
UC Irvine
ICS Technical Reports

Title
Clock optimization for high-performance pipelined design

Permalink
https://escholarship.org/uc/item/22d81617

Authors
Juan, Hsiao-ping
Gajski, Daniel D.
Bakshi, Smita

Publication Date
1996-01-31

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/22d81617
https://escholarship.org
http://www.cdlib.org/

Notice: This Material

may be protected
by Copyright Law

(Title 17 U.S.G.)

Clock Optimization for

High-Performance Pipelined Design

Hsiao-ping Juan
Daniel D. Gajski

Smita Bakshi

Technical Report 7^96-01

January 31, 1996

Department of Information and Computer Science

University of California, Irvine

Irvine, CA 92717-3425

(714) 824-7063

hjuan@ics.uci.edu

gajski@ics.uci.edu

sbakshi@ics.uci.edu

Abstract

In order to reduce the design cost of pipelined systems, resources may be shared
by operations within and across different pipe stages. In order to maximize resource
sharing, a crucial decision is the selection of a clock period, since a bad choice can

adversely affect the performance and cost of the design. In this report, we present an

algorithm to select a clock period that attempts to minimize design area while satisfying

a given throughput constraint. Experimental results on several examples demonstrate

the quality of our selection algorithm and the benefit of allowing resource sharing across
pipe stages.

SU

C

Y\0.

Clock Optimization for High-Performance Pipelined Design

. Hsiao-ping Juan, Daniel D. Gajski and Smita Bakshi

Department of Information and Computer Science

University of California, Irvine, CA 92717-3425

Abstract

In order to reduce the de^t^n co$t of pipelined systems,

resources may he shared by operations within and across
different pipe stages. In order to maximize resource shar

ing, a crucial decision is the selection of a clock period,
since a bad choice can adversely affect the performance
and cost of the design. In this report, we present an al
gorithm to select a clock period that attempts to minimize
design area while satisfying a given throughput constraint.
Experimental results on several examples demonstrate the
quality of our selection algorithm and the benefit of allow
ing resource sharing across pipe stages.

1 Introduction

In general, high-performance constraints are met by
pipelining the design into several concurrently executing
stages, such that at any given time each pipe stage operates
on a different sample from the stream of incoming sam
ples. Figure 1 illustrates the block diagram of the MPEG
decoder algorithm [3], which is a typical example of such
a DSP system. The block diagram shows that the design
is pipelined or partitioned into several modules that can
run one after the other on the same data but at the same

time on different data. By partitioning the algorithm into
such modules, each module can execute in 4000 ns without

violating the throughput constraint of 4000 ns per block.
Without this partitioning, each module needs to execute
in a much shorter time in order to satisfy the throughput
constraint.

There are three possible schemes to implement a
pipelined DSP system such as the MPEG algorithm. In
the first scheme, as shown in Figure 2(a), the modules
are implemented separately. This is the scheme that is
currently in practice - the description under development
is partitioned into modules by the system designer and
then each module, along with its performance and cost
constraints, is given to a different design group. In this
scheme, different modules can use different clock signals,
as long as their delays satisfy the throughput constraint.
Note that if different clock signals are used, they need to
be synchronized at some point.

Clearly, implementing each module separately would re
sult in a large number of resources, thereby increasing the
cost of the design. However, it is possible to reduce this
design cost by sharing hardware resources among these
modules. For instance, the same functional unit can be

pipegtageZ f'jjgS ' dtquiiaar |

P0estage3 : lOCT

Figure 1: A pipelined MPEG example

utilized to perform several different operations from dif
ferent pipe stages over different time-steps. Since one re
source can now potentially do the job of many, a fewer
number of such resources are required, resulting in a lower
cost. In Figure 2(b), we show the second implementation
scheme, where different modules share components in the
data-path. To make resource sharing easier, we assume
that a functional unit used by one pipe stage can be used
by another pipe stage only after the synchronization point
of their clock signals. For example, consider the clock sig
nals elk, and c/fc,+i shown in Figure 2(b). The clock period
of clki+i is twice as long as the clock period of clki. Ob
viously, a functional unit that performs an operation in
pipe stage i -f 1 cannot be used to perform any operation
in pipe stage : within two cycles of elk,, even though the
component delay may be shorter than the clock period of
elk,.

The design cost can be further reduced by sharing the
control units among the modules, that is, instead of one

local control unit for each module, there is a global control
unit, as shown in Figure 2(c). This sharing could be done
by using the same clock signal for all the modules. Since
all pipe stages should have the same delay, and since the
clock signals are the same, it is obvious that all pipe stages
require the same number of clock cycles. Therefore, we
can implement a control unit such that in each state, the

h_n_nJ~L
pipe stage 1*1

Hit r~; "^i dk^
1^ X_,

pipe stage land 1*1

pipe stage Iand hi

h_rLh_n_

Figure 2: Different implementation schemes

operations of different pipe stages but in the same time-
step would be executed concurrently. In this report, we

will focus on the third implementation scheme since it can

achieve the maximum resource sharing and, consequently,

minimum design cost.

Note that as the amount of resource sharing increases,

it becomes more difficult for a human designer to do the
implementation without design automation tools. When

performing resource sharing, an important decision is the
selection of a clock period to schedule the operations into

different states. A bad choice of the clock period could ad

versely affect the performance and cost of the final design.
For instance. Figure 3(a) shows a two-stage pipeline with
a pipe stage delay (the inverse of throughput) constraint
of 120 ns. Figures 3(b), (c) and (d) show scheduling re
sults of the given pipeline using 60, 30 and 20 ns as the

clock period, respectively. When the clock period is equal
to 60 ns, each pipe stage requires two clock cycles; there
fore, each pipe stage has a delay of 120 ns, which satisfies
the constrzdnt. Note that the operations d and e can share

the same multiplier since they are in different clock cycles.
The operations a and d cannot share the same multiplier
because they are scheduled in the same clock cycle. There
fore, the minimum cost is two multipliers and two adders.

When the clock period is equal to 30 ns, each pipe stage

requires four clock cycles and the pipe stage delay con
straint is also satisfied. However, as shown in Figure 3(c),

pip*iirt*d DP6

"I

mutt:Se ns dk:60 ra

add : 24 ns cost: 2 mulL

pipestagedaiay: 120 m 2add

elk: 30 ns

emt: 2 mutt,

ladd

clk:20m

perl:vtolaM

Figure 3: An example illustrating the effect of different
clock periods on resource sharing of a pipelined design

the additions b and c are now scheduled in different clock

cycles and consequently, they can share the same adder.

Thus, the design cost when the clock period is 30 ns is two
multipliers and one adder, which is lower than the design

cost when the clock period is 60 ns. When the clock pe

riod is equal to 20 ns. Figure 3(d) shows that pipe stage
1 requires seven clock cycles, which results in a delay of

140 ns and violates the pipe stage delay constraint. Using
this example, we have shown that the selection of a clock

period is a non-trivial problem. In this report, we propose

a clock estimation algorithm that determines the clock pe

riod which satisfies the throughput constraint and requires

minimum number of resources.

The rest of the report is organized as follows. In the

next section, we discuss previous research done in this area

and also explain how we differ from it. We present the
problem definition and an overview of our algorithm in

Section 3. The important steps in our algorithm are ex

plained in greater detail in Section 4, 5 and 6. Finally, we
present experimental results and give conclusions.

2 Previous Work

Several previous papers addressed the issue of clock pe

riod estimation for a given data flow graph. For example,

there are several clock estimation schemes [7] [6] [4] that
use the delay of the slowest component as the estimated
clock period. However, using the slowest component delay
as the clock period can lead to under-utilized functional

units in cases where the components have widely differing

delays.

A clock estimation method based on slack minimization

is proposed in [5]. The amount of time that the circuit re
mains idle during a clock cycle is called a slack. This clock

estimation method basically evaluates a contiguous range

of integer candidate clock periods and the clock period
that results in minimum slack would be chosen. However,

this estimation method aims to select the clock period that
optimizes the performance of the design. In our problem,
performance optimization is not the goal; our goal is to
minimize the design cost while satisfying the performance
constraint.

In [l], a methodology is proposed to estimate the clock
period for time-constrained scheduling as weU as resource-
constrained scheduling. However, this methodology does

not consider pipebned designs, while our algorithm aims
to select a clock period for pipeUned designs.

Finally, the algorithm presented in this report differs
from all the algorithms mentioned above in that our algo
rithm also takes the control unit delay into account. When
the number of states is very large, the control unit tends
to become very complex and control unit delay contributes

significantly to the clock period and cannot be neglected.
By considering the control unit delay, our algorithm pro
vides a more realistic estimation than the previously pub-

bshed work.

3 Problem Definition and Algorithm
Overview

Our problem can be defined as follows:

Given (1) a pipebne of n pipe stages
PSi •••PSn, where each pipe stage PS, is repre
sented by a data flow graph DFGi, (2) a compo
nent bbrary, (3) the pipe stage delay constraint

PSDelay and (4) a range of allowable clock peri
ods, represented by [clkmin, clkmax], find a clock
period elk such that, Vj, DFGi can be scheduled

into [PSDelay/clk\ states of delay < elk and the
design area is minimized.

The maximum clock period allowed, clkmax, is equal to
PSDelay. Design Ubraries often specify the maximum

clock frequency at which the clock input of a bistate circuit
may be driven such that stable transitions of logic levels
are maintained. This frequency is used to determine the

value of clkmin if it is not already specified by the user.

The cost of a pipebne is approximated by the total area of
datapath components.

The example in Figure 4 illustrates the problem. Given
are a 2-stage pipebne, where the pipe stages PS\ and PS2

are represented by DFGi and DFG2 respectively, a com

ponent library, the range of allowable clock periods [20ns,
200ns], and a pipe stage delay constraint of 200 ns. Our
algorithm estimates that choosing 40 ns as the clock pe

riod wiU produce a design with the minimum cost, which
is two multipbers and one adder.

Our algorithm selects the clock period in three basic

steps.

1. Pipe stage shape function generation: The first
step in our algorithm is to produce a shape function

in terms of clock periods versus the pipe stage delay,
individuaUy, for each pipe stage of the description.
This shape function can clearly indicate the clocks

that can satisfy the pipe stage delay constraint.

2-ttag« pipeline:

DFG, DFG,

ck«40ns

cos) - 2 muH * i sdd

component library:

eonp ir»a(uin*a)

•<M Z4 60.000

mun 66 400.000

PSOslty • 200 m
ekmai • 200 nt

Ghinna 20 ns

Figure 4: An example iUustrating the inputs and outputs
of the problem

2. Clock candidates selection: Next, given the pipe
stage delay constraint, PSDelay, and the shape func
tions of each pipe stage, a set of clock periods that can
satisfy the pipe stage delay constraint in all stages can
be easily obtained. This set of clock periods is called
clock candidates.

3. Resource estimation: Having obtained the set of
clock candidates, the bnal step in our algorithm is
to estimate the amount of resources required by each
clock candidate. Then the algorithm would return
the clock period that requires the least amount of

resources.

Details of each of the steps above will be discussed in

the foUowing sections.

4 Pipe Stage Shape Function Genera
tion

In this section, we wUl discuss how to generate the shape
function of one pipe stage. Before we present the algo
rithm, we will show the underlying design model used for
the purpose of clock period calculation.

4.1 Design Model

The design model for clock estimation, as shown in

Figure 5, is similar to the design model used in [5]. In
this model, the datapath consists of registers, functioned
units and tri-state drivers. A two-level bus structure is

assumed for the interconnection across the registers and
functional units. A typical datapath operation involves
reading operands from the registers, computing the result
in the functional units, and finally writing the result into a
destination register. Note that a register could be used to
store a temporary value that is used in different states of

the same pipe stage or could be used as a pipebne latch be
tween pipe stages. Operation chaining is supported in this
model by allowing connections from the output ports of
some functional units directly to the input ports of other
functional units. Moreover, operations can execute over

several clock cycles; that is, multi-cycled operations are

possible.

Figure 5: Design model for clock estimation

The control unit consists of the state register, a decoder,
the control logic to drive the control lines for the datap

ath components, and the next-state logic to compute the

next state to be stored in the state register. The control

unit implements a state machine that sequences a design

through a series of states, each of the states represents the
set of datapath operations performed concurrently in the

same or different pipe stages of the design.

The clock period is determined by the longest register-
to-register delay. Typically, the path through the control
logic, as shown in Figure 5, has the largest delay. Con

sequently, the minimal clock period is equal to or greater
than the sum of all the delays associated with the compo
nents and the wires in the path. In other words, we can

specify the clock period by the following:

clk=TpsR + Tdec + Tcl + '^TR + Tpu + 1'ns + + Twij

where:

TpsR and Tssr are the propagation delay and

the setup time of the state register, respectively,

Tdec is the delay of the decoder,

Tcl is the delay of the control logic,

Ttr is the delay of the tri-state driver,

Tfu is the delay of the functional units,

Tns is the delay of the next-state logic, and
Twire is the total delay of the wires in the path.

However, the wire delay cannot be meaningfully esti
mated without a floorplan, which is not available at this

early stage of synthesis. Therefore, in our estimation, the

clock period elk is approximated using the following equa
tion:

clk=Ti:,p Tcv

Tdp=Ttr -t- Tpu

Tcu=TpsR + Teec + Tcl + Tjvs + Tssr

where Tdp is the delay of the datapath, and Tcu is the
delay of the control unit.

4.2 Shape Function Generation Algo
rithm

The shape function generation algorithm basically con
sists of three steps. It first produces a shape function
in terms of clock periods versus the minimum number of

states by considering only the datapath delay. Then the
algorithm estimates the control unit delay and updates the
shape function accordingly. Finally, the shape function of
clock periods versus the pipe stage delay can be computed
by multiplying the clock periods to the corresponding num
ber of states. We will describe the first two steps in the
following sections.

4,2.1 Datapath

Given a data flow graph DFGi of the pipe stage PS,
and the range of clock period allowed, [c/fcmrn, cl/bmor],
the goal is to generate the shape function of clock periods
versus the minimum number of states that the stage PS,
requires.

Since the clock periods are in the real number domain,
clearly, it is infeasible to attempt to go through all possible
clock periods and estimate the minimum number of states

that the pipe stage requires for each of them. However,
the possible numbers of states are in the integer domain.
Therefore, instead of computing the minimum number of
states required for aU possible clock periods, the shape
function is generated incrementally by fixing the number
of states, and then computing the minimum clock period
for the fixed number of states using the procedure Min-
ClkPeriod outlined in Figure 6. This process produces
one (clock period, number of states) point in the shape
function. To obtain the entire shape function, we itera-
tively increase the number of states, beginning with the
smallest possible number, which is \PSDelay/clkmax],
and finishing with the largest possible number, which is

[PSDelay/clkmin\. This approach is based on the fact
that, assume the algorithm estimates that the shortest pos

sible clock period for scheduling the data flow graph into
i states is clki and similarly, the shortest clock period for
i 4- 1 states is c/fc,+i, then we can conclude that for any
clock period clkj, clfc,+i < clkj < clki, the minimum num
ber of states that the data flow graph would be scheduled
into by using clky is i -f-1.

The procedure MinClkPeriodis adapted from the ASAP

scheduling algorithm; however, instead of minimizing the
number of states given a clock period as in the ASAP al
gorithm, it minimizes the clock period given the number
of states. A brief explanation follows.

Given a data flow graph DFG, the procedure
MinClkPeriod first computes the path length for each
of the operations in DFG. The path length of an opera
tion is defined as the longest path delay starting from this
operation till the output node. Therefore, by definition,
the maximum path length, MaxPathLength, of all opera
tions in DFG is the critical path length. The next step
of the procedure involves determining whether a ready op-

Procedure: MinClkPeriod

Inputs: a data flow graph DFG, the number of states N\
Output: the minimum clock period;

begin Procedure
Catep = 1;

ComputePathLength{DFG)-,

MaxPathLength = delay of the longest path in DFG-,
MinClk = MaxPathLength/N;
InaeTiReadyOp5{DFG, PLiat)-,
while {PLiat ^ 0) do

if Catcp = N then

schedule aU the non-scheduled operations;
MinClk — maximum state delay;

PLiat = 0;

else

op = Fir3t{PLiat);
if op is a single-cycled operator then

determine chaining or non-chaining;

schedule op and update MinClk;

else

determine the number of cycles of op;

schedule op and update MinClk;

end if;

lnatTtReadyOpa{DFG, PLiat);
Caiep = Catep -I-1;

end if;

end while;

return MinClk;

end Procedure

Figure 6: The procedure to estimate the minimum clock
period, given N states

eration can be scheduled. In ASAP scheduling, all ready
operations are scheduled as soon as possible, as long as
the clock period constraint is not violated. In our proce
dure, whether a ready operation can be scheduled or not

and whether chaining or multi-cycling should be performed

depends upon its effect on the clock period.
The variable MinClk is initialized to the optimal clock

period MaxPathLengthfN, where N is the number of states

that the DFG would be scheduled into. Then for each op
eration in the ready list PLiat, we first determine whether

it would be a single-cycled operation or multi-cycled oper
ation using the delay of the operation and the current clock
period MinClk. If the operation delay is less than or equal

to MinClk, which means it is a single-cycled operation, we

then need to decide whether it could be chained with its

predecessor in the current stale or be deferred to the next
state. If the operation delay is larger than MinClk, which
means that it is a multi-cycled operation, we would re

quire to decide whether to schedule it across [(operation
delay)/A/tnClfcJ or [(operation delay)/A/inCi/t] states.
The scheduling of an operation may increase the clock

period and the variable MinClk would be updated if it
does. Once an operation is scheduled, some other non-

ready operations become ready and would be inserted into
the ready list. This process continues and when it reaches

the last state, all the non-scheduled operations are sched
uled into the last state and the procedure returns the vari

able MinClk, which now stores the longest state delay.

that is, the clock period.

num o(states - 5

(nut: 56 ns

add: 24 nt

Figure 7: Determining the minimum clock period

Clearly, the result of this algorithm depends upon how
it determines chaining and multi-cycling. We now illus
trate how chaining and multi-cycling are determined on
the example in Figure 7.

Knowing that a multiplication operation takes 56 ns
and an addition takes 24 ns, the procedure computes that
the maximum path length is 136 ns. Since the data flow
graph would be scheduled into five states, the optimal clock
period, that is, the current MinClk, is 136/5=27.2 ns.
In the first iteration of the procedure, it would attempt
to schedule the operation a. Knowing that the delay of
the operation a is 56 ns and the current clock period is
27.2 ns, a should be a multi-cycled operation and the pro
cedure needs to determine whether to schedule it across

[56/27.2j=2 states or [56/27.2]=3 states. Let's consider
the first case where o is scheduled across two states. This

means that average delay of the first two states would be
56/2=28 ns each. Furthermore, if a is finished in two
states, its successors c and d could be scheduled across

three states, which results in an estimated delay per state
of (24-b56)/3=26.7 ns. Thus, the maximum state delay in
this case, that is, the clock period, would be 28 ns. Con

sider the second case, where a is scheduled across three

states. This gives an average state delay of 18.7 ns for the

first three states. However, operations c and d now need

to be finished within two states, which gives an estimated
delay per state of (24-|-56)/2=40 ns. That is, the clock
period in this case would be 40 ns. Since scheduling the

operation a into a two-cycled operation gives an estimation

of shorter clock period, the procedure decides to schedule

a across the first two states as shown in Figure 7(b).
The next iteration involves the scheduling of the oper

ation b. Note that the clock period MinClk has now been

updated to 28 ns. Since the delay of the operation b is less
than 28 ns, it is a single-cycled operation and its schedul
ing does not change the current clock period. The result

of this iteration is shown in Figure 7(c). The procedure
continues this process for the rest of the operations c and
d, and the final result is shown in Figure 7(d) and the min
imum clock period for scheduling the data flow graph into
five states is 28 ns.

Similarly, we can estimate that the minimum clock pe
riods for scheduling the data flow graph in Figure 7(a) into

mult: 56 ns

add: 24 ns

dock perloa (ns)

Figure 8: The shape function of clock periods versus num
ber of states for the pipe stage PSj

one, two, three, or four states are 136 ns, 80 ns, 56 ns and

56 ns respectively. Therefore, we can conclude that for any

clock period larger than 136 ns, the minimum number of

states that DFG requires is one; for any clock period be

tween 136 and 80 ns, the minimum number of states that

DFG requires is two, etc. Figure 8 shows the resultant
shape function.

The procedure MinClkPeriod has a 0(n) time com
plexity, where n is the number of operators in the given
DFG. Let c denote the possible number of states
the given DFG could be scheduled into, that is, c =

\PSDelay!clkmax'l —[PSDelayj clkmin\. Then the time
complexity of generating a shape function for one pipe

stage is 0{cn).

4.2.2 Control Unit

The control unit sequences a design through a series of
states, where each of the states represents the set of dat

apath operations performed concurrently in the same or

different pipe stages of the design. In general, if a shorter
clock period is used to schedule the pipe stages, the number
of states per pipe stage would become larger, and conse
quently, the control unit becomes more complex and the
control unit delay is longer. When the number of states is
very large, the control unit delay contributes significantly

to the clock period and cannot be neglected. In the pre

vious section, an algorithm used to estimate the relation

between the clock period and the number of states by con
sidering only the datapath was presented. In this section,

we will explain how to estimate the control unit delay and

update the shape function accordingly.

Given a clock period elk, and pipe stage delay
PSDelay, each pipe stage wUl be scheduled into N =

[PSDelay/clk\ states. The control unit thus needs to im
plement an iV-state state machine, where in state 5,, all
the operations scheduled in the t-th state of all pipe stages
would be executed.

As illustrated in Figure 5, the control unit consists

of a state register, a decoder, the control logic and the
next-state logic. The control unit may be implemented

as random-logic, a read-only memory(ROM), or a pro
grammable logic array(PLA). In this paper, we will assume
a random-logic implementation as shown in Figure 9.

We assume that the present states are encoded as binary

control j
logic I

state register

next-state

lines

Figure 9: A random-logic implementation of the control
unit

values and are stored in the state register. Therefore, given
that the total number of states is N, the state register
bitwidth wUl he B = flogj A]. Taking the 5-bit output of
the state register as input, the decoder decodes it into an

A-bit output such that each bit corresponds to one state.

The decoder consists of B inverters and A AND-gates.
Each inverter is used to invert one bit of state register,
and the number of inputs to an AND-gate is B.

One OR-gate is required for each control line and next-

state line. The size, that is, the number of inputs, of an
OR-gate for a control line is identical to the number of

states during which the corresponding control line is as
serted. For example, a control line of a functional unit

wUl be asserted whenever the functional unit performs an
operation bound to it. In the worst case, there exist func

tional units that are used in every state and consequently,
the OR-gates that generate the control lines for these func

tional units would have A inputs. To determine the size

of an OR-gate for a next state line, we assume that each
next-state line is "toggled" on the average during half of
the states in the design since the state values are binary en
coded. Thus, the size of each OR-gate driving a next-state
line is assumed to be equal to A/2.

Since most component libraries usually provide AND
and OR-gates with a limited number of inputs, all the large
AND and OR-gates in our model need to be decomposed
into a multi-level implementation. The multi-level decom
position aims to produce an implementation with the min
imal number of levels. This is guided by the fact that
a multi-level implementation of a large AND-gate with 1
number of inputs using AND-gates with a maximum of M
inputs is in the form of an A/-ary tree. The height of the
tree, which corresponds to the number of levels, is equal
to [logJ^^/]. Let us assume that the component library
contains AND and OR-gates with a maximum of M in
puts, and let Tand,Tor, and Tjnv denote the delay of

an A/-input AND-gate, an Af-input OR-gate and an in
verter, respectively. The following equations are used to

estimate the decoder, the control logic, and the next-state
logic delay.

Tdec=Tisv + RogM ^ Tand

=Tjfiv + HoKm logs ^ ^ "^AND

Tci.=riogM X Tor

Tjvs=riogM('^/2)l XTor

Having obtained Tdec,Tcl and T^s using the equa
tions above, and the propagation delay and the setup time
of the state register from the component library, the con
trol unit delay can be computed by the equation given in
Section 4.1.

Now let's consider a shape function described in the

previous section. Given a point {clki, N) in the shape func
tion, we can use the estimation method discussed above to

estimate the delay of an A^-state control unit. Assume the

delay of an N-staXe control unit is Tcu{N), the algorithm
would update the point {clki,N) to {elk, +Tcu{N),N).
Note that given two points {clk,,N) and {clki^i,N -f 1),
where clki < clki+i, it is possible that clki + Tcu{N) >
c/fc.+i -f- Tcu{N + 1). In this case, the algorithm would
drop the point {clki + TcuiN),N).

After the shape function of clock periods versus the

number of states is updated, we can obtain the shape func
tion of clock periods versus the pipe stage delay by mul
tiplying the clock periods to the corresponding number
of states. Figure 10(a) and (b) illustrate the final shape
functions of pipe stage 1 and 2 in the example shown in
Figure 4.

5 Clock Candidates Selection

Having obtained the shape functions for each pipe stage
of an n-stage pipeline, the next step in our algorithm is to
determine the set of clock periods, called clock candidates,

that can produce schedules satisfying the PSDelay con
straint in every stage. This is done by first determining,
for each pipe stage PS,, the set of clock periods, ClkSet,,
that can satisfy the pipe stage delay constraint. Then by
intersecting all ClkSeti, »= 1, 2, •••, n, the set of clock pe
riods that can satisfy the PSDelay constraint for all pipe

stages can be generated.

Figures 10(a) and (b) show the shape functions of the
two-stage pipeline shown in Figure 4. Given that the

PSDelay constraint is 200 ns, the shaded regions in Fig
ure 10(a) and (b) indicate the range of clock periods that
can produce schedules whose delay is less than or equal to
PSDelay. By intersecting these two sets of clock periods,
a set of clock period, shown as the shaded regions in Fig
ure 10(c), that can satisfy PSDelay in both pipe stages is
obtained.

Note that the set of clock candidates is still in the real

number domain. We minimize the number of clock candi

dates by considering only the integer divisions of the pipe
stage delay constraint PSDelay. The reason is the follow

ing. Let's consider two different clock periods elk, and elk,,

pipe stage 1

V/

43 <7 140

Gfc)ck penod (ns)

pipe stage 2

L

cioek pwttd (ns)

dock psrtod (ns)

(c)

Figure 10; Determining the set of clock candidates

both can satisfy the PSDelay constraint. Moreover, using
either of them, the pipe stages would be scheduled into N
states. Assume that elk, = PSDelayfN. Since clkj also
satisfies the PSDelay constraint, we can conclude that

clkj < PSDelayIN and consequently, clkj < elk, since
clki # clkj. Given a DFG and a fixed number of states,
we know that the longer clock period would require equal
or less resources than the shorter clock period. Since the
goal is to select the clock period that requires the mini
mum number of resources, only clki needs to be consid

ered. Thus, from the set of clock periods obtained above,
only those which are integer divisions of PSDelay are se
lected as clock candidates. For instance, the set of clock
candidates selected for the example shown in Figure 10 is
{67, 200}.

6 Resource Estimation

Having obtained the set of clock candidates, the next
step is to estimate the amount of resources required for
each clock candidate. The resource estimation algorithm
is outlined in Figure 11.

The inputs to this algorithm consist of the data flow
graphs DFGi, - • •, DFG„, each of which represents one
pipe stage, the clock period elk, and the number of states

N. Note that the clock period elk here should be a clock

period that does not include the control unit delay. This
can be done by subtracting the control unit delay from
the clock candidates. The output of the algorithm is the
minimum number of resources required.

The underlying concept of the resource estimation al

gorithm is that, if there are n operations that need to be
finished within s states, and a component used to perform

Algorithm: resource estimation
Inputs: clock period elk, number of states N, and

data flow graphs DFGi ,•••, DFGn\
Outputs: the minimum number of components for each type

of operation;
begin Algorithm

call ASAP;

call ALAP;

for each operation type t do
partition N states into a set of disjoint
operation distribution intervals /;

MinComp(t) = 0;
for each /, G / do

NumOp — the number of operations of type t in ;

NumOpCycle = [(delay of component type t)/clk j;
«r /-T r NutnOpxNumOpCvele ^NumComp = [the Ungth of .nter/at J. M
if {NumComp > MinComp(t)) then

MinComp(t) — NumComp;
end if;

end for;

end for;

end Algorithm

Figure 11: The algorithm to estimate resources

an operation requires at least c clock cycles to finish the

execution before it could be used again to execute another

operation, then clearly, the minimum number of compo

nents required is equal to [(n x c)/5].

An example to illustrate the algorithm is shown in Fig
ure 12(a). We know that all pipe stages are executed con
currently and in order to consider resource sharing across

the stages, the algorithm needs to consider the operations

in ail the stages at the same time. In order to demonstrate

this, we put the DFGs from two pipe stages side by side

in Figure 12. Note that these pipe stages are executed in
parallel but on different input samples.

Given the clock period and the number of states, the

first step of the algorithm is to compute the ASAP and
ALAP values of each operation. Let ASAP, and ALAP,

denote the ASAP and ALAP value of operation o, respec

tively, the time frame of o, is defined <is {ALAP,—ASAP,+
cycle{oi)), where cycle{oi) represents the number of clock
cycles required to finish the operation Oi. Consider the

example shown in Figure 12(a). Assume that the clock

period is 30 ns and each of the DFGs will be scheduled

into 5 states. Figure 12(b) shows the time frames of all

the operations.

Having computed the time frames of ail the operations,

the algorithm estimates the minimum number of required

components for each operation type separately. For exam

ple, Figure 12(c) shows the time frames of all the multipli
cations, and Figure 12(d) shows the time frames of all the

additions. The next step in the algorithm is to partition

states into a set of disjoint operation distribution intervals
such that there are no overlapping time frames between

two consecutive intervals. For example, in Figure 12(c),

there is no way of partitioning those five states into in

tervals such that there are no overlapping time frames of

the multiplication operations; therefore, there is only one

operation distribution interval, {sl.sS}, for multiplication
operations, where si is the starting state and s5 is the end

ing state of the interval. On the other hand, as shown in

Figure 12(d), there are three operation distribution inter-
vtds for additions: interval 7i={sl,s2}, interval /2={s3,s3}
and interval /3={s4,s5}. After the operation intervals are
obtained, we can estimate the required number of com

ponents for each interval separately, and the maximum

number of required components over all intervals is the

minimum number of components needed to perform all

the operations.

III;

operalion dislrtbutton jntarnl I i

mult: 2 clock*

num o* muinpllar* m(3x2yS • 2

dk^aOns

num of stalM • 5

mull: 56 ns

add: 24 n*

•tag* 1

F

tuga 1 «uge 2

::i3BiEFn-
•3 I X

operation ditlrfbutlon liMrvaM ia(sl,82}
operation datritxition Interval 1 2a (*3,*3]

operaliondntributionliiMrvali ia(*4,*5)

adder 1 clock

num of adder* a max|(2x1V2, |1xiyi. (IxIVS) > 1

Figure 12: An example illustrating the algorithm of re
source estimation

The required number of components for one distribu

tion interval is estimated by applying the concept intro

duced at the beginning of this section. In the algorithm
outlined in Figure 11, the variable NumOp computes the

number of operations that need to be finished within the

given interval. For example, consider the multiplication

operations shown in Figure 12(c). There are three opera
tions that need to be finished in interval 1\. The variable

NumOpCycle represents the number of clock cycles re

quired to finished one execution of the operations. Since

the delay of the multiplier is given as 56 ns and the clock

period is 30 ns, clearly it would need at least 2 clocks to

finish one multiplication. The number of required com

ponents, denoted by the variable NumComp, can then be

computed by \{NumOp x NumOpCycle)({the length of the
interval)"]. For example, the minimum number of multipli
ers required is [(3 x 2)/5], that is, at least two multipliers
are needed. Similarly, knowing that an addition operation

needs one clock to execute, we can estimate the required

number of adders for the three distribution intervals of ad

dition operations individually. As shown in Figure 12(d),
the required numbers of adders for intervals h, J2 and h

of additions are f(2 x l)/2l, [(1 x l)/ll and [(1 x l)/2]
respectively, resulting in the estimation of one adder.

The resource estimation algorithm has a time complex
ity of 0{n log n), where n is the total number of operations
in all the given DFGs. A brief explanation follows. The
first step in our algorithm is to partition states into a set

of disjoint operation distribution intervals. This can done

by first sorting the list of aU operations using their ASAP
values as the main key and their ALA? values as the sec

ondary key. Then the first operation distribution interval

is initialized to be the time frame of the first operation

in the list. Then if the time frame of the next operation

intersects with the current operation distribution interval,

then the operation distribution interval is updated to be

the union of the current operation distribution interval and

the time frame of the next operation. If there is no inter

section between the current operation distribution interval

and the time frame of the next operation, then one oper

ation distribution interval is found and this process starts

again from the next operation. Clearly, this process has a
0(n log n) time complexity due to the sorting adgorithm.
After all the operation distribution intervals are found, the

next step in our algorithm is to compute the number of

components required in each interval. Since in this step,

each operation would be count exactly once, this step has a

linear complexity. Thus, we can conclude that the resource

estimation algorithm has a complexity of 0(n log n).

7 Experiments
In this section, we present results of three experiments

with the clock estimation algorithm which we have imple

mented using C on a SUN SPARC 5 station. In the first

experiment, we demonstrate the quality of our algorithm

by comparing the selected clock against the "best" clock

obtainable using force-directed scheduling. The second

experiment studies the impact of resource sharing across

different pipe stages on the cost of a design, and finally,

the third experiment demonstrates the effect of considering

control unit delay on the clock selection.

For all experiments we have used the the VLSI Technol

ogy Inc. VDP370 1.0 micron Datapath Element Library [8]
to obtain the area and delays of the functional units. The

datapath elements used are shown in Figure 13.

component delavCns) area(»1000 um'2)

adder n.2 54
subtracter 15.5 60
muttiplier 32.0 ^0

Figure 13: Datapath component library

7.1 Experiment 1: Quality of Results
As discussed in Section 2, there are no existing clock

selection algorithms for pipelined designs; furthermore, the
existing clock selection algorithms do not take control unit

delay into account. Thus, in order to demonstrate the

quality of our algorithm, we have been unable to compare

our results with related research in clock selection; instead,

we have utilized force-directed scheduling, which is a well

known time-constrained scheduling algorithm.

This experiment is conducted on four examples that are

typically implemented as pipelined designs: the AR lat

tice filter (AR) [4], the linear phase b-spline interpolated
filter (BSpline) [5], the elliptical filter (EF) and the HAL
benchmark. For each of the examples, we first generate a

number of input descriptions by manually pipelining the

specification into a different number of stages. For exam

ple, we pipeline the elliptical filter into 2, 3. and 4 stages,

where the delay of the pipe stages in each pipeline is as

equal as possible. We then place different pipe stage delay

constraints on each of the pipelined descriptions, and for a

given pipe stage delay constraint we obtain the estimated

and the "best" clock period as follows:

• The best clock period is obtained by executing the

force-directed scheduling algorithm for a number of

clock periods, each corresponding to a different num

ber of states. The clock period that gives the minimal
area design is then the best period. For instance, for

the 4-stage elliptical filter design with a pipe stage de

lay constraint of 150 ns, we run force-directed schedul

ing using 10 different clocks (150, 75, 50, ..., 15) cor

responding to (1, 2, 3, ..., 10) states per pipe stage,
and we find that the best clock, that is, the clock that

results in minimal area, is 16.66 ns (corresponding to
9 states).

• The estimated clock period is obtained by executing

our clock-selection algorithm.

ri'mi rr^.n.'.'j ?i FTTff'iiit ? I

®£DiiE2E!*•EI3

^EEEHBSSBZH

A: uMtr, S: (ubiiaetor, M: muttiil*'

Figure 14: Comparing the best and the estimated clock
period for four benchmarks: AR, BSpline, EF, and HAL

The results of comparing the best and the estimated

clock period for the four examples mentioned above are

shown in Figure 14. The first three columns give the ex

ample name, the number of pipe stages and the PSDelay

constraint used for each pipelined description. The next

two columns give the best clock and the corresponding re

sources obtained by executing the force-directed schedul

ing algorithm for different clocks. The next two columns

give the estimated clock and the corresponding resources
obtained using our algorithm. Finally, the last column

gives the percentage of difference in design area, which is

approximated by the sum of the areas of all the compo

nents, obtained by the force-directed scheduling algorithm any conclusions on our algorithm's fidelity in general, but
and our clock-selection algorithm. As can be seen from

the results, the estimated clock period was identical to the

one obtained with FDS in most cases; however, in three

cases our algorithm estimated a clock period that resulted
in the use of either one more multiplier or one more adder

than that obtained with FDS. In two of the three cases,

where the clock period selected by our algorithm requires

one more multiplier than that required with FDS, the per

centage of difference is larger than 30%. We observe that
this is due to the fact that the multiplier we use in this

experiment is about five times larger than the adder.

5000

4000

3000

2000

1000

2S00

2000

1500

1000

500

_« • • • « « - '

dOCSpVlOO

so

clock period |iu)

100

ISO

ISO

eooo

5000

4000

3000

2000
20 80 100

2S00

2000

1S00

1000

600

Meek period <rc)

SO

Figure 15: Comparing our resource estimates against the
results of the FDS algorithm for the AR and BSpIine ex
amples

This discrepancy between the estimated and the best

clock period may be explained by considering the fidelity

of our resource estimation method, which essentially gives

a lower bound on the number of resources. It is important

to note that the correct selection of the clock depends more

on the fidelity rather than on the accuracy of the resource

estimation. Roughly speaking, fidelity refers to how closely
the shape of the estimation curve resembles that of the
actual curve, while accuracy refers to how closely the two

curves follow each other. We would like to point out that

our fidelity measure is drawn against FDS, which itself is

a heuristic and does not guarantee an optimal solution.

Since we do not have an optimal solution, we cannot make

merely on its fidelity with respect to a known heuristic,

which in our case is FDS.

In order to illustrate the role of fidelity of our resource
estimates, in Figures 15 and 16, we have compared the re

sults of our resource estimates with the resources obtained

by the force-directed scheduling algorithm for all exam

ples and PSDelay constraints shown in Figure 14. Note

that the AR 2 and 3-stage pipelines as well as the bspline

2-stage design have high fidelity. Hence, our clock selec
tion algorithm selected the best clock - in spite of the fact

that the accuracy of the estimation (especially for the 3-

stage AR design) was low in some cases. However, for the
3-stage BSpline example, the fidelity of our resource esti

mation when compared with FDS. between clock periods
of 10 to 20 ns is low; hence, our clock selection algorithm
picks a clock of 12.5 ns rather than 33.3 ns. Similarly, for

the 2 and 3 stage elliptical filter designs, the fidelity be

tween clock periods of 10 to 20 ns is low and thus the best

clock period is not selected. The fidelity and accuracy for

the 4-stage elliptical filter design is excellent while the 2-

stage HAL example also has good fidelity, thus best clock

periods are selected for both cases.

4000

3000

1000

1000

100

Meek ptried (na)

200

ISO

2000

1000

2500

2000

1600

1000

500

eioak parted (ne)

SO 100

olcek parted (na)

200

160

Figure 16: Comparing our resource estimates against the
results of the FDS algorithm for the EF and HAL examples

As an aside, we would like to point out that the fidelity

is low only for low clock periods, since the extent of re

source sharing increases at lower clock periods, and thus

increases the probability of an erroneous resource estimate.

From the results it may appear that the FDS approach

is superior than our approach; however, we would like to

point out that in the case of the elliptical filter example,

whereas it took approximately 1 second to estimate and se
lect the clock period for a given pipe stage delay constraint

using our algorithm, it took more than 17 minutes to ob
tain the best clock period using the FDS algorithm since

it had to be iterated over approximately fifteen different

clock periods.

Thus, in conclusion, our algorithm selects a clock period

that uses minimal area resources (or close to the minimal)
within less than one second.

7.2 Experiment 2: Resource Sharing
Resource sharing, or scheduling, is a well-known tech

nique that is utilized to reduce the area of a design, by al
lowing a resource to be shared by two or more operations.
In this section, we study the impact of sharing resources

in a pipelined design, where a resource can not only be

shared by operations within the same pipe stage, but also

by operations across different pipe stages.

This experiment is conducted on the same examples

that were used in the previous section: AR, BSpline,

EF, and the HAL benchmark. Once again, we gener

ate input descriptions by manually pipelining the exam

ples into a different number of pipe stages, and for each

of the pipelines we use a number of different PSDelay

constraints. For each description and constraint, we then

compare the minimum number of resources obtained by

implementing all the pipe stages individually (that is, by

dis-allowing resource-sharing across different pipe stages)
to that obtained by implementing all the pipe stages to

gether and thus allowing resource sharing across different

pipe stages. This difference is illustrated in Figures 2(a)
and (c).

The minimum cost of a design without resource sharing

is computed by first obtaining the best clock period and the

minimum number of resources required for each pipe stage

separately using force-directed scheduling, and then sum
ming up the resources of all the pipe stages. To compute

the minimum number of resources required with sharing,

we first select a clock period by applying our algorithm to

the pipelined descriptions and then generate the minimum

number of resources required using force-directed schedul

ing.

The results on the four examples are shown in Figure 17.

The first three columns give the name of the example, the

number of pipe stages and the PSDelay constraint used

for each description. When resource sharing across differ

ent pipe stages is not allowed, the results show the clock

period, the number of states and the minimum number of

resources required for each pipe stage. Note that in this

case, different pipe stages can have different clock periods.

When resource sharing is considered, all the pipe stages

have the same clock period.

In all the cases, the results indicate that resource

sharing within and across different pipe stages reduces
the design area from anywhere between 3.6 and 43.3 %.

This shows a substantial reduction in area when resource-

sharing across different pipe stages is allowed and gives an

indication of the effectiveness of our algorithm.

7.3 Experiment 3: Control Unit Delay
This experiment is conducted for the AR filter and the

elliptical filter benchmarks. Note that in this experiment,

the descriptions of the benchmarks are not pipelined.

40.0 eo.o

«toek ptrM <n»)

Figure 18: The clock period vs delay shape functions of
the elliptical filter example, generated with and without
the control unit delay estimation

Figure 18 shows the result of the elliptical filter bench
mark. There are two shape functions of clock periods ver
sus total delay. The shape function in solid line is ob

tained by our shape function generation algorithm with
the control unit delay estimation, while the shape function

in dtished line is generated by our algorithm, but assuming
the control unit delay is zero. Similarly, Figure 19 shows

the result obtained for the AR filter example.

From the results, we observe that if the control unit

delay is not taken into account, the delay is smaller when

the clock period becomes very short. However, when the

control unit delay is considered, the delay is actually longer

when the clock period becomes shorter. The reason is,

when the clock period is very short, the number of states

becomes large and consequently, the control unit is more

complicated and results in longer delay and longer clock
period.

Now take the shape functions of the elliptical filter as

an example and let us assume that the delay constraint

is 500 ns. Without considering the control unit delay, a

clock period as small as 6 ns may be selected as the clock

period. However, if the control unit delay is taken into

Example* I Of PSDelay
: res. sharing acr. pipe stg.

stsge clk{ns) *of

states

resc

per stage

staoe 1 18,75 8 2A.4M

stage 2 18.75 8 4A,3M

stage l 12.5 8 2A,2M

stage 2 : SO 2 2A.2M

stage 3 12.5 8 4A.4M

stage 1 50 3 2A.1M

stage 2 18.75 8 1A,1M

stage l 50 2 2A,1M

stage 2 20 5 lA.IM

Stages 50 2 lA.IM

staoe 1 25 12 2A,1M

staoe 2 37.5 8 3A.1M

stage 1 20 10 2A,1M

staQe2 50 4 2A.1M

stage 3 25 6 3A,1M

stage 1 30 5 1A.0M

stage 2 18.75 e 2A,1M

stage 3 1 50 3 1A.1M

stage 4 ! 18.75 8 2A.2M

stage 1 i 37.5 4 1A.0S.1M

staoe 2 75 2 1A.1S.1M
2A.15,2M

"Kl™) sta?is

pipe stg.
^ Imprv.

resources (%)

4A,5M 29.2

6A,8M 3.6

2A.2M 6.7

2A.3M 9.2

4A.2M S.9

SA.3M 8.1

5A,2M 43.3

1A,1S.2M 6.7

A: adder; S: subtracter; M; multiplier

Figure 17: The effects of resource sharing on four benchmarks AR, BSpUne, EE, and HAL

too eo.o

dech pwled (iM)

Figure 19: The clock period vs delay shape functions of
the AR filter example, generated with and without the
control unit delay estimation

account, clearly, a clock period of 6 ns does not exist be

cause the control unit delay alone would be larger than 6
ns. Furthermore, we observe that the difference between

delays obtained with and without considering the control
unit delay can be as large as 720 ns. Therefore, we con

clude that the control unit delay contributes significantly
in the clock period and neglecting the control unit delay
may result in a bad choice of the clock period.

8 Conclusions and Future Work

In summary, we have presented a clock selection algo
rithm that, given a pipelined behavioral description and a
throughput constraint, selects the clock period that leads

to the minimal-area design.

We tested our clock-selection algorithm on several ex
amples and the results show that, in most cases, our al
gorithm selects a clock period that uses minimeil area re

sources within less than one second.

We conducted an experiment to demonstrate the im

pact of resource sharing across pipe stages on the cost of
a pipelined design. From the results, we note that, for all

the benchmarks, the cheapest designs obtained for a given
throughput are those with resource sharing.

The experimental results also show that the control unit

delay contributes significantly to the clock period, and thus
plays an important role in clock period calculation. Most

importantly, neglecting the control unit delay may result
in a bad choice of the clock period.

We plan to extend our model to incorporate wire delays.

Currently, we are working on a clock selection algorithm
that allows multiple clock signals.

9 Acknowledgements
This work was partially supported by the Semiconducter

Research Corporation grant #94-DJ-146, and we grate
fully acknowledge their support. We would also like to
thank Viraphol Chaiyakul for his help and suggestions in

defining the problem and developing the algorithm.

10 References

[1] S. Chaudhuri, S. A. Blythe, and R. A. Walker, "An Ex
act Methodology for Scheduling in a 3D Design Space,"

in Proceedings of the 8th International Symposium on
System Synthesis, 1995.

[2] D. D. Gajski, N. Dutt, A. Wu, and S. Lin, High'Level
Synthesis: Introduction to Chip and System Design,
Kluwer Academic Publishers, 1992.

[3] D. Le. Gall, "MPEG: A Video Compression Standard
for Multimedia Applications," in Communications of
the ACM 34, 1994.

[4] R. Jain, A. C. Parker, and N. Park, "Module Selec
tion for Pipelined Synthesis," in Proceedings of the 25th

ACM/IEEE Design Automation Conference, 1988.

[5] S. Narayan, and D. D. Gajski, "System Clock Estima
tion based on Clock Slack Minimization," in Proceed'

ings of the European Design Automation Conference,

1992.

[6] N. Park, and A. C. Parker, "Synthesis of Opti
mal Clocking Schemes," in Proceedings of the 22nd

ACM/IEEE Design Automation Conference, 1985.

[7] A. C. Parker, T. Pizzaro, and M. Mlinar, "MAHA:
A Program for Datapath Synthesis," in Proceedings of

the 23th ACM/IEEE Design Automation Conference,
1986.

[8] VLSI Technology Inc., VDP370 1.0 Micron CMOS
Datapath Cell Library, 1991.

