Clock Glitch Attacks in the Presence of Heating

Thomas Korak and Michael Hutter
Institute for Applied Information Processing and
Communications (IAIK), Graz University of Technology,
Inffeldgasse 16a, 8010 Graz, Austria
emails: {thomas.korak,michael.hutter} @iaik.tugraz.at

Abstract—Fault attacks have been widely studied in the past
but most of the literature describes only individual fault-injection
techniques such as power/clock glitches, EM pulses, optical
inductions, or heating/cooling. In this work, we investigate
combined fault attacks by performing clock-glitch attacks under
the impact of heating. We performed practical experiments on
an 8-bit AVR microcontroller which resulted in the following
findings. First, we identified that the success rate of glitch
attacks performed at an ambient temperature of 100°C is
higher than under room temperature. We were able to induce
more faults and significantly increase the time frame when
the device is susceptible to glitches which makes fault attacks
easier to perform in practice. Second, and independently of
the ambient temperature, we demonstrate that glitches cause
individual instructions to repeat, we are able to add new random
instructions, and we identified that opcode gets modified such
that address registers of individual instructions get changed.
Beside these new results, this is the first work that reports
results of combined glitch and thermo attacks.

Keywords: Fault attacks, temperature, heating, non-invasive,
glitches, AVR, ATmega.

I. INTRODUCTION

Fault attacks pose a serious threat for cryptographic imple-
mentations. In the worst scenario, a single fault can reveal the
entire secret key which has been shown to be feasible by many
researchers in the last decade. There exist several techniques
to inject faults, the most prominent techniques are to modify
the power supply or the clock source by injecting spikes or
glitches. Other methods have been proven even more powerful
such as optical inductions that allow a precise localization of
the fault injection, global and local EM pulses, or temperature
variations. In this work, we first evaluate the impact to combine
these techniques to improve the performance of practical fault
attacks.

In principle, fault attacks can be either non-invasive, semi-
invasive, or invasive. Non-invasive fault attacks do not require
a modification of the targeted device. Variations in the supply
voltage, the clock signal, or the temperature are used to force
a faulty behavior during the calculation of the microcontroller.
Semi-invasive attacks require the de-capsulation of the chip
package to, for example, be able to inject optical inductions.
Exposing the opened chip to an intense light source (e.g., laser
beam, flash light) or using small needles to probe single wires
on the metal layer of the chip are typical techniques used in
the past. Invasive attacks make modifications in the chip (e.g.,

Ohttp://dx.doi.org/10.1109/FDTC.2014.20. The original article is available
at http://ieeexplore.ieee.org/

Barig Ege and Lejla Batina

Digital Security Group - ICIS,

Radboud University Nijmegen,
Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

emails: {b.ege,lejla}@cs.ru.nl

add additional wire connections, cutting wires, etc.) that can
sometimes lead to the destruction of the device. Clock glitch
and thermo attacks, which are considered in this paper are
typically non-invasive and they do not require de-capsulation
or modification of the device.

After injection of a fault, several analysis techniques can
be applied to reveal the secret key, e.g., Differential Fault
Analysis (DFA) [1], Collision Fault Analysis (CFA) [2], or
Ineffective Fault Analysis (IFA) [3]. The decision, which
analysis technique to use depends on various factors like which
algorithm is going to be attacked or if the injected fault affects
the program flow or the processed data. A very good and
detailed overview of different kind of fault attacks can be
found in the work of Bar-El, Choukri, Naccache, Tunstall, and
Whelan [4]; also Verbauwhede, Karaklajic, and Schmidt [5]
published a classification of current fault-injection techniques
and countermeasures to prevent them.

In 2011, Balasch, Gierlichs, and Verbauwhede [6] per-
formed an in-depth analysis of the effects of clock glitches on
an 8-bit AVR microcontroller. They did not target a specific
implementation but evaluated the influence of clock glitches
on the instruction-execution pipeline of the microcontroller.
Results show that the fetch as well as the execute stage of the
pipeline can be affected by clock glitches. Our work extends
their research in the sense that we additionally investigate the
impact of high-temperature on the same platform (this has
not been done before to the best of the authors knowledge)
and we additionally provide significant research outcomes as
summarized in the following.

In this paper, we present various non-invasive fault attacks
on an AVR ATmegal62 microcontroller. We performed clock-
glitch fault attacks and evaluated the impact of high ambient
temperature in respect to improve the performance of the
attack. We injected several faults by varying the fault-injection
time and shape at two different device temperatures: 25 °C and
100 °C. We further analyzed the impact of the clock frequency
and made the same experiments while the device was clocked
with 10 MHz and 20 MHz. All attacks were performed using
a low-cost custom-made FPGA board that allows injection of
highly parameterized clock glitches. The obtained results and
contributions of this paper can be summarized as follows:

e We show that with increased temperature, the device
under attack gets more sensitive to clock-glitch at-
tacks, i.e., we were able to inject faults that were not
injected at room temperature.

e We also show that with increased temperature, the

time frame where the device is sensitive to glitches
is getting larger which makes the device more sus-
ceptible to practical attacks.

e We further demonstrate that individual AVR instruc-
tions can be simply repeated by inducing glitches
(independent of the ambient temperature). In contrast
to related work in [6], we identify that the program
counter is not incremented due to a glitch and that no
instructions are skipped.

e We are able to insert new random instructions during
the program flow without skipping other instructions.

e We can confirm the outcomes of [6] and show that
with our setup we were able to change the opcode of
individual instructions, e.g., changing an ADD instruc-
tion to a MOV, or to change the operand addresses,
e.g., changing the operand address from register R5
to R14.

The rest of the paper is structured as follows. In SectionII,
we give a brief overview on related work. In Section III
we describe the used setup to inject faults and to perform
heating experiments. Section IV describes the experiments and
Section V presents the results of our work and discusses the
details of the induced fault types. A discussion of the obtained
results is given in Section VI and conclusions are drawn in
Section VII.

II. RELATED WORK

A huge number of successful fault attacks have been re-
ported during the last years. It figured out that hardware as well
as software implementations of symmetric and asymmetric
cryptographic primitives are vulnerable. Kdmmerling et al.
[7] recognized the threat of fault attacks already in 1999 and
proposed some low-cost protection concepts in their work.

Many papers presented successful attacks by intentionally
modifying the power supply of a device during cryptographic
operations. For example, Choukri and Tunstall [8] presented
an attack in 2005 where the number of rounds of round-
based block ciphers can be reduced by injecting faults. They
used power-supply glitches for that purpose. A similar fault-
injection technique was applied by Schmidt and Herbst [9]
who targeted an RSA implementation that makes use of the
square-and-multiply algorithm. Selmane, Guilley, and Danger
presented underpowering attacks in 2008 [10]. They caused
timing violations to attack an AES implementation on a smart
card.

There also exist related work on electromagnetic glitch
attacks. Dehbaoui et al. [11], for example, presented an attack
on AES in 2013. They injected transient faults by using
electromagnetic pulses. For their fault injection, no physical
access to the attacked device is required and they show the
applicability by modifying the round counter of an AES
implementation.

Clock glitches in particular have been exploited by Fuku-
naga et al. [12] in 2009 to attack a wide range of block ciphers
implemented on a large-scale integrated circuit (LSI). They
reduce the clock period to modify the internal state of the
cipher caused by setup-time violations. A detailed description

of the effects of clock glitches on integrated circuits is given
in [13]. In that paper, the authors confirm their theoretical
assumptions by attacking the AES block cipher implemented
on an FPGA.

It has been shown in the past that tampering with the
clock signal, the power supply voltage, or with electromag-
netic pulses, faults can be injected that mainly cause timing
violations in the digital circuit. Temperature fault attacks,
in contrast, have shown to be effective against data-memory
modifications. One of the first who demonstrated successful
temperature attacks was Skorobogatov [14] who performed
data-retention attacks on different SRAM chips in 2002. He
decreased the ambient temperature of these chips by cooling
the devices down to —20°C and below. He showed that
data gets somehow frozen and can be read out after some
seconds after power down. Samyde, Skorobogatov, Anderson,
and Quisquater made similar experiments published in the
same year in [15]. Another similar experiment was done by
Miiller and Spreitzenbarth [16] in 2011. They developed a tool
called FROST (forensic recovery of scrambled telephones),
which allows to recover the RAM content of modern Android
smart phones. The tool allows to retrieve disk encryption keys
from RAM and the approach is comparable to cold boot attacks
on PCs [17].

While low temperatures and cooling allows to increase
the data-retention and remanence time, high temperatures and
heating allows to change its content: Quisquater and Samyde
[18] were one of the first who observed that high tempera-
tures causes memory errors after hours of extensive heating.
Govindavajhala and Appel [19] were able to induce errors
into memories using a 50 watt spotlight clip-on lamp. By
heating a device up to 100 °C, they were able to inject faults
with a probability of 71.4 %. Recently, Hutter and Schmidt
[20] presented heating fault-attacks on an AVR microcontroller
in 2014. They operated the device above the temperature
specification (> 125°C). The authors verify the efficiency of
this high-temperature attack by successfully attacking an RSA
implementation.

The impact of temperature in combination with power or
clock glitch attacks has not been analyzed in prior work. In
this paper, we therefore answer the open research question if
the sensitivity of glitch attacks gets effected by temperature
and if yes, to which extend.

III. THE FAULT INJECTION SETUP

In this section, we describe our used fault-injection setup.
It is based on a custom-made prototyping board consisting of a
flexible Field Programmable Gate Array (FPGA). Afterwards,
we give an overview about the heating process to let the device
under attack operate in a higher temperature environment.
Finally, we give a brief introduction to the targeted AVR family
of microcontrollers and describe the basic architecture and
instruction set.

A. Fault Board for Clock Tampering

In order to inject faults during the computation of a
microcontroller, we designed a custom-made Printed Circuit
Board (PCB). This board consists of a XILINX Spartan-6
XC6SLX45 FPGA and allows communicating with a PC over a

enoooo ormdamféam..aé |

Fig. 1.
place the microcontroller in the middle of the heating plate.

USB-over-serial connection. It is equipped with many I/O pins
that can be used to connect a wide range of microcontrollers
or other FPGAs. Figure 1 shows the setup on the left side of
the figure.

We mainly used two pins of the FPGA to generate clock
glitches for the microcontroller. The first pin provides a clock
signal that can be adapted by the FPGA (meaning that we
are able to change the clock duration and edges individually).
The second pin provides a trigger signal that indicates the
starting point of the glitch injection. Next to these two pins,
we used two power pins from our fault board to supply the
microcontroller. We set the power supply to 3.3 Volts in our
experiments which is within the normal specification range of
the AVR.

Figure 2 shows the experimental setup as a block diagram.
The clock and the trigger signals were captured by a digital
storage oscilloscope, i.e., we used the PicoScope 5203 from
Pico Technology for these measurements. The oscilloscope and
also the fault board is connected to a computer that runs
Matlab. Via Matlab scripts we were able to automatically
configure our fault board (e.g., setting different clock-glitch
parameters) and to start and stop individual measurements of
the clock and trigger signal.

In order to heat-up the microcontroller and to evaluate the
influence of heating during clock-glitch injections, we placed
the device on top of a heating plate. Our custom-made fault
board is connected to this microcontroller via insulated copper
wires. These wires had a diameter of 0.2mm and allow to

——config— .
Computer Oscilloscope
—traces—
!
5.. Seria] om
=} 'm
y ™
clock: >
Fault Board . ATmegal62
—trigg
Heating Plate

Fig. 2. Block diagram of the experimental setup.

The experimental setup: The fault board is located on the left side and the microcontroller is connected to it using thin copper wires. This allows to

place the microcontroller in the middle of a heating plate while
our fault board keeps exempt from extensive heating. Figure 1
shows the setup on the right side of the figure.

Clock-glitch generation. We applied a similar approach
like presented in [13], [21] in order to inject clock glitches into
the target device. A block diagram of this clock-generation unit
is shown in Figure 3. The clock generation works as follows.
The hardware module takes as inputs a reference clock signal
clk and a glitch-enable signal gl.,. By using the reference
clock signal clk, we are able to generate phase-shifted versions
of it which we further denote by clks; and clkgs. For this,
we used two Digital Clock Managers (DCMs) of the FPGA
that provide these phase-shifting capabilities. Furthermore, we
denote gl,.; the time when when the glitch is active. The gl,t
signal is generated using a two-input AND-gate. One input
is the synchronized gl.,, signal, named glc,,sync While clkgy
serves as the second input. As an output, the clock-generation
unit provides a new clock signal, further denoted by clkg;, that
includes an inserted glitch.

The shape of the clock glitch can be parameterized by
two values, i.e., d; and dy. The first value d; represents the
starting time when the glitch is inserted. The second value d5
represents the ending time of the glitch. To be more exact,
these two values represent the phase shifts of clks; and clkso
and define the final shape of the inserted clock glitch. Figure 4
shows all involved signals and the final clock clkg; for a small
value of d; (meaning that the clock glitch is started very early
after a positive clock edge). Figure 5 shows the signals for
a bigger value of d; (meaning that the clock glitch is started
right before the end of a positive clock edge).

The figures also show the low times of the clock signal
as denoted by t;,,. By having a closer look at the two
figures, it shows that the low times of the glitch-injected clock
signal clky; is different and depends on the parameter d;. In
particular, ¢;ou,g1 = tiow —d1; S0 the low time becomes shorter
the higher the value of d;. This means that the negative clock
edge becomes shorter the later the clock glitch is injected
during the positive clock edge. Both the two parameters d;
and dy and also the decreased low time %5, 4 can be used
to cause faulty computations during the computation of the
microcontroller.

For the experiments, we used and evaluated the impact of

- Multiplexer clky
Lbsl >
DCM1 DCM2
olk clky cke
Y1) (d?) 2
C
A
glen Clksl
C>+—P—D Q | & Qlact
Ly [¢] en,sync
Q
Fig. 3. Block diagram of the clock-generation unit using two Digital Clock

Manager (DCM) blocks of the FPGA.

two different clock frequencies, i.e., 10MHz (7" = 100ns)
and 20MHz (T' = 50ns). Figure 6 and Figure 7 show the
measured clock signals for three different [dy,ds] settings,
once for a reference clock frequency of 10 MHz and once for
a reference clock frequency of 20 MHz, respectively. These
figures also show the relationship between dy and #;4.,4:. The
corresponding settings for [dy, d3] are shown in the legends of
these plots. Values for ds in the range of 7.0ns and 50.0ns
were used for the setting of f.;; = 10 MHz. This equals glitch
frequencies between 20 MHz and 142 MHz. For the setting
of fur = 20MHz, values for dy between 7.0ns and 25.0ns
were used. The clock glitch is inserted after a trigger event
on a predefined pin of the FPGA. Defining the number of
clock cycles between the trigger event and the glitch insertion
allows to precisely control the point in time when the clock
glitch actually takes effect.

B. Heating Plate with Temperature Measurement

For heating up the microcontroller, a laboratory heating
plate from Schott instruments (SLK 1) was used. It does not
allow to accurately control the temperature using a control
system, but measuring the temperature and regulate the heating
power figured out to be sufficient for the performed exper-
iments. For the temperature measurements we have used a
PT100 sensor element. Temperature sensors based on the
PT100 sensor element are very common for industrial appli-
cations. According to the temperature, the resistance of the
PT100 changes and at 0°C the resistance equals to 100 €.
Several approaches in order to measure the resistance (or a
proportional value like voltage drop or current) exist, depend-
ing on the intended accuracy. For the experiments in this work,
we have used the resistance measurement function of a Fluke
111 TRUE RMS multimeter in order to acquire the resistance
value. For that purpose the value shown on the multimeter has
been subtracted by the resistance of the connection wires and
with an online tool! the temperature value has been calculated.

Remark: During the experiments it figured out that the
heating plate introduces electromagnetic interferences which
lowers the signal quality. This did not influence our experi-
ments, but if power measurements are performed in addition,
we suggest to use a resistor-based heating element for heating
up the device under test. Furthermore, this resistor-based
heating element can be controlled very easily and the temperate
can be adjusted more accurately than a heating plate. We used

Thttp://www.thermibel.be/documents/pt100/conv-rtd.xml

this resistor-based heating element to perform our final power
measurements.

C. The Investigated Microcontroller - AVR ATmegal62

We decided to analyze heating effects during clock glitch
attacks on an ATmegal62. The reason for that choice is that
this microcontroller is commonly used especially in the field
of embedded systems and has been widely investigated by the
crypto-research community due to its ease of use, availability,
and architecture documentation.

The ATmegal62 is an 8-bit low-power microcontroller
from Atmel. It is part of the AVR family and is based on a
RISC architecture. The ATmegal62 supports 131 instructions
where most of them are single-cycle operations. The device
can be clocked up to 8 MHz with an internal clock source
or up to 16 MHz using an external clock (depending on the
supply voltage). It provides 32 internal general-purpose regis-
ters (denoted by RO ... R31) that can be used by applications.
Some of them are dedicated to special functions such as the
registers RO and R1 which store the result of a multiplication,
or the sets (R26,R27), (R28,R29), and (R30,R31) which can
be used for memory addressing purposes (they are referred
to registers X, Y, and Z in the documentation). It further has
a 1kB of internal SRAM and 16kB of programmable flash
memory. Further information about the ATmegal62 can be
found in the datasheet [22].

Table I summarizes the parameters which are important for
the further experiments. Note that the minimum clock signal
low-time is of special interest because if it gets lower than
25 ns, one can tamper with the program counter of the device.

TABLE 1. AVR ATMEGA162: EXTERNAL CLOCK DRIVE
[Voo [2.7-55V [4.5-55V [|
[Parameter [Min. | Max. | Min. | Max | Units |
Clock Frequency 0 8 0 16 MHz
Clock Period 125 - 62.5 - ns
High Time 50 - 25 - ns
Low Time 50 - 25 - ns
Period Change - 2 - 2 %

IV. THE EXPERIMENTS

In the following, we describe the experiments in detail.
First, we describe the written microcontroller program which
was used to analyze the impact of clock glitches as well
as temperature on the investigated instructions. Second, we
explain the measurement process where we used a Matlab
script to control the entire fault-injection process.

The AVR microcontroller program. At the beginning
of the execution, some device-specific configurations are per-
formed, including setting up the serial interface for communi-
cation with the control computer as well as setting the clock
source to an external clock. After that, the program runs in
a loop and waits for instructions from the measurement PC.
Specific commands are used to select different initialization
values for the registers and different instructions which should
be affected by the clock glitch. After reception of a command
(further denoted by cmd), the registers are initialized to
known values, which enables us to evaluate the impact of
an eventually occurring fault and guarantees a defined start

glen
ol [
dy
clky o _J Lt._uw,g. |

Fig. 4. Clock-glitch generation for a small value of d;.

state. After rising a trigger pin and executing a fixed number
of NOP instructions, the targeted instruction is executed. We
have surrounded the targeted instruction with NOP instructions
to avoid any side effects, introduced by the clock glitch, on the
rest of the program flow. The fixed number of NOP instructions
between the trigger event and the attacked instruction further
allows us to precisely select the point in time the clock glitch
should occur. At the end of the execution, the current register
states are transferred to the control computer to evaluate the
impact of the current glitch shape on the instruction.

Evaluation process. The following experiments are all
performed for ambient temperatures of 25°C (room tem-
perature) and 100 °C, respectively. Note that the maximum
temperature rating is specified to 125 °C in the datasheet, so we
do not operate the device beyond its specifications. The whole
procedure was automated using a MATLAB script in order to
maximize the performance and minimize human interaction.
The following values had to be defined before the script was
started:

d1,start Start value for dy

di,end End value for d;

do —dyi Shape of the inserted glitch (glitch duration)
Ady Step size for increasing d;

N Number of repititions for same glitch shape

cmd Command defining the targeted instruction
Regrey Reference register values for the current command
feik Clock frequency for the microcontroller

For each parameter set [dy, d2, cmd], the following proce-
dure is then performed N times:

1) Configure the fault board with the current clock glitch
parameters [dy, da].

2) Arm the clock glitch function on the fault board to
insert the clock glitch with the defined shape after a
trigger event.

3) Send the command ¢md to the microcontroller.

4) Wait for the response of the microcontroller.

5) Compare the received register contents with the
reference register contents Reg,.y of the reference
execution without clock glitch and store the values if
there are deviations.

clk tiow
dq 1
clks; l‘:
d;
clks, _’:
|
|
glen :
|
|
|

s

glact
di
clkg d, tiowgl
'
Fig. 5. Clock-glitch generation for a big value of di. Note that tj,,, ¢ is

lower compared to £}4q,-

V. RESULTS

In this section, we present two main sets of results based
on experiments when the AVR microcontroller is clocked with
10 MHz (T" = 100ns) and 20 MHz (T" = 50ns). Although
the maximum clock frequency is documented as 16 MHz
in the documentation of ATmegal62, a slight overclocking
to 20MHz clock did not cause any faulty behavior to the
operations when no clock glitch was present. The reason we
did additional experiments with overclocking was that to push
the device to its limits, and therefore making it more vulnerable
to glitches.

Although we have done experiments with various instruc-
tions, the results summarized in this section are collected
when injecting a clock glitch during the execution phase
of the instruction ADDR16, R5 (R16<4+-R16+R5). R16 is
the destination register and R5 is the source register. For
verification purposes, different source and destination registers
were used for further experiments. It turned out that injecting
a clock glitch while the instruction ADDR16, R5 is executed,
three different types of faults can be caused, depending on the
configured glitch-shape parameters:

1) Inconsistent faults affecting the value of the desti-
nation register of an ADD instruction as well as one
neighboring register.

2) Consistent faults modifying the executed instruction.

3) Consistent faults repeating the executed instruction.

In the following, we describe each fault type in a more
detail and provide the experimental results.

A. Inconsistent Faults

The first type of fault is generated when a clock glitch
is introduced early in the positive clock-edge phase of the
clock signal. Exemplary glitch shapes generating this type of
faults are shown in the top plots of Figure 6 and Figure 7. In
case where the device was clocked at 10 MHz (see Figure 6),
an additional positive clock edge is inserted around 220 ns,
6.20ns after the previous positive clock edge. In the case when
the device is clocked at 20 MHz (see Figure 7), an additional
positive clock edge is inserted around 95 ns, 5.75 ns after the
previous positive clock edge. This type of fault not only sets

d;=6.20ns

d,=1120ns

Voltage [V]

d,=575ns

d,=9.75ns

Goue™ 18.45ns

i I i i
0 50 100 150 200 250 300 350 400 450 500

d,=830ns

Voltage [V]

d,=1330ns

Lo = 4115 0s

I i i i
0 20 40 60 80 100 120 140 160 180 200

d,=740ns

Voltage [V]

d,= 1140 ns

Y= 16:95 18

i i i i i i i
0 50 100 150 200 250 300 350 400 450 500

d, =30.10ns

d4,=35.10ms

Voltage [V]

o= 194005

I i I I i
0 20 40 60 80 100 120 140 160 180 200

d,=12.70ns

d,=16.70ns

U= 11600

i i i
0 50 100 150 200 250 300 350 400 450 500
Time [ns]

Fig. 6. Three different clock-glitch shapes generated with the fault board.
The frequency of the reference clock clk was set to 10 MHz (T=100ns) for
generating this plot (glitch length = 5ns).

the destination register (R16) to an incorrect value but also sets
the next register (R17) in the register bank to an unpredictable
value. Although the register R17 gets cleared most of the
time, our experiments also showed that the fault causes also
other non-reproducible values such as 1, 17, 96, or 97. An
interesting fact here is that this type of fault occurs only when
the destination register is in the second half of the register
bank (from register R16...R31), no fault is caused in registers
RO...R15.

In order to further evaluate this inconsistent behavior, we
slightly modified the attacked instruction. Different destination
registers were used, all located in the upper half of the register
bank. The results showed that for even destination registers
(R16, R18, ...) the current and the next register are changed
by the glitch in an unpredictable way. For odd destination
registers (R17, R19, ...) the current and the previous register
are changed by the glitch in an unpredictable way. This is
interesting since there exist also a special AVR instruction,
called MOVW, which is able to move two 8-bit values to other
registers, i.e., it copies one register pair into another register
pair. A pre-requisite of this instruction however is that the
source and also the destination register addresses need to
be even (which somehow corresponds to our findings that a
glitch can cause modifications not only in a single register
but also in a register pair which is due to the underlying
hardware architecture and supported instruction set). Also
the instructions ADIW (add immediate to word) and SBIW
(subtract immediate from word) are potential candidates for
instructions modifying two subsequent registers. A closer look
on the description of these instructions, however, reveals that
they only work for registers R24...R31.

Further evaluation showed that the glitch attack indeed
causes to replace the addition by a MOV (or MOVW) instruction.
Interestingly, it shows that also the following instruction is
replaced by a MOV. We verified this fact by executing two
subsequent ADD instructions and attacking the first one. For
glitch shapes affecting two registers, the second ADD instruc-
tion was not executed. These results show that the opcode
of two consecutive instructions is modified by a single clock

i I I i i
0 20 40 60 80 100 120 140 160 180 200
Time [ns]

Fig. 7. Three different clock-glitch shapes generated with the fault board.
The frequency of the reference clock clk was set to 20MHz (T =50ns) for
generating this plot (glitch length = 4 ns).

glitch. A prerequisite for an executed MOVW instruction is that
the values in the modified, subsequent registers also appear
in two additional, subsequent registers in the register bank
which should have been used as the source registers, which
was not the case in our experiments. This observation as well
as the replacement of the instruction after the attacked ADD
instruction make the execution of two MOV instructions due
to the clock glitch more likely than an execution of a MOVW
instruction.

If the instruction before the attacked ADD instruction is
not a NOP as it was the case in the previous experiments,
different results for the similar glitch shape could be observed.
We have changed the preceding NOP instruction by an ADD
instruction, leading to the attack result described in Table II.
The attacked ADD instruction at program counter value n+1
is replaced by a MOV instruction with the source register equal
to the destination register of the previous ADD instruction and
the destination register equal to the destination register of the
attacked ADD instruction. In the next clock cycle, the attacked
ADD instruction is executed replacing the original instruction,
in the current example a NOP.

TABLE II. MODIFICATIONS OF INSTRUCTIONS WHEN A CLOCK
GLITCH FOR INCONSISTENT FAULTS IS INTRODUCED AT N+1.

Prog. Counter [Execution without fault [Execution with fault

n ADD Rd,Addls Rs,Add1 ADD Rd,Add1ls Rs,Add1
n+1 ADD Rd,Add2s Rs,Add2 MOV Rd,Add2s Rd,Add1
n+ 2 NOP ADD Rd,Add2s Rs,Add2

Summing up these first observations, it can be said that
too many parameters (previous instruction, next instruction,
involved registers) affect the outcome of the injected clock
glitch. The faults result in un-predictable values so that the
practical usage to target an implementation is somehow lim-
ited.

B. Modified Instructions

The second type of fault is generated after the first type
when increasing the glitch parameters which essentially shifts
the glitch to the right within the clock cycle. Exemplary

glitch shapes generating this type of faults are shown in the
middle plots of Figure 6 and Figure 7, for 10 MHz and 20
MHz clock, respectively. These type of faults can modify
the executed instruction in an unpredictable but reproducible
way. For instance, the instruction ADD R16, R5 can be
turned into a copy instruction: MOV R16, R20, or to another
addition instruction with modified source register: ADD R16,
R14. The resulting instructions caused by a clock glitch are
summarized in Table III. The order of the instructions given
in the table follows the same order that they appear when the
glitch is moved to the right within the clock cycle. We have
also added the opcodes of the resulting instructions to Table
III. Comparing the opcodes of the modified instructions with
the original one, the following statements can be made: Bits in
the opcode can flip from 1 to O and from O to 1, three bits can
be flipped at most, the destination register is never affected in
our experiments.

TABLE III. THE RESULTING INSTRUCTIONS WHEN A CLOCK GLITCH IS
INTRODUCED WHILE EXECUTING THE INSTRUCTION ADD R16, R5
Instruction Opcode
ADD R16,R5 0000 1110 0000 0101
ADD R16,R4 0000 1110 0000 0110

ADD R16,R20 0000 1111 0000 0100
MOV R16,R4 0010 1110 0000 0100
ADD R16,R14 0000 1110 0000 1110
ADD R16,R12 0000 1110 0000 1100
ADD R16,R13 0000 1110 0000 1101

We verified these changes in the executed instructions by
repeating the experiments with different sets of initialization
values for the registers, and this type of faults turned out to be
reproducible for a given glitch shape and a fixed temperature.
The reproducible behavior of these faults suggest that with a
glitch introduced at a certain time within the high part of the
clock cycle, it is possible to force the instruction decoder to
make a faulty computation in a reproducible way. However, the
instruction is modified in a way that the destination register
is kept unchanged. Either the instruction itself is changed
or the source register, as shown in Table III. Our additional
experiments using different destination registers also did not
yield any modification to the executed instruction where the
destination register gets modified. The glitch parameters that
give these kinds of faults are shown in Figure 8 and Figure 9.

C. Repeated Instructions

The third type of fault results in the instruction which
is in the execution phase to be repeated and the rest of the
instructions are run in the correct order. Glitch shapes leading
to this kind of faults are shown in the bottom plots of Figure 6
and Figure 7. Reconstructing the internal workings of this
kind of fault is not straightforward, since we investigate the
device in a black box model and have no access to internal
information such as: the value of the program counter or the
output of the instruction decoder.

In our experiments we observed that for some particular
glitch shapes (also visualized at the bottom plots of Figure 6
and Figure 7), we consistently observed that the result of
the addition (58) was much lower than the expected value
(213), while introducing the glitch in the execution phase
of the instruction ADD R16, R5. Since the initial value of
the register 5 is 101 and the initial value of the register

16 is 112, the expected result of the addition would be
101+112 = 213 (mod 2%). If this addition was to be repeated,
then the results would be

101 + 112 4 101 = 314 = 58 (mod 2°).

It should be noted here that all arithmetic operations are in
modulo 28 since the Device under Test (DUT) is an 8-bit
microcontroller. Therefore, this particular result of the addition
made apparent that the current instruction was executed twice.

There are two main possible scenarios that can cause this
kind of behavior: either the instruction which is in the pre-
fetch phase is replaced with the instruction which is currently
in the execution phase, or the program counter is not updated
in the presence of such a clock glitch. To further investigate
which type of scenario was realized in our experiments, we
changed the test code from a single ADD instruction to two
distinct ADD instructions as shown in the upper half of Table
IV. This can verify if the program counter is updated or not
depending on the final value of the register 16.

However, there is a subtle point here that is worth noting.
If the program counter is updated and if the instruction which
is already pre-fetched to the instruction register is executed
independent of the current value of the program counter, then
the program counter would have the value n + 3 after the
execution of the second ADD operation, in turn skipping the
instruction which should have been executed when program
counter is n + 2. Therefore, adding two more instructions
(a CLR instruction and an LDI instruction) in the test code
enabled us to verify if the program counter is in fact updated
and how the instruction register behaves in relation to the
program counter. The complete test code is as shown in
Table IV: First, two additions are performed, each having
R16 as destination. The first addition uses R5 and the second
R21 as source registers. The other two instructions are a clear
instruction, clearing the content of R4 and a load instruction,
writing OxFF to R18. Also on the right most column, the
current value of register R16 is shown to make it easier for the
reader to follow the expected behavior of the microcontroller.

TABLE IV. ORDER OF INSTRUCTION CALLS TO TEST THE GLITCHES
CAUSING TO REPEAT THE EXECUTED INSTRUCTION, WHERE THE VALUE OF
R51S 101 AND THE VALUE OF R21 1S 117.

Prog. Counter | Instruction | Value of R16
n—1 NOP 112
n ADD R16, RS 213
n—+1 ADD R16, R21 74
n—+ 2 CLR R4 74
n+3 LDI R18, OXxXFF 74
n+4 NOP 74

This experiment confirmed that in fact no instruction is
skipped (or replaced with a NOP instruction) and the first
addition instruction is executed twice. This is only possible if
the program counter is not updated and provided the fact that
this type of fault happens whenever the negative time of the
clock is very short, we believe that the program counter update
on the DUT depends on the negative time of the clock signal.
Our interpretation of the instruction modification is given in
Table V. In the table, the first row shows the initial value of the
register 16 before the glitch (112). In the following rows, the
program flow and how the value of the register 16 is updated
is shown. Further experiments showed that repeating the ADD

instruction is independent of the involved registers as well as
the values stored in the registers.

TABLE V. INTERPRETATION OF A GLITCH RESULTING IN THE
REPETITION OF AN INSTRUCTION, WHERE THE VALUE OF R5 IS 101 AND
THE VALUE OF R21 1S 117.

Prog. Counter | Instruction | Value of R16

n—1 NOP 112

n ADD R16, RS 213

n ADD R16, RS 58
n—+1 ADD R16, R21 175
n—+ 2 CLR R4 175
n+3 LDI R18, OxFF 175
n—+4 NOP 175

Similarly to the case given in Table V, it can also happen
that either the first or the second execution of the same
instruction can get modified. In our experiments we observed
values in {57,66,67} which can only be explained by a
repeated ADD instruction but either in the first or the second
execution of the instruction is somehow misinterpreted in the
instruction decoder and therefore resulting in a value much
lower than the expected result.

VI. THE INFLUENCE OF AMBIENT TEMPERATURE

Figure 8 and Figure 9 show the types of faults that can be
caused for a given difference between the glitch parameters
dy and do when the microcontroller is clocked at 10 MHz,
and 20 MHz respectively. In both figures, only the parameters
which consistently produce a particular type of fault are
plotted. On the vertical axis, different types of faults that can
be generated are listed, and the horizontal axis is related to
the timing of the glitch which is introduced within the clock
cycle. For the experiments done in 25° Celsius, the results are
plotted with a blue circle (o). To represent the results for the
experiments that the device was heated to 100° Celsius, a red
(x) is used. Note that a more detailed version of Figure 8 is
given in Figure 12 in Appendix A for the interested reader.

By increasing the ambient temperature during clock-glitch
injections, we made the following key observations:

1) We identified that essentially the same faults that
can be caused during room temperature can be also
caused at high temperatures. So there is no negative
impact of higher temperatures in obtaining different
fault types. However, we identified that the clock-
glitch injection time is shifted and needs to be per-
formed at a later instant of time within the targeted
clock cycle. The reason for this is explained later in
Section VI-A.

2) In some cases, e.g., in the case when the clock-glitch
shape has a duration of ds — d; = 5ns, it shows
that the sensitivity window, i.e., the time when the
device is sensitive to clock-glitch injections, is getting
larger with higher temperature. This means that glitch
attacks under the presence of heating are easier to
perform in practice because the time frame where
the glitch causes faults is larger.

3) It is possible to consistently cause faults for certain
glitch parameters (e.g.,; do — di = 6ns) when
the device is running under high ambient tempera-
ture, which is not possible within room temperature

though. That means that the success rate of clock-
glitch attacks on that device is getting higher the
higher the ambient temperature.

4) It should be noted that when the device was clocked
at 20 MHz (results shown in Figure 9), the type of
fault causing to repeat the executed instruction did
not occur when the device was heated to 100°C.
Although this behavior is visible when the difference
between glitch parameters dy — d; = 4ns in 25° C,
our experiments did not yield this kind of fault when
the device was heated and clocked at 20 MHz. The
repeated instructions at this temperature were always
modified in the second execution in the presence of
a clock glitch at 100° C.

5) When the device is overclocked at 20 MHz, the longer
glitch shapes, like do — d; = 6or7mns, result in a
larger variety of faults when the device is heated up
to 100° C. This behavior can be clearly seen in the
bottom plots of Figure 9.

A. Temperature Derating Factor

By analyzing Figures 8 and 9, it is clearly visible that the
sensitivity window for inducing the faults is shifted to the
right when the temperature is higher. We are now going to
explain this effect with a simple example. Let us assume the
simple synchronous circuit shown in Figure 10. The registers
sample the data input D at the positive clock edge and the
same clock signal CLK is provided to all registers. Between
the transmitting registers Regrx and the receiving registers
Regrx a combinational logic block is inserted. This com-
binational logic block has a propagation delay t, comp. This
propagation delay defines the time after which the output has
settled to a stable value in the worst case after an input change.
A proportional relationship between ?;, comp and the junction
temperature exists, i.e., the higher the junction temperature is,
the longer is the propagation delay of a combinational circuit.
In industry, the derating factor Kg is used to describe the
influence of the temperature on the speed of a circuit. In order
to fully describe the impact of PTV (process, temperature, and
voltage) variation on the speed of a circuit, derating factors
describing the process (K p) as well as the supply voltage
(Kv) also exist. The nominal timing is multiplied with the
product of Ko, Kp, and Ky to get the timing for a specific
condition. More detailed information about the derating factors
can be found, for example, in Chapter 12 (p.590) in the book
Digital Integrated Circuit Design by H. Kaeslin [23].

Several intermediate values (IV7, IV, I'Vs, ...) appear at
the output of the combinational logic block before it settles to
the stable value. If the receiving registers sample their input
before the combinational block provides a stable value (due to
a too high clock frequency or the insertion of a clock glitch
to perform a fault attack), this consequently leads to wrong
results. The intermediate values, which can be observed at
the output of the combinational logic block depend on the
previous input value data;,(t — 1) and the new input value
data;,(t). Each intermediate value can be observed for a
specific time interval. With rising temperature, the speed of
the combinational logic slows down as discussed above, so the
temperature influences the signal-propagation time and there-
fore the fault-injection window when a glitch is effective or
not. This fact is shown in the timing diagram in Figure 11. The

Repeat Same
Repeat & Modified oo *F

ADD R16, R13 221)} oo
ADD R16, R12 (220)
ADD R16, R14 (222)f oo F
MOV R16, R4 (100)}

ADD R16, R20 (228) €]
ADD R16, R4 (212)f ok
Inconsistent [oo

—o—125°C
—*—100° C|{

5 10 15 20 25
d | [ns]

(dz_dl) =6ns

Repeat Same

Repeat & Modified @
ADD R16,R13 (221) 1
ADD R16, R12 (220)f
ADD R16, R14 (222)
MOV R16, R4 (100)
ADD R16, R20 (228)
ADD R16,R4 (212)
Inconsistent [

@ *

gi * *g

497250C <
—#—100° C|]

10 20 30 40 50
d . [ns]

Repeat Same oo ™

Repeat & Modified ol
ADD R16, R13 (221) o™
ADD R16, R12 (220)
ADD R16, R14 (222)
MOV R16, R4 (100)f
ADD R16, R20 (228)} o™
ADD R16, R4 (212)}
Inconsistent |

—o—125°C
—*—100° C|{

10 20 30 40
d . [ns]

(dz_dl) =7ns

Repeat Same

Repeat & Modified @
ADD R16, R13 (221)f w*
ADD R16, R12 (220)}
ADD R16,R14 (222)F
MOV R16, R4 (100) 0™ *
ADD R16, R20 (228)}
ADD R16,R4 (212) 1
Inconsistent |

*

ii@ o]

497250C <
—#—100° C|]

10 20 30
d . [ns]

Fig. 8. Types of glitches generated depending on the glitch parameters used and the ambient temperature, while executing the instruction ADD R16, R5. The

device is clocked at 10 MHz for these experiments.

proportional relationship between temperature and speed of the
circuit increase the size of the signal-propagation intervals as
well as shifts their position to the right. If a similar clock
glitch is inserted at two different temperatures, the type of
the fault is different if the receiving registers sample different
intermediate values. This fact is also illustrated in Figure 11.
By applying the modified clock signal C'LK, the receiving
registers are forced to sample the output of the combinational
logic block data,,; before it has settled to a stable value. For
a temperature of 25°C, I'V3 is sampled while for 100°C, IV,
is sampled.

VII. CONCLUSION

In this paper, we aimed to answer the question if and how
temperature effects the success rate of clock-glitch fault attacks
on cryptographic implementations. As a target device, we
evaluated the temperature impact on an 8-bit AVR ATmegal62
microcontroller. In addition to this contribution, we present
and discuss new fault types caused by clock glitches on the
AVR. Our investigations showed that it is possible to repeat
individual instructions, to insert new random instructions, and
to change the opcode of instructions such that the operand
address is changed to another value. We further demonstrated
that with increased ambient temperature, clock-glitch attacks
are getting more effective. This means that it is possible 1) to
inject faults that were not injected during room temperature
and 2) to increase the time frame when the device is sensitive
to faults. The latter fact makes practical attacks more easy to

perform since the device gets less sensitive to the exact fault-
injection time.

As future work, we plan to investigate resistor-based
heating elements to improve our setup. We further plan to
increase the ambient temperature to the limits of the AVR
microcontroller to evaluate the impact. As opposed to this, we
also want to evaluate the impact of low-temperature attacks,
meaning that we are interested in analyzing the impact of glitch
attacks under the presence of cooling.

ACKNOWLEDGEMENTS

The work presented in this article has been supported by the
European Cooperation in Science and Technology (COST) Action
IC1204 (Trustworthy Manufacturing and Utilization of Secure De-
vices - TRUDEVICE), by the European Commission through the
FP7 program under project number 610436 (project MATTHEW), by
the Technology Foundation STW (project 12624 - SIDES), and by
the Netherlands Organization for Scientific Research NWO (project
ProFIL 628.001.007).

REFERENCES

[1] E. Biham and A. Shamir, “Differential Fault Analysis of Secret Key
Cryptosystems,” in Advances in Cryptology - CRYPTO 97, 17th Annual
International Cryptology Conference, Santa Barbara, California, USA,
August 17-21, 1997, Proceedings, ser. LNCS, B. S. K. Jr., Ed., vol.
1294. Springer, 1997, pp. 513-525.

[2] L. Hemme, “A Differential Fault Attack Against Early Rounds of

(Triple-) DES,” in Cryptographic Hardware and Embedded Systems-
CHES 2004. Springer, 2004, pp. 254-267.

Repeat Same [o5 Repeat Same 1
Repeat & Modified fc s e Repeat & Modified ok 1
ADD R16, R13 221)} 1 ADDRIG6,R13 (221)f 00 RO
ADD R16, R12 (220) 1 ADDRI16,R12 (220) 1
ADD R16, R14 (222)f 65 {1 ADDRIG6, R14 (222)t oy 1
MOV R16, R4 (100)} O HE KT 1 MOV R16, R4 (100)} o ET K 1
ADD R16, R20 (228) © Hk 1 ADD R16, R20 (228)} e 25) Hok 1
ADD R16, R4 (212)f oo - FF —e—125°C |[{ ADDRIG6, R4 (212)1 o —e—125°C 1
Inconsistent | @—*e—* —*%— 100° C|1 Inconsistent | @@*—* —*— 100° C|1
6 8 10 12 14 16 6 8 10 12 14 16
dl [ns] dl [ns]
(dz_dl) =6ns (dz_dl) =7ns
Repeat Same 1 Repeat Same 1
Repeat & Modified Ak 1 Repeat & Modified 1
ADD R16, R13 (221)f o K {1 ADDRIG6, R13 (221)f @® ek 1
ADD R16, R12 (220)} GO 1 ADD RI16, R12 (220)f co Hk 1
ADD R16, R14 (222)} o HeTX {1 ADDRI6, R14 (222)} e Kk]
MOV R16, R4 (100)f @—é—* 1 MOV R16, R4 (100)[o———o . 1
ADD R16,R20 (228)} oo *F 1 ADD RI16, R20 (228)t Hx 1
ADD R16, R4 (212) 1 Hx —e—25°C |{ ADDRI6, R4 (212)f e —e—25°C |1
Inconsistent f ek —*— 100° C|1 Inconsistent | *ok —*— 100° C|1
6 8 10 12 14 16 6 8 10 12 14 16
d1 [ns] d1 [ns]

Fig. 9. Types of glitches generated depending on the glitch parameters used and the ambient temperature, while executing the instruction ADD R16, R5. The
device is clocked at 20 MHz for these experiments.

— T RE
1 datay, datagu B A

—» D Q Ll Combinational logic » D Q
CLK
CLK tp.comp CLK |
= :]
CLKg

Regrx

Fig. 10. A simple synchronous circuit with a combinational logic block datay,
between two storage elements. ¢, comp equals the propagation delay of the
combinational logic block.

25°C T W Vs Vs
datag,t f i i i i i X datag, valid
[31 J. Blém;r and J.-P. Seifert, “Fault Based Cryptanalysis of the Advanced 100°C — TV |V23 TN,
Encryption Standard (AES),” in Financial Cryptography, 7th Interna- T ! : i ; -
tional Conference, FC 2003, Guadeloupe, French West Indies, January datao P ! : N X dataoy valid
27-30, 2003, Revised Papers, ser. LNCS, R. N. Wright, Ed., vol. 2742. H— i = ; _
Springer, January 2003, pp. 162-181. 0 i ! time
[4] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, Regrx samples data at input

at this time instance because

“The Sorcerer’s Apprentice Guide to Fault Attacks,” Cryptology ePrint of clock glitch

Archive (http://eprint.iacr.org/), Report 2004/100, 2004. [Online].
Available: http://eprint.iacr.org/

[5] I Verbauwhede, D. Karaklajic, and J.-M. Schmidt, “The Fault Attack Fig. 11. Timing diagram showing the influence of temperature on the result

Jungle - A Classification Model to Guide You,” in Workshop on Fault of a clock glitch insertion. At different temperatures, different intermediate
Diagnosis and Tolerance in Cryptography, FDTC 2011, L. Breveglieri, values are sampled by the receiving registers due to the changed timing.
S. Guilley, I. Koren, D. Naccache, and J. Takahashi, Eds. IEEE, 2011,
pp. 3-8.

[6] 1. Balasch, B. Gierlichs, and 1. Verbauwhede, “An In-depth and Black- [71 O. Kommerling and M. G. Kuhn, “Design Principles for Tamper-
box Characterization of the Effects of Clock Glitches on 8-bit MCUSs,” Resistant Smartcard Processors,” in Proceedings of the 1st USENIX
in Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC Workshop on Smartcard Technology (Smartcard °99), Chicago, Illinois,

2011. 1IEEE, 2011, pp. 105-114. USA, May 1011, 1999. McCormick Place South: USENIX Association,

Repeat Same 1
Repeat & Modified f oo ¥ 1
ADD R16, R13 (221)} e 1
ADD R16, R12 (220) } 1
ADD R16, R14 (222)} o—o K 1
MOV R16, R4 (100)} o—©& F 1
ADD R16, R20 (228)} o0 1
ADD R16, R4 (212)} Ak —e—125°C |
Inconsistent| co- * * —*— 100° C|{
6 8 10 12 14 16
d | [ns]
(dz—d 1) =6ns
Repeat Same 1
Repeat & Modified f o w* 1
ADD R16, R13 (221)f o K 1
ADD R16, R12 (220)f ® Hx 1
ADD R16, R14 (222)f o gk 1
MOV R16,R4 (100)| gy F ¥ 1
ADD R16, R20 (228)} Fx 1
ADD R16, R4 (212)} o —e—125°C |1
Inconsistent [oy —— 100° C|1
6 8 10 12 14 16
d1 [ns]

Fig. 12.

The device is clocked at 10 MHz for these experiments.

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

May 1999, pp. 9-20, iSBN 1-880446-34-0.

H. Choukri and M. Tunstall, “Round Reduction Using Faults,” Work-
shop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2005,
vol. 5, pp. 13-24, 2005.

J.-M. Schmidt and C. Herbst, “A Practical Fault Attack on Square
and Multiply,” in Workshop on Fault Diagnosis and Tolerance in
Cryptography, FDTC 2008. 1EEE, 2008, pp. 53-58.

N. Selmane, S. Guilley, and J.-L. Danger, “Practical Setup Time
Violation Attacks on AES,” in Dependable Computing Conference,
2008. EDCC 2008. Seventh European. 1EEE, 2008, pp. 91-96.

A. Dehbaoui, A.-P. Mirbaha, N. Moro, J.-M. Dutertre, and A. Tria,
“Electromagnetic Glitch on the AES Round Counter,” in COSADE
2013, Paris, France. Springer, 2013, pp. 17-31.

T. Fukunaga and J. Takahashi, “Practical Fault Attack on a Crypto-
graphic LSI with ISO/IEC 18033-3 Block Ciphers,” in Workshop on
Fault Diagnosis and Tolerance in Cryptography, FDTC 2011. 1EEE,
2009, pp. 84-92.

M. Agoyan, J.-M. Dutertre, D. Naccache, B. Robisson, and A. Tria,
“When Clocks Fail: On Critical Paths and Clock Faults,” in Smart Card
Research and Advanced Application. Springer, 2010, pp. 182-193.

S. Skorobogatov, “Low temperature data remanence in static
RAM,” University of Cambridge Computer Laboratory, Tech. Rep.,
June 2002. [Online]. Available: http://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-536.pdf

D. Samyde, S. P. Skorobogatov, R. J. Anderson, and J.-J. Quisquater,
“On a New Way to Read Data from Memory,” in IEEE Security in
Storage Workshop (SISW02). 1EEE Computer Society, 2002, pp. 65—
69.

T. Miiller and M. Spreitzenbarth, “FROST - Forensic Recovery
of Scrambled Telephones,” in ACNS 2013, Banff, AB, Canada.,
M. Jacobson, M. Locasto, P. Mohassel, and R. Safavi-Naini,

(d2—d 1) =5ns
Repeat Same 1
Repeat & Modified oo 1
ADD R16, R13 (221)} co TF
ADD R16, R12 (220)} 1
ADD R16, R14 (222)} oo * 1
MOV R16, R4 (100)t o & F 1
ADD R16, R20 (228)} oo 1
ADD R16, R4 (212)} —e—125°C |
Inconsistent | s F —*— 100° C|{
6 8 10 12 14 16
dl [ns]
(dz—d 1) =7ns
Repeat Same 1
Repeat & Modified f oo o 1
ADD R16, R13 (221)f oo ek 1
ADD R16, R12 (220)} ® 1
ADD R16, R14 (222)} [CERRERRRRTEEY Co e 1
MOV R16, R4 (100)} oy - ¥ 1
ADD R16, R20 (228)} 1
ADD R16, R4 (212)} —e—125°C |1
Inconsistent f —— 100° C|
6 8 10 12 14 16
d1 [ns]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

Types of glitches generated depending on the glitch parameters used and the ambient temperature, while executing the instruction ADD R16, RS5.

Eds., vol. 7954, 2011, pp. 373-388. [Online]. Available: http:
/Nlink.springer.com/chapter/10.1007%2F978-3-642-38980-1_23

J. Halderman, S. D.Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A.Calandrino, A. J.Feldman, J. Appelbaum, and E. W.Felten, “Lest
We Remember: Cold Boot Attacks on Encryption Keys,” in 17th
USENIX Security Symposium, San Jose, CA, July 2008, 2008, pp. 45—
60.

J.-J. Quisquater and D. Samyde, “Eddy Current for Magnetic Analysis
with Active Sensor,” in Conference on Research in SmartCards (E-
Smart’02), Nice, France. UCL, September 2002, pp. 185-194.

S. Govindavajhala and A. W. Appel, “Using Memory Errors to Attack
a Virtual Machine,” in [EEE Symposium on Security and Privacy,
Proceedings of the 2003, 2003, pp. 154-165. [Online]. Available:
http://dl.acm.org/citation.cfm?id=830563

M. Hutter and J.-M. Schmidt, “The Temperature Side-Channel and
Heating Fault Attacks,” in CARDIS 2013, 12th, Berlin, Germany., ser.
Lecture Notes in Computer Science, 2013, in press.

S. Endo, T. Sugawara, N. Homma, T. Aoki, and A. Satoh, “An on-
chip glitchy-clock generator and its applicataion to sage-error attack,”
in COSADE 2011, Darmstadt, Germany, ser. Workshop Proceedings
COSADE 2011, 2011, pp. 175-182.

Atmel Corporation, “ATmega 162/v Datasheet,”
2003. [Online]. Available: http://www.atmel.com/Images/
Atmel-2513-8-bit- AVR-Microntroller- ATmegal62_Datasheet.pdf

H. Kaeslin, Digital Integrated Circuit Design — From VLSI Architectures
to CMOS Fabrication. Cambridge University Press, 2008, iSBN 978-
0-521-88267-5.

APPENDIX A presenting results for smaller glitch parameters is given in Figure 12.
DETAILED PLOT OF 10 MHZ FAULTS

Since the horizontal scale of Figure 8 is too wide because of
the wide range of successful glitch parameters, a more detailed plot

