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Abstract
A recent paper by Pendry et al (2006 Science 312 1780–2) used the coordinate
invariance of Maxwell’s equations to show how a region of space can be
‘cloaked’—in other words, made inaccessible to electromagnetic sensing—
by surrounding it with a suitable (anisotropic and heterogenous) dielectric
shield. Essentially the same observation was made several years earlier by
Greenleaf et al (2003 Math. Res. Lett. 10 685–93, 2003 Physiol. Meas. 24
413–9) in the closely related setting of electric impedance tomography. These
papers, though brilliant, have two shortcomings: (a) the cloaks they consider
are rather singular; and (b) the analysis by Greenleaf, Lassas and Uhlmann
does not apply in space dimension n = 2. The present paper provides a
fresh treatment that remedies these shortcomings in the context of electric
impedance tomography. In particular, we show how a regular near-cloak can
be obtained using a nonsingular change of variables, and we prove that the
change-of-variable-based scheme achieves perfect cloaking in any dimension
n � 2.

1. Introduction

We say a region of space is ‘cloaked’ with respect to electromagnetic sensing if its contents—
and even the existence of the cloak—are inaccessible to such measurements.

Is cloaking possible? The answer is yes, at least in principle. A cloaking scheme based
on change-of-variables was discussed for electric impedance tomography by Greenleaf et al
[19, 20], and for the time-harmonic Maxwell’s equation by Pendry, Schurig and Smith [35, 38].
Other schemes have also been discussed, including one based on optical conformal mapping
[28, 29], another based on anomalous localized resonances [32] and a third based on the use
of sensors and active sources [30, 36]. Recent developments include numerical [6, 12, 46] and
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experimental [39] implementations of change-of-variable-based cloaking; adaptations of the
change-of-variable-based scheme to acoustic or elastic sensing [13, 31]; and the introduction
of related schemes for cloaking active objects such as light sources [17].

Is cloaking interesting? The answer is clearly yes. One reason is theoretical: the existence
of cloaks reveals intrinsic limitations of electromagnetic-based schemes for remote sensing,
such as inverse scattering and impedance tomography. A second reason is practical: cloaking
provides an easy method for making any object invisible—by simply surrounding it with a
cloak. The appeal of this idea has attracted a lot of attention, e.g. [8, 45].

Is cloaking practical? The answer is not yet clear. All approaches to cloaking require the
design of materials with exotic dielectric properties. One hopes that the desired properties can
be achieved (or at least approximated) by means of ‘metamaterials’ [40]; for the schemes based
on change-of-variables this seems to be the case [39]. For a cloaking scheme to be practical it
must be reasonably insensitive to imperfection; the robustness of the change-of-variable-based
scheme has just begun to be addressed [10, 18, 37] (see section 2.3 for comments on this work.)

The present paper is related to the first and last of the preceding questions. We ask:

(i) Does the change-of-variable-based scheme really achieve a perfect cloak?
(ii) What about a regularized version of this scheme? How close does it come to achieving

cloaking?

Our analysis is restricted to electric impedance tomography. This amounts to considering
electromagnetic sensing in the low-frequency limit [26]; it is simpler than the finite-frequency
setting, due to the ready availability of variational principles. But we do discuss the finite-
frequency setting, in section 2.5.

Concerning (i): there is a cause for concern, because the underlying change of variables
is highly singular (see section 2.3). Singularities are sometimes significant; for example,
the fundamental solution of Laplace’s equation is harmonic except at a point. The physics
literature recognizes this issue; for example, Cummer et al write in [12] that ‘whether perfect
cloaking is achievable, even in theory, is . . . an open question’. They also suggest, using an
argument based on geometrical optics, that the presence of a singularity ‘may degrade cloaking
performance to an unknown degree’.

Actually, (i) was settled for electric impedance tomography by [19] in space dimension
n � 3, using a method that does not work in space dimension two. One goal of the present
paper is to show that the situation is not significantly different when n = 2: perfect cloaking
is also possible in space dimension two. Our discussion of perfect cloaking, presented in
section 4, is not fundamentally different from that in [19]; in particular, our main tool (like
[19]) is a result about the removability of singularities for harmonic functions. However our
discussion differs from [19] by treating all dimensions n � 2 simultaneously, and by working
directly with the divergence-form PDE of electrostatics rather than rewriting it as the Laplace–
Beltrami equation of an associated Riemannian metric. In addition, our exposition is perhaps
more elementary (thus more accessible to non-expert readers).

Concerning (ii): the question is as important as the answer. We suggest that the ‘perfect
cloak’, obtained using a singular change of variables, not be taken literally. Instead, it should
be used to design a more regular ‘near-cloak’, based on a less singular change of variable. The
near-cloak is physically more plausible (for example, its dielectric tensor is strictly positive and
finite). Moreover, the mathematical analysis of the near-cloak is actually easier, since nothing
is singular. Basically, the problem reduces to understanding how boundary measurements are
influenced by dielectric inclusions (see section 2.3 for further explanation).

The paper is organized as follows. We begin, in section 2, by introducing electric
impedance tomography and giving a brief, nontechnical explanation of the change-of-variable-
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based cloaking scheme. That section also puts our work in context, discussing its relation
to known uniqueness results and explaining why the finite-frequency case is similar to but
different from that considered here. Then, in sections 3 and 4, we give a rigorous analysis
of the change-of-variable-based cloaking scheme. In section 3, we use a regular change of
variables and prove that the inclusion is almost cloaked. In section 4, we use a singular change
of variables and prove that the inclusion is perfectly cloaked.

2. The main ideas

2.1. Electric impedance tomography

In electric impedance tomography, one uses static voltage and current measurements at the
boundary of an object to gain information about its internal structure.

Mathematically, we suppose the object occupies a (known) bounded region � ⊂ R
n,

n � 2. Its (unknown) electrical conductivity σ(x) is a non-negative symmetric-matrix-valued
function on �. The PDE of electrostatics is

∇ · (σ∇u) =
∑
i,j

∂

∂xi

(
σij (x)

∂u

∂xj

)
= 0 in �; . (1)

It relates the voltage u and the associated electric field ∇u to the resulting current σ∇u (see
section 2.5). The PDE (1) determines a ‘Dirichlet-to-Neumann map’ �σ ; by definition, it
takes an arbitrary boundary voltage to the associated current flux

�σ : u|∂� → (σ∇u) · ν|∂� (2)

where ν is the outward unit normal to ∂�. Electric impedance tomography seeks information
on σ , given knowledge of the mapping �σ . In the mathematics literature this problem was
first proposed and partially addressed by Calderón [7].

Does �σ determine σ? In general, the answer is no: the PDE is invariant under change
of variables, so σ can at best be determined ‘up to change of variables’. We shall explain this
statement in section 2.2. If, however, σ is scalar-valued, positive and finite4, then the answer
is basically yes: under some modest (apparently technical) conditions on the regularity of σ ,
knowledge of the Dirichlet-to-Neumann map �σ determines an internal isotropic conductivity
σ(x) uniquely. We shall review these results in section 2.4.

What does it mean in this context for a subset D of � to be cloaked? In principle,
it means that the contents of D—and even the existence of the cloak—are invisible to
electrostatic boundary measurements. To keep things simple, however, we shall use a slightly
more restrictive definition: we say D ⊂ � is cloaked by a conductivity distribution σc(x)

defined outside D if the associated boundary measurements at ∂� are identical to those of a
homogeneous, isotropic region with conductivity 1—regardless of the conductivity in D (see
figure 1). More precisely:

Definition 1. Let D ⊂ � be fixed, and let σc : �\D be a non-negative, matrix-valued
conductivity defined on the complement of D. We say σc cloaks the region D if its extensions
across D,

σA(x) =
{
A(x) for x ∈ D

σc(x) for x ∈ �\D (3)

4 When we say σ is ‘positive and finite’ we mean it is a bounded, measurable function with σ(x) � c0 a.e. in � for
some c0 > 0.
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σ (x)cσ
A
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σ
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=A(x)

voltage f implies same current flux gvoltage f implies current flux g

σ 1

Figure 1. The region D is cloaked by σc if, regardless of the conductivity distribution A(x) in D,
the boundary measurements at ∂� are identical to those of a uniform region with conductivity 1.

produce the same boundary measurements as a uniform region with conductivity σ ≡ 1,
regardless of the choice of the conductivity A(x) in D.

The name is appropriate: a cloak makes the associated region D invisible with respect
to electric impedance tomography. Indeed, suppose σc cloaks D ⊂ � in the sense of
definition 1, and let �′ be any domain containing �. Then the Dirichlet-to-Neumann map of

σ(x) =
⎧⎨
⎩

A(x) for x ∈ D

σc(x) for x ∈ �\D
1 for x ∈ �′\�

(4)

is independent of A, and identical to that of the domain �′ with constant conductivity 1. This
holds because � communicates with its exterior only through its Dirichlet-to-Neumann map.

Note that from a single example of cloaking, this extension argument produces many
other examples. Indeed, according to (4), if σc cloaks D ⊂ � in the sense of definition 1, then
the extension of σc by 1 cloaks D in any larger domain �′.

We shall explain in section 2.3, following [20, 35], how the invariance of electrostatics
under change of variables leads to examples of cloaks.

2.2. Invariance by change of variables

The invariance of the PDE (1) by change of variables is well known. So is the fact that �σ

can determine σ at best ‘up to change of variables’. This observation is explicit, e.g., in
[22, 25], with an attribution to Luc Tartar.

It is convenient to think variationally. Recall that if σ(x) is bounded and positive definite,
then the solution of (1) with Dirichlet data f solves the variational problem

min
u=f at ∂�

∫
�

〈σ∇u,∇u〉 dx. (5)

Moreover, the minimum ‘energy’ is determined by �σ , since when u solves (1) we have∫
�

〈σ∇u,∇u〉 dx =
∫

∂�

f �σ (f ). (6)

Thus, knowledge of �σ determines the minimum energy, viewed as a quadratic form on
Dirichlet data. The converse is also true: knowledge of the minimum energy for all Dirichlet
data determines the boundary map �σ . This follows from the well-known polarization identity:
for any f and g,

4
∫

∂�

f �σg =
∫

∂�

(f + g)�σ (f + g) −
∫

∂�

(f − g)�σ (f − g). (7)
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The right-hand side is the minimum energy for f + g minus that for f −g, while the left-hand
side is the boundary map, viewed as a bilinear form on Dirichlet data.

We turn now to change of variables. Suppose y = F(x) is an invertible, orientation-
preserving change of variables on �. Then we can change variables in the variational
principle (5): ∫

�

∑
σij

∂u

∂xi

∂u

∂xj

dx =
∫

�

∑
σij

∂u

∂yk

∂yk

∂xi

∂u

∂yl

∂yl

∂xj

det

(
∂x

∂y

)
dy.

We can write this more compactly as∫
�

〈σ(x)∇xu,∇xu〉 dx =
∫

�

〈F∗σ(y)∇yu,∇yu〉 dy

where

F∗σ(y) = 1

det(DF)(x)
DF(x)σ (x)(DF(x))T (8)

in which DF is the matrix with i, j element ∂yi/∂xj and the right-hand side is evaluated at
x = F−1(y). We call F∗σ the push-forward of σ by the change of variables F.

We come finally to the main point: if F(x) = x at ∂�, then the boundary measurements
associated with σ and F∗σ are identical; in other words,

�σ(f ) = �F∗σ (f ) for all f. (9)

Indeed, if F(x) = x at ∂� then the change of variables does not affect the Dirichlet data. So
for any f , ∫

∂�

f �σf = min
u=f at∂�

∫
�

〈σ(x)∇xu,∇xu〉 dx

= min
u=f at∂�

∫
�

〈F∗σ(y)∇yu,∇yu〉 dy

=
∫

∂�

f �F∗σ f.

Thus �σ and �F∗σ determine identical quadratic forms, from which it follows by (7) that
�σ = �F∗σ .

2.3. Cloaking via change of variables

We now explain how change-of-variable-based cloaking works. For simplicity we focus on the
radial case: � = B2 is a ball of radius 2, and the region D to be cloaked is B1, the concentric
ball of radius 1 (see figure 2). It will be clear, however, that the method is much more general.

We start by explaining how B1 can be nearly cloaked using a regular change of variables.
Fixing a small parameter ρ > 0, consider the piecewise-smooth change of variables

F(x) =

⎧⎪⎪⎨
⎪⎪⎩

x

ρ
if |x| � ρ

(
2 − 2ρ

2 − ρ
+

1

2 − ρ
|x|

)
x

|x| if ρ � |x| � 2.

(10)

Its key properties are that

• F is continuous and piecewise smooth;
• F expands Bρ to B1, while mapping the full domain B2 to itself;
• F(x) = x at the outer boundary |x| = 2.
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1B

F

Figure 2. The change of variables leading to a regular near-cloak: F expands a small ball Bρ to a
ball of radius 1.

The associated near-cloak is the push-forward via F of the constant conductivity σ = 1,
restricted to the annulus B2\B1. (Abusing notation a bit, we write this as F∗1.) To explain
why, consider any conductivity of the form

σA(y) =
{
A(y) for y ∈ B1

F∗1(y) for y ∈ B2\B1.
(11)

By the change-of-variables principle (9), its boundary measurements are identical to those of

F−1
∗ σA(x) =

{
F−1

∗ A(x) for x ∈ Bρ

1 for x ∈ B2\Bρ

where

F−1
∗ σA = (F−1)∗σA

denotes the push-forward of the conductivity distribution σA by the map F−1. Thus, the
boundary measurements associated with σA are the same as those of a uniform ball perturbed
by a small inclusion at the centre. The contents of the inclusion are uncontrolled, since A is
arbitrary. But the radius of the inclusion is small, namely ρ. As we explain in section 3, this is
enough to assure that the boundary measurements are close to those of a completely uniform
ball. Thus when ρ is sufficiently small, this scheme comes close to cloaking the unit ball (see
theorem 1 in section 3.3).

Now we show how B1 can be perfectly cloaked using a singular change of variables. The
idea is obvious: just take ρ = 0 in (10). The resulting change of variables

F(x) =
(

1 +
1

2
|x|

)
x

|x| (12)

is the same one used in [19, 20] for electrostatics and in [35] for electromagnetics. Its key
properties are that

• F is smooth except at 0;
• F blows up the point 0 to the ball B1, while mapping the full domain B2 to itself;
• F(x) = x at the outer boundary |x| = 2.

A heuristic ‘proof’ that F∗1 gives a perfect cloak uses the same argument as before. This
time F−1

∗ A occupies a point rather than a ball. Changing the conductivity at a point should
have no effect on the boundary measurements. Therefore we expect that when σA is given by
(11) with F given by (12), the boundary measurements should be identical to those obtained
for a uniform ball with σ ≡ 1.

This heuristic proof needs some clarification. The validity of the change-of-variables
formula is open to question when F is so singular. Worse: our cloak F∗1 is quite singular
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near its inner boundary |x| = 1; some care is therefore needed concerning what we mean by
a solution of the PDE (1). These topics will be addressed in section 4.

We have focused on the radial case because the simple, explicit form of the diffeomorphism
F leads to an equally simple, explicit formula for the associated cloak (see section 4.1).
However, the method is clearly not limited to the radial case (see theorems 2 and 4).

Our ‘regular near-cloak’ is quite different from the approximate cloaking scheme
considered in [18, 37]. Those papers start with a perfect cylindrical cloak, obtained using
the 2D version of the familiar construction (12). This cloak fills the annulus 1 < |y| < 2
with an anisotropic, heterogeneous medium, whose behaviour is rather singular near the inner
boundary |y| = 1 (see section 4.1). The approximate cloak considered in [18, 37] is obtained
by restricting the perfect cloak to a slightly smaller annulus 1 + δ < |y| < 2. Perfect
cloaking (at any frequency) is obtained as δ → 0; however the convergence is extremely slow.
The convergence can be greatly improved by introducing a layer at the edge of the cloak that
permits surface currents [18]. In summary: our ‘regular near-cloak’ avoids singular behaviour
by using a regularized change of variables, whereas [18, 37] avoid singular behaviour by
truncation. We also note the interesting paper [10], which explores the sensitivity of the ideal
cloak to various types of material or manufacturing imperfections.

The focus of this paper is on cloaking. But we note in passing that it might be possible to
design other interesting devices using similar change-of-variable-based techniques. A recent
example of this type is the scheme of [9] for rotating electromagnetic fields.

2.4. Relation to known uniqueness results

The uniqueness problem for electric impedance tomography asks whether it is possible,
in principle, to determine σ(x) using boundary measurements. In other words, does �σ

determine σ?
If it is known in advance that the conductivity is scalar-valued, positive and finite, then the

answer is basically yes. The earliest uniqueness results—in the class of analytic or piecewise
analytic conductivities—date from the early 1980s [14, 23, 24]. A few years later, using
entirely different methods, uniqueness was proved for conductivities that are several times
differentiable in dimensions n � 3 [42] and in dimension n = 2 [33]. Recently, using
yet another method, uniqueness has been shown in two space dimensions with no regularity
hypothesis at all, assuming only that σ(x) is scalar-valued, strictly positive and finite [4].
We have given just a few of the most important references; for more complete surveys, see
[11, 21, 43, 44].

We observed in section 2.2 that when σ(x) is symmetric-matrix-valued, boundary
measurements can at best determine it ‘up to change of variables’. Is this the only invariance?
In other words, if two conductivities give the same boundary measurements, must they be
related by change of variables? If cloaking is possible then the answer should be no, since the
conductivities σA in (3) are not related, as A varies, by change of variables.

Paradoxically, Sylvester proved that in two space dimensions, boundary measurements
do determine σ up to change of variables [41]! 5 The heart of his proof was the introduction
of isothermal coordinates—i.e. construction of a (unique) map G : � → � such that G∗σ is
isotropic and G(x) = x at ∂�. By uniqueness in the isotropic setting, �σ determines G∗σ ;
thus boundary measurements determine σ up to change of variables.

Does cloaking contradict Sylvester’s result? Not at all. The resolution of the paradox
is that the introduction of isothermal coordinates depends crucially on having upper and

5 Sylvester’s paper proved only a local result, and required σ to be C3. When combined with [33], however, his
analysis gives a global C3 result. The recent improvement in [5] assumes only that σ is bounded and positive-definite.
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lower bounds for σ(x). Indeed, if � is a ball and σ = F∗1 with F given by (10), then the
associated isothermal coordinate transformation is G = F−1. As ρ → 0 in (10) the isothermal
coordinates become singular. When ρ is positive we do not get perfect cloaking (consistent
with the Sylvester’s theorem). When ρ = 0 we do get cloaking—but the eigenvalues of σ

are unbounded both above and below near |x| = 1 (see section 4.1), Sylvester’s argument no
longer applies, and indeed there is no isothermal coordinate system.

Do boundary measurements determine σ up to change of variables in three or more space
dimensions? If we assume only that σ is non-negative then the answer is no, since cloaking is
possible. If, however, we assume that σ is strictly positive and finite, then such a result could
still be true. A proof for real-analytic conductivities is given in [27].

2.5. Comments on cloaking at nonzero frequency

This paper focuses on electric impedance tomography because we can explain the essence of
change-of-variable-based cloaking in this electrostatic setting with a minimum of mathematical
complexity. The practical applications of cloaking are, however, mainly at nonzero
frequencies—for example, making objects invisible at optical wavelengths, or undetectable
by electromagnetic scattering measurements. We therefore discuss briefly how the positive-
frequency problem is similar to, yet different from, the static case.

For time-harmonic fields in a linear medium, Maxwell’s equations become

∇ × H = (σ − iωε)E, ∇ × E = iωµH. (13)

Here E and H are complex vector fields representing the electric and magnetic fields; σ , ε and
µ are real-valued, positive-definite symmetric tensors representing the electrical conductivity,
dielectric permittivity and magnetic permeability of the medium; and ω > 0 is the frequency.
The physical electric and magnetic fields are Re{E e−iωt } and Re{H e−iωt }.

When ω = 0, (13) reduces formally to (1). Indeed, Maxwell’s equations become
∇ × H = σE and ∇ × E = 0. The latter implies E = ∇u and the former implies that
σ∇u is divergence-free.

The analogue of the Dirichlet-to-Neumann map �σ at finite frequency is the
correspondence between the tangential component of E and the tangential component of
H at ∂�. When ω is not an eigenfrequency this can be expressed as a map from E|∂� × ν to
H |∂� × ν, sometimes known as the admittance. (When ω is an eigenfrequency the map is not
well defined and one should consider instead all pairs

(
E|∂� ×ν,H |∂� ×ν

)
.) Mathematically,

the admittance specifies the set of possible Cauchy data for (13) at frequency ω. Physically,
a body interacts with its exterior only through its admittance; therefore, two objects with the
same admittance are indistinguishable by electromagnetic measurements at frequency ω—for
example, by scattering measurements.

Digressing a bit, we remark that many of the uniqueness results sketched in section 2.4
have been extended to finite frequency. In particular, the admittance of a 3D body at a single
frequency determines σ,µ and ε provided they are known in advance to be scalar-valued,
sufficiently smooth and constant near the boundary [34]. A different connection between the
positive-frequency and electrostatic cases is provided by [26], which shows that the admittance
determines the electrostatic Dirichlet-to-Neumann map in the limit ω → 0.

Let us focus now on cloaking. The positive-frequency analogue of our definition of
cloaking is clear: three non-negative matrix-valued functions σ, ε and µ defined on �\D
cloak a region D if the associated admittance at ∂� does not depend on how σ, ε and µ are
extended across D. The positive-frequency analogue of our change-of-variables scheme is
also clear: if � = B2,D = B1 and F(x) = (

1 + 1
2 |x|) x

|x| as in (12) and [19, 20, 35], we
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should be able to cloak D by taking σ |�\D, ε|�\D and µ|�\D each to be the ‘push-forward’
of the constant 1. The correctness of this scheme is demonstrated in [17] though it is not the
main focus of that paper. Their argument is, roughly speaking, a finite-frequency (and more
general) analogue of the one presented here in section 4.

What about our regular near-cloak? The discussion in section 3 has an obvious extension to
the time-harmonic Maxwell setting. To analyse the performance of this near-cloak, we would
need an estimate for the effect of a small inclusion (with uncontrolled dielectric properties)
upon the boundary measurements (admittance). Unfortunately, this question is to the best of
our knowledge open, though the effect of a uniform inclusion is very well understood [3]. We
anticipate a result similar to the electrostatic setting—the effect of an inclusion should tend to
zero as its radius tends to zero. Such a result would, as an immediate consequence, extend the
analysis of section 3 to the time-harmonic Maxwell setting.

We refer to [17] for further discussion of the time-harmonic problem. That paper includes,
among other things, a new change-of-variable-based scheme for cloaking an active device (such
as a light source).

3. Analysis of the regular near-cloak

This section reviews some well-known facts about the Dirichlet-to-Neumann map, then
analyses the near-cloak obtained using the change of variable (10).

3.1. The Dirichlet-to-Neumann map

In discussing the PDE (1), we assume throughout this section that the conductivity is strictly
positive and bounded in the sense that for some constants 0 < m,M < ∞,

m|ξ |2 � 〈σ(x)ξ, ξ 〉 � M|ξ |2 (14)

for all x ∈ � and ξ ∈ R
n. Our discussion of cloaking focused on the case when � is a ball,

but in this section � can be any bounded domain in R
n with sufficiently regular boundary.

We will make essential use of the variational principle (5). Therefore, we must restrict
our attention to Dirichlet data f for which there exists a ‘finite energy’ solution. When σ

satisfies (14) it is well known that this occurs precisely when

f ∈ H 1/2(∂�) =
{
f : f = v|∂� for some v such that

∫
�

|∇v|2 dx < ∞
}

.

When f is constant the solution is also constant—a trivial case—so it is natural to restrict
attention to the subspace H

1/2
∗ (∂�) = H 1/2(∂�) ∩ {∫

∂�
f = 0

}
, with the natural norm

‖f ‖2
H

1/2
∗ (∂�)

= min
v=f at∂�

∫
�

|∇v|2 dx. (15)

This is a fractional Sobolev space, consisting of functions with ‘one-half derivative in
L2(∂�)’ (see e.g. [1]). We shall not try to explain what this means in general, but we
note that when � is a ball BR in R

2 the interpretation is quite simple. In fact, if f =∑∞
k=1 ak sin(kθ) + bk cos(kθ) at the boundary then the optimal v for (15) is the harmonic

function v = ∑∞
k=1(r/R)k(ak sin(kθ) + bk cos(kθ)), and a direct calculation gives

‖f ‖2
H

1/2
∗ (∂BR)

= π

∞∑
k=1

k
(
a2

k + b2
k

)
.

Sometimes it is convenient to specify Neumann rather than Dirichlet data. Note that when
σ is anisotropic, the phrase ‘Neumann data’ refers to g = (σ∇u) · ν. It is well known that the
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space of finite energy Neumann data is H
−1/2
∗ (∂�) = H−1/2(∂�) ∩ {∫

∂�
f = 0

}
. It consists

of mean-value-zero functions with ‘minus one-half derivative in L2(∂�)’. In general,

‖g‖
H

−1/2
∗ (∂�)

= sup

{∫
∂�

fg : ‖f ‖
H

1/2
∗ (∂�)

� 1

}
;

when � is a ball of radius R in R
2 and g = ∑∞

k=1 ak sin(kθ) + bk cos(kθ) this reduces to

‖g‖2
H

−1/2
∗ (∂BR)

= πR2
∞∑

k=1

k−1(a2
k + b2

k

)
.

We defined the Dirichlet-to-Neumann map �σ in (2) as the operator that takes Dirichlet-
to-Neumann data. It is a bounded linear map from H

1/2
∗ (∂�) to H

−1/2
∗ (∂�). Moreover it is

positive and symmetric (in the L2 inner product) and invertible, so it defines a positive-definite
quadratic form on H

1/2
∗ (∂�). This form can be written ‘explicitly’ as

〈�σf1, f2〉 =
∫

∂�

�σ (f1)f2 =
∫

�

〈σ∇u1,∇u2〉 dx

where u1 and u2 solve the PDE (1) with Dirichlet data f1 and f2 respectively. The natural
norm on symmetric linear maps of this type is

‖�‖ = sup
{|〈�f, f 〉| : ‖f ‖

H
1/2
∗ (∂�)

� 1
}
. (16)

This is equivalent to the operator norm of � viewed as a map from H
1/2
∗ to H

−1/2
∗ , as a

consequence of the polarization identity (7).
When two conductivities are ordered, the associated Dirichlet-to-Neumann maps are also

ordered. More precisely, if σ and η satisfy

〈σ(x)ξ, ξ 〉 � 〈η(x)ξ, ξ 〉
for all x ∈ � and all ξ ∈ R

n then �σ � �η in the sense that

〈�σ(f ), f 〉 � 〈�η(f ), f 〉 (17)

for all f ∈ H
1/2
∗ (∂�). This follows easily from the variational principle (5), since if

∇ · (σ∇u) = 0 and ∇ · (η∇v) = 0 in � with u = v = f at ∂�, then

〈�σf, f 〉 =
∫

�

〈σ∇u,∇u〉

�
∫

�

〈σ∇v,∇v〉

�
∫

�

〈η∇v,∇v〉 = 〈�ηf, f 〉.

3.2. Dielectric inclusions

The simplest special case of our PDE (1) is when σ ≡ 1. Then the solution u is harmonic.
We understand almost everything about harmonic functions and the associated Dirichlet-to-
Neumann map.

Another relatively simple case arises when σ is uniform except for a constant-conductivity
spherical inclusion of radius ρ centred at some x0 ∈ �:

σα,ρ(x) =
{
α for x ∈ Bρ(x0)

1 for x ∈ �\Bρ(x0).
(18)

10
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In view of (17), the effect of the inclusion depends monotonically on its conductivity α. It is
therefore natural to consider the extreme limits of the associated voltages uρ

α as α → 0 and
α → ∞.

We now discuss these limits in detail, since they are important to our analysis. Given any
f ∈ H 1/2(∂�) let u

ρ

0 denote the solution to

�u
ρ

0 = 0 in �\Bρ(x0), with
∂u

ρ

0

∂ν
= 0 on ∂Bρ(x0), and u

ρ

0 = f on ∂�. (19)

Similarly let u
ρ
∞ denote the solution to

�uρ
∞ = 0 in �\Bρ(x0), with uρ

∞ = c∞ on ∂Bρ(x0), and uρ
∞ = f on ∂�, (20)

where the constant c∞ is (uniquely) determined by∫
∂Bρ(x0)

∂u
ρ
∞

∂ν
= 0. (21)

Using very standard energy arguments it is easy to see that

uρ
α → u

ρ

0 as α → 0, and uρ
α → uρ

∞ as α → ∞
weakly in H 1(�\Bρ(x0)). Indeed, energy considerations immediately yield that
‖∇uρ

α‖L2(�\Bρ(x0))
is bounded uniformly in α, that ‖∇uρ

α‖L2(Bρ(x0)) → 0 as α → ∞, and
that ‖α∇uρ

α‖L2(Bρ(x0)) → 0 as α → 0. By extraction of subsequences we now get weak
H 1(�\Bρ(x0)) limits, u

ρ

0 and u
ρ
∞, that satisfy (19) and (20), respectively. The boundary

conditions on ∂Bρ(x0) follow from the continuity of (σ∇u) · ν and u across this ‘interface’.
Condition (21), determining c∞, follows since∫

∂Bρ(x0)

∂uρ
α

∂ν

+

=
∫

∂Bρ(x0)

α
∂uρ

α

∂ν

−
= 0,

and therefore ∫
∂Bρ(x0)

∂u
ρ
∞

∂ν
= lim

α→∞

∫
∂Bρ(x0)

∂uρ
α

∂ν

+

= 0.

It is not hard to see that this same c∞ may also be characterized as the constant that gives rise
to the smallest energy (of u

ρ
∞). The fact that we get single limits as α → 0 and α → ∞,

respectively, is a consequence of the uniqueness of the solution to (19) and the solution to
(20). We now define

�
ρ

0f = ∇u
ρ

0 · ν|∂�

and

�ρ
∞f = ∇uρ

∞ · ν|∂�.

Integration by parts, together with the weak H 1 convergence, gives that �σα,ρ
f → �

ρ

0f and
�σα,ρ

f → �
ρ
∞f as α → 0 and α → ∞, respectively. In particular,

〈�σα,ρ
f, f 〉 → 〈

�
ρ

0f, f
〉

as α → 0,

and

〈�σα,ρ
f, f 〉 → 〈

�ρ
∞f, f

〉
as α → ∞.

Finally we note that if � is a ball of radius R in R
2 and the inclusion lies at its centre, then

the above convergence of the Dirichlet-to-Neumann maps can easily be derived by explicit
solution of the PDE’s using separation of variables.

11
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In the small-particle limit ρ → 0, the perturbation introduced by the presence of a small
inclusion (extreme or not) is well understood. We shall not use its exact form; rather what
matters to us is its magnitude, which is proportional to the volume of the inclusion.

Proposition 1. Let �1 be the Dirichlet-to-Neumann map when σ ≡ 1, and let �
ρ

0 and �
ρ
∞

be the Dirichlet-to-Neumann maps associated with the problems (19) and (20) respectively.
Then ∥∥�1 − �

ρ

0

∥∥ � Cρn and
∥∥�1 − �ρ

∞
∥∥ � Cρn

when ρ is sufficiently small. Here, n is the spatial dimension and we mean the operator norm
(16) on the left-hand side of each inequality.

A proof of the estimate for �1 − �
ρ
∞ is given in section 2 of [16] and the same argument

can be used for �1 − �
ρ

0 . The constant C depends, of course, on the location of x0 and the
shape of �. Much more detailed results are known, including a full asymptotic expansion for
the dependence of the Dirichlet-to-Neumann map on ρ; see e.g. [2] for a recent review.

We have focused on spherical inclusions only for the sake of simplicity. The preceding
discussion extends straightforwardly to inclusions of any fixed shape, i.e. to the situation when
Bρ(x0) is replaced by x0 + ρD where D is any ‘inclusion shape’ (a bounded domain in R

n,
containing the origin, with sufficiently regular boundary).

3.3. The regular near-cloak is almost invisible

Now consider the ‘regular near-cloak’ discussed in section 2.3: � = B2 is a ball about the
origin of radius 2, and σ = σA has the form

σA(y) =
{
A(y) for y ∈ B1

F∗1(y) for y ∈ B2\B1.

where F is given by (10). The symbol A stands for ‘arbitrary:’ A(x) is the (scalar or
matrix-valued) conductivity in the region being cloaked. We assume it is positive definite and
finite,

m|ξ |2 � 〈A(y)ξ, ξ 〉 � M|ξ |2 for y ∈ B1, (22)

so the solution of the PDE (1) is well defined and unique. However our estimates will not
depend on the lower and upper bounds m and M.

As we explained in section 2.3, the Dirichlet-to-Neumann map of σA is identical to that
of

F−1
∗ σA(x) =

{
F−1

∗ A(x) for x ∈ Bρ

1 for x ∈ B2\Bρ .

By the ordering relation (17), and the convergence results described in the previous section,
we conclude that

lim
α→0

�σα,ρ
= �

ρ

0 � �σA
= �F−1∗ σA

� �ρ
∞ = lim

α→∞ �σα,ρ
,

whence

�
ρ

0 − �1 � �σA
− �1 � �ρ

∞ − �1.

It follows using proposition 1 that the boundary measurements obtained using this near-cloak
are almost identical to those of a uniform ball with conductivity 1:

‖�σA
− �1‖ � Cρn, (23)

12
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F

GG

Figure 3. The map H = G ◦ F ◦ G−1 blows up G(Bρ) to D = G(B1) while acting as the identity
on ∂� = ∂G(B2).

where the left-hand side is the operator norm (16). The constant C is independent of A; in
fact, it does not even depend on the values of m and M in (22). We have proved:

Theorem 1. Suppose the shell B2\B1 has conductivity F∗1, where F is given by (10). If ρ is
sufficiently small then B1 is nearly cloaked, in the sense made precise by (23).

We have focused on the spherically symmetric setting due to its simple, explicit character.
However, our argument did not use this symmetry in any essential way. Indeed, the same
argument proves (see figure 3):

Theorem 2. Let G : B2 → � be a Lipschitz continuous map with a Lipschitz continuous
inverse, and let D = G(B1). Then H = G ◦ F ◦ G−1 : � → � is piecewise Lipschitz;
moreover

• H expands G(Bρ) to D;
• H(x) = x at ∂�.

If the shell �\D has conductivity H∗1 then D is nearly cloaked when ρ is small. More
precisely, when the conductivity of � has the form

σA(y) =
{
A(y) for y ∈ D

H∗1(y) for y ∈ �\D,

the Dirichlet-to-Neumann map is nearly independent of A in the sense that

‖�σA
− �1‖ � Cρn

4. Analysis of the singular cloak

This section discusses the perfect cloak obtained using the singular change of variables (12).
We focus on the radial case for simplicity, but our argument extends straightforwardly to a
broad class of non-radial examples (see theorem 4).

As we explained in section 2.3, the basic assertion of cloaking is that for conductivities
of the form (11) with F given by (12), the Dirichlet-to-Neumann map is identical to that of the
uniform ball with conductivity 1. Thus, if the shell B2\B1 has conductivity F∗1 then the ball
B1 is cloaked.

13
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This assertion follows from theorem 1 by passing to the limit ρ → 0 (see remark 1
in section 4.2). But it can also be proved directly, and the direct argument—being very
different—gives additional insight. In particular, it reveals the mechanism of cloaking: the
potential in B1 is constant, rendering the conductivity in this region irrelevant.

The essence of the argument presented in this section is similar to that of [19]. In
particular, our main tool is a well-known result on the removability of isolated singularities
for solutions of Laplace’s equation (see the proof of proposition 2).

4.1. Explicit form of the cloak

Recall that F∗1 is defined by (8). When F : B2 → B2 is given by (12) it is easy to make F∗1
explicit. Indeed, the Jacobian matrix DF = (∂Fi/∂xj ) is

DF =
(

1

2
+

1

|x|
)

I − 1

|x| x̂x̂T , (24)

for x �= 0, where I is the identity matrix and x̂ = x/|x|. Thus DF is symmetric, x̂ is an
eigenvector with eigenvalue 1/2 and (in space dimension n) x̂⊥ is an (n − 1)-dimensional
eigenspace with eigenvalue 1

2 + 1
|x| . The determinant is evidently

det(DF) = 1

2

(
1

2
+

1

|x|
)n−1

= (|x| + 2)n−1

2n|x|n−1
. (25)

It follows by a brief calculation that in the shell 1 < |y| < 2,

F∗1(y) = 2n

(2 + |x|)n−1

[(
1

4
|x|n−1 + |x|n−2 + |x|n−3

)
(I − x̂x̂T ) +

1

4
|x|n−1x̂x̂T

]
, (26)

where the right-hand side is evaluated at

x = F−1(y) = 2(|y| − 1)
y

|y| . (27)

Since F is singular at x = 0 we expect F∗1 to be a bit strange near the inner boundary of the
shell. The details depend on the spatial dimension n:

when n = 2, one eigenvalue of F∗1 tends to 0 and the other to ∞; (28)

when n = 3, one eigenvalue tends to 0 while the others remain finite; (29)

when n � 4, all eigenvalues tend to 0. (30)

In fact: writing r = |x| = 2(|y| − 1), when n = 2 the eigenvalues behave like r and r−1 as
r → 0; when n = 3 one eigenvalue behaves like r2 and two like r0; when n � 4 one eigenvalue
behaves like rn−1 and the remaining n−1 like rn−3. Note that for n � 3, the conductivity F∗1
depends smoothly on y near the inner boundary of the shell. The ‘strangeness’ we mentioned
above is not a lack of smoothness but rather a degeneracy (lack of a uniform lower bound). In
space dimension n = 2 the situation is little different: F∗1 becomes degenerate but also lacks
smoothness since the circumferential eigenvalue becomes infinite. This difference between
n = 2 and n � 3 will play no essential role in our analysis.

4.2. The potential outside the cloaked region

Let v be the potential associated with Dirichlet data f :

∇ · (σA∇v) = 0 in B2, with v = f at ∂B2, (31)

14
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where σA is given by (11) using the singular change of variable (12). We assume, as in
section 3, that A is bounded above and below in the sense that (22) holds.

Does this PDE have a unique solution? The answer is not immediately obvious, due to
the degeneracy of F∗1 near |y| = 1. We shall show, here and in section 4.3, that the only
reasonable solution of (31) is

v(y) =
{
u(x) for y ∈ B2\B1

u(0) for y ∈ B1,
(32)

where u is the harmonic function with the same Dirichlet data

�u = 0 in B2, with u = f at ∂B2 (33)

and x = F−1(y).
What can we assume about the solution of (31)? Later, in section 4.3, we will ask that

∇v and σA∇v both be square-integrable. For the moment, however, we ask only that v be
bounded near |y| = 1. More precisely, we ask that

|v(y)| � C for |y| � r (34)

for some constants C < ∞ and 1 < r < 2. (We do not assume v is bounded in the entire ball
B2 because the Dirichlet data can be unbounded—an H 1/2 function need not be L∞.) This is
a very modest hypothesis. Indeed, since F∗1 is smooth for |y| > 1, elliptic regularity assures
us that v is uniformly bounded in any compact subset of B2\B1. The essential content of (34)
is thus that v does not diverge as |y| → 1. If the conductivity were positive and finite such
growth would be ruled out by the variational principle (5) and an easy truncation argument.

With this modest hypothesis on v, we can identify its values in B2\B1 by changing
variables then using a standard theorem about the removability of point singularities for
harmonic functions.

Proposition 2. If v solves (31) and satisfies (34) then

v(y) = u(x) for 1 < |y| < 2, (35)

where x = F−1(y) and u is the harmonic function on B2 with the same Dirichlet data as v.

Proof. Since σA(y) = F∗1(y) is smooth and bounded away from zero for |y| strictly larger
than 1, elliptic regularity applies and v is a classical solution of the PDE in B2\B1. When φ is
supported in B2\B1, the PDE combines with the definition of F∗ and the change-of-variables
formula to give

0 =
∫

〈σA∇yv(y),∇yφ(y)〉 dy =
∫

〈∇xv(F (x)),∇xφ(F (x)〉 dx. (36)

Since φ(y) is supported on B2\B1, the test function φ(F (x)) vanishes at 0 and ∂B2 but is
otherwise arbitrary. So (36) tells us that w(x) = v(F (x)) is a weak solution of �w = 0 in the
punctured ball B2\{0}. By elliptic regularity, it is also a classical solution.

We now use the following well-known result about removable singularities for harmonic
functions: if �w = 0 in a punctured ball about 0 and if

|w(x)| = o(|x|2−n) in dimension n � 3, or
|w(x)| = o(log |x|−1) in dimension n = 2

(37)

as x → 0, then w has a removable singularity at 0 (see e.g. [15]). In other words, w(0) is
determined by continuity and (so extended) w is harmonic in the entire ball.

Our w(x) = v(F (x)) satisfies (37)—indeed, it is uniformly bounded near 0 as a
consequence of (34). So w is harmonic on B2. Moreover w has the same Dirichlet data

15
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as v, since F(x) = x at ∂B2. Thus w is precisely the function u that appears in (35) and the
proof is complete. �

Remark 1. We have shown using elliptic theory that for the cloak constructed using the
singular change of variable (12), the potential outside the cloaked region is given by (35). An
alternative, more physical justification of (35) is this: it gives the limiting value of the potential
associated with our regular near-cloak (10) in the singular limit ρ → 0.

To justify the remark, let Fρ be the regularized change of variable (10), and let vρ be the
potential in the near-cloak for a given choice of the Dirichlet data. Then uρ(x) = vρ(Fρ(x))

is harmonic outside Bρ . It is also uniformly bounded (away from the outer boundary |y| = 2),
with a bound independent of ρ. So by a standard compactness argument, the limit as ρ → 0
exists and is harmonic in B2\{0}. Since the limit is bounded, 0 is a removable singularity
and u0(x) = limρ→0 uρ(x) is the unique harmonic function in B2 with the given Dirichlet
data. Now for any fixed 1 < |y| < 2 we can pass to the limit ρ → 0 in the relation
vρ(y) = uρ

(
F−1

ρ (y)
)

to get v0(y) = u0
(
F−1

0 (y)
)
, confirming (35).

4.3. The potential inside the cloaked region

We have asserted that the solution of (31) is given by (32). Proposition 2 justifies this assertion
outside B1; this section completes the justification by showing that (i) the proposed v is indeed
a solution and (ii) it is the only reasonable solution.

To show that v is a solution, we must demonstrate that σA∇v is divergence-free. This is
the main goal of the following proposition.

Proposition 3. Fixing f ∈ H
1/2
∗ (∂B2), let v be defined by (32). Then

(a) v is Lipschitz continuous away from ∂B2, i.e. |∇v| is uniformly bounded in Br for every
r < 2;

(b) σA∇v is also uniformly bounded away from ∂B2;
(c) (σA∇v) · ν → 0 uniformly as |y| ↓ 1, where ν = y/|y| is the normal to ∂B1;
(d) σA∇v is weakly divergence-free in the entire domain B2.

Proof. We observe first that (d) follows immediately from (b), (c) and (36). Indeed, a bounded
vector-field ξ is weakly divergence-free on B2 if and only if it is weakly divergence-free on
the subdomains B1 and B2\B1 and its normal flux ξ · ν is continuous across the interface ∂B1.
(The normal flux is well defined from either side, as a consequence of ξ being divergence
free in B1 and its complement.) We apply this to ξ = σA∇v, which is clearly divergence-free
in B1 (where it vanishes) and in B2\B1 (by equation (36)). If (c) holds then the normal flux
ξ · ν = 0 vanishes on both sides of ∂B1. In particular it is continuous, so (d) holds.

The proofs of (a)–(c) are straightforward calculations based on the change-of-variables
formula and the smoothness of u(x) = v(F (x)), together with our explicit formulae for DF

(24) and F∗1 (26). To see that ∇v is bounded away from ∂B2 we observe that, by chain rule
and the symmetry of DF , we have

∇yv = (DF−1)T ∇xu = (DF)−1∇xu

for 1 < |y| < 2. The matrix (DF)−1 is uniformly bounded, by (24); and ∇xu is bounded
(except perhaps near ∂B2) since u is harmonic in x. Thus |∇v| is bounded and v is Lipschitz
continuous on 1 � |y| < r for any r < 2. It is moreover constant on B1, and continuous
across ∂B1. Therefore v is Lipschitz continuous on the entire ball Br for every r < 2.
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In dimensions n � 3 (b) follows immediately from (a), since F∗1 is uniformly bounded.
In dimension n = 2 however we must be more careful, since F∗1 becomes unbounded as
|y| ↓ 1. Using the definition of σA, chain rule and the symmetry of DF we have

σA∇yv = F∗1(DF)−1∇xu (38)

for 1 < |y| < 2. The symmetric matrices F∗1 and (DF)−1 have the same eigenvectors,
namely x̂ and x̂⊥. Taking n = 2 in (24) and (26) we see that the eigenvalue of F∗1 in direction
x̂⊥ behaves like |x|−1, while that of (DF)−1 behaves like |x|. The eigenvalues of both matrices
in direction x̂ are bounded. Thus the product F∗1(DF)−1 is bounded. This yields (b), since
∇xu is bounded away from ∂B2 and σA∇v = 0 for y ∈ B1.

The proof of (c) is similar to that of (b). Since |y| ↓ 1 corresponds to |x| → 0 and
y/|y| = x/|x| = x̂, we must show that the x̂ component of (38) tends to zero as |x| → 0. Since
F∗1(DF)−1 is symmetric and x̂ is an eigenvector, it suffices to show that the corresponding
eigenvalue tends to 0. In fact, its value according to (24) and (26) is

2n−1

(2 + |x|)n−1
|x|n−1 � |x|n−1

which tends to zero linearly (if n = 2) or better (if n � 3). The proof is now complete. �

We have shown that the function defined by (32) solves the PDE (31). Is it the only
solution? If σA were strictly positive and finite, uniqueness would be standard. When σA is
degenerate, however, uniqueness can sometimes fail. For example, if σA were identically 0 in
B1 then the solution would not be unique: v would be arbitrary in B1. Our situation, however,
is much more controlled: the degeneracy occurs only at ∂B1, and it has a very specific form.

Uniqueness should be proved in a specific class. We assumed in section 4.2 that v was
uniformly bounded near ∂B1. Here we assume further that

∇v ∈ L2(B2) and σA∇v ∈ L2(B2). (39)

Proposition 4. If v is a weak solution of the PDE (31) which also satisfies (34) and (39) then
v must be given by formula (32).

Proof. We know from proposition 2 that v(y) = u(x) outside B1. What remains to be proved
is that v ≡ u(0) in B1.

Recall that u has a removable singularity at 0. In particular it is continuous there. Since
F−1 maps ∂B1 to 0, it follows that v(y) → u(0) as y approaches ∂B1 from outside.

Since ∇v ∈ L2(B2) by hypothesis, the restriction of v to ∂B1 makes sense, and it is the
same from outside or inside. Evidently this restriction is constant, identically equal to u(0).
It follows, by uniqueness for the PDE ∇ · (A∇v) = 0 in B1, that v ≡ u(0) throughout B1, as
asserted. �

The preceding argument actually uses somewhat less than (39). Any condition that makes
v continuous across ∂B1 would be sufficient. However we also need a hypothesis on σA∇v

(for example that it be integrable) for the PDE (31) to make sense.

4.4. The singular cloak is invisible

Our main point is that if the shell B2\B1 has conductivity F∗1 then the ball B1 is cloaked. This
is an easy consequence of the preceding results:
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Theorem 3. Suppose σA is given by (11), where F is given by (12) and A is uniformly positive
and finite (22). Then the associated Dirichlet-to-Neumann map �σA

is the same as that of a
uniform ball B2 with conductivity 1.

Proof. It suffices to prove that �σA
and �1 determine the same quadratic form on Dirichlet

data, where �1 is the Dirichlet-to-Neumann map of the uniform ball. But by (32) we have∫
B2

〈σA∇v,∇v〉 dy =
∫

B2\B1

〈σA∇v,∇v〉 dy,

and the definition of σA combined with the change-of-variables formula gives∫
B2\B1

〈σA∇v∇v〉 dy =
∫

B2

|∇xu|2 dx

where u is harmonic with the same Dirichlet data as v. Thus

〈�σA
f, f 〉 = 〈�1f, f 〉

for all f ∈ H
1/2
∗ , where �σA

= �1 as asserted. �

We have focused on the radial setting for the sake of simplicity. However the analysis
in this section extends straightforwardly to the nonradial cloaks discussed at the end of
section 3.

Theorem 4. Let G : B2 → � be a Lipschitz continuous map with Lipschitz continuous
inverse, and let D = G(B1). Then H = G ◦ F ◦ G−1 : � → � acts as the identity on ∂�,
while ‘blowing up’ the point z0 = G(0) to D. (This is the ρ = 0 limit of figure 3). Consider a
conductivity σA defined on � of the form

σA(w) =
{
A(w) for w ∈ D

H∗1(w) for w ∈ �\D,

where A is symmetric, positive and finite but otherwise arbitrary. The associated Dirichlet-
to-Neumann map �σA

is independent of A; in fact, �σA
= �1 is the Dirichlet-to-Neumann

map associated with conductivity 1.

Proof. We claim that

v(w) =
{
u(z) for w ∈ �\D
u(z0) for w ∈ D,

(40)

where w = H(z) and u solves �u = 0 in � with the same Dirichlet data as v. The proof is
parallel to our argument in the radial case, so we shall be relatively brief.

The proof of proposition 2 made no use of radial symmetry; it applies equally in the
present setting. We must assume of course that v is bounded away from ∂�, and we conclude
that (40) is correct outside D.

The analogue of proposition 3(a) is the statement that v is uniformly Lipschitz in �\D
except perhaps near ∂�. With the conventions x = G−1(z), y = F(x) and w = G(y), we
have

DH(z) = DG(y)DF(x)DG−1(z)

by chain rule. By hypothesis, DG and DG−1 are uniformly bounded. Therefore (DH)−1 is
uniformly bounded too. Since �zu = 0, u is a smooth function of z except perhaps near ∂�.
It follows that v(w) = u(H−1(w)) is uniformly Lipschitz continuous away from ∂�.
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The analogue of proposition 3(b) is the statement that H∗1∇wv is uniformly bounded
away from ∂�. Recalling the definition

H∗1 = 1

det DH
DHDHT

and using that ∇wv = (DHT )−1∇zu, we see that

H∗1∇wv = 1

det DH
DH∇zu.

Since u is harmonic, it is smooth away from ∂�. As for DH/ det(DH): it has the same
behaviour as DF/ det(DF), since DG and DG−1 are bounded. One verifies using the
explicit formula (24) that DF/ det(DF) stays bounded as x → 0.

The analogue of proposition 3(b) is the statement that the normal flux (H∗1∇wv) ·nw → 0
as w approaches ∂D from outside, where nw is the unit normal at ∂D. We use the fact that
nw is parallel to (DG−1)T (νy), if νy is the unit normal to ∂B1 at the corresponding point
y = G−1(w). (To see this, note that if τ is tangent to ∂B1 then DGτ is tangent to ∂D, and
〈DGτ, (DG−1)T ν〉 = 〈τ, ν〉 = 0.) It follows that

|(H∗1∇wv) · nw| � C|〈H∗1∇wv, (DG−1)T νy〉|. (41)

Now,

H∗1∇wv = (det DH)−1DH∇zu = (det DH)−1DGDFDG−1∇zu.

So the inner product on the right-hand side of (41) is equal to

(det DH)−1|〈DGDFDG−1∇zu, (DG−1)T νy〉| = (det DH)−1|〈DFDG−1∇zu, νy〉|.
Since DG and DG−1 are bounded, this is bounded by a constant times

(det DF)−1|〈DFDG−1∇zu, νy〉|.
But recall that νy = y/|y| = x/|x| is an eigenvector of the symmetric matrix (det DF)−1DF ,
with an eigenvalue that tends to 0 as x → 0. Therefore

(H∗1∇wv) · nw → 0 as w → D,

as asserted.
The arguments used for proposition 3(d), proposition 4 and theorem 3 did not use

radial symmetry or the explicit form of the cloak, so they extend immediately to the present
setting. �

We note that for n � 3 the results in theorems 3 and 4 coincide with those already
established in [19].
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[4] Astala K and Päivärinta L 2006 Calderón’s inverse conductivity problem in the plane Ann. Math. 163 265–99
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[34] Ola P, Päivärinta L and Somersalo E 1993 An inverse boundary value problem in electrodynamics Duke

Math. J. 70 617–53
[35] Pendry J B, Schurig D and Smith D R 2006 Controlling electromagnetic fields Science 312 1780–2

20

http://dx.doi.org/10.1016/S0021-7824(01)01217-X
http://dx.doi.org/10.1038/nphoton.2007.28
http://dx.doi.org/10.1063/1.2748302
http://dx.doi.org/10.1103/PhysRevLett.99.063903
http://dx.doi.org/10.1137/S0036144598333613
http://dx.doi.org/10.1103/PhysRevE.74.036621
http://dx.doi.org/10.1088/1367-2630/9/3/045
http://dx.doi.org/10.1364/OE.15.012717
http://dx.doi.org/10.1088/0967-3334/24/2/353
http://dx.doi.org/10.1002/cpa.3160370302
http://dx.doi.org/10.1002/cpa.3160380513
http://dx.doi.org/10.1002/cpa.3160400605
http://dx.doi.org/10.1088/0266-5611/13/6/007
http://dx.doi.org/10.1002/cpa.3160420804
http://dx.doi.org/10.1126/science.1126493
http://dx.doi.org/10.1088/1367-2630/8/7/118
http://dx.doi.org/10.1364/OE.14.012457
http://dx.doi.org/10.1088/1367-2630/8/10/248
http://dx.doi.org/10.1098/rspa.2006.1715
http://dx.doi.org/10.2307/2118653
http://dx.doi.org/10.1215/S0012-7094-93-07014-7
http://dx.doi.org/10.1126/science.1125907


Inverse Problems 24 (2008) 015016 R V Kohn et al

[36] Ramm A 1996 Minimization of the total radiation from an obstacle by a control function on a part of its boundary
J. Inverse Ill-Posed Problems 4 531–4

[37] Ruan Z, Yan M, Neff C W and Qiu M 2007 Ideal cylindrical cloak: perfect but sensitive to tiny perturbations
Phys. Rev. Lett. 99 113903

[38] Schurig D, Pendry J B and Smith D R 2006 Calculation of material properties and ray tracing in transformation
media Opt. Exp. 14 9794–804

[39] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Metamaterial
electromagnetic cloak at microwave frequencies Science 314 977–80

[40] Smith D R, Pendry J B and Wiltshire M C K 2004 Metamaterials and negative refractive index Science
305 788–92

[41] Sylvester J 1990 An anisotropic inverse boundary value problem Commun. Pure Appl. Math. 43 201–32
[42] Sylvester J and Uhlmann G 1987 A global uniqueness theorem for an inverse boundary value problem Ann.

Math. 125 153–69
[43] Uhlmann G 1999 Developments in inverse problems since Calderón’s foundational paper Harmonic Analysis

and Partial Differential Equations: Chicago Lectures in Math. (Chicago, IL, 1996) (Chicago, IL: University
of Chicago Press) pp 295–345

[44] Borcea L 2002 Electrical Impedance Tomography Inverse Problems 18 R99–136
[45] Wilson M 2007 Designer materials render objects nearly invisible to microwaves Phys. Today 60 19–23
[46] Zolla F, Guenneau S, Nicolet A and Pendry J B 2007 Electromagnetic analysis of cylindrical invisibility cloaks

and the mirage effect Opt. Lett. 32 1069–71

21

http://dx.doi.org/10.1103/PhysRevLett.99.113903
http://dx.doi.org/10.1364/OE.14.009794
http://dx.doi.org/10.1126/science.1133628
http://dx.doi.org/10.1126/science.1096796
http://dx.doi.org/10.1002/cpa.3160430203
http://dx.doi.org/10.2307/1971291
http://dx.doi.org/10.1364/OL.32.001069

	1. Introduction
	2. The main ideas
	2.1. Electric impedance tomography
	2.2. Invariance by change of variables
	2.3. Cloaking via change of variables
	2.4. Relation to known uniqueness results
	2.5. Comments on cloaking at nonzero frequency

	3. Analysis of the regular near-cloak
	3.1. The Dirichlet-to-Neumann map
	3.2. Dielectric inclusions
	3.3. The regular near-cloak is almost invisible

	4. Analysis of the singular cloak
	4.1. Explicit form of the cloak
	4.2. The potential outside the cloaked region
	4.3. The potential inside the cloaked region
	4.4. The singular cloak is invisible

	Acknowledgments
	References

