability (bottom). b

Calculated k-core (top) and

s-core decomposition in relation

to participation in maximal

cliques with rich club nodes

(shown kRC = 43; see Methods

and Fig. 10) indicated in orange

(bottom). Size indicates

maximum k-core or s-core level

attained by the node, while color

indicates the participation P(v)
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cliques (see Supporting Information and Fig. 15). Any two

such cycles are called topologically equivalent, so each

topological cavity is detected by a non-trivial equivalence

class of cycles. The equivalence class containing the cycle

consisting of a single vertex is called trivial and bounds

the “empty” cavity. We can represent a topological cavity

using any of the cycles within the corresponding equiv-

alence class, but for purposes of studying computational

architectures it is reasonable to assume information will pri-

marily travel along paths of minimal length; thus, in this

analysis we will consider the collection of cycles in an

equivalence class with the minimal number of nodes and

call these the minimal cycles representing the cavity. Note

in the absence of a filtration, there are serious computa-

tional issues involved in locating minimal-size representa-

tives of equivalence classes. However, in this setting the

computation is easily performed using standard algorithms

(see Methods).

As we move through the filtration by adding edges, the

structure of the cycles, and thus of the cavities they rep-

resent, will evolve. We consider an example in Fig. 4a,

showing a green minimal cycle surrounding a 2D cav-

ity which first appears (is born) in the graph sequence at

ρbirth (cyan). As an edge completing a 3-clique is added,

the minimal cycle representative shrinks to four nodes in

size, then finally is tessellated by 3-cliques (dies) at ρdeath

(orange). We record ρbirth and ρdeath for all topologi-

cal cavities (e.g., non-trivial equivalence classes of cycles)

found within the filtration, and display them on a persis-

tence diagram (Fig. 4b). Cavities that survive many edge

additions have a long lifetime, defined as ρdeath − ρbirth,

or a large death-to-birth ratio, ρdeath/ρbirth. Such cycles

Fig. 4 Tracking clique patterns through a network filtration reveals

key topological cavities in the structural brain network. a Example fil-

tration of a network on 15 nodes shown in the brain across edge density

(ρ). Blue line on the axis indicates the density of birth (ρbirth) of the

2D cavity surrounded by the green minimal cycle. As edges are added,

3-cliques (cyan) form and shrink the cavity and consequentially the

minimal green cycle is now four nodes in size. Finally, the orange line

marks the time of death (ρdeath) when the cavity is now filled by 3-

cliques. b Persistence diagram for the cavity surrounded by the green

cycle from panel a. c Persistence diagrams for the group-averaged DSI

(teal) and minimally wired null (gray) networks in dimensions one

(left) and two (right). Cavities in the group-averaged DSI network with

long lifetime or high death-to-birth ratio are shown in unique colors

and will be studied in more detail. d Box plots of the death-to-birth

ratio π for cavities of two and three dimensions in the group-averagd

DSI and minimally wired null networks. Colored dots correspond to

those highlighted in panel c. The difference between π values for 3D

topological cavities in the average DSI data versus the minimally wired

null model was not found to be significant. e Minimal cycles repre-

senting each persistent cavity at ρbirth noted in panels c, d shown in

the brain (top) and as a schematic (bottom)
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are commonly referred to as persistent cavities and in many

applications are considered the “topological features” of the

system.

We investigate the persistence of 2D and 3D cavities

(respectively represented by equivalence classes of 1- and

2-cycles) in the group-average DSI network and minimally

wired null networks (see Fig. 4c). There are substantially

fewer persistent cavities in the group-average DSI network

than in the null models. To illustrate the structure of these

cavities, we select four representative cavities with exceed-

ingly long lifetimes or a high ρdeath to ρbirth ratio (Fig. 4c,

d) in the empirical data, and for each we find the minimal-

length representative cycles at ρbirth (Fig. 4e). Such cycles

for all of the persistent cavities found in the empircal data

are illustrated in Figs. 20 and 21. The first persistent cavity

appears as early as ρ = 0.003 and is minimally enclosed

by the unique blue cycle composed of the thalamus and

caudate nucleus of both hemispheres. The green cycle con-

necting the medial and lateral orbitofrontal, rostaral anterior

cingulate, putamen, and superior frontal cortex is the only

minimal cycle surrounding a long-lived cavity in the left

hemisphere. The final persistent 2D cavity in the average

DSI data is found in the right hemisphere between the

medial orbitofrontal, accumbens nucleus, any of the sub-

cortical regions hippocampus, caudate nucleus, putamen,

thalamus, and amygdala, and any of the rostral middle

frontal, lateral orbitofrontal, medial orbitofrontal of the left

hemisphere, and rostral anterior cingulate from both hemi-

spheres (see Fig. 4e for all 12 minimal representatives).

Finally, the purple octahedral cycle made from 3-cliques

contains the inferior and middle temporal, lateral occipital,

inferior parietal, supramarginal, superior parietal, and either

of the superior temporal and insula of the left hemisphere,

and encloses the longest-lived 3D cavity in the structural

brain network. Though each minimal generator may have

distinct biological implications, we observe a global pattern

of subcortical–cortical connections within cycles. Indeed,

18 of the 20 recovered 1-cycles and both 2-cycles contain

this motif. Additionally, the two persistent cycles that do

not follow this motif comprise a third of persistent cycles

robustly seen in the minimally wired network, suggest-

ing that within-subcortical loops are more probable in this

maximally efficient scheme.

3.3 Test-ReTest reliability and other methodological

considerations

It is important to ask whether the architectural features

that we observe in the group-averaged DSI network can

also be consistently observed across multiple individuals,

and across multiple scans of the same individual to ensure

these cavities are not artifacts driven by a few outliers.

Comparison of persistent cavities arising from two different

networks is complicated by our notion of equivalence of

cavities, and our desire to work with particular representa-

tive cycles. To capture the extent to which the cavities and

their minimal representatives in the average DSI data are

present in the individual scans, we record the collection of

cliques that compose each minimal cycle representing the

equivalance class (as seen in Fig. 4e), and check both for the

existence of one of those collections of cliques, correspond-

ing to the existence of the same strong fiber tracts, and,

more stringently, for the presence of a topological cavity

represented by that cycle in each individual’s DSI network

(see Supporting Information for more details). We observed

that the subcortical cycle (Fig. 4e, blue) exists and these

nodes (thalamus and caudate nucleus of both hemispheres)

surround an equivalent 2D cavity in at least one scan of

all individuals and the late-developing subcortical-frontal

cycle (Fig. 4e, red) surrounds a cavity found in seven of

the eight individuals in at least one of three scans (Fig. 5b,

f). The earlier arriving subcortical-frontal cycle (Fig. 4e,

green) is present in all individuals and a similar cavity is

seen at least once in all individuals (Fig. 5d). Finally, we

observe that the octahedral connection pattern in posterior

parietal and occipital cortex (Fig. 4e, purple) is present at

least once in seven of eight individuals and these regions

enclose a similar cavity at least once in six of these indi-

viduals (Fig. 5h). In the opposite hemisphere, the cyclic

connection patterns and similar cavities appear though not

as regularly (Fig. 5). Finally we check the existence of sim-

ilar cavities within the minimally wired null models, and

see cavities denoted by the green and purple cycles are

never seen (Fig. 5). However, similar cavities to those repre-

sented by the red and blue minimal cycles appear frequently

in the null model, though with different birth/death densi-

ties and lifetimes. In summary we find topological cavities

observed in the group-averaged DSI network appear consis-

tently across individuals, suggesting their potential role as

conserved wiring motifs in the human brain.

In addition to consistency across subjects and scans, it

is important to determine whether the known high connec-

tivity from subcortical nodes to the rest of the brain may

be artificially obscuring non-trivial cortico-cortical cavities

important for brain function. To address this question, we

examined the 66-node group-average DSI network com-

posed only of cortical regions, after removing subcortical

regions, insula, and brainstem. We recovered a long-lived

topological cavity surrounded by four cycles of minimal

length composed of nine nodes connecting temporal, pari-

etal, and frontal regions (Fig. 6). Note in the schematic of

Fig. 6a we see clearly two 2D cavities. The birth edge here

was between the lateral orbitofrontal and superior tempo-

ral regions, which prevents us from determining whether

the exact minimal cycle surrounding this cavity follows

the superior frontal (LH)/posterior cingulate or the superior
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Fig. 5 Cycles and similar

cavities in the average DSI

network are consistently seen

across individuals. a, c, e, g

Edge weights connecting nodes

seen in the minimal cycle(s)

recovered from the average DSI

were summed then normalized

for all individual scan data. b, d,

f, h (Top) Within each scan, the

network was thresholded at the

minimal weight of any edge

which would form the cycle

seen in the average DSI data. At

this threshold, any connection

which exists between these

cycle nodes is shown. A gray

background indicates a similar

cavity found in this scan. For

those cycles seen which are not

tessellated by higher cliques yet

there is no gray background,

there must exist some set of

nodes which cone this cycle and

thus make this loop equivalent

to a point. (Bottom) Similar

cycles found represented by

vertical bars from birth to death

density in the individual DSI

networks, minimally wired

networks, normalized data, and

contralateral (cont.) hemispheres

a b

c d

e f

g h
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a b

Fig. 6 Removal of subcortical nodes allows for detection of nine-node cortical cycle enclosing large 2D cavity. a Minimal cycles shown in the

brain (left) and as a schematic (right). b Persistence diagram of DSI cort and MW cort . Persistent feature corresponding to minimal cycles in (a)

indicated with maroon dot

frontal (RH)/caudal middle frontal branch of the top loop.

Following either of these two branches (then either of the

banks of the superior temporal sulcus or middle temporal

route) gives four cycles in which two are equivalent to each

other but not to either cycle in the other pair. We will accept

all of these four as minimal maroon cycles since any of the

four could be minimal representatives. Moreover, at least

one of these minimal cycles and corresponding cavity was

observed in each scan of every individual (Fig. 26c), and

often in the opposite hemisphere as well (Fig. 26d). These

results reveal that cortico-cortical cycles are indeed present

and suggest their potential utility in segregating function

across the brain.

4 Discussion

In this study, we describe a principled examination of multi-

node routes within larger connection patterns that are not

accessible to network analysis methods that exclusively

consider pairwise interactions between nodes. Our approach

draws on concepts from a discipline of mathematics known

as algebraic topology to define sets of all-to-all connected

nodes as structural units, called cliques, and then to use

the clique architecture of the network to detect structural

topological cavities, detected by the existence of non-

trivial representative cycles. Using this approach, we show

that node participation in maximal cliques varies spatially

and by cognitive systems, suggesting a global organization

of these neighborhood-scale features. These cliques form

encapsulating patterns of connectivity in the human struc-

tural connectome, which separate relatively early-evolving

regions of the subcortex with higher-order association areas

in frontal, parietal, and temporal cortex that evolved on

more recent time scales. We found the recovered topologi-

cal cavities exist consistently across individuals and are not

expected in a spatially embedded null model, emphasizing

their importance in neural wiring and function. These results

offer a first demonstration that techniques from algebraic

topology offer a novel perspective on structural connec-

tomics, highlighting cavernous spaces as crucial features in

the human brain’s structural architecture.

4.1 Algebraic-topological tools for neural data analysis

Algebraic topology is a relatively young field of pure math-

ematics that has only recently been applied to the study of

real-world data. However, the power of these techniques to

measure structures that are inaccessible to common graph

metrics has gained immediate traction in the neuroscience

community. Here, we highlight a few notable examples

from the growing literature; a more comprehensive recent

account can be found in Giusti et al. (2016). At the neuron

level, persistent has been used to detect intrinsic structure in

correlations between neural spike trains (Giusti et al. 2015),

expanding our understanding of the formation of spatial

maps in the hippocampus (Dabaghian et al. 2012). More-

over, at the level of large-scale brain regions, these tools

have been exercised to characterize the global architecture

of fMRI data (Stolz 2014). Based on their unique sensitiv-

ity, we expect these algebric-topological methods to provide

novel contributions to our understanding of the structure and

function of neural circuitry across all scales at which combi-

natorial components act together for a common goal: from

firing patterns coding for memory (Rajan et al. 2016; Leen

and Shea-Brown 2015) to brain regions interacting to enable

cognition.

Our study uses algebraic topology in the classical form

to obtain a global understanding of the structure, and in

conjunction, it investigates particular topological features

themselves and relates these features to cognitive function.

Cycle representatives have previously been considered in

biology (Chan et al. 2013; Petri et al. 2014; Lord et al.

2016; Kim et al. 2014; Emmett et al. 2016; Mamuye et al.

2016), but to our knowledge this is a first attempt to compare

topological features in multiple brains.
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4.2 Cliques and cavities for computations

Cliques and minimal cycles representing cavities are struc-

turally positioned to play distinct roles in neural compu-

tations. Cliques represent sets of brain regions that may

possess a similar function, operate in unison, or share

information rapidly (Sizemore et al. 2016). Furthermore,

the hierarchical organization of small cliques located more

anteriorly and larger cliques connecting multiple systems

allows for swift global sharing of information produced by

local processing. Conversely, minimal cycles correspond to

extended paths of potential information transmission along

which computations can be performed serially to affect cog-

nition in either a divergent or convergent manner. Indeed,

the capsule-like or chain-like nature of cycles is a struc-

tural motif that has previously been – at least qualitatively

– described in neuroanatomical studies of cellular circuitry.

In this context, such motifs are known to play a key role

in learning (Hermundstad et al. 2011), memory (Rajan

et al. 2016), and behavioral control (Levy et al. 2001;

Fiete et al. 2010). The presence of cycles suggests a possi-

ble role for polysynaptic connections and their importance

to neural computations, consistent with evidence from the

field of computational neuroscience highlighting the role of

highly structured circuits in sequence generation and mem-

ory (Rajan et al. 2016; Hermundstad et al. 2011). Indeed,

in computational models at the neuron level, architectures

reminiscent of chains (Levy et al. 2001; Fiete et al. 2010)

and rings are particularly conducive to the generation of

sequential behavioral responses. It is interesting to speculate

that the presence of these structures at the much larger scale

of white matter tracts could support diverse neural dynamics

and a broader repertoire of cognitive computations than pos-

sible in simpler and more integrated network architectures

(Tang et al. 2016).

Another consideration concerns the apparent asymmetry

of our results with respect to left and right cerebral hemi-

spheres. While unanticipated, we note that in some cases

they have intuitive mathematical underpinnings. For exam-

ple, in Fig. 3, we explicitly count maximal cliques, so one

edge difference between a region in the left and right hemi-

sphere could result in a large difference in the number of

observed maximal cliques. Interestingly, despite this fact

we still observe a strong correlation between node strength

and P(v), instilling confidence in these results. From a neu-

roscience point of view, brain asymmetries are not wholly

unexpected. There is a storied and ever-growing literature

describing the lateralization (i.e., asymmetries) of brain

function (Galaburda et al. 1978). While speech genera-

tion (Rasmussen and Milner 1977) and language processing

(Desmond et al. 1995; Thulborn et al. 1999) are among

the most commonly-cited functions to exhibit lateralization

(Doron et al. 2012; Chai et al. 2016), such effects have also

been linked to a diverse group of other cognitive domains.

These include emotion (Wager et al. 2003), processing of

visual input (Sandi et al. 1993), and even working memory

(Carpenter et al. 2000). In addition, a number of studies have

also reported the emergence of pathological lateralization

or the disruption of asymmetries with neurocognitive dis-

orders including ADHD (Oades 1998). Our study does not

offer a conclusive demonstration that the observed asym-

metries arise from the lateralization of any specific brain

function; we merely wish note that there is a precedent for

such observations.

4.3 Evolutionary and developmental drivers

Network filtration revealed several persistent cavities in the

macroscale human connectome. While each minimal cycle

surrounding these cavities involved brain regions interacting

in a distinct configuration, we also observed commonalities

across these structures. One such commonality was these

minimal cycles tended to link evolutionarily old structures

with more recently-developed neo-cortical regions (Rakic

2009). For example, the green cycle depicted in Fig. 4e

linked the putamen, an area involved in motor behavior

(Middleton and Strick 2000), with the rostral anterior cingu-

late cortex, associated with higher-order cognitive functions

such as error-monitoring (Braver et al. 2001) and reward

processing (Kringelbach and Rolls 2004). This observation

led us to speculate that the emergence of these cavities may

reflect the disparate timescales over which brain regions and

their circuitry have evolved (Gu et al. 2015b), through the

relative paucity of direct connections between regions that

evolved to perform different functions. This hypothesis can

be investigated in future work comparing the clique and

cavity structure of the human connectome with that of non-

human connectomes from organisms with less developed

neocortices.

4.4 Toward a global understanding of network

organization

Though we highlighted minimal cycles in the brain, by

nature persistence describes the global organization of the

network. Often regions in the brain wire minimally to con-

serve wiring cost (Bassett et al. 2010; Bullmore and Sporns

2012; Klimm et al. 2014; Lohse et al. 2014), though there

are exceptions that give the brain its topological properties

such as its small-world architecture (Bassett and Bullmore

2006; Pessoa 2014; Hilgetag and Goulas 2016; Muldoon

et al. 2016a; Bassett and Bullmore 2016). Following this

idea, we could interpret the difference in the number of

persistent cavities between the minimally wired and DSI

networks as a consequence of the non-minimally wired

edges, which tessellate cavities in the brain itself. Yet when
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the subcortical regions are removed, the persistent cavities

of the minimally wired and DSI networks are much more

similar (Fig. 6b). This suggests that the wiring of cortical

regions may be more heavily influenced by energy conser-

vation than the wiring of subcortical regions. Additionally

the drop in the number and lifetime of persistent cavities

when subcortical regions are included indicates that these

subcortical regions may prematurely collapse topological

cavities. The often high participation of subcortical regions

in maximal cliques suggests these well-connected nodes

may have hub-like projections to regions involved in corti-

cal cycles, thus tessellating the cortical cavity with higher

dimensional cliques (topologically these subcortical nodes

are cone points). Previous studies have found that networks

with “star-like” configurations are optimally efficient in

terms of shortest-path efficiency, but also efficient in terms

of a random walk-based measure of efficiency (Goni et al.

2013). That is, networks optimized to have one or the other

type of efficiency tend to have stars. Thus, stars appear to

be useful configurations for fast communication, both along

shortest paths and also in an unguided sense along random

walks. The fact that we see star-like projections to cycles

from subcortical regions may suggest that they are useful

for efficient communication.

4.5 Methodological considerations

An important consideration relates to the data from which

we construct the human structural connectome. DSI and

tractography, non-invasive tools for mapping the brain’s

white-matter connectivity, have some limitations. Tractog-

raphy algorithms trade off specificity and sensitivity, mak-

ing it challenging to simultaneously detect true connections

while avoiding false connections (Thomas et al. 2014),

fail to detect superficial connections (i.e. those that do

not pass through deep white matter) (Reveley et al. 2015),

and have challenges tracking “crossing fibers”, connec-

tions with different orientations that pass through the same

voxel (Wedeen et al. 2008). Nonetheless, DSI and tractogra-

phy represent the only techniques for non-invasive imaging

and reconstruction of the human connectome. While such

shortcomings limit the applicability of DSI and tractogra-

phy, they may prove addressable with the development of

improved tractography algorithms and imaging techniques

(Pestilli et al. 2014).

4.6 Individual cavities in neuroscience applications

Though comparing persistent homology of weighted net-

works at the global level has been successful (for example

Benzekry et al. 2015; Horak et al. 2009), scrutinizing

individual persistent features may have more clinical rele-

vance due to their size and understandability. Yet, multiple

questions remain to be answered before this goal can be

achieved.

The first question pertains to the choice of representative

cycle. As the current study presents an initial consideration

of the persistent features of the structural connectome, we

record all minimal generators, which reduces the number

of choices made, and we define minimality using topologi-

cal (hop) distance, which simplifies our analysis. However,

a case could be made for using the representative with the

minimal summed edge weight (Dey et al. 2011). Such a

definition would further simplify the analysis by potentially

giving a unique ‘minimal’ generator for each equivalence

class. Additionally one might ask if a ‘minimal’ generator is

even the appropriate representative cycle in the first place.

Perhaps cycles of longer length have cognitive or clinical

relevance beyond information distribution.

Second, it will be necessary to further develop the con-

cept of similar persistent cavities. Here we used a region-

matching process in order to incorporate perspectives from

neuroscience and topology. An important open question is

whether a more algorithmic matching could be devised that

is better suited to the perspectives from both fields. Along

the same lines, it is important to consider the birth, death

time, and lifetime of a given persistent cycle (Stolz et al.

2017). We interpret longer-lived and earlier-born persistent

cycles as more essential to the global architecture, and we

hypothesize that this translates to healthy cognitive control

and function as well. Then if two cavities are similar in

terms of their regional composition, but are not similar in

terms of birth or death times (for example, the blue cycle in

the DSI versus MW networks in Fig. 5), it remains an open

question whether the two cavities should be considered truly

similar in a biological context.

Thirdly, with the development of algebraic-topological

tools as described above, we speculate that comparing

late-arriving persistent features could be important for clin-

ical applications. Weaker connections have been shown

to distinguish between health individuals and those with

schizophrenia (Bassett et al. 2012), and have also been

shown to predict individual differences in intelligence (Cole

et al. 2012). Since late-born persistent cycles are a very

particular arrangement of weak edges, we hypothesize that

such cavities may be powerful biomakers of individual

brains, capable of distinguishing between diseased and nor-

mal connectomes.

5 Conclusion

In conclusion, we offer a unique perspective on the struc-

tural substrates of distinct types of neural computations.

While traditional notions from graph theory and network

science preferentially focus on local properties of the
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network at individual vertices or edges (Bassett and Bull-

more 2006, 2009; Bullmore and Sporns 2009; Bullmore and

Bassett 2011), here we utilize an enriched network formal-

ism that comes from the field of algebraic topology (Ghrist

2014). These tools are tuned to the interplay between weak

and strong connections (Bassett et al. 2012), and therefore

reveal architectural features that serve to isolate informa-

tion transmission processes (Giusti et al. 2016). It will be

interesting in the future to compare human and non-human

connectomes across a range of spatial scales (Betzel and

Bassett 2016) to further elucidate the evolutionary develop-

ment of these features, and to link them to their functional

(Hermundstad et al. 2013) and behavioral (Hermundstad

et al. 2014) consequences.
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Appendix: Data acquisition

All participants volunteered with informed consent in

writing in accordance with the Institutional Review

Board/Human Subjects Committee of the University of Cal-

ifornia, Santa Barbara. Diffusion spectrum imaging (DSI)

scans were acquired from eight subjects (mean age 27±5

years, two female, two left handed) on 3 separate days, for

a total of 24 scans (Cieslak and Grafton 2014). DSI scans

sampled 257 directions using a Q5 half-shell acquisition

scheme with a maximum b-value of 5000 and an isotropic

voxel size of 2.4 mm. We utilized an axial acquisition with

the following parameters: repetition time (TR) = 11.4 s,

echo time (TE) = 138 ms, 51 slices, field of view (FoV)

(231,231,123 mm).

DSI data were reconstructed in DSI Studio (www.dsi-

studio.labsolver.org) using q-space diffeomorphic recon-

struction (QSDR) (Yeh and Tseng 2011). QSDR first recon-

structs diffusion-weighted images in native space and com-

putes the quantitative anisotropy (QA) in each voxel. These

QA values are used to warp the brain to a template QA vol-

ume in Montreal Neurological Institute (MNI) space using

the statistical parametric mapping (SPM) nonlinear registra-

tion algorithm. Once in MNI space, spin density functions

were again reconstructed with a mean diffusion distance

of 1.25 mm using three fiber orientations per voxel. Fiber

tracking was performed in DSI studio with an angular cut-

off of 55 degrees, step size of 1.0 mm, minimum length

of 10 mm, spin density function smoothing of 0.0, max-

imum length of 400 mm and a QA threshold determined

by DWI signal in the colony-stimulating factor. Determin-

istic fiber tracking using a modified FACT algorithm was

performed until 100,000 streamlines were reconstructed for

each individual.

In addition to diffusion scans, a three-dimensional high-

resolution T1-weighted sagittal sequence image of the

whole brain was obtained at each scanning session by

a magnetization-prepared rapid acquisition gradient-echo

sequence with the following parameters: TR = 15.0 ms; TE

= 4.2 ms; flip angle = 9 degrees, 3D acquisition, FOV =

256 mm; slice thickness = 0.89 mm, matrix = 256 × 256.

Anatomical scans were segmented using FreeSurfer (Dale

et al. 1999) and parcellated according to the Lausanne 2008

atlas included in the connectome mapping toolkit (Hagmann

et al. 2008). A parcellation scheme including 83 regions

was registered to the B0 volume from each subject’s DSI

data. The B0 to MNI voxel mapping produced via QSDR

was used to map region labels from native space to MNI

coordinates. To extend region labels through the gray–white

matter interface, the atlas was dilated by 4 mm. Dilation was

accomplished by filling non-labeled voxels with the statisti-

cal mode of their neighbors’ labels. In the event of a tie, one

of the modes was arbitrarily selected. Each streamline was

labeled according to its terminal region pair.

Additional neighborhood-scale computations

In the main text we count maximal cliques at an edge den-

sity of 0.25 (Fig. 2). To ensure our interpretation would not

fluctuate based on this choice of ρ, we also show the max-

imal clique distribution for 0 ≤ ρ ≤ 0.25 for the average

DSI network (Fig. 7a). For comparison, we include the aver-

age maximal clique distribution for 0 ≤ ρ ≤ 0.25 of the

minimally wired null models (Fig. 7b).

To address the extent to which an anterior-posterior gra-

dient of maximal cliques exists, we calculated the correla-

tion coefficient of Pk(v) with the position of the node along
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Fig. 7 Maximal clique distribution along the filtration. a Distribution of maximal cliques at each edge density for the average DSI network, and

b average maximal clique distribution for the minimally wired networks

this axis. Fig. 8 shows generally the maximal participation

of a node is more highly correlated with anterior-posterior

position for higher degree cliques. To complement this

calculation, Fig. 8b shows the normalized Pk(v) of each

node for all maximal clique degree k.

We then asked if node participation varies by cognitive

system, perhaps reflecting each system’s unique function.

Results are shown in Fig. 2. The specific ordering of nodes

for this figure are shown below (Fig. 9b). For each (right,

left) hemisphere pair, the brain region in the right hemi-

sphere was listed first, immediately followed by that in the

left hemisphere.

Additionally we are interested in comparing node partic-

ipation to other measures of connectedness, as we expect

they should generally agree. One such measure is the rich

club. Following the work of van den Heuvel and Sporns (van

den Heuvel and Sporns 2011), we calculated φ, φrand , and

φnorm for each value of k (Fig. 10).

Fig. 8 Maximal clique

correlation with anterior-

posterior gradient. a Pearson

correlation coefficient of Pk(v)

with the coordinate along the

anterior-posterior axis. b Spatial

distribution of Pk(v) for each k.

Color of node corresponds to the

value of Pk(v) between zero and

the maximum participation of

any node for the given degree k
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Fig. 9 Order of brain regions for Fig. 2b

Persistent homology

We are interested in finding mesoscale structural features,

specifically non-trivial minimal cycles within our weighted

network. Though these minimal cycles may geometrically

be quite large and span a large portion of the brain, we

emphasize that these are mesoscale features from a topolog-

ical perspective. Persistent homology strings together these

features across network snapshots in a filtration, offering a

global picture of network architecture. We include a brief

description of the method here, and we advise the interested

reader to consult (Carlsson 2009; Ghrist 2014; Zomorodian

and Carlsson 2005) for additional details.

Complexes

Cliques First, we will transform our network (equivalently,

graph) of interest into an algebraic object so that we can use

powerful computational tools from linear algebra to com-

pute intuitive topological features. We begin by selecting

building blocks from which to assemble larger, mesoscale

structures. Drawing on classical graph theory and our intu-

ition about the type of structures we are looking for, we are

led to a natural (and well studied) choice of such blocks:

sets of all-to-all connected nodes called cliques. In the con-

text of brain networks, cliques are groups of brain regions

that are able to rapidly and effectively share information.

Formally, a (k + 1)-clique of a graph G as a set of (k + 1)

nodes for which all pairwise edges are in G. Thus, a single

node is a 1-clique, an edge a 2-clique, a triangle a 3-clique,

and so on. Any subgraph of a clique must itself be a clique

of lower degree, called a face. A maximal clique is thus any

clique that is not a face. Intuitively, we will think of cliques

as “filled in” regions, rather than hollow collections of edges

(Fig. 11a).

Clique complex We study the structure formed by all

cliques induced by the graph G, a combinatorial object

called the clique complex (Fig. 11b). More specifically, we

build the abstract simplicial complex formed from the corre-

spondence of k-simplices and (k + 1)-cliques. See Carlsson

(2009), Hatcher (2002), and Ghrist (2014) for more details.

The clique complex of a graph G is the collection

of all the cliques in G, formally denoted X(G) =

{X0(G), X1(G), . . . , XN (G)} where Xk(G) is the set of all

(k + 1)-cliques in G. Historically, the index is chosen to

correspond to the dimension of the enclosed region, and

we adopt this index shift here for consistency. The clique

complex is an object which allows us to formally manipu-

late certain important geometric properties (as we explore

in more detail in the following sections), and, through these

computations, discover mesoscale features of interest.

Chain group In order to perform computations, we move

from sets of cliques to vector spaces. We define the chain

group Ck(X(G)) (abbreviated to Ck when the underlying

clique complex is understood) as the vector space with

basis Xk(G). We denote by σi1,i2,...,ik ∈ Ck(X(G)) the
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Fig. 10 Defining the rich club

of the DSI network. Rich club

coefficient of the DSI network

(φ(k)) is shown in black, the

average rich club coefficient of

randomized networks (φrand (k))

in gray, and the normalized rich

club coefficient φnorm(k)) in

blue. Shaded regions indicate

values of k for which φ(k)

significantly exceeded φrand (k)

basis element corresponding to a (k + 1)-clique on nodes

{i0, i1, . . . ik}. Though this definition can be made for any

scalar field, we use vector spaces over the field with two

elements, F2 = {0, 1}, as is standard in topological data

analysis. Elements of Ck(X(G)) are linear combinations of

k-chains which correspond to collections of (k +1)-cliques.

For example, consider the clique complex X(G) shown

in Fig. 12. Elements of C1 are linear combinations of edges,

or 2-cliques. One such element is b = σ5,6 + σ6,7 + σ7,8,

shown in blue in Fig. 12. This is intuitively an undirected

path from v5 to v8 that passes through v6 and v7. We could

also take the purple path a ∈ C1. This path begins at v0

and follows σ0,1, σ1,2, σ2,5, then σ0,5 which returns us to

v0. Because we work over F2, this algebraic encoding is not

sensitive to clique direction, only the parity of the number

of times a clique appears in a chain. In C2, an element is

a linear combination of 3-cliques. Highlighted in Fig. 12

(right) is one such example: the element c ∈ C2 with c =

σ2,3,4 + σ2,4,5. Because we are working in F2, if we took

this path twice, we would have the chain c + c = σ2,3,5 +

σ2,4,5 + σ2,3,5 + σ2,4,5 = 2σ2,3,5 + 2σ2,4,5 = 0.

Boundary operator Recall that our goal is to detect topo-

logical cavities in our algebraic object. Note the structure

of cycles is subtle and not necessarily indicative of physi-

cal cavities in a general sense. However, in the case of these

relatively sparse 3D graphs this is usually the case. Cavi-

ties exist when cliques are arranged in a loop or capsule,

but there are no higher dimensional cliques that “fill in”

the enclosed space – that is, the capsule is not the “bound-

ary” of some collection of higher dimensional cliques. To

detect this computationally, we use the boundary operator

∂k : Ck → Ck−1, which takes a collection of (k+1)-cliques

(an element of Ck) and sends them to their boundary (an

element of Ck−1).

Geometrically, the boundary of a k-clique is the family

of (k − 1)-cliques obtained by removing each vertex in suc-

cession. The boundary of a contiguous collection of (one or

more) k-cliques is a “capsule” of (k − 1)-cliques surround-

ing the original collection, inside of which the boundaries

of neighboring (k − 1)-cliques overlap. We can detect this

pattern computationally when chains corresponding to the

shared faces cancel. In Fig. 13 the boundary of c ∈ C2 is

the chain corresponding to the surrounding four edges (2-

cliques), as the interior edge (σ2,4) cancels. Formalizing this

intuition, we define the boundary operator (with coefficients

in F2) on the basis Xk(G) to be

∂k(σ0,1,...,k) =

k
∑

i=0

σ
0,1,...,î,...,k

where î indicates that vertex i is not included in the set

of vertices that form the clique, and we extend this map

linearly to all of Ck(X(G)). Then, for example, in Fig. 13,

∂2(c3) = ∂(σ2,3,4 + σ2,4,5) = ∂2(σ2,3,4) + ∂2(σ2,4,5)

= (σ3,4 + σ2,4 + σ2,3) + (σ4,5 + σ2,5 + σ2,4)

= σ3,4 + σ2,3 + σ4,5 + σ2,5.

Fig. 11 From cliques to a

clique complex. a Cliques are

all-to-all connected sets of

nodes which we use as “filled

in” building blocks. bThe clique

complex is created by inserting

these building blocks into the

completely connected subgraphs

of G
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Fig. 12 Chain group elements

are linear combinations of

cliques. See Appendix text for a

complete description of these

graphs

Because the boundary of c3 ∈ C2 is itself an element of

C1, we can apply ∂1 to it in turn. As illustrated in Fig. 13,

∂1(∂2(c3)) = ∂1(σ2,3 + σ3,4 + σ4,5 + σ2,5)

= σ3 + σ2 + σ4 + σ3 + σ5 + σ4 + σ5 + σ2

= 2σ2 + 2σ3 + 2σ4 + 2σ5

= 0.

This example illustrates a crucial property of the bound-

ary operator: ∂k−1 ◦ ∂k = 0, which will be more thoroughly

discussed in the Homology section below.

Chain complex We now have a boundary operator that lets

us move from k-chains to (k − 1)-chains for every k. Note

the boundary of a 0-chain is defined to be 0, since a node is

a single point with no geometric boundary. These operators

link together the chain groups into a sequence

∂k+1=0
−−−−→ Ck

∂k
−→ Ck−1

∂k−1
−−→ . . .

∂2
−→ C1

∂1
−→ C0

∂0=0
−−−→ 0

called the chain complex for X(G). This is our fundamen-

tal algebraic tool for studying the structure of the clique

complex.

In summary, we have taken an unweighted, undi-

rected graph G and, from an enumeration of its cliques,

formed the clique complex X(G) (Fig. 14, left). We then

used the cliques of each dimension as basis elements

in the chain groups C0(X(G)), C1(X(G)), . . . , CN (X(G))

(Fig. 14, middle). Finally, we defined the boundary opera-

tor ∂ that finds the boundary of a chain (which represents

a collection of (k + 1)-cliques), itself a (possibly empty)

chain representing a collection of k-cliques, and we used

this function to string together the chain groups into the

chain complex (Fig. 14, right).

Homology

We turn now to the definitions and concepts needed to com-

pute homology. Homology discoveres features of interest in

the clique complex by separating cycles, mesoscale patterns

constructed from cliques, which surround a cavity from

those that are the boundary of a collection of cliques.

Cycles Though we have seen examples of cliques strung

together as paths, we are particularly interested in paths that

form closed structures called cycles, the 1-dimensional ana-

log of which are graph-theoretic circuits. Consider the three

closed circuits in Fig. 15, each can be thought of as a linear

combination of elements in C(X1(G)). If we begin at any 1-

clique (node) on the cycle, for example σ2 in ℓ1, and traverse

each 2-clique in the cycle in order, we will end at our start-

ing 1-clique. Since the boundary of any path ∈ C(X1(G))

is σend + σbegin, the boundary of any cycle ℓ ∈ C(X1(G))

must be

∂1(ℓ) = σend + σbegin = 2σbegin = 0.

Though we have thus far focused on the familiar notion of

cycles built of 2-cliques, the notion that boundaries should

cancel allows us to construct cycles in any dimension. We

define a k-cycle to be any element ℓ ∈ Ck with ∂k(ℓ) = 0.

Since the cycles are exactly the elements that are sent to 0 by

Fig. 13 Example of the boundary operator in C2. See Appendix text for a complete description of these graphs
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Fig. 14 Illustration of creating

from G the clique complex

X(G). Also shown are the

induced chain complex

C∗(X(G)) and an example of

boundary calculations on an

element in C2(X(G))

the boundary operator, the subspace of k-cycles is precisely the

kernel (or nullspace), denoted ker(∂k) ⊂ C(Xk(G)).

As noted above, cycles can surround either cavities or a

collection of cliques, and since we are strictly interested in

cycles of the first type, we must determine how to differ-

entiate between these two options. Figure 15 depicts three

1-cycles found in the clique complex shown on the left.

Looking strictly at X1(G), we cannot distinguish which of

these three cycles belong to which category.

However if we include information about 3-cliques, the

separation becomes apparent, in the same way looking at

the full depiction of the clique complex in Fig. 15 (left)

makes it apparent that this object surrounds one cavity. We

need consider only the image of the boundary map from

∂2 : C2(X(G)) → C1(X(G)): if a 1-cycle ℓ surrounds

a collection of higher dimensional cliques, it must in par-

ticular surround a collection of 2-cliques (2-faces of these

larger cliques). In our example in Fig. 15, this means ℓ1 is

the boundary of some element in C2(X(G)) (this element is

σ2,3,4 + σ2,4,5).

We can repeat such an argument for any k-cycle that sur-

rounds a collection of higher dimensional cliques, which

allows us to define k-boundaries as elements in im(∂k+1) ⊆

CK(X(G)). Furthermore it must be true that im(∂k+1) ⊆

ker(∂k+1) per our previous observation that ∂k ◦ ∂k+1 = 0.

However, not all cycles are necessarily boundaries: ℓ2

and ℓ3 are in ker(∂1) but neither are elements of im(∂1).

The k-cycles that surround cavities are thus those that are

in ker(∂k) but not im(∂k). However, enumerating cycles in

ker(∂k) − im(∂k) is not enough to produce a proper list of

cavities in our clique complex, because we will suffer from

redundancy. For example, knowing either ℓ2 or ℓ3 tells us

the cavity they both enclose exists. Certainly ℓ2 	= ℓ3, but

we should consider them equivalent since they both reveal

the same feature of our complex. So we need a way to count

more carefully.

Equivalence The solution to our enumeration problem will

depend on what we regard as “the same”. Above we men-

tioned we should consider ℓ2 to be equivalent to ℓ3 because

Fig. 15 Cycles. Examples of a cycle that is also a boundary (ℓ1) and two equivalent, non-boundary cycles (ℓ2 and ℓ3)
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Fig. 16 Filtrations and inclusion maps. Edge weights indicated by line thickness induce a filtration on the weighted graph G. The inclusion maps

Gi →֒ Gi+1 induce inclusion maps on the corresponding clique complexes X(Gi) →֒ X(Gi+1)

they surround the same cavity. How is it that we under-

stood this? We see they both enclose this cavity, while ℓ2

also surrounds one 3-clique. But this 3-clique (specifically

σ0,5,7) does not change the cavity or add a new one, so

we decided this difference of a higher dimensional clique

should be insubstantial, and thus the two cycles are equiv-

alent. Generalizing this example provides a method for

correctly enumerating the cavities in the complex.

Twok-cycles, ℓi and ℓj , are called equivalent if their sum,

(working over F2) ℓi +ℓj is the boundary of a (k+1)-chain,

e.g. ℓi ∼ ℓj if ℓi + ℓj ∈ im(∂k+1). In Fig. 15, we have

ℓ2 + ℓ3 = (σ2,5 + σ5,7 + σ7,0 + σ0,1 + σ1,2)

+(σ2,5 + σ5,0 + σ0,1 + σ1,2)

= σ5,7 + σ7,0 + σ0,5

= ∂2(σ0,5,7) ∈ im(∂2)

so indeed we see ℓ2 ∼ ℓ3.

This, finally, provides us with a proper count: if we only

count one cycle from each set of (non-trivial) equivalent

cycles, then we will have precisely the number of topologi-

cal cavities of a given dimension within the clique complex.

The clique complex in Fig. 14 by eye has only one cavity

surrounded by 1-cycles, and our computations agree. Any

closed loop of 2-cliques either is equivalent to ℓ2 or it is

strictly a boundary of higher dimensional cliques and thus is

trivial. So, as desired, we have a sole 2-dimensional cavity.

The equivalence class of a k-cycle ℓ is [ℓ] = {ν ∈

Zk|ν ∼ ℓ}. Note the equivalence class of boundary loops

b ∈ im(∂k) contain the empty set, since b−∅ = b ∈ im(∂k).

This means for any ℓ ∈ ker(∂k) and b ∈ im(∂k), we have

ℓ + b ∼ ℓ + ∅ ∼ ℓ, confirming our requirement that cycles

differing by boundaries are equivalent. By abuse, it is com-

mon to refer to an equivalence class of k-cycles as a k-cycle,

and we will continue with this convention.

Homology groups The heavy lifting is now complete and

we are left with only the formal definition of homology to

conclude the section. Recalling the equivalence classes we

have discussed above, we define the homology group of

dimension n as

Hn := ker(∂n)/im(∂n+1)

which is simply the vector space spanned by equivalence

classes of n-cycles. The dimension of Hn is the number

of nontrivial n-cycles and thus the number of (n + 1)-

dimensional topological cavities of our clique complex. In

summary we can now take a graph of nodes and edges, con-

vert it to an algebraic object called the clique complex, then

use the boundary operator to find equivalence classes of

cycles that describe essential mesoscale architecture of our

network in the form of topological cavities.

Homology for weighted networks: persistent homology

While homology detects cavities in binary graphs, the DSI

data (and many other sources in biology) create a weighted

network. Persistent homology was originally developed

(Carlsson 2009; Zomorodian and Carlsson 2005) to describe

topological features of high-dimensional point clouds, but

has since been adapted to address the current problem of

finding topological cavities within weighted networks. This

method uses the edge weights to unravel the weighted net-

work into a sequence of binary networks on which we can

then compute homology, in a manner related to but more

principled than standard thresholding techniques. Overall

persistent homology perceives how the features seen with

homology evolve with the weighted network.

Filtrations Given G a weighted network, we first con-

struct a sequence of binary graphs that will allow us to

use homology on each graph in the sequence. The edge

weights induce a natural ordering on the edges from highest

to lowest weight. Then, beginning with the empty graph, we

replace edges following this ordering. This process creates

a filtration

G0 ⊂ G1 ⊂ · · · ⊂ G|E| = G
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Fig. 17 Inclusion maps between

clique complexes induce maps

between the corresponding

chain complexes. See Appendix

text for a complete description

of these graphs

where each Gi+1 contains one more edge than Gi . Since

Gi+1 contains Gi (and one more edge), we obtain an inclu-

sion map i : Gi →֒ Gi+1 which describes how Gi maps

into Gi+1. In our case this is quite natural, Gi is sent to

itself, now a subgraph of Gi+1 (Fig. 16, top row). This pro-

cess to create a filtration from a weighted graph has been

used previously in Petri et al. (2013a, b) and Giusti et al.

(2015).
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Fig. 18 Illustration of the

persistence complex of the

weighted graph G. The green

1-cycle is first seen in X(G12),

is mapped through filtrations,

and finally becomes the

boundary of a collection of

3-cliques (pink) in X(G14)

Having an inclusion of Gi into Gi+1 means we can also

get an inclusion of X(Gi) into X(Gi+1) in a similar fashion,

where cliques in X(Gi) map to their corresponding selves

in X(Gi+1) (Fig. 16, bottom row).

But now knowing how one clique complex maps into the

next clique complex means we get maps between the chain

groups as well. For example, in Fig. 17 we look only at

the inclusion of X(G13) into X(G14). This inclusion map

tells us how to take cliques from X(G13) and fit them into

X(G14), which means we can figure out how to take some

combination of cliques and fit them into X(G14) as well.

The functions that perform this task are defined

f∗ : C∗(X(G13)) → C∗(X(G14))

where the ∗ refers to the set of functions indexed by dimen-

sion. We show the first three with examples in Fig. 17. If

we have a 0-chain r = σ0 + σ1 + σ6 ∈ C0(X(G13)), it

gets mapped by f0 to a chain in C0(X(G14)), explicitly

f0(r) = σ0 + σ1 + σ6.

We can do this in the higher dimensions as well.

Figure 17 also shows the green 1-chain q = σ2,3 + σ3,4 +

σ4,5+σ2,5 ∈ C1(X(G13)) and how it maps into C1(X(G14))

as well. It is interesting here to note that in C1(X(G13)), the

1-chain q is also a 1-cycle, but is equivalent to the trivial

cycle in C1(X(G14)). Again we can move to the 2-chains

and observe how p = σ5,7,8 + σ5,6,7 is sent to f2(p) =

σ5,7,8 + σ5,6,7 ∈ C2(X(G14)).

Generally filtrations are a powerful way to understand

weighted networks. Here, we will use these chain maps f∗

to track particular chains throughout the filtration to see how

they may change as new edges (and thus cliques) are added.

Persistent homology As we are interested in cycles, we

now turn to tracking specifically cycles throughout the

filtration. A k-loop is a k-chain, so it can be tracked hor-

izontally from clique complex to clique complex in the

filtration. Additionally, we have vertical boundary maps that

tell us if the k-loop in question is a cycle or a boundary

loop within the particular clique complex. More generally

we are combining the information from the filtration and

its between-complex induced maps (Figs. 16, 17) with the

boundary loop information from the within-complex bound-

ary operators (Fig. 14) to observe how cycles change as we

add edges of decreasing weight.

Formally these maps and complexes form the persistence

complex of our weighted graph G (Fig. 18). Armed with

inclusion and boundary maps between chain groups, we

can compute the homology of each graph in the filtration

and therefore obtain maps H∗(X(Gi)) → H∗(X(Gi+1))

that describe how cycles (equivalence classes of cycles) in

X(Gi) change (map directly, shrink in length, become a

boundary loop) in X(Gi+1).

For example, in Fig. 18 we see the green 1-cycle first

appears in G12. We say the cycle is born at this edge density

ρbirth = (# edges present)/(# edges possible) = 12/36.

The green cycle continues to exist until it maps to a cycle

that is the boundary of the pink 2-chain in C2(X(G14)).

Since this cycle is now a boundary, it is equivalent to the

trivial cycle in H1(X(G14)). We say the cycle dies at this

edge density ρdeath = 14/36.

Cycles that exist over many edge additions must evade

becoming triangulated by cliques, thus becoming a bound-

ary. Therefore we consider such cycles more essential if

they persist for many edge additions. We measure cycle

persistence in two ways. First we record cycle lifetime

l = ρdeath − ρbirth, which is commonly used in persis-

tent homology calculations (Carlsson 2009) and displayed

on a persistence diagram. For our cycle which is born at

ρ = 12/13 = 1/3 and dies at ρ = 14/36 = 7/18, we

see an example persistence diagram in Fig. 19. However,

recent work (Bobrowski et al. 2015) suggests alternatively

considering π = ρdeath/ρbirth which allows for cycle
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Fig. 19 Example persistence diagram for green cycle shown in

Fig. 18. See Appendix text for a complete description of these graphs

persistence comparison at difference scales and underscores

the importance of cycles forming at low edge densities.

To summarize, persistent homology tracks interest-

ing connection patterns (cycles) through network frames

induced by edge weights, recovering a parameter-free per-

spective on essential structural features in a weighted net-

work.

Comparison with alternative loop-finding algorithms

One may ask how our method compares with other loop-

finding algorithms. While such programs can be powerful,

two fundamental differences exist. The first is in the defini-

tion of cycles identified. Recall that we extract equivalence

classes of cycles, so we will find only cycles that enclose a

structural cavity, while loop-finding algorithms will extract

all loops that are boundaries of higher cliques (Tucker

2006). Additionally, persistent homology detects cycles in

multiple dimensions with much less computational effort

than loop algorithms (Johnson 1975).

Additionally one might ask how small changes in edge

weights or edge ordering may affect these findings. Cohen-

Steiner et al. showed generally small changes in the edge

ordering will result in small changes in the persistence dia-

gram (Cohen-Steiner et al. 2007). This makes persistent

homology relatively robust to noise and consequentially a

powerful tool in neuroscience (Giusti et al. 2016).

Cycles in the average DSI data

To understand the function non-boundary cycles may have

in the structural brain network, we recover all minimal gen-

erators at ρbirth for each persistent homology class found

in the averaged DSI data (Fig. 4c). These cycles for all 20

of the 2D cavities and the two 3D cavities are shown below

in Figs. 20, 21, respectively. To summarize this informa-

tion we plot all minimal representatives with edges weighted

by their participation in minimal representatives. This sum-

marization is similar to the frequency scaffold (Lord et al.

2016; Petri et al. 2014) in Fig. 22, though here we are

unable to assign one minimal representative to each persis-

tent equivalence class so if an edge is part of any of the

minimal representatives of one equivalence class it gets an

added weight of one. Cycles reach most areas of the brain,

and as seen in Fig. 20, many follow the cortical to subcor-

tical theme. The edge involved in the highest number of

dimension-one minimal generators in the average DSI data

links the left and right thalamus. For dimension 2 we see

each edge only exists within one minimal generator.

Confirming topological cavities in contralateral

hemisphere

In the main text we show validation of the four high-

lighted cycles in individual scans. Following the procedure

above, we next ask if these cycles are seen in the con-

tralateral hemisphere to asses symmetry of these features.

Figure 23 shows these features are seen in the contralateral

hemisphere, though with less frequency than in the original.

Cavities in the normalized dataset

When studying the network formed from DSI, it is impor-

tant to consider any potential bias created by the dif-

ferent sizes of the 83 brain regions. To account for

this potential bias, we normalized the original network

of streamline counts by the geometric mean of the end

point region sizes and checked to see which cycles were

still present (Hagmann et al. 2008). More precisely, the

normalized edge weight Ai,j between nodes i and j

is streamline countij/(volumeivolumej )
1/2 (Bassett et al.

2011).

After this normalization, we asked if the cycles found

in the streamline counts data are present in the normal-

ized networks. Figs. 23 (DSI Norm, DSI Norm cont) show

the cycles are found to a similar extent across scans in the

original and contralateral hemispheres.

Locating all cavities from the group-averaged DSI in

the minimally wired networks

Noting many persistent cycles seem likely sampled from

the minimally wired distribution of persistent cycles, we

asked if we detect the 20 cycles observed in the average

data in the null model. Figure 24 show the lifespan of

each of these persistent cycles within the individual scans

(black) and the minimally wired null model (gray). Each

vertical bar represents a persistent cavity within a scan, and

scans where the cavity was not validated are removed. Aver-

age birth and death densities are indicated with horizontal

dashed lines. We surprisingly see very few of the persistent

homology classes of the DSI data have counterparts in the

J Comput Neurosci (2018) 44: –115 145138



Fig. 20 Minimal representatives at ρbirth of all 2D cavities found

in the average DSI data, listed in order of increasing birth density.

For each topological cavity, the lifespan (ρbirth - ρdeath), location in

the brain, and schematic is shown. For the third, seventh, and tenth

appearing cavities, we could not isolate exactly one unique equivalence

class
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Fig. 21 Minimal

representatives at ρbirth of all

3D cavities found in the average

DSI data, listed in order of

increasing birth density. For

each, the lifespan (ρbirth -

ρdeath), location in the brain,

and schematic is shown

minimally wired null model. Of those that do, often the aver-

age birth and death times are quite different, underscoring the

importance of the filtration in this method (Figs. 24 and 25).

Cortical cavities

Densely connected subcortical nodes may prevent the

longevity of nonzero homology classes by forming cross-

cycle edges or cliques which tessellate the cycle completely.

We asked what cavities could be found when removing

these subcortical nodes, forming DSI cort as described in

the main text. Here, Fig. 26 shows a 1-cycle on nine nodes

recovered from DSI cort within the brain and as a schematic

(panel (a)). The persistence diagram for 2D cavities within

DSI cort in Fig. 26b shows the four minimal cycles marked

in maroon. Importantly, because of the connection patterns

between nodes at the density of cycle formation, we will

refer to any of these four cycles as the minimal cycle. Two

of these cycles are equivalent loops which involve the supe-

rior frontal (RH) and the caudal middle frontal regions. The

other two are equivalent to each other but not to the first two

loops, and involve the superior frontal (LH) and posterior

cingulate (LH). The edge added at ρbirth connects the lat-

eral orbitofrontal to the superior temporal. The cycle formed

by the superior frontal (RH, LH), caudal middle frontal,

precentral, and posterior cingulate (LH) is itself a minimal

cycle surrounding a separate topological cavity. This infor-

mation along with the connection patterns at ρbirth mean

we cannot claim either pair are the two minimal generators,

instead it is either one pair or the other. The smaller, five

Fig. 22 Spatial distribution of

minimal generators at ρbirth of

2D (top) and 3D (bottom)

persistent cavities. Edge

thickness reflects the number of

minimal generators in which

they participate

J Comput Neurosci (2018) 44: –115 145140



Fig. 23 Validation of similar

topological cavities in additional

data. For each of the four

minimal generators highlighted

in the main text, bars indicate

cavity lifetime for all collected

data. Dotted lines indicate

average birth or death edge

density

Fig. 24 Lifetimes of all 20 persistent 2D cavities in the individuals (black bars) and minimally wired models (gray bars). Dashed lines indicate

the average birth and death densities of each class
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Fig. 25 Lifetimes of both

persistent 3D cavities in the

individuals (black bars) and

minimally wired models (gray

bars). Dashed lines indicate the

average birth and death densities

of each class

node cycle was already in existence, so either of these possi-

ble paths (but not both simultaneously) completes the larger

maroon cycle.

We see the pattern of connectivity is not often exactly

seen in all individuals, yet the large 2-dimensional cavity

enclosed is present in every scan (Fig. 26c) in the orig-

inal hemisphere, and often in the opposite hemisphere

(Fig. 26d), suggesting its importance in neural structure.

The number and pattern of persistent cycles in Fig. 26b

matches that of the minimally wired null model much more

Fig. 26 Recovered 1-cycle on

nine nodes. a Minimal

representatives at ρbirth shown

in the brain (left) and as a

schematic (right). b Persistence

diagram of DSI cort and

MW cort . Topological cavity in

(a) circled in maroon. c Patterns

of connectivity between maroon

loop nodes found for the

original (c) and contralateral d

hemispheres in each scan. If the

exact pattern is not found, the

pattern at the edge density when

all cycle edges first exist is

shown. For each scan, the

connection pattern of nodes in

the minimal generator with the

fewest cross-edges is shown
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Fig. 27 Subcortical regions as cone points in the brain network. A

loop (maroon, left) may be the base of a cone, where the cone point

(gray) triangulates the loop interior thus making the loop a boundary

loop. In the brain, the greater number and longevity of topological cav-

ities seen after removing subcortical nodes indicates these subcortical

regions (gray, right) may act as cone points for many cortical cycles

closely than the full DSI network. This suggests first that

the cortical wiring of the brain is globally arranged as if it

was wired minimally. Yet the difference in the cortical only

and full DSI persistence diagrams also implies the subcor-

tical regions drive the reduction of homology. Knowing the

subcortical regions are highly connected and participate in

many high-dimensional cliques (Fig. 2), we conclude the

subcortical regions are acting as cone points in the brain

network (Fig. 27, left). Finally, this adds more detail to our

understanding of the global wiring of the brain, as we imag-

ine many cortical loops that are coned by sets of subcortical

regions (Fig. 27, right).
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