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Abstract

The transformation optics approach to cloaking uses a singular change of coordi-

nates, which blows up a point to the region being cloaked. This paper examines

a natural regularization, obtained by (i) blowing up a ball of radius ρ rather than

a point, and (ii) including a well-chosen lossy layer at the inner edge of the

cloak. We assess the performance of the resulting near-cloak as the regulariza-

tion parameter ρ tends to 0, in the context of (Dirichlet and Neumann) boundary

measurements for the time-harmonic Helmholtz equation. Since the goal is to

achieve cloaking regardless of the content of the cloaked region, we focus on es-

timates that are uniform with respect to the physical properties of this region. In

three space dimensions our regularized construction performs relatively well: the

deviation from perfect cloaking is of order ρ. In two space dimensions it does

much worse: the deviation is of order 1/| logρ|. In addition to proving these

estimates, we give numerical examples demonstrating their sharpness. Some au-

thors have argued that perfect cloaking can be achieved without losses by using

the singular change-of-variable-based construction. In our regularized setting the

analogous statement is false: without the lossy layer, there are certain resonant

inclusions (depending in general on ρ) that have a huge effect on the boundary

measurements. c© 2000 Wiley Periodicals, Inc.

1 Introduction

We say a region of space is cloaked for a particular class of measurements

if its contents – and even the existence of the cloak – are invisible using such

measurements.

A change-of-variable-based scheme for cloaking was proposed by Pendry, Schurig,

and Smith in [21] for measurements that can be modelled using the time-harmonic
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Maxwell equations. Essentially the same scheme was discussed earlier by Green-

leaf, Lassas, and Uhlmann in [7] for electric impedance tomography. Recent re-

views with many references to the rapidly growing literature on cloaking and other

applications of “transformation optics” can be found in [12, 13, 23, 29]; see also

[28] for an enlightening treatment, [14] for information about earlier work along

similar lines, and [3, 5] for an application to scalar wave propagation (the focus of

the present paper). For discussion of the literature most related to the present work,

see Section 2.7.

The change-of-variable-based scheme proposed in [7, 21] is rather singular.

This makes it difficult to analyze; in particular, multiple proposals have emerged

about the appropriate notion of a “weak solution” of Maxwell’s equations in such

a singular setting [8, 25, 26, 28]. The proposals could all be correct, if they rep-

resent the limiting behavior of different regularizations. However there has been

relatively little work on the limiting behavior of any regularization. Such work has

mainly been restricted to uniform inclusions (whose properties remain fixed as the

regularization varies), analyzed via separation of variables [5, 9, 22, 25, 29, 30].

This paper develops a different viewpoint, which avoids singular structures and

weak solutions. We shall study change-of-variable-based “near-cloaks,” defined

using a natural regularization of the singular scheme. Briefly: the framework of

[7, 21] uses a singular change of variable, which blows up a point to a finite-size

region. Our near-cloaks replace this with a regular change of variable, which blows

up a small ball to a finite-size region.

The key issues from our perspective are (a) specifying the precise structure of

the near-cloak, and (b) assessing its performance. We shall address these issues for

the scalar Helmholtz equation

(1.1)
N

∑
i, j=1

∂
∂xi

(

Ai j(x)
∂u

∂x j

)

+ω2q(x)u = 0 in Ω

where Ω is a bounded domain in R
N , N = 2 or 3. This PDE describes time-

harmonic solutions U = ue−iωt of the scalar wave equation q(x)Utt − ∇ ·(A(x)∇ U)=
0.

Any analysis of cloaking must specify the class of measurements being con-

sidered. We shall focus on “boundary measurements,” i.e. the correspondence

between Dirichlet and Neumann data (u and (A∇ u) ·ν ) at ∂Ω.

Our main results are summarized in Section 2. They encompass the following

key points:

(i) If there are no constraints on the material properties of the objects to be

cloaked, then change-of-variable-based cloaking from boundary measure-

ments requires the use of lossy materials.

(ii) The change-of-variable-based scheme works much better in 3D than in 2D.

In fact, our near-cloaks come within ρ of perfect cloaking in 3D, but only
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within 1/| log ρ| of perfect cloaking in 2D. Here ρ is our regularization pa-

rameter – the radius of the small ball that is blown up to a finite-size region

– and the deviation from perfect cloaking is measured by the difference

between the Neumann-to-Dirichlet map and that of a uniform body.

Our viewpoint was introduced in [15], which focused on electric impedance

tomography. This viewpoint was recently adopted by Liu [17], who studied near-

cloaking achieved by change of variables when a homogeneous Dirichlet boundary

condition is imposed at the inner edge of the cloak; his performance estimates are

similar to ours (see point (ii) above). Other regularizations – of a more direct “trun-

cation” nature, and sometimes involving other boundary conditions – are consid-

ered in [5, 9, 10, 11, 22, 25, 29, 30]. The recent articles [10, 11] note the possibility

of resonance, which is directly related to point (i) above.

2 Main Ideas

2.1 Cloaking with respect to boundary measurements

As stated in the Introduction, we shall focus on “boundary measurements,”

i.e. the correspondence between Dirichlet and Neumann data. In the context of

Helmholtz’s equation (1.1), this means we consider the map

ΛA,q : H−1/2(∂Ω) → H1/2(∂Ω) ,

defined by

(2.1) ΛA,q(ψ) = u
∣

∣

∂Ω where u ∈ H1(Ω) solves (1.1) with ∑Ai j
∂u
∂x j

νi = ψ .

This map is well-defined and invertible provided Ai j(x) is a uniformly elliptic

symmetric-matrix-valued function and ω2 avoids a discrete set of eigenvalues.

Throughout this paper we shall impose this restriction on ω2 relative to the homo-

geneous medium, A = I, q = 1. The Sobolev space H1/2(∂Ω) consists functions

with “1
2

derivative in L2” and H−1/2(∂Ω) is its dual. These are the natural spaces

for Dirichlet and Neumann data of finite-energy solutions, since φ ∈ H1/2(∂Ω) if

and only if φ is the restriction to ∂Ω of some function in H1(Ω).

Fixing Ω, we shall say that A(x) and q(x) “look uniform” if the associated

boundary measurements are identical to those obtained when A = I, q = 1, in other

words if ΛA,q = ΛI,1.

Rather than define “cloaks of arbitrary geometry”, let us explain what it means

for a specific structure Ac(x),qc(x) defined in the shell 1 < |x| < 2 to cloak the unit

ball B1 = {|x| < 1}. Given a domain Ω containing B2, we say that Ac,qc cloaks B1

if whenever

(2.2) A(x),q(x) =







I,1 for x ∈ Ω\B2

Ac,qc in B2 \B1

arbitrary in B1
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then ΛA,q = ΛI,1. In other words, Ω looks uniform regardless of the content of

the “cloaked region” B1. To make the definition complete one must specify the

meaning of “arbitrary” in (2.2): for example one might ask that A and q be real-

valued in B1, with A(x) uniformly elliptic. It is easy to see that the above definition

depends only on the “cloak” Ac,qc, not on the choice of Ω. In particular, if cloaking

is achieved for Ω = B2 then it is also achieved for any larger domain.

2.2 The “pushforwards” F∗(A) and F∗(q)

The change-of-variable-based cloaking scheme relies on the following basic

fact.

Let F : Ω → Ω be a differentiable, orientation-preserving, surjective and invertible

map such that F(x) = x at ∂Ω. Then u(x) solves ∇ x · (A(x)∇ xu)+ ω2q(x)u = 0 if

and only if w(y) = u(F−1(y)) solves ∇ y · (F∗A(y)∇ yw)+ω2F∗q(y)w = 0 with

(2.3) F∗A(y) =
DF(x)A(x)DFT (x)

detDF(x)
, F∗q(y) =

q(x)

detDF(x)
, x = F−1(y) .

Moreover A,q and F∗A,F∗q give the same boundary measurements:

(2.4) ΛA,q = ΛF∗A,F∗q .

In (2.3) DF is the matrix whose (i, j)th element is ∂Fi/∂x j . Note that A and F∗A are

symmetric-matrix-valued functions, while q and F∗q are scalar-valued functions;

our use of the same symbol F∗ for both cases is a convenient abuse of notation.

The proof of the preceding statement is elementary. The weak form of the PDE

∇ x · (A(x)∇ xu)+ω2q(x)u = 0 is the assertion that

∫

Ω

[

∑
i, j

Ai j(x)
∂u

∂x j

∂φ
∂xi

−ω2q(x)u(x)φ(x)

]

dx = 0

for all φ that vanish at ∂Ω. Changing variables to y = F(x), this becomes the

statement that

∫

Ω

[

∑
i, j

(F∗A)i j(y)
∂w

∂y j

∂ψ
∂yi

−ω2F∗q(y)w(y)ψ(y)

]

dy = 0

with ψ(y) = φ(x). As φ varies over test functions vanishing at ∂Ω so does ψ, so

we conclude that ∇ y · (F∗A(y)∇ yw) + ω2F∗q(y)w = 0. In fact the two PDE’s are

equivalent, since the argument is reversible. To see that A,q and F∗A,F∗q give the

same boundary measurements, it suffices to note that the above two integrals agree

for any smooth function φ (and the associated ψ(y) = φ(x)) whether it vanishes or

not on ∂Ω. Integration by parts now gives that ∑(F∗A)i j
∂w
∂y j

νi(y) = ∑Ai j
∂u
∂x j

νi(x).

Since y = F(x) = x on ∂Ω (and therefore w = u on ∂Ω) it follows that ΛA,q =
ΛF∗A,F∗q.
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2.3 A lossless regularization of the singular cloaking scheme

Suppose Ω contains the ball B2. For any (small) ρ > 0, consider the change of

variables Fρ defined by

(2.5) Fρ(x) =











x for x ∈ Ω\B2
(

2−2ρ
2−ρ + 1

2−ρ |x|
)

x
|x| for ρ ≤ |x| ≤ 2

x
ρ for |x| ≤ ρ

.

Its key properties are that

• Fρ is continuous and piecewise smooth,

• Fρ expands Bρ to B1, while mapping B2 to itself; and

• F(x) = x outside B2.

The arguments in [7, 21] applied to Helmholtz suggest that B1 should be cloaked

by Ac = (F0)∗I,qc = (F0)∗1, where F0 = limρ→0 Fρ is the singular transformation

that blows up the origin to the ball B1. We might therefore think that if ρ is small

then (Fρ)∗I,(Fρ)∗1 should nearly cloak B1, in the sense that if

(2.6) A(y),q(y) =







I,1 for y ∈ Ω\B2

(Fρ)∗I,(Fρ)∗1 in B2 \B1

arbitrary in B1

then ΛA,q ≈ Λ1,1.

Such a statement is true at frequency 0; this is the main result of [15]. It is

however not true when ω 6= 0; we shall explain why not in Section 2.5.

2.4 Reduction to the study of small inclusions

To assess the whether Ac = (Fρ)∗I,qc = (Fρ)∗1 achieves approximate cloaking,

we must study the boundary operator associated with (2.6). By the change of

variable principle, this is the same as the boundary operator associated with

(2.7) (F−1
ρ )∗A(x),(F−1

ρ )∗q(x) =

{

I,1 for x ∈ Ω\Bρ
arbitrary in Bρ .

Here we have used the fact that (F−1
ρ )∗ ◦ (Fρ)∗ = id, and so if A,q are arbitrary in

B1, then their transforms (F−1
ρ )∗A and (F−1

ρ )∗q are similarly arbitrary in Bρ . Thus:

(Fρ)∗I,(Fρ)∗1 approximately cloak B1 if and only if

an inclusion of radius ρ with arbitrary content has little(2.8)

effect on the boundary map of an otherwise uniform domain.
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2.5 Failure of the lossless regularization

The lossless regularized scheme discussed in Sections 2.3–2.4 does not achieve

approximate cloaking. To explain why not, it suffices by (2.8) to show that a small

inclusion in an otherwise uniform domain can have a large effect on the boundary

operator.

We use separation of variables, focusing on the 2D case for simplicity. Let

Ω = B2, and consider

Aρ,qρ =

{

I,1 in B2 \Bρ
Ãρ, q̃ρ in Bρ

where Ãρ > 0 and q̃ρ are real-valued constants. The general solution of the associ-

ated Helmholtz equation can be expressed in polar coordinates as

u =
∞

∑
k=−∞

αkJk

(

ωr

√

q̃ρ/Ãρ

)

eikθ for r ≤ ρ ,

u =
∞

∑
k=−∞

[

βkJk(ωr)+γkH
(1)
k (ωr)

]

eikθ for ρ < r ≤ 2 ,

for appropriate choices of αk, βk and γk. When we solve a Neumann problem,

the three unknowns at mode k (αk,βk,γk) are determined by three linear equations:

agreement with the Neumann data at r = 2 and satisfaction of the two transmission

conditions at r = ρ. However, for any ω 6= 0 and any k, this linear system has

determinant zero at selected values of Ãρ and q̃ρ . (We shall show this in Section

4, where we also study the asymptotics of such special values of Ãρ , q̃ρ as ρ → 0

for k = 0 and k = 1.) When the linear system is degenerate (for some k), the

homogeneous Neumann problem has a nonzero solution, and the boundary map

ΛAρ ,qρ is not even well-defined. In brief: no matter how small the value of ρ, for

any ω 6= 0 there are cloak-busting choices of Ãρ and q̃ρ for which the ball with

such an inclusion is resonant at frequency ω.

2.6 Our near-cloaks

The standard way to deal with resonance is to introduce a mechanism for damp-

ing or loss. There are many alternatives, most of which amount to considering an

open rather than a closed system (for example, use of a scattering boundary condi-

tion permits energy to be lost at infinity).

In this paper we choose a particular damping mechanism, which permits us

to remain focused on boundary measurements for the Helmholtz equation (1.1).

Specifically: we take q to be complex, choosing the geometry in such a way that it

maintains the equivalence between near-cloaking and insensitivity to small inclu-

sions.

Our construction (nearly) cloaks B1/2 by surrounding it with two concentric

shells: an isotropic but lossy one of thickness 1/2, coated by an anisotropic but
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lossless shell similar to the one in Section 2.3. Besides the regularization parameter

ρ, it also has a damping parameter β > 0. The analogue of (2.6) is

(2.9) A(y),q(y) =















I,1 for y ∈ Ω\B2

(F2ρ)∗I,(F2ρ)∗1 in B2 \B1

(F2ρ)∗I,(F2ρ)∗(1+ iβ) in B1 \B1/2

arbitrary real, elliptic in B1/2.

To be clear: in B1/2 we permit q(y) to be any L∞ real-valued function, and we

permit A(y) to be any real symmetric-matrix-valued function that is uniformly

bounded and uniformly positive definite. (See Section 2.7 for comments on the

hypothesis that A > 0 in the cloaked region.) When A,q are arbitrary in this sense

in B1/2, their pullbacks (F−1
2ρ )∗A,(F−1

2ρ )∗q are similarly arbitrary in Bρ . So the

boundary operator associated with A(y),q(y) is the same as that of

(2.10)

Aρ ,qρ = (F−1
2ρ )∗A(x),(F−1

2ρ )∗q(x) =







I,1 for x ∈ Ω\B2ρ
I,1+ iβ in B2ρ \Bρ

arbitrary real, elliptic in Bρ

(this is the analogue of (2.7)). We shall show in Section 3 that when β is chosen

properly – specifically, when β ∼ ρ−2 – this construction approximately cloaks

B1/2 in the sense that

(2.11) ‖ΛA,q −ΛI,1‖ = ‖ΛAρ ,qρ −ΛI,1‖ ≤Ce(ρ)

where the left hand side uses the operator norm1 on maps from H−1/2(∂Ω) to

H1/2(∂Ω) and

(2.12) e(ρ) =

{

1/| logρ| in space dimension 2

ρ in space dimension 3 .

We emphasize that this near-cloaking is achieved regardless of the content of the

cloaked region, i.e. the constant C in (2.11) is entirely independent of the values

of A(y) and q(y) in B1/2 (provided they are real, with A symmetric and positive

definite).

The estimate (2.11) is essentially optimal. In fact, we shall show in Section 4

that there exist (constant) values of Ãρ > 0 and q̃ρ and Neumann data ψ such that

when

Aρ(x),qρ(x) =







I,1 for x ∈ Ω\B2ρ
I,1+ iβ in B2ρ \Bρ
Ãρ, q̃ρ in Bρ

then
∥

∥(ΛAρ ,qρ −ΛI,1)ψ
∥

∥

H1/2

‖ψ‖H−1/2

∼ e(ρ).

1 To be completely explicit: ‖ΛA,q −ΛI,1‖ = sup‖ψ‖
H−1/2≤1 ‖ΛA,qψ −ΛI,1ψ‖H1/2 ; thus, it mea-

sures the worst-case difference between the Dirichlet data associated with coefficients A,q and I,1
when the associated PDE’s are solved using the same (normalized) Neumann data.
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Note that our near-cloak is not very successful in space dimension 2, since 1/| log ρ|
decays very slowly as ρ → 0. It is much more successful in space dimension 3.

The reason for such dimension-dependent behavior lies in the different decay of the

fundamental solution of the Laplacian in dimensions 2 and 3. (In space dimension

N > 3, arguments similar to the ones presented here would give a corresponding

estimate with e(ρ) = ρN−2.)

2.7 Discussion

Our presentation used the radial transformation F2ρ defined by (2.5), but our

analysis of the scheme involves only the study of the inclusion problem (2.10).

By replacing F2ρ by a more general change of variable, one easily gets a similar

scheme for cloaking a non-spherical cavity.

We explained in Section 2.5 that the lossless version of our regularization must

fail, if the goal is to achieve cloaking without regard to the physical properties of

the region being cloaked. The papers [5, 9, 10, 22, 25, 29, 30] take a different

viewpoint: translated into our terminology they assume that the properties of the

cloaked region remain fixed as ρ → 0. It appears that perfect cloaking is achieved

without losses for 3D Maxwell and 3D Helmholtz; however the results we present

in Section 4 indicate that this should not be the case for 2D Helmholtz (see the

discussion associated with Figure 4.2).

Our near-cloaks use loss parameter β ∼ ρ−2. Numerically we can say a little

more: the optimal choice of β is about cρ−2 with c ≈ 2.5 in 2D and c ≈ 4 in 3D

(see the discussion of Figures 4.4 and 4.5 in Section 4). When β is significantly

smaller near-cloaking is not achieved, because the loss is not sufficient to hide

certain “cloak-busting” inclusions. When β is larger the performance of the near-

cloak is slightly worse, however near-cloaking is apparently achieved even in the

limit β → ∞. This limit corresponds, at least heuristically, to the imposition of a

Dirichlet boundary condition at the inner edge of the cloak, the case considered

in [17]. Thus our results are closely related to those of [17], however we achieve

near-cloaking using a finite value of the loss parameter.

Much of the literature on cloaking focuses on scattering rather than bound-

ary measurements. It would be interesting to know whether our near-cloaks work

equally well in that setting, e.g. whether there is an estimate analogous to (2.11)

for the scattering of plane waves from Ω (embedded in uniform space with A = I,

q = 1). We conjecture that this is the case.2 (The results in [17] provide such an

estimate when β = ∞.)

In assessing the performance of our near-cloak, we focus on the worst-case be-

havior. In particular, our estimate (2.11) applies regardless of the material proper-

ties of the cloaked region, provided only that A(y) is real-valued, positive-definite,

and finite there, and q(y) is real-valued function. The constant in the estimate does

2 A treatment of the scattering problem in much the same spirit as the present paper has recently

been completed by Nguyen [20].
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not depend on the upper or lower bounds for A or q in the cloaked region. The

recent paper [4] argues that by taking A < 0 in part of the cloaked region, one

can defeat the effect of the (singular, lossless) change-of-variable-based cloak. We

doubt that our lossy near-cloak would be defeated by such a scheme. But to discuss

a situation where the real part of A changes sign it is necessary to include losses (A

must be complex). As the losses tend to zero and ellipticity is lost, the local fields

may become increasingly oscillatory (this is case, for example, in the “anomalous

localized resonances” of [19]). Since our analysis assumes that A,q are real in the

cloaked region, we assume A > 0 to know that the PDE has a well-defined solution.

Is our approach the best way to achieve near-cloaking without singular materi-

als? Not necessarily. The papers [9, 30] suggest that a truncation-based regulariza-

tion combined with a different choice of boundary condition at the inner edge of

the cloak may do better. But these papers keep the material in the cloaked region

fixed as the regularization parameter tends to zero. It would be interesting to exam-

ine whether their lossless near-cloaks can be defeated by special “cloak-busting”

inclusions, as discussed in Section 2.5.

Is the change-of-variable-based approach optimal? Or might there be an en-

tirely different approach to (approximate) cloaking – using materials less singular

than (F2ρ)∗I, (F2ρ)∗1, and achieving an error estimate much better than e(ρ)? This

question remains open. The recent paper [27] used separation of variables and a

genetic algorithm to optimize cloaking of a fixed, constant inclusion with respect

to scattering measurements, obtaining a better result with less complexity than the

change-of-variable-based scheme. But their cloak would probably not work as

well for non-constant inclusions. Moreover, since it was obtained by numerical

optimization, the example in [27] lacks the intuitiveness and universality of the

change-of-variable-based scheme.

This paper focuses entirely on change-of-variable-based cloaking. But we note

in passing the existence of other promising schemes for achieving similar goals,

including one based on optical conformal mapping [16], another using anomalous

localized resonance [19], and a third based on special (object-dependent) coatings

[1].

3 The effect of a small inclusion

The goal of this section is to prove (2.11). We begin by giving the result a

more formal statement. Throughout this section, Ω is a bounded domain in R
N

(N = 2 or 3), whose boundary is C2 (so we may use elliptic estimates), with 0 ∈ Ω
(our inclusions will be centered at 0). We are interested in Helmholtz’s equation at

frequency ω: given ψ ∈ H−1/2(∂Ω), let u0 be the solution of

(3.1)







∆u0 +ω2u0 = 0 in Ω
∂u0

∂ν
= ψ on ∂Ω .
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We suppose that −ω2 is not an eigenvalue of the Neumann Laplacian. The bound-

ary value problem (3.1) is therefore well-posed, and

‖u0‖H1(Ω) ≤C‖ψ‖H−1/2(∂Ω) .

Now consider the solution uρ of

(3.2)







div(Aρ ∇ uρ)+ω2qρuρ = 0 in Ω
∂uρ

∂ν
= ψ on ∂Ω

,

where Aρ and qρ have the form:














Aρ = I, qρ = 1 in Ω\B2ρ

Aρ = 1, qρ = 1+ iβ in B2ρ \Bρ

Aρ ,qρ arbitrary real, elliptic in Bρ

.

Here β is a positive constant, and the “arbitrary real, elliptic” Aρ and qρ in Bρ are

assumed to be positive definite, symmetric-matrix-valued and real-valued functions

respectively, in L∞(Bρ) (qρ need not be of one sign). We assume that Ω contains

a neighborhood of B2ρ (this is a smallness condition on ρ). The existence and

uniqueness of uρ is easy to see using the positivity of β (see Section 3.1). We

claim that if β is chosen appropriately then uρ is close to u0:

Theorem 3.1. Suppose −ω2 is not an eigenvalue of the Laplacian on Ω with Neu-

mann boundary condition. Let u0 and uρ be the solutions of (3.1) and (3.2) re-

spectively, and suppose β = d0ρ−2 for some positive constant d0. Then there exist

constants ρ0 and C (independent of ψ) such that for any ρ < ρ0,

(3.3) ‖uρ −u0‖H1/2(∂Ω) ≤Ce(ρ)‖ψ‖H−1/2(∂Ω)

where e(ρ) is defined by (2.12). In other words, the difference between the two

boundary operators ΛAρ ,qρ and ΛI,1 has norm at most Ce(ρ), when viewed as an

operator from H−1/2(∂Ω) to H1/2(∂Ω). The constants ρ0 and C depend on ω and

d0, but they are completely independent of the values of Aρ and qρ in Bρ .

Our strategy for proving this theorem is as follows:

• In Section 3.1 we use the energy identity and the positivity of β to control

the L2 norm of uρ in B2ρ \Bρ . We also deduce, by a duality argument, an

estimate for the restriction of uρ to ∂B2ρ .

• In Section 3.2 we prove a general result comparing the Helmholtz equation

in Ω to the same equation in the punctured domain Ω \B2ρ . It is obvious

that if the latter problem is solved using Dirichlet data u0|∂B2ρ at the edge

of the “hole” , and normal flux data ψ on ∂Ω, then the solution is u0. The

main estimate of Section 3.2 is an associated stability result: it asserts that

if Dirichlet data at the edge of the hole are close to u0, then the solution of

Helmholtz in the punctured domain is close to u0 at ∂Ω.
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• In Section 3.3 we show how the estimates in Sections 3.1 and 3.2 combine

to prove Theorem 3.1.

• The discussion of Section 3.2 uses the well-posedness of Helmholtz’s equa-

tion in the punctured domain Ω \ B2ρ (with Neumann data at ∂Ω and

Dirichlet data at ∂B2ρ). This well-posedness result is not surprising (if the

hole is small its effect should be small) but we do not know a convenient

reference. So we give a self-contained proof in Section 3.4.

• The arguments in Sections 3.2 and 3.4 use some estimates for solutions

of Laplace’s equation in the exterior of a small ball. Those estimates are

not difficult, but we do not know a suitable reference. So we give a self-

contained proof in Section 3.5.

3.1 Some estimates based on the positivity of β
We noted above that the well-posedness of (3.2) follows easily from the posi-

tivity of β . The proof, which is standard, uses the energy identity. The following

Lemma uses a variant of that argument to bound the L2 norm of uρ in the shell

ρ < |x| < 2ρ by ‖u0 −uρ‖H1/2(∂Ω).

Lemma 3.2. The solutions of (3.1) and (3.2) satisfy

ω2β
∫

B2ρ\Bρ
|uρ |

2 dx ≤C‖ψ‖H−1/2(∂Ω)‖uρ −u0‖H1/2(∂Ω) ,

where C is an absolute constant (depending only on Ω).

Proof. Multiplying (3.2) by ūρ (the complex conjugate of uρ ) and integrating by

parts gives

−

∫

Ω
Aρ ∇ uρ ∇ ūρ dx+ω2

∫

Ω
qρuρ ūρ dx = −

∫

∂Ω
(Aρ ∇ uρ) ·ν ūρ dσx .

The first term on the left hand side is real. Therefore taking the imaginary part of

each side (and remembering that Aρ = I near ∂Ω) we get

ω2β
∫

B2ρ\Bρ
|uρ |

2 dx = −Im

(

∫

∂Ω

∂uρ

∂ν
· ūρ dσx

)

= −Im

(

∫

∂Ω
ψ(ūρ − ū0) dσx

)

.(3.4)

For the second equality we have used that ∂uρ/∂ν = ψ, and the fact that
∫

∂Ω
ψū0 dσx =

∫

Ω
|∇ u0|

2 dx−ω2

∫

Ω
|u0|

2 dx

is real. The assertion of the lemma is an immediate consequence of (3.4). �

The functions u0 and uρ solve the same PDE in Ω\B2ρ , with the same Neumann

data at the outer boundary ∂Ω. We will compare them in Sections 3.2 and 3.3 using

elliptic estimates on this punctured domain. So it is crucial to control uρ at ∂B2ρ .
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We achieve such control (in the H−1/2 norm) by combining the last result with a

duality argument.

Lemma 3.3. The solutions of (3.1) and (3.2) satisfy

‖uρ(ρ ·)‖2
H−1/2(∂B2)

≤C
[(1+β)ω2ρ2 + 1]2

ω2β
ρ−N‖ψ‖H−1/2(∂Ω)‖uρ −u0‖H1/2(∂Ω) ,

where C is an absolute constant (depending only on Ω).

Proof. We use the fact that

‖uρ(ρ ·)‖H−1/2(∂B2)
= sup

‖φ‖
H1/2(∂B2)

≤1

∣

∣

∣

∣

∫

∂B2

uρ(ρx)φ(x)dσx

∣

∣

∣

∣

.

Now, for any φ ∈ H1/2(∂B2) there exists w ∈ H2(B2) such that

(a) w = 0 on ∂B2 ,
∂w

∂ν
= φ on ∂B2 ,

(b) ‖w‖H2(B2) ≤C‖φ‖H1/2(∂B2)
,

(c) w vanishes inside B1 .

Using this w we have
∫

∂B2

uρ(ρx)φ(x)dσx =

∫

∂B2

uρ(ρx)
∂w

∂ν
dσx ,

whence after integration by parts
∫

∂B2

uρ(ρx)φ(x) dσx = ρ
∫

B2

∇ uρ(ρx)∇ w dx+

∫

B2

uρ(ρx)∆w dx

= −ρ2

∫

B2

∆uρ(ρx)w dx+

∫

B2

uρ(ρx)∆w dx .

Since w vanishes in B1 and ∆uρ +(1+ iβ)ω2uρ = 0 in B2ρ \Bρ , we conclude that

∣

∣

∣

∣

∫

∂B2

uρ(ρx)φ(x)d σx

∣

∣

∣

∣

≤ ω2(1+β)ρ2

(

∫

1<|x|<2
|uρ |

2(ρx)

)
1
2

‖w‖L2(B2)

+

(

∫

1<|x|<2
|uρ |

2(ρx)

)
1
2

‖w‖H2(B2)

≤ C[ω2(1+β)ρ2 + 1]‖uρ(ρ ·)‖L2(1<|x|<2)‖φ‖H1/2(∂B2)
.

Maximizing over φ subject to ‖φ‖H1/2(∂B2)
≤ 1 and using the relation

‖uρ(ρ ·)‖L2(B2\B1)
= ρ−N/2‖uρ‖L2(B2ρ\Bρ)

we conclude that

(3.5) ‖uρ(ρ ·)‖H−1/2(∂B2)
≤C[ω2(1+β)ρ2 + 1]ρ−N/2‖uρ‖L2(B2ρ\Bρ) .

Squaring both sides and combining the result with Lemma 3.2 leads easily to the

desired estimate. �
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3.2 Estimates for Helmholtz on the punctured domain

As noted above, u0 and uρ solve the same PDE in Ω\B2ρ , with the same Neu-

mann data at the outer boundary ∂Ω. If in addition their values are similar at

the inner boundary ∂B2ρ , then u0 should be globally close to uρ . The following

Lemma makes this rigorous. For notational simplicity we take the inclusion to be

Br rather than B2ρ .

Lemma 3.4. Suppose −ω2 is not an eigenvalue of the Laplacian on Ω with Neu-

mann boundary condition. There are constants r0 and C with the following prop-

erty: suppose r < r0, suppose u0 solves (3.1) with boundary data ψ ∈ H−1/2(∂Ω),
and suppose ur solves

(3.6)











∆ur +ω2ur = 0 in Ω\Br

ur = ϕ on ∂Br

∂ur

∂ν
= ψ on ∂Ω

using the same Neumann data ψ as for u0 on ∂Ω, and Dirichlet data ϕ ∈H1/2(∂Br),
then

(3.7) ‖ur −u0‖H1/2(∂Ω) ≤Ce(r)‖(ϕ −u0)(r ·)‖H−1/2(∂B1)
,

where e(r) is given by (2.12). The constants r0 and C depend on ω and Ω, but they

are entirely independent of ψ, ϕ , and r.

Proof. We shall show in Section 3.4 that if Helmholtz’s equation is well-posed on

Ω, then it is also well-posed on Ω\Br when r is sufficiently small and ∂Br carries

a homogeneous Dirichlet condition. In particular, if w solves

(3.8) (∆+ω2)w = F in Ω\Br ,
∂w

∂ν
= f on ∂Ω , w = 0 on ∂Br ,

then

(3.9) ‖w‖H1(Ω\Br)
≤C

(

‖F‖L2(Ω\Br)
+‖ f‖H−1/2(∂Ω)

)

,

with C independent of r.

We want to estimate ur −u0 using (3.9). It isn’t zero at ∂Br, but we can fix this

by subtracting a harmonic function. We shall show in Section 3.5 that there is a

solution of ∆V = 0 in Ω\Br with V = ϕ −u0 on ∂Br satisfying

‖
∂

∂ν
V‖L2(∂Ω) ≤ Ce(r)‖(ϕ −u0)(r ·)‖H−1/2(∂B1)

‖V‖H1/2(∂Ω) ≤ Ce(r)‖(ϕ −u0)(r ·)‖H−1/2(∂B1)
(3.10)

‖V‖L2(Ω\Br)
≤ Ce(r)‖(ϕ −u0)(r ·)‖H−1/2(∂B1)
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(see Proposition 3.8). The function wr = ur −u0−V satisfies (3.8) with F =−ω2V

and f = −∂V/∂ν . So the estimate (3.9) gives

‖ur −u0‖H1/2(∂Ω) ≤ ‖wr‖H1/2(∂Ω) +‖V‖H1/2(∂Ω)

≤ C‖wr‖H1(Ω\Br)
+‖V‖H1/2(∂Ω)

≤ C

(

‖ω2V‖L2(Ω\Br)
+‖

∂
∂ν

V‖H−1/2(∂Ω) +‖V‖H1/2(∂Ω)

)

≤ Ce(r)‖(ϕ −u0)(r ·)‖H−1/2(∂B1)
,

which is the desired estimate. �

3.3 Proof of Theorem 3.1

Theorem 3.1 follows by elementary manipulation from Lemmas 3.3 and 3.4:

Proof of Theorem 3.1. Lemma 3.4 with r = 2ρ and ϕ = uρ |∂B2ρ gives

‖uρ −u0‖H1/2(∂Ω) ≤Ce(ρ)‖(uρ −u0)(ρ ·)‖H−1/2(∂B2)
.

Therefore by the triangle inequality

‖uρ −u0‖H1/2(∂Ω) ≤Ce(ρ)
(

‖u0(ρ ·)‖H−1/2(∂B2)
+‖uρ(ρ ·)‖H−1/2(∂B2)

)

.

The first term is easy to estimate, using the well-posedness of the PDE on Ω and

elliptic regularity:

‖u0(ρ ·)‖H−1/2(∂B2)
≤C‖u0(ρ ·)‖L∞(∂B2) ≤C‖ψ‖H−1/2(∂Ω).

To estimate the second term we apply Lemma 3.3. Since β = d0ρ−2 by hypothesis,

the conclusion of Lemma 3.3 is

(3.11) ‖uρ(ρ ·)‖H−1/2(∂B2)
≤C2ρ(2−N)/2‖ψ‖

1/2

H−1/2(∂Ω)
‖uρ −u0‖

1/2

H1/2(∂Ω)

where C2 depends only on d0, ω, and Ω. The right hand side is bounded, for ε > 0,

by

C2ρ
2−N

2

(

ρ(2−N)/2e(ρ)

4ε
‖ψ‖

H
− 1

2 (∂Ω)
+

ε
ρ(2−N)/2e(ρ)

‖uρ −u0‖
H

1
2 (∂Ω)

)

= C2
ρ2−Ne(ρ)

4ε
‖ψ‖

H
− 1

2 (∂Ω)
+C2

ε
e(ρ)

‖uρ −u0‖
H

1
2 (∂Ω)

.

Combining these results we get

‖uρ −u0‖
H

1
2 (∂Ω)

≤Ce(ρ)‖ψ‖
H

− 1
2 (∂Ω)

+C2e(ρ)
ρ2−Ne(ρ)

4ε
‖ψ‖

H
− 1

2 (∂Ω)
+C2ε‖uρ −u0‖

H
1
2 (∂Ω)

.
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We now choose ε so that C2ε < 1. Then the last term on the right hand side can be

absorbed by the left hand side, and we conclude that

‖uρ −u0‖
H

1
2 (∂Ω)

≤Ce(ρ)‖ψ‖
H

− 1
2 (∂Ω)

+Ce(ρ)ρ2−Ne(ρ)‖ψ‖
H

− 1
2 (∂Ω)

with C independent of ρ, ψ, and the values of Aρ and qρ in Bρ . When N = 2,

ρ2−Ne(ρ) = e(ρ)→ 0 as ρ → 0. When N = 3, ρ2−Ne(ρ) = 1 is constant. In either

case we get

‖uρ −u0‖
H

1
2 (∂Ω)

≤Ce(ρ)‖ψ‖
H

− 1
2 (∂Ω)

,

which is the desired conclusion. �

3.4 Uniform well-posedness for the punctured domain

This section provides the proof of (3.9). Actually we shall prove a slightly

stronger statement, in which ‖F‖L2(Ω\Br)
is replaced by a weaker norm (see equa-

tion (3.16)). A concise statement of our well-posedness result is given at the end

of the section (see Proposition 3.5).

We are concerned with the PDE

(3.12)







∆w0 +ω2w0 = F in Ω
∂w0

∂ν
= f at ∂Ω

and its analogue (3.8) in the punctured domain Ω\Br. Since ω is real, it suffices to

consider the case when F , f and w0 are real-valued. (The corresponding estimates

for complex-valued solutions are immediate, by considering the real and imaginary

parts separately.)

We begin by reviewing the equivalence of well-posedness and the “inf-sup con-

dition.” For any domain Ω, it is well-known (and fairly easy to prove) that the

condition

(3.13) inf
w∈H1(Ω)
‖w‖

H1=1

sup
v∈H1(Ω)
‖v‖

H1≤1

∣

∣

∣

∣

∫

Ω
∇ w · ∇ vdx−ω2

∫

Ω
wvdx

∣

∣

∣

∣

≥ c0 > 0

is necessary and sufficient for the wellposedness of the boundary value problem

(3.12) (see for instance [2]). To be quite precise, (3.13) is necessary and sufficient

for the existence of a bounded inverse H1(Ω)′ → H1(Ω) to the linear operator

associated with the bilinear form

B(w,v) =

∫

Ω
∇ w · ∇ vdx−ω2

∫

Ω
wvdx ,

which in turn yields a (unique) weak solution of (3.12) satisfying

‖w0‖H1(Ω) ≤C0

(

‖F‖H1(Ω)′ +‖ f‖H−1/2(∂Ω)

)

.

Here H1(Ω)′ is the dual of H1(Ω). Elliptic regularity implies that w0 is a strong

solution of (3.12) provided F and f are sufficiently regular. The requirement that
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−ω2 not be an eigenvalue for the Laplacian on Ω with Neumann boundary condi-

tion is equivalent to this notion of wellposedness.

The situation for a punctured domain Ω\Br with wr = 0 at ∂Br is similar (and

equally standard). If H1
∗ (Ω\Br) denotes the space

H1
∗ (Ω\Br) = H1(Ω\Br)∩{ w|∂Br

= 0 }

equipped with the H1-norm, then the “inf-sup” condition

(3.14) inf
w∈H1

∗ (Ω\Br)
‖w‖

H1 =1

sup
v∈H1

∗ (Ω\Br)
‖v‖

H1≤1

∣

∣

∣

∣

∫

Ω\Br

∇ w · ∇ vdx−ω2

∫

Ω\Br

wvdx

∣

∣

∣

∣

≥ c1 > 0

is necessary and sufficient for the unique solvability of the boundary value problem

(3.15) (∆+ω2)wr = F in Ω\Br ,
∂wr

∂ν
= f on ∂Ω , wr = 0 on ∂Br ,

with the associated estimate

(3.16) ‖wr‖H1(Ω\Br)
≤C1

(

‖F‖H1
∗ (Ω\Br)′

+‖ f‖H−1/2(∂Ω)

)

.

Our task is now clear. To prove (3.16), we must show that if Ω satisfies the

inf-sup condition (3.13) then Ω\Br satisfies the inf-sup condition (3.14) when r is

sufficiently small, with a constant c1 that remains uniform as r → 0.

So suppose (3.13) holds, and consider any w∗ ∈ H1
∗ (Ω\Br) such that ‖w∗‖H1 =

1. Extend w∗ by 0 to all of Ω, and call the extension w̃. Then w̃ ∈ H1(Ω), with

‖w̃‖H1(Ω) = 1. So by (3.13) there exists v ∈ H1(Ω) with
∣

∣

∣

∣

∫

Ω
∇ w̃ · ∇ vdx−ω2

∫

Ω
w̃vdx

∣

∣

∣

∣

≥
c0

2
and ‖v‖H1(Ω) ≤ 1 .

Let P denote orthogonal projection onto H1(Ω)∩{w = 0 on Br}, using the H1(Ω)
inner-product, and define v∗ ∈ H1

∗ (Ω\Br) by

v∗ = P(v)|Ω\Br
.

Since v∗ is (the restriction of) a projection

(3.17) ‖v∗‖H1(Ω\Br)
≤ ‖v‖H1(Ω) ≤ 1 .

Decomposing
∫

Ω\Br
∇ w∗ · ∇ v∗ dx−ω2

∫

Ω\Br
w∗v∗ dx as

∫

Ω\Br

∇ w∗ · ∇ vdx−ω2

∫

Ω\Br

w∗v dx

+

∫

Ω\Br

∇ w∗ · ∇ (v∗− v)dx−ω2

∫

Ω\Br

w∗(v∗− v)dx ,

we have
∣

∣

∣

∣

∫

Ω\Br

∇ w∗ · ∇ vdx−ω2

∫

Ω\Br

w∗vdx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω
∇ w̃ · ∇ vdx−ω2

∫

Ω
w̃vdx

∣

∣

∣

∣

≥
c0

2
,
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from which it follows that

(3.18)

∣

∣

∣

∣

∫

Ω\Br

∇ w∗ · ∇ v∗ dx−ω2

∫

Ω\Br

w∗v∗ dx

∣

∣

∣

∣

≥
c0

2
−

∣

∣

∣

∣

∫

Ω\Br

∇ w∗ · ∇ (v∗− v) dx−ω2

∫

Ω\Br

w∗(v∗− v)dx

∣

∣

∣

∣

.

Our essential task is thus to show that the expression in absolute values on the

right hand side of (3.18) is small. For any φ∗ ∈ H1
∗ (Ω\Br) let φ̃ ∈ H1(Ω)∩{ w =

0 on Br } denote its extension (by zero) to all of Ω. Then

(3.19)

∫

Ω\Br

∇ (v∗− v) · ∇ φ∗ dx+

∫

Ω\Br

(v∗− v)φ∗ dx

=

∫

Ω
∇ (P(v)− v)∇ φ̃dx+

∫

Ω
(P(v)− v)φ̃dx = 0 ,

and as a consequence (using φ∗ = w∗)
∫

Ω\Br

∇ w∗ · ∇ (v∗− v)dx−ω2

∫

Ω\Br

w∗(v∗− v)dx

= −(ω2 + 1)
∫

Ω\Br

w∗(v∗− v)dx .

Inserting this into (3.18), we get

(3.20)

∣

∣

∣

∣

∫

Ω\Br

∇ w∗ · ∇ v∗ dx−ω2

∫

Ω\Br

w∗v∗ dx

∣

∣

∣

∣

≥
c0

2
− (ω2 + 1)

∣

∣

∣

∣

∫

Ω\Br

w∗(v∗− v)dx

∣

∣

∣

∣

.

We shall show below (see Lemma 3.7) the existence of constants C and r0 such

that

(3.21) ‖v∗− v‖L2(Ω\Br)
≤Ce(r)1/2‖v‖H1(Ω\Br)

provided 0 < r < r0 .

Accepting this for a moment, the rest of the argument is easy. Combining (3.20)

with (3.21), and recalling that ‖w∗‖H1(Ω\Br)
= 1 and ‖v‖H1(Ω) ≤ 1, we get

∣

∣

∣

∣

∫

Ω\Br

∇ w∗ · ∇ v∗ dx−ω2

∫

Ω\Br

w∗v∗ dx

∣

∣

∣

∣

≥
c0

2
− (ω2 + 1)‖w∗‖L2(Ω\Br)

‖v∗− v‖L2(Ω\Br)

≥
c0

2
−Ce(r)1/2‖v‖H1(Ω\Br)

≥
c0

2
−Ce(r)1/2 ≥

c0

4
> 0

provided r is sufficiently small (less than e−(4C/c0)2

for N = 2, and less than (c0/4C)2

for N = 3). Thus the “inf-sup” condition (3.14) holds, with a positive constant
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c1 independent of r. In summary, once (3.21) has been established we will have

proved

Proposition 3.5. Suppose −ω2 is not an eigenfrequency for the Laplacian on Ω
with Neumann boundary condition. Then there exists r0 > 0 such that the prob-

lem (3.15) has a unique solution for all 0 < r < r0 and all F ∈ H1
∗ (Ω \ Br)

′,

f ∈ H−1/2(∂Ω). Furthermore, the solution to (3.15) satisfies (3.16) with a con-

stant C1 that is independent of r.

The rest of this subsection is devoted to proving (3.21). The proof, presented in

Lemma 3.7, makes use of the following correctly-scaled trace estimate.

Lemma 3.6. Suppose Ω contains B2r0
, r0 < 1. Assume the spatial dimension is

N = 2 or 3, and let e(r) be defined by (2.12). Then there is a constant C such that

(3.22) ‖w‖L2(∂Br) ≤C

(

rN−1

e(r)

)1/2

‖w‖H1(Ω\Br)
,

for any 0 < r < r0 and any w ∈ H1(Ω\Br).

Proof. We may suppose that w vanishes outside B2r0
. (The general case is easily

reduced to this one, by replacing w with wχ where χ is a smooth function such that

χ = 1 on Br0
and χ = 0 off B2r0

.) Our plan is to decompose w as

w = w−
1

|∂Br|

∫

∂Br

wdσ +
1

|∂Br|

∫

∂Br

wdσ ,

and to prove that

‖w−
1

|∂Br|

∫

∂Br

wdσ‖L2(∂Br) ≤ Cr1/2‖w‖H1(Ω\Br)
, and(3.23)

‖
1

|∂Br|

∫

∂Br

wdσ‖L2(∂Br) ≤ C

(

rN−1

e(r)

)1/2

‖w‖H1(Ω\Br)
.(3.24)

The desired result (3.22) is an immediate consequence of these inequalities.

To prove (3.23), consider the function

wr(y) = w(ry)−
1

|∂Br|

∫

∂Br

wdσ .

It is defined on
(

1
r
Ω
)

\B1, and it has mean value zero on the inner boundary ∂B1.

Therefore

1

r(N−1)/2
‖w−

1

|∂Br|

∫

∂Br

wdσ‖L2(∂Br) = ‖wr‖L2(∂B1)

≤ C‖∇ wr‖L2(B2\B1)

≤ C‖∇ wr‖L2(( 1
r
Ω)\B1)

= Cr(2−N)/2‖∇ w‖L2(Ω\Br)
.
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This gives (3.23).

To prove (3.24), we note that 1/e(|x|) is a harmonic function, with

∇
1

e(|x|)
= −

x

|x|N
, |x| < 1 , and

∂
∂ν

1

e(|x|)

∣

∣

∣

∣

|x|=r = −
1

rN−1
, r < 1 ,

where ∂/∂ν is the normal (radial) derivative at the boundary of the ball of radius

r. Therefore
∣

∣

∣

∣

∫

∂Br

wdσ
∣

∣

∣

∣

=

∣

∣

∣

∣

rN−1

∫

|x|=r
w

∂
∂ν

1

e(|x|)
dσ
∣

∣

∣

∣

=

∣

∣

∣

∣

rN−1

∫

r<|x|<2r0

∇ w · ∇ (
1

e(|x|)
)dx

∣

∣

∣

∣

≤ rN−1

(

∫

r<|x|<2r0

|∇ w|2 dx

)1/2(∫

r<|x|<2r0

|∇ (
1

e(|x|)
)|2 dx

)1/2

≤ CrN−1|e(r)|−1/2‖w‖H1(Ω\Br)
.

This gives
∣

∣

∣

∣

1

|∂Br|

∫

∂Br

wdσ
∣

∣

∣

∣

≤C|e(r)|−1/2‖w‖H1(Ω\Br)
,

which is equivalent to (3.24). �

The following lemma estimates the distance between an arbitrary function in

H1(Ω) and its “projection” to H1
∗ (Ω\Br). Its conclusion is precisely our assertion

(3.21).

Lemma 3.7. Suppose Ω contains a ball of radius 2r0, r0 < 1. Assume the spatial

dimension is N = 2 or 3, and let e(r) be defined by (2.12). For any v ∈ H1(Ω), let

P(v) denote the orthogonal projection of w onto H1(Ω)∩{ v = 0 on Br } using the

H1(Ω) inner-product, and define v∗ ∈ H1
∗ (Ω\Br) by

v∗ = P(v)|Ω\Br
.

Then there is a constant C (independent of v and r) such that

‖v∗− v‖L2(Ω\Br)
≤Ce(r)1/2‖v‖H1(Ω\Br)

, 0 < r < r0 .

Proof. Let V = v∗− v ∈ H1(Ω\Br). We already know from (3.19) that
∫

Ω\Br

∇ V · ∇ φ∗ dx+
∫

Ω\Br

Vφ∗ dx = 0 ∀φ∗ ∈ H1
∗ (Ω\Br)

or, in the equivalent “strong” formulation

−∆V +V = 0 in Ω\Br , V = −v on ∂Br ,
∂V

∂ν
= 0 on ∂Ω .
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We shall prove in Section 3.5 that there exists W in H1(Ω\Br) such that ∆W = 0

in Ω\Br, W = v on ∂Br, and

‖
∂W

∂ν
‖L2(∂Ω) ≤ Ce(r)‖v(r ·)‖L2(∂B1) = C

e(r)

r(N−1)/2
‖v‖L2(∂Br) ,(3.25)

‖W‖L2(Ω\Br)
≤ Ce(r)‖v(r ·)‖L2(∂B1) = C

e(r)

r(N−1)/2
‖v‖L2(∂Br) .(3.26)

(see Proposition 3.8). The function W1 = V +W satisfies

−∆W1 +W1 = W in Ω\Br ,
∂W1

∂ν
=

∂W

∂ν
on ∂Ω , W1 = 0 on ∂Br .

Multiplication by W1 and integration by parts gives
∫

Ω\Br

|∇ W1|
2 + |W1|

2 dx

=
∫

∂Ω

∂W

∂ν
W1 dσ +

∫

Ω\Br

WW1 dx

≤C

(

‖
∂W

∂ν
‖L2(∂Ω) +‖W‖L2(Ω\Br)

)

×‖W1‖H1(Ω\Br)
,

whence by (3.25) and (3.26)

‖W1‖H1(Ω\Br)
≤ C

(

‖
∂W

∂ν
‖L2(∂Ω) +‖W‖L2(Ω\Br)

)

≤ C
e(r)

r(N−1)/2
‖v‖L2(∂Br) .

Since V = −W +W1, this estimate combines with (3.26) to give

‖V‖L2(Ω\Br)
= ‖−W +W1‖L2(Ω\Br)

≤C
e(r)

r(N−1)/2
‖v‖L2(∂Br).

Applying Lemma 3.6 we conclude that

‖V‖L2(Ω\Br)
≤Ce(r)1/2‖v‖H1(Ω\Br)

,

which is exactly the assertion of Lemma 3.7. �

3.5 Some results on harmonic extensions

We used certain estimates on harmonic extensions in Sections 3.2 and 3.4,

namely equations (3.10), (3.25), and (3.26). This section provides the proofs. As

in Section 3.4, it suffices to consider real-valued functions.

There are (at least) two different approaches. One uses separation of variables,

making use of the fact that the desired estimates are on the exterior of a ball. The

other uses potential theory; it has the advantage of working just as well when the

ball is replaced by a more general inclusion. Rather than stick to one approach, we

shall present them both – giving the separation-of-variables-based argument in 2D,

and the potential-theory-based argument in 3D.
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Proposition 3.8. Assume Ω contains B2r0
, r0 < 1, and suppose N = 2 or N =

3. Then there is a constant C (depending only on Ω and r0) with the following

property: for any r < r0, and any g ∈ H1/2(∂Br), there is a solution of

∆W = 0 in R
N \Br , W = g on ∂Br

such that

‖
∂

∂ν
W‖L2(∂Ω) ≤ Ce(r)‖g(r ·)‖H−1/2(∂B1)

,(3.27)

‖W‖H1/2(∂Ω) ≤ Ce(r)‖g(r ·)‖H−1/2(∂B1)
,(3.28)

‖W‖L2(Ω\Br)
≤ Ce(r)‖g(r ·)‖H−1/2(∂B1)

,(3.29)

with e(r) defined by (2.12).

Proof for N = 2 using separation of variables. Consider the Fourier representation

of g:

g(r cosθ,r sin θ) = a0 +
∞

∑
n=1

(an cosnθ + bn sin nθ)

The function g(r ·) is defined on ∂B1, and

c

(

|a0|+
∞

∑
n=1

a2
n + b2

n

n

)1/2

≤ ‖g(r ·)‖H−1/2(∂B1)
≤C

(

|a0|+
∞

∑
n=1

a2
n + b2

n

n

)1/2

(see e.g. [15] for a concise discussion of this well-known fact). The obvious har-

monic extension is

W = a0

logR

logr
+

∞

∑
n=1

(an cosnθ + bn sinnθ)rnR−n

where R = |x|. We claim it satisfies the desired estimates.

Since high modes decay quickly, our estimates will be driven by the lowest

modes. Therefore it is convenient to write W = W0 +W1 +W̃ with

W0 = a0

logR

logr
, W1 = (a1 cosθ + b1 sinθ)rR−1 ,

and W̃ = W −W0 −W1. We will show that each of the functions W0, W1, and W̃

satisfies (3.27)–(3.29).

For W0, we observe that

‖
∂

∂ν
log |x|‖L2(∂Ω) ≤C , ‖ log |x|‖H1/2(∂Ω) ≤C , and ‖ log |x|‖L2(Ω\Br)

≤C .

Therefore (remembering that e(r) = 1/| log r| when N = 2)

‖
∂

∂ν
W0‖L2(∂Ω) +‖W0‖H1/2(∂Ω) +‖W0‖L2(Ω\Br)

≤ Ce(r)|a0|

≤ Ce(r)‖g(r ·)‖H−1/2(∂B1)
,

i.e. W0 satisfies (3.27)–(3.29).
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For W1, we observe that

‖
∂

∂ν
1

|x|
‖L2(∂Ω) ≤C and ‖

1

|x|
‖H1/2(∂Ω) ≤C ,

so

‖
∂

∂ν
W1‖L2(∂Ω) +‖W1‖H1/2(∂Ω) ≤Cr‖g(r ·)‖H−1/2(∂B1)

.

For the L2 norm, suppose Ω ⊂ Br1
. Then

‖
1

|x|
‖2

L2(Ω\Br)
≤C

∫ r1

r

1

R2
RdR ≤C| logr| ,

so

‖W1‖L2(Ω\Br)
≤Cr| log r|1/2‖g(r ·)‖H−1/2(∂B1)

.

Since r ≪ r| log r|1/2 ≪ e(r) as r → 0, we conclude that W1 satisfies (3.27)–(3.29).

For W̃ = ∑∞
n=2(an cosnθ +bn sinnθ)rnR−n we use the fact that Ω contains B2r0

and the hypothesis r < r0 to see that

‖
∂W̃

∂ν
‖L2(∂Ω) ≤ C

∞

∑
n=2

(|an|+ |bn|)n

(

r

2r0

)n

≤ Cr2

(

∞

∑
n=2

|an|
2 + |bn|

2

n

)1/2

≤ Cr2‖g(r ·)‖H−1/2(∂B1)
.(3.30)

Similarly

(3.31) ‖W̃‖H1/2(∂Ω) ≤ ‖W̃‖H1(∂Ω) ≤Cr2‖g(r ·)‖H−1/2(∂B1)
.

As for the L2 norm, we have

‖W̃‖2
L2(Ω\Br)

≤ ‖W̃‖2
L2(R2\Br)

≤ C
∞

∑
n=2

(|an|
2 + |bn|

2)r2n

∫ ∞

r
R−2n+1 dR

≤ Cr2
∞

∑
n=2

(|an|
2 + |bn|

2)n−1

≤ Cr2‖g(r ·)‖2
H−1/2(∂B1)

.(3.32)

Since r2 ≪ r ≪ e(r), it follows from (3.30)–(3.32) that W̃ satisfies (3.27)–(3.29).

�

Proof for N = 3 using potential theory. We decompose g = g0 + g̃, where

g0 =
1

|∂Br|

∫

∂Br

gdσ =
1

|∂B1|

∫

∂B1

g(r ·)dσ
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is the mean value of g and g̃ has mean value 0. Notice that

(3.33) |g0| ≤C‖g(r ·)‖H−1/2(∂B1)
.

The obvious choice of W is W0 +W̃ , where

W0(x) = g0
r

|x|

and W̃ is the unique solution of

(3.34) ∆W̃ = 0 in R
3 \Br , W̃ = g̃ on ∂Br , W̃ (x) → 0 as |x| → ∞ .

To show that W satisfies (3.27)–(3.29), we will show that both W0 and W̃ satisfy

these relations.

For W0, we observe that

‖
∂

∂ν
1

|x|
‖L2(∂Ω) ≤C , ‖

1

|x|
‖H1/2(∂Ω) ≤C , and ‖

1

|x|
‖L2(Ω\Br)

≤C .

Therefore (remembering that e(r) = r when N = 3)

‖
∂

∂ν
W0‖L2(∂Ω) +‖W0‖H1/2(∂Ω) +‖W0‖L2(Ω\Br)

≤ Ce(r)|g0|

≤ Ce(r)‖g(r ·)‖H−1/2(∂B1)
,

using (3.33). Thus W0 satisfies (3.27)–(3.29).

To estimate W̃ we use the following lemma.

Lemma 3.9. Let B1 be the unit ball in R
3, and let h ∈ H1/2(∂B1) have mean value

0. Then the solution V of

(3.35) ∆V = 0 in R
3 \B1 , V = h on ∂B1 , V (x) → 0 as |x| → ∞

satisfies, for any R ≥ 2,

‖∇ V‖L∞(|x|=R) ≤
C

R3
‖h‖H−1/2(∂B1)

,(3.36)

‖V‖L∞(|x|=R) ≤
C

R2
‖h‖H−1/2(∂B1)

, and(3.37)

‖V‖L2(BR\B1)
≤ C‖h‖H−1/2(∂B1)

,(3.38)

with C independent of R.

Given this Lemma, our task is easy. In fact, by definition W̃ (x) = V (x/r) where

V solves (3.35) with h = g̃(r ·). Since B2r ⊂ Ω ⊂ Br1
for some r1, the estimates

(3.36) – (3.38) imply, by change of variables and elementary manipulation, that

‖
∂

∂ν
W̃‖L2(∂Ω) ≤ Cr2‖g̃(r ·)‖H−1/2(∂B1)

,

‖W̃‖H1/2(∂Ω) ≤ Cr2‖g̃(r ·)‖H−1/2(∂B1)
,

‖W̃‖L2(Ω\Br)
≤ Cr3/2‖g̃(r ·)‖H−1/2(∂B1)

.
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Since ‖g̃(r ·)‖H−1/2(∂B1)
≤C‖g(r ·)‖H−1/2(∂B1)

and r2 ≪ r3/2 ≪ e(r) when N = 3 it

follows that W̃ satisfies (3.27)–(3.29). �

Proof of Lemma 3.9. We shall use the double layer potential representation of V .

If G is the “free-space” fundamental solution

G(x,y) = −
1

|∂B1||x− y|
= −

1

4π|x− y|
,

then the desired representation is V = D(φ), where

D(φ)(x) =
∫

∂B1

∂
∂νy

G(x,y)φ(y)dσy

=
1

4π

∫

∂B1

(y− x) · y

|x− y|3
φ(y)dσy

for x ∈ R
3 \∂B1, and φ is an appropriately chosen density. For points x ∈ ∂B1, and

continuous φ, this double layer potential gives rise to the following well-known

jump condition

lim
x′→x,x′∈R3\B1

D(φ)(x) = −
1

2
φ(x)+

1

4π

∫

∂B1

(y− x) · y

|x− y|3
φ(y) dσy

= −
1

2
φ(x)+

1

8π

∫

∂B1

1

|x− y|
φ(y) dσy

= (−
1

2
+ T)φ(x) .(3.39)

The mapping T is a compact linear operator from L2(∂B1) to itself. Since the

kernel is symmetric, T is selfadjoint.

We discuss some additional properties of the operator T . If τx is the tangent

vector field on ∂B1 given by τx = (x2,−x1,0), then

∇ x

(

1

|x− y|

)

· τx =
(y− x) · τx

|x− y|3
=

y · τx

|x− y|3
= −

x · τy

|x− y|3
= −∇ y

(

1

|x− y|

)

· τy .

It follows, after integration by parts, that

∂
∂θ1

Tφ(x) = T

(

∂
∂θ1

φ
)

(x)

where θ1, 0 ≤ θ1 < 2π denotes the azimuthal angle of the standard spherical co-

ordinate system (cosθ1 sinθ2,sinθ1 sinθ2,cosθ2). Varying the coordinate system,

and using the fact that T maps L2 into itself, we conclude that T maps H1(∂B1) to

itself. Using interpolation we conclude that T maps H1/2(∂B1) to itself. It follows,

since T is L2-selfadjoint, that T also maps H−1/2(∂B1) (the dual of H1/2(∂B1)) to

itself. It is well-known that

Ker{−
1

2
+ T} = { constants }
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in any of these spaces (see [6] for this assertion in L2, from which the assertions

in H1/2 and H−1/2 follow easily). Moreover, the full space (L2, H1/2, or H−1/2

respectively) may be decomposed as

Ker{−
1

2
+ T}⊕Range{−

1

2
+ T} .

Due to the L2-orthogonality of this decomposition (remember: T is selfadjoint) it

now follows that

(−
1

2
+ T)φ = h , h ∈ L2(∂B1) ,

has a solution φ ∈ L2(∂B1) iff
∫

∂B1
h = 0, and furthermore, if we require that

∫

∂B1
φ = 0 then

‖φ‖L2(∂B1) ≤C‖h‖L2(∂B1) .

A similar existence statement and estimate holds with L2(∂B1) replaced by H±1/2(∂B1).

We claim that the solution of (3.35) is

(3.40) V (x) = D(φ)(x) =
1

4π

∫

∂B1

(y− x) · y

|x− y|3
φ(y)dσy for x ∈ R

3 \B1 ,

where φ is the solution of (− 1
2
+ T)φ = h. When h is continuous this statement

is classical: if h is continuous so is φ (see e.g. [6] Proposition 3.14), so (3.39)

shows that D(φ) = h at ∂B1; moreover it is obvious that D(φ)(x) → 0 as |x| → ∞.

The validity of (3.40) for all h ∈ H1/2(∂B1) with mean value 0 follows easily, by a

density argument.

We now estimate V in terms of φ. For any x ∈ R
3 \B2, let hx(·) be the function

hx(y) =
(y− x) · y

|x− y|3
, y ∈ ∂B1 .

It is easy to see that

(3.41) ‖hx‖H1/2(∂B1)
≤ ‖hx‖H1(∂B1) ≤C

1

|x|2
,

with C independent of x ∈ R
3 \B2. Similarly, for any x ∈ R

3 \B2 let Hx(·) be the

vector-valued function

Hx(y) = ∇ xhx(y) = 3
(y− x)(y− x) · y

|x− y|5
−

y

|x− y|3
, y ∈ ∂B1 .

It is easy to see that

(3.42) ‖Hx‖H1/2(∂B1)
≤ ‖Hx‖H1(∂B1) ≤C

1

|x|3

with C independent of x ∈ R
3 \ B2. Using (3.41) we see that the double layer

potential

D(φ)(x) =
1

4π

∫

∂B1

(y− x) · y

|x− y|3
φ(y)dσy
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satisfies

‖D(φ)‖L2(BR\B2)
≤ C‖φ‖H−1/2(∂B1)

,

‖D(φ)‖L∞({|x|=R}) ≤
C

R2
‖φ‖H−1/2(∂B1)

.

Using (3.42) we also have

‖∇ D(φ)‖L∞({|x|=R}) ≤
C

R3
‖φ‖H−1/2(∂B1)

.

By the H−1/2(∂B1) boundedness of (− 1
2
+ T )−1, these estimates imply

‖V‖L2(BR\B2)
≤ C‖h‖H−1/2(∂B1)

,

‖V‖L∞({|x|=R}) ≤
C

R2
‖h‖H−1/2(∂B1)

,

‖∇ V‖L∞({|x|=R}) ≤
C

R3
‖h‖H−1/2(∂B1)

,

for any R ≥ 2. This proves (3.36) and (3.37).

To establish (3.38), and thus complete the proof of the lemma, we only need to

show that

‖V‖L2(B2\B1)
≤C‖h‖H−1/2(∂B1)

.

It suffices to show that

(3.43) ‖V‖L2(B2\B1)
≤C

(

‖h‖H−1/2(∂B1)
+‖V‖H−1/2(∂B2)

)

,

since the second term on the right is estimated by (3.37) with R = 2.

We use a standard duality argument to prove (3.43). Let w solve

∆w = V in B2 \B1 with w = 0 on ∂B2 ∪∂B1 .

It satisfies

‖w‖H2(B2\B1)
≤C‖V‖L2(B2\B1)

,

and thus

‖
∂

∂ν
w‖H1/2(∂B1)

+‖
∂

∂ν
w‖H1/2(∂B2)

≤C‖V‖L2(B2\B1)
.

We therefore calculate
∫

B2\B1

V 2 dx =
∫

B2\B1

V ∆wdx

=

∫

∂B2

V
∂

∂ν
wdx−

∫

∂B1

V
∂

∂ν
wdx

≤ ‖V‖H−1/2(∂B2)
‖

∂
∂ν

w‖H1/2(∂B2)

+‖h‖H−1/2(∂B1)
‖

∂
∂ν

w‖H1/2(∂B1)

≤ C‖V‖L2(B2\B1)

(

‖h‖H−1/2(∂B1)
+‖V‖H−1/2(∂B2)

)

,
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whence

‖V‖L2(B2\B1)
≤C

(

‖h‖H−1/2(∂B1)
+‖V‖H−1/2(∂B2)

)

.

This verifies (3.43), completing the proof of the lemma. �

4 Numerical results

The main goal of this section is to demonstrate the sharpness of our estimates.

After briefly reviewing the task at hand, we begin with a discussion of the “cloak-

busting” inclusions whose existence was announced in Section 2.5. Then we show

that for these cloak-busting inclusions the estimate (2.11) is sharp. We also exam-

ine the performance of the near-cloak as a function of the loss parameter β , and we

study the degree to which the fields outside the cloak emulate those of a uniform

domain.

To describe the formulas used in our computations, complex notation is very

convenient. For all of our computations we take the background solution u0 to be

a plane wave, u0(x) = eiωx2 , propagating in the x2 direction. This u0 is the solution

of

(4.1)







∆u0 +ω2u0 = 0 in Ω ,
∂u0

∂ν
= ψ on ∂Ω ,

with

(4.2) ψ = iωeiωx2ν2 .

Throughout this section, BR denotes the ball of radius R centered at the origin, the

domain Ω is chosen to be Ω .
= B2, and all calculations are done at frequency ω = 1.

(Note that these choices make (4.1) well-posed, since −1 is not an eigenvalue of

the Neumann Laplacian on B2.)

We denote by uρ the solution to the following problem

(4.3)







div(Aρ ∇ uρ)+ω2qρuρ = 0 in B2 ,
∂uρ

∂ν
= ψ on ∂B2 ,

where Aρ(y),qρ(y) are given by

(4.4)















Aρ = qρ = 1 for 2ρ < |x| ≤ 2 ,

Aρ = 1, qρ = 1+ iβ for ρ < |x| ≤ 2ρ ,

Aρ,qρ > 0 arbitrary for |x| ≤ ρ ,

with β > 0. In principle the value of Aρ(y) inside Bρ could be any symmetric

positive-definite matrix, but for simplicity we take both Aρ and qρ to be scalar

constants in Bρ . When there is no danger of confusion, we will sometimes abuse

notation by writing Aρ,qρ for the (arbitrary, constant) values of the coefficients in

Bρ (in particular, we have done this in (4.4)).
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Our near-cloaks are obtained by change-of-variables using the map F , defined

by

(4.5) F =







x
2ρ if |x| ≤ 2ρ

(

1−2ρ
1−ρ + 1

2(1−ρ) |x|
)

x
|x| if 2ρ ≤ |x| ≤ 2

(in the notation of Section 3 this is F2ρ). Note that F maps Bρ to B 1
2
, B2ρ to B1,

and the annulus B2 \B2ρ to the annulus B2 \B1. The “push-forward” of uρ , i.e. the

function Uρ(y)
.
= uρ(F−1(y)), satisfies

(4.6)

{

div(F∗(Aρ)∇ Uρ)+ω2F∗(qρ)Uρ = 0 in B2 ,

(F∗(Aρ)∇ Uρ) ·ν = ψ in ∂B2 ,

where ψ is as before. Taking into account the special form (4.4) of the coefficients

under consideration, and the fact that Aρ and qρ are scalar constants in Bρ , the

pushed-forward coefficients F∗(Aρ ,qρ)
.
= (F∗(Aρ),F∗(qρ)) are given

(4.7) in 2D by















































F∗(Aρ)(y) = DF(x)DFT (x)
det DF(x) |x=F−1(y) ,

F∗(qρ)(y) = 1
detDF(x) |x=F−1(y)











for 1 < |y| ≤ 2

F∗(Aρ)(y) = 1 , F∗(qρ)(y) = 4ρ2(1+ iβ) for 1
2

< |y| ≤ 1

F∗(Aρ)(y) = Aρ ,

F∗(qρ)(y) = 4ρ2qρ

}

for |y| ≤ 1
2

and

(4.8)

in 3D by















































F∗(Aρ)(y) = DF(x)DFT (x)
det DF(x) |x=F−1(y) ,

F∗(qρ)(y) = 1
detDF(x) |x=F−1(y)











for 1 < |y| ≤ 2

F∗(Aρ)(y) = 2ρ , F∗(qρ)(y) = 8ρ3(1+ iβ) for 1
2

< |y| ≤ 1

F∗(Aρ)(y) = 2ρAρ ,

F∗(qρ)(y) = 8ρ3qρ

}

for |y| ≤ 1
2

We shall write vρ for the solution of the problem (4.3) in the particular case when

β = 0. Thus, vρ solves

(4.9)







div(A′
ρ ∇ vρ)+ω2q′ρvρ = 0 in B2 ,

∂vρ

∂n
= ψ in ∂B2 ,
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where A′
ρ ,q′ρ are piecewise constant functions given by

(4.10)







A′
ρ = q′ρ = 1 for ρ < |x| ≤ 2

A′
ρ ,q′ρ > 0 arbitrary for |x| ≤ ρ .

The corresponding pushed forward problem and pushed forward coefficients are

described by (4.6) and (4.7)/(4.8) with β = 0, for 2D/3D, respectively.

We recall the following representations, in 2D and 3D, of the plane wave solu-

tion of (4.1), u0 = eiωx2 :

u0(r,θ) =
k=+∞

∑
k=−∞

Jk(ωr)eikθ , in 2D(4.11)

u0(r,θ,φ)=4π
∞

∑
l=0

il jl(ωr) ∑
|m|≤l

Y m
l (

π
2

,
π
2

)Y m
l (θ,φ), in 3D(4.12)

where here and in what follows, i2 = −1, z denotes the complex conjugate of z, Jk

and jl are the classical Bessel and spherical Bessel functions, respectively (see for

instance [24]) and for each l ≥ 0, Y m
l (θ,φ) with |m| ≤ l are the 2l +1-orthonormal

spherical harmonics of degree l and order m, (see for instance [18]). The explicit

(dual) presence of the angle π/2 in the 3D formula stems from the fact that the

propagation direction (the x2 direction) corresponds to azimuthal and polar angle

π/2. From (4.2), (4.11) and (4.12) we get that the flux ψ (defined on r = 2) can be

written as






ψ(θ)=∑
k

ψ̂keikθ , with

ψ̂k = ωJ′k(2ω)







in 2D ,(4.13)











ψ(θ,φ)=
∞

∑
l=0

∑
|m|≤l

ψ̂m
l Y m

l (θ,φ), with

ψ̂m
l =4πωil j′l(2ω)Y m

l (π
2
, π

2
)











in 3D .(4.14)

4.1 Cloak-busting inclusions

We turn now to the identification of “cloak-busting” inclusions, elaborating on

the discussion in Section 2.5. It is natural to begin with the 2D setting. Using

separation of variables, we may express the solution vρ of problem (4.9) as follows:

(4.15)



















vρ(r,θ) = ∑
k

αkJk

(

ωr

√

q′ρ

A′
ρ

)

eikθ if r ≤ ρ ,

vρ(r,θ) = ∑
k

(

βkJk(ωr)+γkH
(1)
k (ωr)

)

eikθ if ρ < r ≤ 2 .

From the appropriate transmission conditions for problem (4.9), i.e., continuity of

vρ and (A′
ρ ∇ vρ) · ν across ∂Bρ , and the Neumann condition for vρ on ∂B2, we
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arrive at the following necessary and sufficient condition for the well-posedness of

the problem (4.9):

(4.16)

0 6= Dk(A
′
ρ,q′ρ)

.
= Jk

(

ωρ

√

q′ρ

A′
ρ

)

(

J′k(2ω)(H
(1)
k )′(ωρ)− (H

(1)
k )′(2ω)J′k(ωρ)

)

−
√

A′
ρq′ρJ′k

(

ωρ

√

q′ρ

A′
ρ

)

(

J′k(2ω)H
(1)
k (ωρ)− (H

(1)
k )′(2ω)Jk(ωρ)

)

,

for all integers k. Note that, due to well known properties of the Bessel functions,

it suffices to require that (4.16) hold for all nonnegative integers.

Our “cloak-busting” inclusions correspond to choices of A′
ρ ,q′ρ such that Dk(A

′
ρ ,q′ρ)=

0 for some k ∈ Z. Such coefficients make the problem (4.9) ill-posed (i.e. they

make −ω2 an eigenvalue), despite the fact that (4.1) is well-posed by hypothesis.

For such inclusions near-cloaking is clearly not achieved in the lossless case. We

will not attempt to classify all solutions of Dk(A
′
ρ ,q′ρ) = 0; rather, we examine

selected solutions that are easy to identify and analyze.

For k = 0 we make the choice A′
ρ = q′ρ and obtain the following positive solu-

tions of D0(A
′
ρ ,q′ρ) = 0:

(4.17) A′
ρ = q′ρ =

J0(ωρ)
(

(H
(1)
0 )′(2ω)J′0(ωρ)− (H

(1)
0 )′(ωρ)J′0(2ω)

)

J′0(ωρ)
(

(H
(1)
0 )′(2ω)J0(ωρ)−H

(1)
0 (ωρ)J′0(2ω)

) .

Here we have used the fact that

(4.18) 0 6= (H
(1)
k )′(2ω)Jk(ωρ)− J′k(2ω)H

(1)
k (ωρ) for k ∈ Z ,

when ρ is sufficiently small. The non-vanishing condition (4.18) is a direct conse-

quence of classical results about the asymptotic behavior of Bessel functions, and

the fact that J′k(2ω) 6= 0 (since the problem (4.1) is wellposed by assumption). It

is quite easy to see that the right hand side of (4.17) is real (both numerator and

denominator are pure imaginary) and due to the asymptotic behavior of Bessel

functions it is actually positive for ρ sufficiently small.

To find real positive solutions of Dk(A
′
ρ ,q′ρ) = 0 for some k > 0 we take a

different approach. Given k, we start by choosing a real number z∗ > 0 such that

(4.19) Jk(z
∗)J′k(z

∗) < 0 ,

then we make choice

q′ρ = (z∗)2A′
ρ/(ωρ)2 .

It is easy to verify that with this choice of q′ρ , Dk(A
′
ρ ,q′ρ) = 0 when

(4.20) A′
ρ =

ωρJk(z
∗)
(

(H
(1)
k )′(2ω)J′k(ωρ)− (H

(1)
k )′(ωρ)J′k(2ω)

)

z∗J′k(z
∗)
(

(H
(1)
k )′(2ω)Jk(ωρ)−H

(1)
k (ωρ)J′k(2ω)

) .
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Due to the condition (4.18) this A′
ρ is well defined, and it is easily seen to be real.

Because of the asymptotics of the Bessel functions, and the fact that Jk(z
∗) and

J′k(z
∗) have opposite signs, we may conclude that A′

ρ and q′ρ are positive.

Figure 4.1 shows the pushed-forward values F∗(A
′
ρ),F∗(q

′
ρ) when k = 0, using

(4.17) and (4.7). When the coefficients in B1/2 take these values the lossless ver-

sion of our construction (4.10) is resonant, i.e. −ω2 is a Neumann eigenvalue of

the ρ-inclusion problem. Notice that in this case F∗(A
′
ρ) → ∞ as ρ → 0. Thus,

in the “physical” (pushed-forward) variables, these cloak-busting inclusions have

extreme physical properties in the limit ρ → 0.

Figure 4.2 gives the analogous picture for k = 1: it shows F∗(A
′
ρ) and F∗(q

′
ρ)

when (A′
ρ ,q′ρ) are the particular solutions of D1(A

′
ρ ,q′ρ) = 0 given by (4.20) (for a

specific choice of z∗ satisfying (4.19)). Notice that in this case F∗(A
′
ρ) and F∗(q

′
ρ)

have finite, nonzero limits as ρ → 0. Thus, in the “physical” (pushed-forward)

variables, these cloak-busting inclusions do not have extreme physical properties.

We wonder how a lossless singular cloak of the type considered in [8, 21] would

perform when faced with such an inclusion.
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FIGURE 4.1. The k = 0 cloak-busting inclusions in 2D: F∗(A
′
ρ) = A′

ρ
and F∗(q

′
ρ)=4ρ2q′ρ with A′

ρ = q′ρ given by (4.17).

We turn now to the 3D setting. The situation is not very different, so we shall

be relatively brief. Separation of variables yields the following expression for the
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and F∗(q

′
ρ)= 4ρ2q′ρ when A′

ρ is given by (4.20) with k = 1 and q′ρ =

(z∗)2A′
ρ/(ωρ)2.

solution vρ of the lossless problem (4.9):

(4.21)






















vρ(r,θ,φ) =
∞

∑
l=0

∑
|m|≤l

α m
l jl

(

ωr

√

q′ρ

A′
ρ

)

Y m
l (θ,φ) if r ≤ ρ

vρ(r,θ,φ) =
∞

∑
l=0

∑
|m|≤l

(

Rm
l jl(ωr)+ Sm

l h
(1)
l (ωr)

)

Y m
l (θ,φ) if ρ < r ≤ 2

where h
(1)
l = jl + iyl denotes the first kind spherical Hankel function. Arguing as

for 2D, one finds the following necessary and sufficient condition for the well-

posedness of the problem (4.9) in 3D:

(4.22)

0 6= Dl(A
′
ρ ,q′ρ)

.
= jl

(

ωρ

√

q′ρ

A′
ρ

)

(

j′l(2ω)(h
(1)
l )′(ωρ)− (h

(1)
l )′(2ω) j′l(ωρ)

)

−
√

A′
ρq′ρ j′l

(

ωρ

√

q′ρ

A′
ρ

)

(

j′l(2ω)h
(1)
l (ωρ)− (h

(1)
l )′(2ω) jl(ωρ)

)

,

for all positive l.
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Our 3D “cloak-busting inclusions” are associated with choices of A′
ρ ,q′ρ such

that Dl(A
′
ρ ,q′ρ) = 0 for some l. As before, our goal is not to classify all solutions

of Dl(A
′
ρ ,q′ρ) = 0, but rather to explore some examples. For l = 0 we make the

choice A′
ρ = q′ρ and obtain (using well-known results about the asymptotics of the

spherical Bessel functions) the following positive solution of D0(A
′
ρ ,q′ρ) = 0:

(4.23) A′
ρ = q′ρ =

j0(ωρ)
(

(h
(1)
0 )′(2ω) j′0(ωρ)− (h

(1)
0 )′(ωρ) j′0(2ω)

)

j′0(ωρ)
(

(h
(1)
0 )′(2ω) j0(ωρ)−h

(1)
0 (ωρ) j′0(2ω)

) .

For any l > 0, we make the choice

(4.24) q′ρ = (z∗)2 A′
ρ

(ωρ)2 where z∗ is such that jl(z
∗) · j′l(z

∗) < 0

and we find that Dl(A
′
ρ ,q′ρ) = 0 and A′

ρ > 0,q′ρ > 0 when

(4.25) A′
ρ =

ωρ jl(z
∗)
(

(h
(1)
l )′(2ω) j′l(ωρ)− (h

(1)
l )′(ωρ) j′l(2ω)

)

z∗ j′l(z
∗)
(

(h
(1)
l )′(2ω) jl(ωρ)−h

(1)
l (ωρ) j′l(2ω)

) .

Figure 4.3 shows the pushed-forward values F∗(A
′
ρ) and F∗(q

′
ρ)) of our l = 0 exam-

ple, when A′
ρ ,q′ρ are given by (4.23). The push-forward in this 3D setting is given

by (4.8). Notice that in this case F∗(A
′
ρ)→ ∞ while F∗(q

′
ρ)→ 0 as ρ → 0. Thus, in

the “physical” (pushed-forward) variables, both coefficients associated with these

3D cloak-busting inclusions become extreme as ρ → 0.

When l = 1 and A′
ρ,q′ρ are given by (4.24)-(4.25), both F∗(A

′
ρ) and F∗(q

′
ρ) tend

to 0 as ρ → 0 (not shown). We did not find any examples in 3D analogous to the one

shown in Figure 4.2, where the push-forwards both remain bounded as ρ →∞. This

suggests (but does not prove) that in the 3D setting, all cloak-busting inclusions

have extreme physical properties in the physical (pushed-forward) variables.

4.2 Sharpness of Theorem 3.1

We turn now to the optimality of our results concerning the performance of our

near-cloak. According to Theorem 3.1, when ρ ≪ 1 and β ∼ ρ−2 we have

(4.26) ||uρ −u0||H1/2(∂B2) ≤











C

| log(ρ)|
||ψ||H−1/2(∂B2)

in 2D

Cρ||ψ||H−1/2(∂B2)
in 3D

where uρ is the solution of (4.3), u0 is the solution of (4.1), and the constant C

is independent of the coefficients Aρ ,qρ in Bρ . To assess the sharpness of this

estimate, we focus (as already noted) on the case when u0 is the plane wave eiωx2 ,
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FIGURE 4.3. The l = 0 cloak-busting inclusions in 3D: F∗(A
′
ρ)=2ρA′

ρ
and F∗(q

′
ρ)=8ρ3q′ρ when A′

ρ = q′ρ are given by (4.23).

i.e. when ψ = iωeiωx2ν2. Let Eρ(β) be defined by

(4.27) Eρ(β) =































| log(ρ)| · ||uρ −u0||
H

1
2 (∂B2)

||ψ||H−1/2(∂B2)

in 2D

||uρ −u0||
H

1
2 (∂B2)

ρ||ψ||H−1/2(∂B2)

in 3D.

The assertion of (4.26) is thus that Eρ(β) ≤C when β ∼ ρ−2.

To approximate uρ numerically we used separation of variables with finitely

many modes. In 2D we used the modes eikθ with −30 ≤ k ≤ 30; in 3D we used

the modes Y m
l (θ,φ) with 0 ≤ l ≤ 30 and |m| ≤ l. Thus the plane wave u0 was

approximated by

u0(r,θ) ≈ u
appr
0 (r,θ) =

k=+30

∑
k=−30

Jk(ωr)eikθ in 2D ,

u0(r,θ,φ)≈ u
appr
0 (r,θ,φ) =4π

30

∑
l=0

il jl(ωr) ∑
|m|≤l

Y m
l (

π
2

,
π
2

)Y m
l (θ,φ) in 3D ,

and the solution uρ of (4.3) was approximated by similar finite sums.
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Figures 4.4 and 4.5 show the dependence of Eρ on β in the 2D and 3D cases

respectively. In the top frames of each figure Eρ is plotted as a function of β , for

three different values of ρ: ρ = 10−3, ρ = 10−5, ρ = 10−7; the bottom frames

show zoomed-in versions near the optimal values of β (which are just beyond the

range of the top frames). For all these plots the values of Aρ and qρ in Bρ were our

mode-0 cloak-busting inclusions, given by (4.17) for 2D and (4.23) for 3D. Similar

results were obtained (not shown) for mode-1 cloak-busting inclusions, given by

(4.20) in 2D and (4.24)-(4.25) in 3D. These are natural test problems, since for

such Aρ ,qρ the structure is resonant (roughly: Eρ = ∞) when β = 0.

Theorem 3.1 asserts that Eρ is bounded by a constant (independent of Aρ and

qρ) when β ∼ ρ−2. Figures 4.4 and 4.5 confirm this; in addition, the lower plots

suggest that the optimal value of β (at least for our mode-0 cloak-busting examples)

is about cρ−2 with c≈ 2.5 in 2D and c ≈ 4 in 3D. As β decreases from this optimal

value the value of Eρ increases, becoming very much larger when β ≪ ρ−2. Thus,

a value of β on the order of ρ−2 is required to control the resonance associated

with a cloak-busting inclusion. The situation for β larger than the optimal value

is different: making β very large does no real harm. Indeed, our calculations (not

shown) indicate that Eβ remains finite as β → ∞. This is consistent with the results

in [17], where estimates similar to ours are obtained using a Dirichlet boundary

condition (roughly the same as our setting with β = ∞).

Figure 4.6 shows the behavior of Eρ as a function of ρ, when β = (2ρ)−2.

The left frame shows the behavior in 2D the right in 3D. The continuous line and

the dashed line in the left frame correspond to our mode-0 and mode-1 cloak-

busting inclusions, given by (4.17) and (4.20) respectively. The right frame uses

the same convention: the continuous line and the dashed line correspond to our 3D

mode-0 and mode-1 cloak-busting inclusions, given by by (4.23) and (4.24)-(4.25)

respectively. The figure shows quite clearly that when β = cρ−2, Eρ(β) has a finite

(nonzero) limit as ρ → 0. This confirms the sharpness of our estimate (4.26).

Finally we examine the degree to which the fields outside the cloak emulate

those of a uniform domain. To this end, we observe that our approximate solu-

tion of the PDE u
(appr)
ρ and its push-forward U

(appr)
ρ are given by finite Fourier

sums. Therefore they extend naturally beyond B2. Their (common) extension is

the solution of an exterior problem (for the operator ∆+ω2) with the Cauchy data

(uρ |r=2,
∂uρ
∂ν |r=2) = (uρ |r=2,ψ). Abusing notation slightly, we write uρ or Uρ for

the extended function (dropping even the superscript appr).

Consider the L∞ plane wave residual at radius R ≥ 2, defined by

(4.28) P(R,ρ) =
||(Uρ −u0)r=R||L∞(0,2π)

||ψ||
H

− 1
2 (∂B2)

with u0(x) = eiωx2 . If the cloaking were perfect then the plane wave residual would

vanish. The first frame of Figure 4.7 shows P(R,10−5) as a function of 10 < R <
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FIGURE 4.4. The influence of the loss parameter β in 2D. The lower

frames indicate that the optimal β ≈ 104/10ρ−2 ≈ 2.5ρ−2.

100 in 2D. The second frame of Figure 4.7 shows

(4.29) f (ρ)
.
= | log(2ρ)|P(2,ρ)

as a function of ρ. (These figures show the 2D case, with β = (2ρ)−2, for our

mode-0 cloak-busting inclusion (4.17); the situation in 3D is similar.) Note from

Figure 4.7 that f approaches a constant as ρ → 0, consistent with the sharpness of

our estimate (4.26).

Figures 4.8 and Figure 4.9 show contour plots of the real part (2D) and the

projection onto the plane z = 0 of the real part (3D) of the extended pushed forward

solution Uρ . Figures 4.10 and 4.11 are zoomed-in versions of Figure 4.8 and Figure

4.9. In these examples we have taken β = (2ρ)−2, and we focus on the mode-0

cloak-busting inclusions, given by (4.17) in 2D and (4.23) in 3D. Each figure shows

the behavior for four different values of ρ. Since the near-cloak is not very effective

in 2D, Figures 4.8 and 4.10 use relatively small values of ρ, namely 10−1, 10−2,

10−4, and 10−6. Since the near-cloak is more effective in 3D, we use much larger

values of ρ for Figures 4.9 and 4.11, namely 0.5, 10−1, 10−2, and 10−3. The
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FIGURE 4.5. The influence of the loss parameter β in 3D. The lower

frames indicate that the optimal β ≈ 106/10ρ−2 ≈ 4ρ−2.

figures show that when ρ is sufficiently small, the extended solution Uρ is close

to the plane wave u0 away from B2, i.e. we get approximate cloaking in the far

field. Each frame of Figure 4.8 achieves roughly the same degree of approximate

cloaking as the corresponding frame of Figure 4.9. This reflects the very different

performance of our near-cloaks in 2D (where the deviation from perfect cloaking

is of order 1/| logρ|) versus 3D (where the deviation is of order ρ).

In summary, the actual performance of our near-cloak is completely consistent

with the estimate of Theorem 3.1, in the sense that (a) the loss parameter β must

be at least of order ρ−2 for the conclusion of the Theorem to be valid, and (b)

with such a loss parameter, the Theorem correctly estimates the performance of

the near-cloak for our cloak-busting choices of Aρ and qρ .
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FIGURE 4.8. The 2D extended pushed forward solution Uρ on B10
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FIGURE 4.10. The 2D extended pushed forward solution Uρ on B3

solution Uρ extended to B
10

, for ρ=0.5

 

 

−2 0 2
−3

−2

−1

0

1

2

3

solution Uρ extended to B
10

, for ρ=10
−1

 

 

−2 0 2
−3

−2

−1

0

1

2

3

solution Uρ extended to B
10

, for ρ=10
−2

 

 

−2 0 2
−3

−2

−1

0

1

2

3

solution Uρ extended to B
10

, for ρ=10
−3

 

 

−2 0 2
−3

−2

−1

0

1

2

3

−1

−0.5

0

0.5

1

1.5

−1

−0.5

0

0.5

−1

−0.5

0

0.5

−1

−0.5

0

0.5

FIGURE 4.11. The 3D extended pushed forward solution Uρ on B3
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