
Mike Gemünde

Clock Refinement in

Imperative Synchronous Languages

vom Fachbereich Informatik der Technischen Universität Kaiserslautern

zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation

Datum der wissenschaftlichen Aussprache 18. Oktober 2013

Dekan Prof. Dr. Arnd Poetzsch-Heffter

Vorsitzender der Promotionskommission Prof. Dr. Markus Nebel

Berichterstatter Prof. Dr. Klaus Schneider
Prof. Dr. Michael Mendler
Prof. Dr. Sandeep Shukla

D 386

Danksagung

An dieser Stelle möchte ich allen danken, die zur Entstehung dieser Arbeit und dem Gelin-
gen meiner Promotion beigetragen haben. Besonders hervorheben möchte ich dabei Herrn
Prof. Dr. Klaus Schneider, der mir die Arbeit erst ermöglicht hat und mir stets mit offenem
Ohr und Ratschlägen unterstützend zur Seite stand. Darüber hinaus möchte ich mich bei
den weiteren Gutachtern, Herrn Prof. Dr. Michael Mendler und Herrn Prof. Dr. Sandeep
Shukla, sowie bei dem Vorsitzenden der Promotionskommission, Herrn Prof. Dr. Markus
Nebel, bedanken. Ferner bedanke ich mich bei meinen Kollegen für die netten Gespräche und
neuen Denkanstöße. Nicht zuletzt geht besonderer Dank für die langjährige Unterstützung
an meine Familie, ohne die ich nicht zu diesem Punkt gekommen wäre.

Oktober 2013, Mike Gemünde

Contents

Zusammenfassung . 1

Abstract . 3

1 Introduction . 5
1.1 Motivation . 5
1.2 Contribution . 6
1.3 Outline . 8

2 Related Work . 9
2.1 Models of Parallel Computation . 9

2.1.1 Synchronous Model . 9
2.1.2 Asynchronous (Untimed) Model . 18
2.1.3 Discrete Event Model . 18

2.2 The Synchronous Language Quartz . 19
2.2.1 Introductory Examples . 19
2.2.2 Statements . 22
2.2.3 Semantic Issues . 25
2.2.4 Formal Semantics . 30
2.2.5 Intermediate Representation . 32
2.2.6 Compilation . 34
2.2.7 Code Generation . 37
2.2.8 Averest . 42

3 Clock Refinement . 45
3.1 Limitations of Quartz . 45
3.2 Basic Idea of Clock Refinement . 46

3.2.1 Steps, Variables and Assignments . 49
3.2.2 Parallel Execution . 51
3.2.3 Abortion and Suspension . 52
3.2.4 Determinism . 53

3.3 Constructivity vs. Logical Correctness . 54
3.3.1 Sequential Execution of Substeps . 55

VIII Contents

3.3.2 Scheduling of Parallel Threads . 56
3.3.3 Steps and Instants . 59

3.4 Summary . 60

4 Formal Semantics . 63
4.1 Definitions . 63
4.2 Overview . 66
4.3 Transition Rules . 67

4.3.1 General Form of the Rules . 67
4.3.2 Basic Statements . 68
4.3.3 Strong Preemption . 73
4.3.4 Weak Preemption . 76

4.4 Reaction Rules . 82
4.4.1 General Form of the Rules . 82
4.4.2 Basic Statements . 83
4.4.3 Strong Preemption . 87
4.4.4 Weak Preemption . 88

4.5 Program Execution . 89
4.5.1 Interpreter . 89
4.5.2 Constructive Execution . 96

4.6 Summary . 97

5 Compilation . 99
5.1 Extended Intermediate Format . 99

5.1.1 General Idea . 100
5.1.2 Labels and Clocks . 101
5.1.3 Local Declarations . 101
5.1.4 Complete Structure . 103

5.2 Surface and Depth . 104
5.3 Translation of Certain Statements . 105

5.3.1 Control-Flow Graph . 105
5.3.2 Parallel Threads . 106
5.3.3 Loops and Local Declarations . 108
5.3.4 Strong Preemption . 110
5.3.5 Weak Preemption . 111

5.4 Compilation Algorithm . 113
5.4.1 Definitions . 115
5.4.2 Compile Functions . 117

5.5 Checking Constructive Abstractions . 120
5.6 Summary . 122

6 Hardware Synthesis . 123
6.1 Overall Structure . 124
6.2 Functional Part . 125

6.2.1 Representation of Hardware . 125
6.2.2 Translation of Control Flow . 126

Contents IX

6.2.3 Translation of Data Flow . 126
6.2.4 Optimizations for Data-Flow . 129

6.3 Scheduler . 134
6.4 Summary . 135

7 Evaluation . 137
7.1 Examples . 137

7.1.1 JPEG Example . 137
7.1.2 Experimental Results . 148

7.2 Comparison with Related Work . 150
7.2.1 Esterel . 150
7.2.2 Multiclock Esterel . 151
7.2.3 Signal . 151
7.2.4 Lustre . 153

7.3 Summary . 153

8 Conclusion . 155

References . 157

Curriculum Vitae . 167

Zusammenfassung

Zur Entwicklung eingebetteter Systeme wurde bereits eine Fülle von Berechnungsmodel-
len und Sprachen vorgestellt. Durch die direkte Unterstützung spezieller Anforderungen
eingebetteter Systeme eignen sich diese Sprachen besser als traditionelle sequentielle Program-
miersprachen. Die direkte Unterstützung nebenläufiger Berechnungen oder die wiederkehrende
Interaktion mit der Umgebung sind nur einige der Vorteile solcher Sprachen. Ein spezielles
Beispiel sind synchrone Sprachen. Sie zeichnen sich dadurch aus, die Ausführung eines Systems
in eine Sequenz logischer Schritte zu unterteilen. Ein Schritt folgt dabei der Vereinfachung,
dass Ausgaben direkt nach der Verfügbarkeit der Eingaben berechnet sind. Diese Abstraktion
ermöglicht die wohldefinierte deterministische Komposition im Allgemeinen, sowie das deter-
ministische Abbrechen oder Anhalten von Berechnungen in imperativen synchronen Sprachen
im Speziellen. Darüber hinaus erlauben diese Eigenschaften die Übersetzung von Programmen
in Hardware und Software sowie die direkte Anwendung von formalen Verifikationstechniken
wie beispielsweise die Modellprüfung.

Mit den Vorteilen imperativer synchroner Sprachen gehen auch einige Nachteile einher.
Ein Effekt der von der parallelen Ausführung in dem synchronen Modell verursacht wird
ist die Übersynchronisierung von Threads, welche auch dann jeden Schritt gemeinsam
ausführen, wenn sie nicht kommunizieren. Diese Arbeit betrachtet die Erweiterung von
imperativen synchronen Spachen mit Clock-Refinement, welche es erlaubt zusätzlich zu den
Berechnungsschritten weitere Abstraktionsebenen einzuführen. Ein Schritt kann dabei in
kleinere logische Schritte einer neu deklarierten Clock unterteilt werden um unabhängige
Berechnungen durchzuführen. Diese explizite Beschreibung kann anschließend von Compilern
zur Analyse verwendet werden. Darüber hinaus bleibt auf jeder der neuen Abstraktionsebenen
das synchrone Modell mit seinen Vorteilen erhalten.

Die Erweiterung wird in dieser Arbeit auf Basis der imperativen synchronen Sprache
Quartz präsentiert. Es werden neue Anweisungen eingeführt, welche es erlauben neue Clocks
als Verfeinerung bestehender Clocks zu definieren. Die Auswirkungen der neuen Mechanismen
auf die bestehende Sprache werden untersucht und die Semantik der Erweiterung wird formal
definiert. Darüber hinaus wird ein Übersetzungsalgorithmus vorgestellt, der es erlaubt
Programme in ein Zwischenformat zu übersetzen. Ausgehend von diesem Zwischenformat
wird außerdem die Übersetzung in Hardware beschrieben. Die Vorteile der Spracherweiterung
werden anschließend in Beispielen evaluiert.

Abstract

An huge amount of computational models and programming languages have been proposed
for the description of embedded systems. In contrast to traditional sequential programming
languages, they cope directly with the requirements for embedded systems: direct support for
concurrent computations and periodic interaction with the environment are only some of the
features they offer. Synchronous languages are one class of languages for the development of
embedded systems and they follow the fundamental principle that the execution is divided into
a sequence of logical steps. Thereby, each step follows the simplification that the computation
of the outputs is finished directly when the inputs are available. This rigorous abstraction leads
to well-defined deterministic parallel composition in general, and to deterministic abortion
and suspension in imperative synchronous languages in particular. These key features also
allow to translate programs to hardware and software, and also formal verification techniques
like model checking can be easily applied.

Besides the advantages of imperative synchronous languages, also some drawbacks can
be listed. Over-synchronization is an effect being caused by parallel threads which have to
synchronize for each execution step, even if they do not communicate, since the synchronization
is implicitly forced by the control-flow. This thesis considers the idea of clock refinement to
introduce several abstraction layers for communication and synchronization in addition to the
existing single-clock abstraction. Thereby, clocks can be refined by several independent clocks
so that a controlled amount of asynchrony between subsequent synchronization points can be
exploited by compilers. The declarations of clocks form a tree, and clocks can be defined within
the threads of the parallel statement, which allows one to do independent computations based
on these clocks without synchronizing the threads. However, the synchronous abstraction is
kept at each level of the abstraction.

Clock refinement is introduced in this thesis as an extension to the imperative synchronous
language Quartz. Therefore, new program statements are introduced which allow to define
a new clock as a refinement of an existing one and to finish a step based on a certain clock.
Examples are considered to show the impact of the behavior of the new statements to
the already existing statements, before the semantics of this extension is formally defined.
Furthermore, the thesis presents a compile algorithm to translate programs to an intermediate
format, and to translate the intermediate format to a hardware description. The advantages
obtained by the new modeling feature are finally evaluated based on examples.

Chapter 1

Introduction

1.1 Motivation

Embedded systems found their way in many applications like cars, avionics, factory automa-
tion, and also in many other products used in everybody’s daily life. Computing units first
substituted only small parts like simple mechanics or analogous circuits to be more flexible or
just to be able to produce cheaper products, but their complexity, quantity, and interaction
hugely increased and there is still no end in sight. For example, nowadays high-end cars
contain around 70 electronic control units (ECU), and the development costs of software and
hardware seems to exceed 40% of total development costs, but drives most of the innovation.
The ECUs are located everywhere in the car and have to communicate and interact as a
distributed system. However, not only in this application, but also on a single chip, multiple
heterogeneous computational units can be found in form of a system on a chip (SoC) or
multiprocessor system on a chip (MPSoC). Furthermore, embedded systems have to meet
special requirements like e. g. resource consumption, real-time constraints, or reliability. Most
of the people, can for example, get over an interrupted call with a cell phone, but a failure or
delay of car breaks is simply not acceptable.

Parallel programming in general is challenging, since often traditional languages are reused
for this purpose which introduces non-determinism that often cannot be properly handled
by programmers. Adding statements for parallel computation to used sequential languages
like C makes program analysis and verification difficult [Berr89], because concurrency and
communication are implicit and hidden from the programmer. For this reason, also Lee [Lee06]
advocated for languages that model basic deterministic parallel computations, but carefully
introduce non-determinism where it is useful, but in a way that it will not be harmful. For
heterogeneous embedded systems that have to meet special constraints, the development
process will not become easier. Fortunately, model-based design became widely-used for the
design of embedded systems, where different models have been developed [LeSa98, GiLL99,
Jant04] which differ in the notion of when and how computations are performed, and how
communication between parallel parts is established.

Furthermore, a lot of programming languages following the abstractions of the models
have been developed in the past, and they can be translated to software, hardware, or even to
both [BeKi00, Edwa00, Edwa05b, BrGS10]. Further results have been achieved in comparing
the models based on more general frameworks [LeSa98, Jant04], or also in integrating different

6 1 Introduction

models for combined simulation or code generation [BGSS11, BGSS12]. Model-based design
flows start usually with an abstract description of the final system and this description is
then refined by either using other models or by refining the description based on the already
used model. Additionally, the increasing complexity of systems and the need for handling
more complex problems like image processing or other signal processing tasks introduces the
need of more models that are reliable and able to handle these problems in an efficient way.

1.2 Contribution

The contribution of this work is an extension [GeBS10, GeBS13] to the imperative synchronous
language Quartz [Schn09] which follows the synchronous model of computation [BeBe91,
BCEH03]. The model simplifies programming by abstracting from communication and
computation delays and considers ideal systems that produce their outputs immediately
when the inputs arrive; this ability is also referred to as perfect synchrony [Halb93]. This
idealized view to the system lead to well-defined deterministic concurrent computations and
lets the programmer focus on the actual functional behavior of the system. Moreover, it
provides a model to describe reactive systems since it allows periodic reactions.

In each reaction, all (available) inputs are given to the system, all values are computed, and
the outputs are provided. Furthermore, the internal state for the following reaction is updated.
In this way, all signals only have one value per reaction leading to deterministic parallelism
by synchronizing the reactions. As the synchronous abstraction simplifies programming on
the one hand, it challenges compilers and tools on the other hand. Thereby, also the Quartz

compiler has to deal with the well-known issues for imperative synchronous languages, namely
causality and schizophrenia. Causality addresses the question which action happens before

another one. Schizophrenia occurs if in one reaction, the scope of a locally declared variable
is left and entered, so that two (or more) instances exists at the same time.

The synchronous model is used in control-flow based (imperative) languages like
Quartz [Schn09], Esterel [BeCo85], and its graphical variants Statecharts [HaPn85] and
SyncCharts [Andr03], in data-flow languages like Lustre [LeMe87], and also in polychronous
specifications like Signal [GaGB87, GGBM91], and its graphical variant MRICDF [JPSS09].
The latter ones also belong to data-flow languages but have a more declarative style of pro-
gramming. The languages can be translated to hardware and software [Edwa00, Berr91], or
the modules can be also distributed [GiNi03, BrGS09].

Parallel execution is inherent in the data-flow languages where several nodes communicate
via communication channels and the execution is synchronized by the availability of data. The
languages have a notion of absence meaning that there is no data available at a certain channel.
If this is the case, no communication and no synchronization is necessary or even possible.
The languages have the ability to directly describe independent execution in the synchronous
model. This changes for imperative synchronous languages, because for them a reaction is
defined by special statements in the control flow and synchronization of parallel execution
is performed based on the reactions. This leads to a drawback of this imperative language,
because due to the control flow the threads synchronize even if they do not communicate,
since the synchronization is implicitly forced by the control-flow.

The contribution of this work is the extension of imperative synchronous languages by
clock refinement to add more expressiveness to avoid over-synchronization. This kind of clock

1.2 Contribution 7

refinement is a new idea in the context of synchronous languages. Nevertheless, it can be
compared to other concepts which are present in some data-flow synchronous languages. The
extension changes the language in that a reaction, i. e. a step of a Quartz program, can
be split into (smaller) substeps. Since parallel threads do not necessarily see the substeps
of another thread, they do not need to synchronize with the substeps and the threads can
run independently until the whole reaction is finished. The possibility to refine a step into
substeps is introduced with the notion of clocks that can be hierarchically declared in form
of a tree. Thereby, each of the clocks define a new abstraction level and the model behaves
on this level like the original language.

The clock refinement extension changes the execution model of programs. On the one hand,
design decisions for extending the semantics of the original statements to clock refinement
have to be discussed and made. These are e. g. the synchronization of parallel threads, the
execution of delayed assignments, which originally take place in the following step, and the
positions where abortion and suspension take place. On the other hand, this implies some
consequences together with the synchronous abstraction and other properties of the language.
These consequences are e. g. related to causality, where in the original language the causality
is limited to a single step (what happens before), it is now extended to substeps and can
also imply restrictions on the execution order of parallel threads. These consequences are
discussed and with practical application in mind, it turns out that the full extension may be
to difficult to be handled by programmers and compilers. Therefore, the extension is limited
at some points to keep the features in a convenient shape for the programmers while reducing
the complexity for compilers.

The semantics of Quartz is defined by structural operational semantics (SOS) rules.
The semantics of the clock refinement extension is defined in the same way. However, since
Quartz is only aware of one homogeneous sequence of reactions, each application of the
rules defines one reaction. This is changed since the semantics now has to deal with steps
related to different clocks and also the variable values change differently according to the
clocks. Another challenge is to define the semantics in a way that it covers the independent
execution of unrelated substeps.

A key feature of the design flow, which is implemented for Quartz, is the intermediate
format which abstracts from the complex control-flow statements in the source language
but still covers the whole system behavior. Since the clock refinement extension changes the
execution model, the original intermediate format is not able to handle the extension. For
this reason, the intermediate format needs to be extended first which is done by introducing
clocks and changing the execution model. Finally, the compile algorithm needs to be redefined
to translate programs correctly. In contrast to the original algorithm, which must only handle
one kind of steps, the new one has to handle substeps and e. g. needs to place abortion and
suspension conditions correctly. Another challenge is to define forks and joins for parallel
threads correctly according to the defined semantics. Similar to the original compile algorithm
for Quartz, the new one already solves the schizophrenia problems.

Synthesis denotes the final code generation phase where the system is translated to e. g. a
hardware description language or a sequential programming language. This final phase is
also described and evaluated for clock refinement. The main challenge there is to determine a
good schedule of the substeps. For example, for hardware generation the clocks are mapped
to trigger inputs which can be used by a scheduler to trigger the one or the other thread. As

8 1 Introduction

already remarked, the clocks are not arbitrarily fed in from the outside and therefore, the
scheduler has to respect the original control flow which defines the possible combinations of
clocks. However, if parallel threads use the same resource (e. g. an multiplier), depending on
the schedule, the multiplications can either be sequentialized to share a functional unit, or
parallelized to use different functional units. Hence, in hardware either more space or more
time can be used. For generation of software from the clock refinement extension, also the
parallel dependencies have to be respected. This is easier for software because no trigger is
needed for the execution of a thread: It is simply executed until data or synchronization is
needed.

Finally, the introduced concept of clock refinement is evaluated by some case studies.
Thereby, also features and advantages for programmers and the new obtained design freedom
are discussed. For the clock refinement extension, the terms extension or extended Quartz

are also used.

1.3 Outline

This thesis is structured as follows. Chapter 2 describes the related work for this thesis
by introducing some of the models of parallel computation for embedded systems first,
and by giving an overview of the synchronous language Quartz that is the foundation of
the extension which is presented later afterwards. Thereby, the design flow for Quartz

starting with the actual language description considering the semantic issues which come
from the synchronous abstraction, and also compilation and code generation are discussed.
In Chapter 3, some drawbacks of the language Quartz are first discussed, before then the
idea of the extension is introduced by examples. Then, the impacts of the extension to the
behavior of Quartz are addressed and discussed. The design flow for the language Quartz

is then adapted to the extension, and therefore, Chapter 4 extends the definition of the
original semantics to the extension, and Chapter 5 introduces an intermediate format and
a compilation algorithm to translate programs of the extension to this format. Chapter 6
explains how the intermediate format can be translated to a hardware circuit. The extension
and its use in the design of embedded systems is evaluated in Chapter 7 by considering an
example. Furthermore, the chapter provides a discussion about the differences between the
extension and the related work. The thesis concludes with a short summary in Chapter 8.

Chapter 2

Related Work

The content of this chapter is twofold. First, it introduces models of parallel computation
for embedded systems as far as they are of interest for this work. Second, the imperative
synchronous language Quartz is introduced in more detail since it is the foundation this
thesis.

2.1 Models of Parallel Computation

Since traditional sequential programming languages are not directly suitable for the design of
embedded systems, because the languages do neither offer constructs for periodic interaction,
nor well-defined parallel computation. The better choice is to support these features directly
by the computational model and with dedicated constructs in the languages [Berr89]. Many
languages have been developed in the past which are mostly based on some computational
models that basically determine when and how computations are executed and how data
is communicated between concurrent parts [LeSa98, GiLL99, Jant04, ShTa10]. Some of the
languages are introduced in this section.

2.1.1 Synchronous Model

The fundamental idea of synchronous systems [Berr89, BeBe91, BCEH03, PoST05] is to
abstract from communication and computation delays and to consider ideal reactive systems
producing their outputs instantaneously when their inputs arrive. This gives the programmer
an ideal model where he or she can assume instantaneous interaction of components and
can focus on the actual system’s logic. Furthermore, the systems can be very well composed,
described and analyzed. A reaction does not consume time in this abstraction, but from
one reaction to the next one, logical unit of time is consumed. However, the simplicity of
the programming model provided for the programmer results in more effort for compilers
which now have to deal with the problems the programmer does not have to take care
about [Nebu03, TaSi04, ScBS04b, JoPS10].

Obviously, this is an idealized view to programming and real computations take physical
time, but the model is only used to describe the behavior of systems. It is then the task
of compilers and tools to generate code that computes the described behavior, and it is
up to the programmer or to further tools [LLBH05, MeHT09] to ensure that the real-time

10 2 Related Work

constraints are met, hence that the computation is fast enough for the designated application.
Since the whole reaction is considered as a single point of time, a signal can only have one
value in each reaction. Even if this sounds like a restriction at the first glance, it is the key
property leading to deterministic concurrency. Reactions are also referred to as instants.

The synchronous model is also present in synchronous hardware circuits that are therefore
a good example for this model. Circuits are driven by a hardware clock of a fixed physical
frequency triggering the registers of the circuit. In each clock cycle, input values can change
and the values of local signals change accordingly. Obviously, there is a propagation delay of
the electrical signal for gates and wires, and therefore, the clock cycle duration must be long

enough to ensure that the values of the wires stabilize to their final value. The actual view to
the system is simplified by just considering the value of a wire as it is defined by the functional
behavior of gates, and the implementation (clock cycle duration) has to ensure that the value
is correctly computed. However, not every circuit stabilizes to a final value, and therefore
more effort for tools is needed to detect or remove such problems [Mali94, ShBT96, Edwa03a].

Some examples of synchronous languages are introduced in the following. Thereby, some
of them do not require each signal to carry a value in each instant, and the signal is called to
be absent in this case. Otherwise, to emphasize that a signal has a value, it is called present.
A synchronous system (or language) which does not allow absent values is called a strict

synchronous system, or otherwise it is called non-strict. Since the language Quartz, which
is introduced later and which is the basis for the presented extension, is a strict synchronous
language, the distinction is only used in this chapter.

Synchronous Data-Flow Languages

Note that this section is not about synchronous data-flow (SDF) as it is introduced by Lee
and Messerschmitt in [LeMe87, LeMe87a]. The authors define in these works synchronous
data-flow with process nodes consuming and producing a fixed number of tokens each time
they fire. This behavior is better covered by the term static data-flow. The synchronous
languages which are introduced in this work follow the synchronous assumption which means
that the response of an operation instantaneously follows the occurrence of the inputs.

Synchronous data-flow languages implement the system’s behavior by equations defining
the values of outputs and local variables based on inputs and local variables. Since the
execution of synchronous systems is an infinite sequence of instants, the equations define the
value of a variable in each instant. In this section, the language Lustre [CHPP87, HCRP91,
Halb93] is used as an example. As other data-flow languages, Lustre is also a non-strict
synchronous language, i. e. it has a notion of presence and absence of values. However, it is
restricted in a way that only the presence of data can trigger computations. It consists of data
operators for manipulating values in and instant and of sequence operators for manipulating
the presence, absence and values across instants. For example, the simple data equation

a = b + c;

defines the value of a as the sum of the values of b and c for each reaction. In addition
to simple functional operators, which also force the clocks of the variables to be the same,
other operators can also manipulate the clocks. Therefore, the variables can be considered as
sequences of values where each value belongs to one instant. Sequence operators can be used
to manipulate the values of streams:

2.1 Models of Parallel Computation 11

• pre(x)

The delay operator accesses the last value of a stream. It can be interpreted as a shift
operation for the stream:

x = (x0, x1, . . .)

then
pre(x) = (nil, x0, x1, . . .)

where nil means that there is a value at this position of the stream, but it is not defined.
Note that this is different to an absent value meaning that there is no value.

• x -> y

Since it is not practicable to work with the value nil, the followed-by operator can be
used to overwrite the first instant of a stream. Thus, for two streams:

x = (x0, x1, . . .) and y = (y0, y1, . . .)

the followed-by operator is defined by

x -> y = (x0, y1, y2, . . .)

These operators manipulate the values itself, but it is additionally possible to manipulate
the presence and absence of values in instants:

• x when B

The sampling operator when can be used to select values of a sequence. When the value
of B is true, the result is the value of x. Otherwise, the result is not present. The clock of
the result is B. (T represents true, F represents false, and absent values are omitted in the
following trace)

1 2 3 4 5

x x0 x1 x2 x3 x4

B T F T T F

x when B x0 x2 x3

x when B is present when B is present and true. In this case, it has the value of x.

• current(x)

The projection operator current raises the clock of an expression to the next upper
clock. If x has the clock B, then the clock of current(x) is the clock of B. The data
values from x are used if x is present, otherwise the last value of x is replicated to fill
the missing values.

1 2 3 4 5

x x0 x1 x2 x3 x4

B1 T F T T F

B2 T F F T T

y1 = x when B1 x0 x2 x3

current(y1) x0 x0 x0 x3 x3

y2 = y1 when (B2 when B1) x0 x3

current(y2) x0 x0 x3

12 2 Related Work

In the example, the clock of y1 is defined by B1 and the clock of y2 by (B2 when B1).
The expression current(y1) raises the clock to the clock of B1 and fills the gaps with
the last values. In addition, the expression current(y2) raises the clock to the clock of
(B2 when B1). Therefore, only the instants where B1 holds are filled. Thus, only the
value x0 is added to the third instant.

node COUNT(init, incr: int; reset: bool)

returns (n: int);

let

n = init ->

if reset then init else pre(n) + incr;

tel;

Fig. 2.1. Lustre Example: COUNT

node STABLE

(set: bool; delay: int)

returns (level: bool);

var count: int;

let

level = (count > 0);

count =

if set

then delay

else if false -> pre(level)

then pre(count)-1

else 0;

tel

node TIME_STABLE

(set, second: bool; delay: int)

returns (level: bool);

var ck: bool;

var s_level: bool;

let

s_level =

STABLE((set,delay) when ck)

level = current(s_level);

ck = true -> set or second;

tel

Fig. 2.2. Lustre Example: TIME_STABLE

The clock of a signal identifies the instants in which the signal is present. The consistency of
the clocks is a matter of Lustre: only signals with the same clock can be combined by a
functional expression. The behavior is illustrated for a better understanding by two examples.
The first example is a Lustre node COUNT from [CHPP87] given in Figure 2.1. It takes the
inputs init and incr of integer numbers and reset of Boolean type and it produces the
integer output n. In the first instant and in each instant where reset holds, the output n
has the value of init. In all other instants, the previous value of n is taken and incremented
by the current value of incr.

The second example TIME_STABLE originally comes from [LUSv6]. The node STABLE
takes the inputs set and delay. Whenever set holds, for the number of instances given by
delay, the output level is set. The node TIME_STABLE extends the behavior by adding

2.1 Models of Parallel Computation 13

an additional input second to set the output level to true for the given number of seconds

(number of instances where the inputs second is true). For this purpose, it can use the
previously defined node STABLE and trigger it every instant where second holds or a new
delay is given by set. The current operator is used to keep the value of level in between.

Polychronous Data-Flow

Polychronous data-flow languages are another way to specify synchronous systems in a
data-flow manner. The formalism of polychronous data-flow is explained using the lan-
guage Signal [GaGB87, GGBM91, GuTL03, Gama10], but there exists also a graphical
formalism MRICDF [JPSS09, JoSh10], and it can be also embedded in strict synchronous
languages [BGSS13]. Like Lustre, it is also a non-strict language, and even if both look pretty
similar, their behavior is different. For a Lustre node, any computation must be determined
by the presence of data, but for Signal also the absence of data can define a behavior. In this
way, Signal generally specifies multiple synchronous behaviors, but for real deterministic
implementations, the system should only have one possible behavior. Furthermore, because
Signal is in a more declarative style, it challenges compilers [AmBG94, Nebu03, JoPS10] to
generate executable code for a specification.

The behavior of a system is specified in Signal by equations, and each operator imposes
additional constraints on the clock of a variable, i. e. constraints on the presence and absence
of values. Furthermore, clock constraints can be additionally given by the programmer directly.
A simple data equation

a = b + c;

defines a as the sum of b and c in each instants when all three variables are present. It
additionally imposes the clock constraint, that all three variables must have the same clock
a ^= b ^= c. In addition to simple data operators, Signal also has clock operators:

• y := x $ init d

The delay operator has one input x and produces the output y and stores the last value
of x. Whenever x is present, y is also present and has the last value of x, except for the
first time, then the value of d is used for initialization. The clock constraint imposed by
the delay operator is x ^= y.

• y := x when z

The downsample operator when selects the values of x when x and z are present and z is
true, otherwise y is also absent. Note, that this operator does not require that x and z

to have the same clock. The clock constraint y = when ^x and ^z and z is imposed
by the when operator.

• y := x default z

The default operator performs an up-sampling. It takes the value of x, if x is present,
otherwise it takes the value of z. The operator can also be seen as a merge with priority
on x. The clock constraint imposed by default is y ^= x ^+ z which is the union of
both clocks.

The idea of Signal is illustrated by two examples. The first example is given in Figure 2.3 (a).
The process Switch takes two inputs i and s and produces the outputs o1 and o2. The

14 2 Related Work

process Switch =

(? integer i,

boolean s;

! integer o1, o2;)

(| o1 := i when s

| o2 := i when (not s)

| s ^= i

|)

where

boolean s;

end;

1 2 3 4 5

n 1 2 3 4

s F T F T

o1 2 4

o2 1 3

1 2 3 4 5

n 1 2 4

s T F T T F

o1 1 2

o2 4

(c) Trace 2(b) Trace 1(a) Code

Fig. 2.3. Signal Example: Switch

behavior of the process is that the values of the input i are forwarded to either o1 or o2
depending on s. The clock constraint s ^= i ensures that the inputs are present at the
same time. The first example trace which is shown in Figure 2.3 (b) illustrates one possible
behavior. Whenever s has the value true, the value of i is forwarded to o1. If it has the value
false, the value of i is forwarded to o2. The second trace which is shown in Figure 2.3 (c) is
not a valid behavior of the process, because the clock constraint is not fulfilled in the second
and the fourth instant. If the clock constraint would be omitted, also this input combination
would be allowed.

process Counter =

(? integer n;

! integer o;)

(| c := o $ init 0

| o := n default (c-1)

| n ^= (when (c=0))

|)

where

integer c;

end;

1 2 3 4 5

n 2 1

c 0 2 1 0 1

o 2 1 0 1 0

1 2 3 4

n 2 1

c 0 2 1 1

o 2 1 1 0

(c) Trace 2(b) Trace 1(a) Code

Fig. 2.4. Signal Example: Counter

The second example is given in Figure 2.4 (a). It implements a simple counter which has
one input n and one output o. The intention of the process is that for each present input
value of n, the output values n, n − 1, . . . , 0 are produced. To this end, the local signal c
stores the last value of the produced output, whereas o is produced by subtraction of 1 from
c. However, when a new value for the input n is present, the output is updated by this value.
The clock constraint n ^= (when (c = 0)) ensures that a new input is only allowed to

2.1 Models of Parallel Computation 15

be present when the local signal c reaches 0. The first example trace which is shown in
Figure 2.4 (b) is a valid one and shows the desired behavior. First, 2 is present as input and
the output produces the values 2, 1, 0. After that, the local signal c is 0 and a new input is
present. The second trace which is shown in Figure 2.4 (c) is not valid, because the clock
constraint is not fulfilled in the third instant. In this instant, the input value of n is not
allowed to be present because c is not 0. Note, that without the given clock constraint both
traces would be valid but the constraint selects just the first one to be valid. The Signal

example Counter also shows that the local signal c and the o can be present even if no
input is present. This is called over-sampling [GuTL03] because the local signal or output
are present more often than the inputs. A result for the implementation of this process is
that it cannot be triggered by the inputs, because it also has a behavior when the inputs are
absent.

Esterel

The imperative synchronous language Esterel [BeCo85, Berr00] is similar to the language
Quartz that is introduced later in this chapter, and therefore, only a difference is pointed
out here. It was said above that due to the synchronous abstraction, each signal can only have
one value per reaction. This is also true for Esterel, but since it is an imperative language,
it has some basic notion of sequential execution in a thread with well-defined bounds for the
reaction. Variables can be used in addition to signals and they can have multiple values in
one reaction, but with the restriction that variables cannot be shared to be read and written
in different threads. Consider the following example:

X := 0;

emit S1(X);

X := X + 1;

emit S2(X);

The example is taken from [Berr00] and the variable X is assigned two times in one reaction
and used to set the value of the signal S1 to 0 and the signal S2 to 1. Even though these
Esterel variables are useful, they have the already mentioned limitation that they cannot be
read and written in different threads, because in this case it would not be defined which read
operation belongs to which write operation. Note that this issue is not present for signals,
since they only have one value for each reaction, and therefore, it is well-defined which value
is read and written. Furthermore, the variables cannot be used in loops to compute more
complex functions.

An approach to loosen the restrictions was done in [HMAD13] where concurrent reads and
writes for variables are allowed in different threads, as long as enough scheduling information
can be obtained by the remaining program to match the reads and writes and to ensure
that the write is executed before the read. It should be also mentioned here that this
distinction of variables and signals is only made for Esterel. In Quartz, both terms are
used synonymously for signals which can only have one value per step.

16 2 Related Work

Statecharts and SyncCharts

A further representative of the synchronous model are Statecharts that have been developed
by Harel and Pnueli [HaPn85, Hare87] independently of the other languages. Statecharts
are a graphical representation of control-flow with expressive constructs as they can be
found in other imperative languages. Thereby, it comes with no surprise that Statecharts
can be translated to Esterel and back [SSBD99, PrTH06], which is also the reason that
Statecharts are not considered in more detail here. A second very similar formalism are
SyncCharts [Andr95, Andr03].

Multiclock Esterel

Originally, Esterel also has the single-clock abstraction of steps, but in the past, it has been
extended by two different multiclock extensions which are both named multiclock Esterel.
They are introduced in [BeSe01] and [RaSh00a], and are discussed in the following.

Multiclock Esterel due to Berry and Sentovich

Berry and Sentovich introduced in [BeSe01] their idea of a multiclock extension for Esterel.
While original Esterel programs are driven by a single clock, their work addresses the need
to design systems with multiple clock domains in a modular way. Thereby, each module
can run on its own clock and each step of the module coincides with a clock tick of the
module’s clock. The modules are still single-clock modules with the ability to call or abort
other modules on a different clock. Additionally, two communication devices, named sampler

and reclocker, are selected by the authors to establish data communication across different
clock domains. This extension is able to describe systems combined of modules each having
another clock triggering its execution. The clocks have to be given from the environment,
e. g. like a hardware clock.

M0 M1

M2

C1C0

C2

module M0 :

. . .

abort

run M1 clock C1 input . . .

output . . .

when . . .

run M2 clock C2 input . . .

output . . .

. . .

end module

(a) Plain (Module-)Structure (b) Hierarchical (Code-)Structure

Fig. 2.5. Multiclock Esterel Structure

2.1 Models of Parallel Computation 17

Figure 2.5 shows the structure of a Multiclock Esterel program. The right-hand side of
the figure illustrates the code structure where the module M0 calls M1 and M2, each based
on a different clock. Even though, the module M0 starts and can also abort the submodules,
the structure based on the clocks is plain, as it is illustrated on the left-hand side of the
figure. The modules are triggered by their own clocks and communicate with the devices
specified by the module call (additional control signals to start or abort the modules are also
communicated). The example shows that even though the code is hierarchically organized
with module calls, the clock structure is plain and that each module is just single clocked.
Furthermore, the clock signals to trigger the execution have to be given from the environment.

The semantics of Multiclock Esterel is defined by modelling the extension in classi-
cal Esterel, where the global clocks are considered as additional inputs which have to be
provided to the system. Thereby, the communication devices and also the module calls are
translated. This translation allows to reuse all tools like simulators, available for Esterel.

Multiclock Esterel from Rajan and Shyamasundar

The second multiclock Esterel extension was published by Rajan and Shyamasundar in
[RaSh00a, RaSh00, RaSh00b]. Their solution introduces a new statement newtick allowing
to override the clock locally by an expression based on known signals. The local code block
is then triggered by this new clock instead of the module’s clock. The signals which are read
inside such a clock domain are latched, thus, simply the last value of a signal is taken. Finally,
the signals where the local clocks are defined with, have also to be provided by the outer
environment. The difference to Berry’s extension is that no dedicated clock signal is used,
but any signal can be used to define a new tick. Without going into too much details and
semantics, consider the following example [RaSh00a]:

module INVERTER :

input I1

output O1

newtick I1 in

loop

await tick;

emit O1(not ?I1)

end

end

end

The new statement newtick overrides the basic clock with the input I1. Thus, the execution
of the code block is now triggered by the signal I1. In Esterel, overriding the clock with
a known signal in this way can only lead to a sampling of the already existing clock, since
signals only change with the already defined clock itself. Even if the authors did not explicitly
say this, it seems that they lose this property and allow a signal to change arbitrarily in a
discrete-event manner. Otherwise, they would not be able to implement a Muller C-gate
within their extension [RaSh00]. It rather seems that they are extending the model of
discrete-event languages like VHDL with Esterel statements than extending the Esterel

language.

18 2 Related Work

Like Berry’s extension, this one also allows to define a new clock for a code block. However,
it is not possible to access multiple clocks at the same time: only one clock is visible at
each position in the code. Furthermore, the clocks are given from the outside without local
restrictions to trigger computations.

2.1.2 Asynchronous (Untimed) Model

After the synchronous model was explained with some languages, this section now introduces
asynchronous (untimed) models of computation. They do not rely on a global time trigger,
but only describe the causality between actions.

CAOS

The first asynchronous model that is considered are Concurrent Action-Oriented Specifications
(CAOS) [HoAr99, Arvi03, SiSh07, RSAS07] used to describe the data flow of hardware. These
specifications describe how the state of the system is transformed by actions, but the decision
when the actions are executed is left for the compiler and the execution. Since there could
be several possibilities, the model is generally non-deterministic and a specification defines
a set of possible behaviors. So the challenge for compilers it to translate this behavioral
description to the Register Transfer Level (RTL) by scheduling independent actions into the
same hardware clock cycle. Thereby, independent actions executed together do not lead to
another behavior than executed in sequence.

SHIM

The Hardware/Software Integration Medium (SHIM) was proposed in [EdTa05, Edwa05b]
to describe heterogeneous embedded systems. The language is thereby used to describe the
hardware, the software and the communication established in a rendezvous-style with blocking
read and blocking write similar to CSP [Hoar78, Hoar83]. A system in SHIM consists thereby
of sequential processes using point-to-point communication through channels. The process
reaching the read or write first, blocks until the counterpart of the communication reaches
it also. Then, values are exchanged and the execution proceeds. Therefore, this model is
more restrictive than the blocking read communication introduced by Kahn [Kahn74] for his
process networks using non-blocking write and unbounded buffers for communication.

2.1.3 Discrete Event Model

The last model that is mentioned here is the discrete event model [CaLa08] where the
execution of system parts is triggered by the occurrence of events, and which is traditionally
implemented in hardware description languages like Verilog [IEEE05a], VHDL [IEEE08],
and SystemC [IEEE05]. Events triggering the execution are e. g. signal value changes, or
events of timers. The semantics of those languages is usually given by a simulation performing
the following steps in each simulation cycle:

• When an event occurs, all processes that are sensitive to this event are triggered and
their updates are collected but not yet executed.

2.2 The Synchronous Language Quartz 19

• In the second step, all updates collected in the first step are executed synchronously.
Some updates are visible directly, e. g. a signal change to a certain value, in the current
point of time, other updates are scheduled for the future, e. g. a signal change after 5ns.

• If an update in the second step was done for the current point of time, the simulation is
triggered again with this event. Technically, the simulation time does not increase in this
case and the cycle is called a δ-cycle. If no new event occurred for the current simulation
time, the time advances until the next event occurs.

The constructs used in those languages are useful for hardware simulation, but only a subset
of the whole languages is synthesizeable to real hardware. Furthermore, when hardware
synthesis is the goal, the systems described in those languages are often synchronous systems,
i. e. the only event that triggers the execution is a hardware clock signal.

2.2 The Synchronous Language Quartz

This section introduces the imperative synchronous language Quartz, which is used as a
basis for the extension in this work. Thereby, the section is mostly based on [Schn09], which
provides an exhaustive introduction to Quartz and serves as a reference for the whole
section. Since most of the content is recapitulated in a later chapter in the context of the
extension, this section gives an informal overview to introduce the language, its semantics
and its compilation. Compiler, verification and synthesis tools for Quartz are implemented
on the basis of the Averest library [AVEREST].

The imperative synchronous language Quartz implements the synchronous model of
computation by means of the pause statement. While all other primitive statements do not
take time (in terms of macro steps), a pause marks the end of a macro step and consumes
one logical unit of time. Thus, the behavior of a whole macro step is defined by all actions
between two consecutive pause statements. Parallel threads run in lock-step: their macro
steps are executed synchronously, and the statements in both are scheduled according to the
data dependencies so that all variables have a unique well-defined value in the macro step.
Quartz is a strict synchronous language, thus, each variable has a value per step and there
is no notion of absence.

2.2.1 Introductory Examples

The syntax and behavior of Quartz programs is illustrated by two examples in this section.
The first example is the module M shown in Figure 2.6 (a). For the module, the both inputs
a, b, the both outputs x, y, and the local variable z is defined. The pause statements
are annotated with the labels l1, l2, and l3. An example execution trace is given in
Figure 2.6 (b) for sample inputs: each column gives the values for one of the first 6 execution
steps. Generally, the module is executed for infinitely many steps, and it gets a new input
value for each input and it produces a new output value for each output in each macro step.
For space reasons, the values true and false are abbreviated by T and F in the trace. The very
first macro step is executed from the beginning of the module until the first pause statement
is reached. Therefore, the variable x gets its value in the first step accordingly to the given
input value of a. Furthermore, the variable z is assigned by a so-called delayed assignment,

20 2 Related Work

module M(nat ?a,?b,x,y)

{

nat z;

loop {

x = a;

next(z) = b;

l1: pause;

x = y + z;

if(a > 4) {

y = b;

l2: pause;

}

l3: pause;

z = 3;

}

}

1 2 3 4 5 6

Inputs
a 2 5 1 1 2 2

b 5 2 1 3 4 1

Labels

st T F F F F F

l1 F T F F T F

l2 F F T F F F

l3 F F F T F T

Locals &

Outputs

z 0 5 5 3 3 3

x 2 7 7 1 5 2

y 0 2 2 2 2 2

(a) M Source Code (b) Sample Execution Trace

Fig. 2.6. M Example

which evaluates an expression in the current step, but the value is transferred to the following
step. If a variable is not assigned in a step, it gets its default value, as it is the case for
the variable y, but also for the variable z, because the delayed assignment defines only the
value for the following step. For the next step, the execution starts from the first pause

statement, and because of the input value a, the if statement is entered and the step ends
at the pause statement with label l2. According to the synchronous model, each variable
has a unique value for the entire step and all assignments are evaluated simultaneously. For
now, the assignment to y must be executed before the assignment to x, because its value is
required to evaluate the expression of the assignment. The variable z gets the value that
was defined by the delayed assignment in the step before. Since no assignment is executed
in the third step, all values of the variables are kept from the previous step. In addition to
the variables, the labels of the pause statements are also shown in the trace. The labels are
interpreted in the following way: when a label is set to true, the current step starts at the
associated pause statement. Since there is no label that holds for the first step (the program
has just been started), the implicit label st is introduced to indicate the start of the module.
This label only holds in the first step.

A second, more complex example, is the module ABRO, which was originally published as an
Esterel example by Berry [Berr97a], and whose Quartz version is shown in Figure 2.7 (a).
The implementation uses some more complex statements, whose behaviors are explained
now as far as needed for this example. The await statement defines, similar to the pause

statement, the end of a macro step. However, in contrast to the pause statement, the await

statement is only left in one of the following steps, when the given condition holds. Actually,
it is a macro statement of other primitive statements defining its behavior:

l: await(α) :≡ do { l: pause; } while(!α).

2.2 The Synchronous Language Quartz 21

module ABRO(event ?a,?b,?r,!o)

{

loop {

abort {

wa: await(a);

||

wb: await(b);

o = true;

wr: await(r);

} when(r);

}

}

1 2 3 4 5 6 7 8

a F F T T F F T F

b F T F F T F F T

r F F F T F T F F

st T F F F F F F F

wa F T T F T T T F

wb F T F F T F T T

wr F F F T F F F F

o F F T F F F F T

(a) ABRO Source Code (b) Sample Execution Trace

Fig. 2.7. ABRO Example

The step ends in any case, but in the following steps, the execution can only proceed after
the statement when the condition α holds, otherwise, the loop is restarted and the step ends
again. The abort ... when statement cancels the execution of the enclosed statement when
the given condition holds. The ABRO module gets the three inputs a, b, r, and produces
the output o. The behavior of the module is as follows: it waits for the inputs a and b in
parallel (||) and only if both have occurred, the output o is set to true. This behavior can
be reset by the input r, which is used for the abort statement to cancel the execution. In
this case, the surrounding loop restarts immediately. The behavior can be described by the
extended finite-state machine (EFSM) which is shown in Figure 2.8. The labels which occur
in the program are used to define the states of the EFSM. From the initial state, the first
transition goes to the state {wa,wb} where the system waits for a and b to become true. If
the input a holds in the next step, the system goes to state {wb}, where it just waits for
the occurrence of b. If then b holds, the system goes to state {wr} and the output o is set
to true. Thus, a and b have occurred and then the output o is set. From each state, the
occurrence of the signal r lead to a reset of the system and it will go back to state {wa,wb}.
Note that, since the output o is declared as an event, it will only remain true for the step
where it is explicitly set. A sample execution of the ABRO example is given in the trace in
Figure 2.7 (b) for some sample input values.

The ABRO example also shows the correspondence of labels in the source code and the
states of the EFSM. Hence, the labels encode the (control) states, but not each combination
must be necessarily reachable. In the example, all combinations of the labels wa and wb occur
in the EFSM. The example only waits for the two inputs a and b in parallel, but it could
be extended to any other number of input values. In this case, for each additional input, a
new label and an await statement are introduced and all combinations of those labels would
encode a reachable state of the EFSM. This would blow-up the states of the EFSM whose
number grows exponentially with the number of inputs. Thus, in the worst-case, the EFSM
can grow exponentially in terms of size of the source code.

22 2 Related Work

st

wa,wb

wbwa

wr

true
¬a ∧ ¬b

¬a ∧ b ∧ ¬r

r

a ∧ ¬r/o

¬a ∧ ¬r

a ∧ ¬b ∧ ¬r

r

b ∧ ¬r/o

¬b ∧ ¬r

a ∧ b ∧ ¬r/o r

¬r

Fig. 2.8. EFSM of the ABRO Example

The module M also shows how variables can be declared either as interface variables or
as local variables. If the variables are declared in the module’s interface, they are implicitly
declared as input-output variables. If they are annotated with an ?, they are declared as
inputs, and if they are annotated with an !, they are declared as outputs. Input-output
variables are important for the interaction of several modules, but they can be seen as
outputs (which can be read) for the top-level module. Therefore, both kinds, input-output
variables and outputs, are simply referred to as outputs in the following. Additionally to this
distinction, there are two kinds of variables: events and memorized variables. Thereby, the
keyword event is added to define a variable as an event, otherwise the variable is declared
as a memorized variable implicitly. Both kinds of variables differ in the behavior when they
are not explicitly set by an assignment. If an event variable is not set by an immediate
assignment in a macro step and neither by a delayed assignment of the previous macro step,
the variable automatically gets its default value. A memorized variable will keep its value of
the previous step (like a register).

2.2.2 Statements

The language Quartz basically consists of a set of core statements and a set of macro

statements. Thereby, the semantics of the core statements is directly defined, and the macro
statements are reduced to the core statements. The exhaustive list of statements can be
found in [Schn09]. Here only the statements are considered which are important for this
work. The statements which are not considered here are either used for verification or they
can be also defined by macros from the core statements which are listed below. Some of the
core statements are:

2.2 The Synchronous Language Quartz 23

• l: pause

The pause statement marks the end of a macro step and thus also the beginning of the
following step. An optional label l, which is used to identify the pause statement in the
source code, is annotated to the statement. The label also plays a role for encoding the
control flow, e. g. in an EFSM or for code generation. Therefore, the compiler adds an
implicit label if none is given by the programmer.

• x = τ

The immediate assignment sets a value of a variable in the current macro step. Therefore,
the expression τ is evaluated under the values of the current step, and the result is
assigned to the variable x. All assignments which are executed in a particular step are
evaluated synchronously.

• next(x) = τ

The delayed assignment sets the value of a variable in the next step. Like the immediate
assignment, it evaluates the expression τ with the values of the current step, but the
resulting value is assigned to the variable x in the following step.

• if(σ) ... else ...

The conditional statement executes its first or its second branch depending on the
evaluation of the condition σ. The condition is only checked when the statement is
reached by the control flow, it is not evaluated again when control flow already is inside
one branch.

• {α x; ...}

Local variables are declared at the beginning of a code block and they are visible for this
code block. The block, where a variable is visible is called its scope. Input and output
variables are visible for the whole module. The statement defines the variable x of type α

for the code block. Local variables can be only read and written within their scope.

• do ... while(σ)

The loop repeats the execution of its body statement if the condition σ holds. Therefore,
the body is executed at least once, when the end of the body is reached, the condition σ

is checked and if it holds, the loop body is restarted in the same step. Otherwise, the
whole loop terminates.

• { ... } || { ... }

The parallel statement executes both code blocks, called threads for this statement,
stepwise synchronously. Hence, in each macro step, one macro step of each block is
executed. In plain terms, both threads synchronize on each pause statement which is
reached. The whole parallel statement terminates when its last (in terms of execution)
thread terminates.

• abort ... when(σ)

The abortion statement cancels the execution when the given condition σ holds. In this
case, program execution will proceed after the statement. The abortion takes place for the
whole macro step: if the condition holds in a step, no action inside of the code block of the
abortion statement is executed. This version of the abortion is also called strong abortion
when the difference to the weak abortion which is explained below is emphasized.

24 2 Related Work

• immediate abort ... when(σ)

The abortion statement above can only abort the execution, when the control flow is
already inside the statement. The immediate keyword changes the behavior so that also
the first macro step, i. e. when the statement is entered, can be aborted. This statement
can be also defined as a macro of the former one:

immediate abort ... when(σ) :≡ if(!σ) { abort ... when(σ); }

Hence, if the abortion takes place at the beginning, the whole statement is not executed,
as it is illustrated by the macro definition.

• weak abort ... when(σ)

The weak version of the abortion statement also aborts the execution in the macro step
in which the condition holds, but the assignments for the current step inside the code
block are executed before execution proceeds after the statement. Hence, the data flow is
executed, but the control flow is aborted inside.

• weak immediate abort ... when(σ)

Like for the strong variant, the immediate keyword changes the behavior that also the
first macro step, i. e. when the statement is entered, can be aborted. However, for this
weak version, the data-flow assignments of the entering macro step are executed.

• suspend ... when(σ)

The suspension statement stops the execution of the code block when the given condition
σ holds. In this case, nothing will be executed for this step, but the control flow will rest
at the label where it is. Thus, in the following step the execution resumes from exactly
the same position (given that the condition σ does not hold and the execution is not
suspended again). Like for abortion, this version of the statement is also called strong

suspension in contrast to the weak versions.

• l: immediate suspend ... when(σ)

The immediate version of the suspension statement waits before entering for the condition
α to not hold. Hence, the entering of the statement can be also suspended. In this case, an
additional label is needed, because the control flow can rest outside the actual statement.
The macro definition illustrates this behavior:

l: immediate suspend ... when(σ) :≡
while(!α) { l: pause; }

{ suspend ... when(σ);}

• weak suspend ... when(σ)

The weak version of the suspension statement stops the execution of the control flow but
not of the data flow when the condition σ holds. Hence, assignments are executed inside
the code block, but the control flow remains at the labels it is. In a following step, when
σ does not hold, it will resume exactly from this position, where it has been suspended
before.

• l: weak immediate suspend ... when(σ)

Also for the weak version of the suspension statement, the immediate keyword changes
the behavior in that suspension can also take place for the first macro step. However, the
data-flow assignments of the entering macro step are here also executed.

2.2 The Synchronous Language Quartz 25

• nothing

This statement has no effect. It exists for technical reasons of defining source code
transformations and macro statements.

Note that the core statements, as also explained in [Schn09], do not form a minimal set of
statements, because some of them can be defined by others, like the immediate versions of
the strong abortion and suspension statement. This kind of statements, the abortion and
suspension statements, are summarized by the term preemption statements. Furthermore, the
preemption statements without the keyword immediate are referred to as delayed preemption

if the difference is emphasized. So far, just core statements have been described. Furthermore,
the following macro statements are of interest for this work:

• loop { ... } :≡ do ... while(true)

This simple version of a loop keeps repeating its loop body forever. It can only be aborted
by a surrounding abortion statement or stopped by a surrounding suspension statement.

• while(σ) { ... } :≡ if(σ) { do ... while(σ); }

This loop also checks the loop condition before entering the loop body for the first time.
It does not necessarily execute its body as the original do ... while loop.

• l: await(α) :≡ do { l: pause; } while(!α)

The already mentioned await statement waits for the expression α to become true. In
any case, the statement marks the end of a macro step and has therefore a label assigned
to it. The execution only proceeds when the given condition holds. The macro definition
shows this effect, the loop and the pause statement is reached in any case, but the loop
is only terminated when α holds.

• l: immediate await(α) :≡ while(!α) { l: pause; }

The immediate version of the await statements also checks the expression α in the first
step, as it is illustrated by the macro.

As already said, this list of statements is not complete, but it gives an informal overview of
the statements which exist in Quartz and which are important for this work. The statements
will be considered later again in the context of the extension.

2.2.3 Semantic Issues

The synchronous assumption requires that all actions are executed simultaneously in each
instant considering the same variable environment. This abstraction simplifies description
and analysis on the one hand, but also introduces special problems being discussed in the
following on the other hand. Thereby, logical correctness and causality are common aspects of
synchronous languages in general, whereas schizophrenia problems are an issue of imperative
synchronous languages in particular.

Constructivity vs. Logical Correctness

In Quartz, all actions executed in a step, i. e. between two pause statements, define the
behavior in this step. In synchronous data-flow languages, the behavior is defined by a set of
equations considered in each reaction. In theory, every variable assignment that complies

26 2 Related Work

to the execution of the actions or to the equations can be considered as a valid reaction. A
program that has for given input values exactly one consistent assignment of all variables
is called logically correct. This is also exactly the form of determinism that is expected of
reactive systems. However, the goal is to execute the program and therefore, the unique
solution has to be computed somehow. Instead of finding the solution for each possible
program, a subset of programs called constructive programs is defined for which the solution
can be computed by a set of operational rules. The idea is illustrated with the help of the
following Quartz program.

l1: pause;

if (x | y) {

x = true;

} else {

x = true;

l2: pause;

}

y = true;

l3: pause;

Consider the step that starts from label l1 and assume that the variables memorized x and
y had the value false in the previous step. If no assignment sets them in the considered step
they will keep their values of the previous step. In order to be logically correct, a unique
variable assignment has to be found leading to a valid execution of the program. In each
branch of the if statement, an assignment sets x to true, but the second branch also contains
a pause statement. Hence, if the condition x | y does not hold, the assignment to y is not
executed, but the condition depends on the value of x. In principle, all possible variable
assignments for x and y have to be checked.

It can be easily seen that only the values x = true and y = true are consistent with the
executed assignments, and thus, this program (or at least the considered step) is logically
correct. However, executing this program means to compute the values for x and y, and
trying out all possibilities is obviously too inefficient. Therefore, the Quartz semantics is
given by a set of rules defining an operational way of constructively computing the values.
Thereby, a program where all values can be computed by these rules is called constructive,
so that the above example is not a constructive Quartz program. In Quartz, an action is
only executed if all control-flow conditions contributing to its trigger can be evaluated before
that action. Since the condition that determines whether to execute the assignments to x

and y depend on the values of x and y, they cannot be evaluated before.
An exact definition of constructivity is given by the semantics of Quartz, but for a

better understanding, some examples of constructive programs are informally discussed in
the following. Consider the examples shown in Figure 2.9. The program Caus1 produces the
output o and uses the local variable x. Since both assignments are executed in the same step
under the same condition (they have the same control-flow condition), they can be executed
in any order, but for the assignment to o the value of x needs to be computed before. Hence,
the execution following the data dependencies can compute all values and the program is
constructive. The program Caus2 also produces the output o, but the execution of the
assignment to o depends on its own value: the control-flow condition cannot be determined

2.2 The Synchronous Language Quartz 27

module Caus1(bool o)

{

bool x;

o = x;

x = true;

}

module Caus2(bool o)

{

if(!o)

pause;

o = true;

}

(a) Caus1 Source Code (b) Caus2 Source Code

Fig. 2.9. Causality Examples I

without knowing the value of o. One has to try out all possible values, but this is not
considered to be constructive. Even more, one would find out that both possibilities (true and
false for o) are consistent values for this program: the program is not even logically correct.

The program Caus1 showed a dependency between the assignments that can be statically
resolved. However, consider the programs Caus3 and Caus4 in Figure 2.10 which have
both cyclic dependencies between both assignments. Thereby, Caus3 is logically correct,
since for each possible input value for i, there exists one unique consistent valuation for
x and y. It is furthermore constructive in the sense of Quartz, since with a known input
value, the cyclic dependencies disappear after a lazy evaluation based on i. The program
Caus4 is similar, it also takes the input i and produces the same outputs, but it is not
logically correct since there is no solution for input i = false. Lazy evaluation with that
input assignment will also not resolve the dependency cycle between x and y. Finally, a
third kind of causal dependencies is illustrated by the program Caus5 that is also shown in
Figure 2.10. The first thread consists of a loop needing one macro step and the second one
consists of a loop needing two macro steps for executing their body statement. Due to the
synchronization of the parallel statement, the assignments of the first thread are executed
alternatingly with the one or the other assignment of the second thread: the dependencies
between the assignments in the first thread are changed by the second thread, since the order
depends on whether the one or the other assignment is executed. However, the dependencies
can be statically determined in each macro step, but depend generally on the control-flow
location. The program is also constructive in the sense of Quartz.

The demand of constructivity comes from the fact that synchronous languages are used to
describe systems being finally executed, but real execution needs an operational description
of the system. Even though, compilers could transform each logically correct system into a
constructive form, the question is whether it is a good idea to spend this computational effort.
Furthermore, Shiple and Berry [ShBT96, Berr99] defined a constructive semantics for pure
Esterel and showed that the hardware circuit being generated (by a simple translation)
for a program stabilizes exactly when the program is constructive. Hence, on the one hand,
the definition of constructivity can be seen as a restriction that allows one to more easily
translate programs to a target platform. On the other hand, it also gives the programmer an
understanding about how things are computed. Checking constructivity statically is known as
causality analysis [Mali94, HaMa95, BrSe95, ShBT96, Bous98, Berr99, ScBS04b, SBST05b]
in the context of synchronous languages. Furthermore, even if some kinds of dynamic

28 2 Related Work

module Caus3(bool ?i,x,y)

{

x = ! y & i;

y = x | i;

}

(a) Caus3 Source Code

module Caus5(...)

{

loop {

x = a;

y = b;

pause;

} || loop {

a = y;

pause;

b = x;

pause;

}

}

module Caus4(bool ?i,x,y)

{

x = ! y | i;

y = x | i;

}

(b) Caus4 Source Code (c) Caus5 Source Code

Fig. 2.10. Causality Examples II

dependencies like in the program Caus3 can be also resolved by hardware circuits, a
translation to a sequential language requires more effort in this case.

Local Declarations and Schizophrenia

Imperative synchronous languages combine control-flow statements with synchronous seman-
tics for data flow with the result that assignments can affect a finite number of statements
in the source code. Local declarations restrict the visibility of a variable to a certain scope.
Together with loops, it is possible that the scope of local variables is left and re-entered in
the same macro step [Berr99].

The example program Local1 shown in Figure 2.11 (a) illustrates this aspect. It contains
a loop with a single pause statement of label l, and a declaration of the local variable x.
Since the scope of x ranges from its declaration to the end of the loop body, x exists for each
execution of the body. However, a step can start from the pause statement, complete the
loop, re-enter the loop, and finally end at the same pause statement: the scope of x is left
and entered in one macro step. Thereby, the assignment x = (y < 1) affects the variable
in the old scope, whereas the if statement reads the value of the new scope, which is false
because x is initialized each time the scope is entered and x is not written. The variable x
exists twice in this macro step.

A second example is shown in Figure 2.11 (b). The program Local2 also contains a
single loop with the local variable x. A macro step inside the loop can either start from
label l1 or l2. If it starts from l1 and the input i holds, it will also end at l1, and the
assignment x = true is executed for the x whose scope is left in this step. If a macro step
starts from l2 and the inputs i does not hold, the step will end at l2, and in this case, the
assignment x = true is executed for the new x whose scope is entered in this step. Thus,
the statement x = true depends dynamically on either the one or the other version of x.
Such statements are called schizophrenic statements.

2.2 The Synchronous Language Quartz 29

module Local1(nat !o)

{

nat y;

loop {

bool x;

if(x)

y = 1;

l: pause;

o = y;

x = (y < 1);

}

}

sc
o
p
e

o
f
x

module Local2(bool ?i, nat !o)

{

loop {

bool x;

if(x)

o = 1;

if(i)

l1: pause;

x = true;

if(!i)

l2: pause;

}

}

sc
o
p
e

o
f
x

i ¬
i

(a) Reentering a Scope (b) Schizophrenic Statements

Fig. 2.11. Schizophrenic Quartz Programs

Compared to local declarations in ordinary sequential programming languages, it seems
curious that those examples are an issue in synchronous languages, because when the scope
of a variable in a sequential language is left, the variable cannot be used anymore. If a scope
is entered, the variable can be just reset, or dependent on the implementation new memory
is reserved for this variable. However, due to the synchronous abstraction, values of local
variables can affect the execution of the whole step, hence, their value must be available.
Consider the example in Figure 2.11 (a) again, where the value of the old x depends on y,
but y depends on the new x. Finally, synthesis and analysis tools have to deal with local
variables.

The shown examples only illustrate simple occurrences of schizophrenic variables and
statements where only two versions of a variable are needed for a macro step. However,
nested loops in combination with the weak abort statement can lead to arbitrary complex
constructs where also arbitrary (but finitely) many versions of the local variable are needed
for a macro step. Schizophrenia is properly handled by the Quartz compiler, and also other
solutions have been proposed in the past to handle local declarations for Esterel. One
simple solution is a source-code transformation, which changes the code in a way that it is
no longer possible to leave and enter the scope of the same variable in the same macro step.
For example, the loop body is duplicated and together with it also the local declarations.
This results in more local declarations and increases the code but it prevents the usage
of the same variable twice in a step. However, for nested loops, this solution leads to an
exponential growth of the source code. A better solution is proposed in [TaSi04], where the
local variables and just some of the statements in the loop body are duplicated, but not the
whole loop. However, the duplication approach does not work directly for Quartz, because
Quartz has delayed assignments, which can affect the value of a variable in the following
step. The duplication approach just prevents the body to be re-entered directly but not to
be entered in the next step where delayed assignments could affect a variable. Therefore, a

30 2 Related Work

third copy would be necessary for Quartz to handle this correctly. A third solution, which
was proposed in [YKSH09] should be mentioned. The authors deal with a graph reachability
approach to identify local declarations which are not a problem for their further processing.
This solution does not tackle the problem generally, but only forbids examples like the one
shown above with existing dependencies from the new to the old variable. Further discussions
and solutions can be found in [ScBS06].

2.2.4 Formal Semantics

The semantics of Quartz is formally defined in [Schn09] in the style of Plotkin’s Structural

Operational Semantics (SOS) [Plot81, Moss06] which has already been successfully used in
the context of the synchronous language Esterel [BeCo85, Berr99, Tini00], and has been
also utilized for the polychronous language Signal [TBGS13]. As the name suggests, SOS
rules are defined over the structure of a given program, i. e. the Abstract Syntax Tree (AST).

In sequential programming languages, a program is executed step by step as given in
the source code. The traditional SOS rules update a state according to the execution of
a statement directly. For example, an assignment changes the value of a variable to the
value given by the evaluation of the assigned expression with respect to the current state.
The semantics of a sequence is given by the sequential execution of those statements and
the behavior of a program can be determined by traversing the AST according to the rules
once, because an assignment can only affect statements which occur after itself in the AST.
However, due to the synchronous abstraction of time, all assignments of a macro step have
to be taken into account at once. Hence, the SOS rules cannot be used directly, because the
order of the statements given by the AST does not follow the semantic order. Therefore, the
semantics of Quartz is described by two sets of SOS rules: transition rules and reaction

rules. The reaction rules determine the value for each variable of a macro step, and the
transition rules perform a transition of the program for the macro step.

Transition Rules

The transition rules transform a given program based on a valid variable assignment for
the current step to a new program which is considered in the following macro step. The
values are stored in an environment E assigning a value to each variable. Transition rules for
Quartz are of the form:

〈E , ~,S〉 ։Q

〈
~′,S ′,Anxt, t

〉

The rules start with the given environment E and an incarnation level ~ which counts the
already processed local declarations for a variable: every time a new scope of a local variable
is entered, it is increased for this variable. With this information, expressions can be evaluated
according to the current scope of local variables. Note that a scope can be entered more
than once during a macro step. The statement S denotes the program statement the current
macro step is executed for. The rules determine the residual statement S ′, which is considered
in the following macro step and a set of delayed assignments Anxt, which determine values
for variables in the following macro step. The symbol t is either true or false and denotes if
the current macro step is completed for the considered statement. Frankly, it is true when a
pause statement has been reached and the whole macro step is processed. The environment

2.2 The Synchronous Language Quartz 31

which is given to the transition rules has to be complete, i. e. each variable has a valid value.
For the following macro steps, only the residual statement S ′ and the delayed actions Anxt

are of interest. ~′ and t are only used during the transformation for traversing the AST.

Reaction Rules

In contrast to the transition rules modifying the program itself, the reaction rules determine
the values of the variables of a macro step, thus, they prepare the application of the transition
rules. However, due to the already mentioned reasons, the data values cannot be determined
by traversing the AST once. Therefore, the reaction rules start with a partial environment,
i. e. not all variables have a value assigned, and they are repeatedly applied until either all
values for the variables are known or no more values can be derived. For this reason, the
reaction rules cannot modify the program structure, because otherwise a repetitive rule
application for the same step would not be possible. Reaction rules for Quartz are of the
form:

〈E , ~,S〉 #Q

〈
~′,Acan,Amust, tcan, tmust

〉

The rules start with the given (partial) environment E and an incarnation level ~. The rules
consider the statement S, and they determine a new incarnation level ~′, two sets of actions
Acan and Amust and two versions of a Boolean flag tcan and tmust. The actions Amust are the
actions which are known to be executed in the considered step, whereas the actions in Acan

are potentially executed. An action is for example contained in Acan when the action occurs
within an if statement, and its condition cannot yet be evaluated to true or false because
the needed variables are not known. According to the assignments which are collected in
those sets, the environment can be updated for the following iteration. The flags tcan and
tmust are used during the application: they encode the information if a statement will or will
not terminate in the macro step. According to the partial environment, it can be also the
case that it is not known that the statement will terminate, which is also encoded in those
flags. However, ~′, tcan and tmust are only used during the application, and Acan and Amust

can be used to update the environment for the next iteration.
The reaction rules also define the set of constructive Quartz programs: a program where

the values of all variables can be computed by these rules is said to be constructive. If the
reaction rules cannot determine a value for each variable, the program can still be logically
correct, but it is not causally correct.

Example

A definition of an interpreter for Quartz programs based on the SOS rules is given in [Schn09].
Figure 2.12 shows an example program that is interpreted using the rules in the following.
The considered statement is S and the program has the input i which can be true or false.
The value true is considered first and the reaction rules are applied to S:

〈{(i, true), (x,⊥), (y,⊥)} , ~,S〉 #Q

〈
~′, {x = y,y = true} , {x = y,y = true} , false, false

〉

The symbol ⊥ is used to represent unknown values. The result of the rule means that the
assignments to x and y are executed, but the value of x cannot be yet determined because
the value of y is unknown. The environment is updated according to the assignments and
the rules are applied again:

32 2 Related Work

S:

module S(bool ?i, x, y)

{

x = y;

if(i) {

y = true;

l1: pause;

x = false;

l2: pause;

}

l3: pause;

y = false;

}

S ′:

x = false;

l2: pause;

l3: pause;

y = false;

Fig. 2.12. Example for Quartz SOS rules

〈{(i, true), (x,⊥), (y, true)} , ~,S〉 #Q

〈
~′, {x = y,y = true} , {x = y,y = true} , false, false

〉

There is no change in the result of the rules, but since the value of y is now known, the
value of x can be determined. Another application of the rules leads to the same result and
the final environment is: {(i, true), (x, true), (y, true)}. This environment can then be used
to transform the program statement with the transition rules:

〈{(i, true), (x, true), (y, true)} , ~,S〉 ։Q

〈
~′,S ′, {}, false

〉

Hence, the residual statement S ′ is the one considered for the next reaction and can be also
found in Figure 2.12.

2.2.5 Intermediate Representation

Quartz programs are translated by the compiler to the Averest Intermediate Format

(AIF) [BrSc09, BrSc11a]. AIF is also based on the synchronous model of computation and
contains the entire behavior of the given synchronous program. An AIF file contains some
structural information about the source program such as the input/output interface, local
variable declarations and verification targets. This information is not presented in this work
and the focus is put to the functional description. The intermediate format describes the
behavior of a system with the help of synchronous guarded actions and default reactions.
Thereby, guarded actions describe how values of variables are actively determined and the
default reactions serve as a fallback, i. e. they determine the value of a variable when no
guarded action does so.

Synchronous Guarded Actions

Synchronous guarded actions are used to describe the system’s behavior by assignments that
are executed to define a value of a variable under a certain condition. Thereby, a guarded
action has the form:

γ ⇒ A

2.2 The Synchronous Language Quartz 33

where γ is called the guard and A is an action. For the actions, only immediate and delayed

assignments are considered in this thesis. The complete intermediate format also contains
other kinds of actions such as assumptions or assertions, which are mainly used for verification
purposes. The intention of a guarded action is that the action is executed in each instant in
which its guard evaluates to true. Since the intermediate format also follows the synchronous
abstraction, all guarded actions are evaluated in an instant synchronously in zero time and if
the guard γ of an immediate assignment γ ⇒ x = τ is true, the right-hand side τ is evaluated
to determine the value of the variable x. In contrast, delayed assignments affect the value
of the next step of a variable. The assignments which occur in a Quartz program can be
directly translated to guarded actions. However, not only the data flow is encoded in guarded
actions but also the control flow. Therefore, all program labels and also the implicit start
label st are encoded as Boolean events. The control flow can then be described by delayed
actions of the form γ ⇒ next (ℓ) = true, where γ is a condition that is responsible for moving
the control flow at the next point of time to location ℓ.

The guarded actions of the program M, which is shown in Figure 2.6 (a), are given in
Figure 2.13. For example, the data-flow action l1 ∧ a > 4 ⇒ y = b is executed when the
control flow is at label l1 and the condition of the if statement holds. The guarded actions
for the control flow are also rather simple. They express under which condition from a pause

statement the next pause statement is reached. For example, if a macro step starts from
label l2, it will end at the pause statement with label l3 as expressed by the guarded action
l2 ⇒ next (l3) = true. Hence, l3 will hold in the following step.

st ⇒ x = a

st ⇒ next (z) = b

l1 ⇒ x = y+ z

l1 ∧ a > 4 ⇒ y = b

l3 ⇒ z = 3

l3 ⇒ x = a

l3 ⇒ next (z) = b

st ⇒ next (l1) = true

l1 ∧ a > 4 ⇒ next (l2) = true

l1 ∧ ¬(a > 4) ⇒ next (l3) = true

l2 ⇒ next (l3) = true

l3 ⇒ next (l1) = true

(a) Data-Flow Actions (b) Control-Flow Actions

Fig. 2.13. Guarded Actions of Program M

Although the example illustrates the mapping from the source code to guarded actions,
the guarded actions of the example ABRO shown in Figure 2.14 are more interesting. The
source code has already been given in Figure 2.7 (a). There exists only one data-flow action
which sets the output o. The guard of this action describes the conditions when the parallel
statement terminates and the execution is not aborted by the input signal r. The parallel
statement terminates when both, a and b have occurred. The guard can also be found in
the EFSM of the ABRO example in Figure 2.7. It is the disjunction of the conditions of all
transitions which go to the state {wr}, because those are exactly the transitions which set o.

34 2 Related Work

¬r ∧

wa ∧ a ∧ ¬wb∨

wb ∧ b ∧ ¬wa∨

wa ∧ a ∧ wb ∧ b

 ⇒ o = true

st ⇒ next (wa) = true

st ⇒ next (wb) = true

¬r ∧ wa ∧ ¬a ⇒ next (wa) = true

¬r ∧ wb ∧ ¬b ⇒ next (wb) = true

r ∧ (wr ∨ wa ∨ wb) ⇒ next (wa) = true

r ∧ (wr ∨ wa ∨ wb) ⇒ next (wb) = true

¬r ∧

wa ∧ a ∧ ¬wb∨

wb ∧ b ∧ ¬wa∨

wa ∧ a ∧ wb ∧ b

 ⇒ next (wr) = true

(a) Data-Flow Actions (b) Control-Flow Actions

Fig. 2.14. Guarded Actions of Program ABRO

Default Reactions

Similar to Quartz programs, the AIF description adds an implicit default reaction for each
variable: if no guarded action determines the value for a variable, then a variable either gets
a default value or stores its previous value, depending on the declaration of the variable.
Obviously, this is the case if the guards of all immediate assignments in the current step and
the guards of all delayed assignments in the preceding step of a variable are evaluated to false.
Thereby, event variables are reset to a default value while memorized variables keep their
value of the previous step. The default reaction is either implicitly given by the storage type
of the variable or it is explicitly set. Thereby, for a variable x, it is defined by two expressions,
default0 (x) and default+ (x). default0 (x) defines the default value of x in the initial step and
default+ (x) defines the default value of x in each following step. Thereby, default+ (x) is
evaluated in the previous step, hence, it is used to transfer a value from the previous step to
the current one. The implicitly given initial and transition value of a memorized or event
variable x is defined by:

default0 (x) := default (x)

default+ (x) := x

default0 (x) := default (x)

default+ (x) := default (x)

Memorized Variable Event Variable

Thereby, default (x) is the default value of the variable x which is defined by the type of x.
These are the implicit default reactions which are given to a variable based on its declaration.
AIF allows to explicitly overwrite the default reaction for a variable, which is used for a
correct translation of local declarations and efficient handling of schizophrenia. Thereby, the
default reaction is used to set a variable to the correct value when its scope is re-entered.

2.2.6 Compilation

The compilation algorithm [BrSc11a, BrSc09] translates a given Quartz program to the
intermediate format and it is based on two things: First, the distinction of surface and
depth [Berr99] of each statement and second, the computation of some control-flow predi-

cates [Schn00, Schn01a].

2.2 The Synchronous Language Quartz 35

Surface and Depth

The compilation algorithm works recursively on the AST of a Quartz program. Thereby, it
determines the surface and depth of each (sub-)statement:

• Surface

The surface of a statement contains the guarded actions which are executed in the macro
step in which the statement is started. These are all assignments which are possibly
executed before the first pause statement is reached.

• Depth

The depth of a statement are the guarded actions which are executed in any later step,
thus when the control flow is at a label inside the statement.

The relationship of surface and depth of a statement is illustrated in Figure 2.15. It shows
a short program fragment together with its control-flow graph at the left side. The if

statement leads to a branch, the small dots indicate an action and the big dots indicate a
pause statement. The surface of this whole fragment is obtained by traversing the control-flow
graph until a pause statement is reached. The depth can be obtained by starting at each
pause statement and traversing the graph to the end. The sub-graphs for surface and depth
are shown at the right-hand side. Generally, the depth can have multiple entry points. It can
be also seen that surface and depth generally overlap: the assignment to variable z belongs
to surface and the depth in the example.

Action
pause

x = ...;

if(...) {

y = ...;

l1: pause;

x = ...;

} else {

y = ...;

}

z = ...;

l2: pause;

...

Surface

Depth

Fig. 2.15. Surface and Depth of Statements

This distinction is the key to compile complex statements of imperative synchronous
languages such as local variables, abortion and suspension statements. All of them have in
common that the behavior of the surface and depth must be treated separately. For instance,
a schizophrenic local variable is handled in Quartz by duplicating the surface of its scope
and, a usual abortion statement affects the execution when the statement has been entered.
In terms of surface and depth, abortion takes place in the depth but not in the surface. Thus,
it can be seen that this separation is reasonable to translate the behavior of those statements.

36 2 Related Work

Control-Flow Predicates

The second key aspect of the compilation algorithm is the computation of the control-flow
predicates of each (sub-)statement. Thereby, some of the predicates are determined by
the context of a statement, while others are defined by the statement itself. The following
predicates are defined by the context:

• strtS

This condition holds when a statement is started, i. e. when the position of the statement
is reached in source code. It is used to build the guards of the guarded actions.

• abrtS

The predicate summarizes the abortion conditions of the surrounding abort blocks. The
execution at this statement is aborted, when at least one of the surrounding abortion
conditions hold.

• suspS
Similar to abrtS , this condition summarizes the conditions of the surrounding suspension
blocks. The priority of abortion and suspension is respected by those conditions.

• strgS
The strong and weak variants of preemption statements differ in the way, the data flow is
handled. This condition holds, when the data flow is not executed, i. e. when it is either
aborted or suspended.

It can be easily seen that those conditions are determined from the context where a statement
is used. As already stated above, there are also conditions which are defined by a statement
itself. For example, the sequence of two statements needs the information when the first
one is finished, because this condition is required to define the strtS condition of the second
statement. The following predicates are defined:

• insdS

The predicate holds when the control flow is inside the statement. This condition is a
disjunction of all labels which occur in the statement.

• termS

This condition holds when a statement is active and it terminates on its own, i. e. it is
not forced to terminate. Hence, abortion conditions from the context are not taken into
account.

• instS

This condition holds when the execution of the statement is finished in the same instant
where it is started.

With the control-flow predicates and with the definition of surface and depth, the compilation
algorithm can translate a program to guarded actions.

Compilation

The compilation algorithm works recursively on the AST of a Quartz program. Thereby
it simply determines surface and depth of the whole program which together define the

2.2 The Synchronous Language Quartz 37

guarded actions. Thereby, the guarded actions of the surface are additionally strengthened
by the implicit start label st. As already mentioned, schizophrenic local variables are handled
by the compiler by duplicating the surface of loop bodies and renaming the local variables
inside this surface. The surface of the loop body is the part which can interfere with the
old scope of the local declaration. Additionally, delayed assignments which are executed
when a loop body is left are disabled by an additional condition that they cannot affect the
local variable anymore. The second issue of synchronous languages is causality. The Quartz

compiler translates the programs to guarded actions and preserves the constructivity. Hence,
a program is constructive, iff its AIF representation is.

2.2.7 Code Generation

The intermediate representation based on guarded actions is a good starting point for code
generation to various targets. The complexity from the source language is reduced, but
the synchronous semantics is kept. Different target code generators rely on this simplified
representation to translate it to other languages. Code generation for Quartz (as it is
implemented by Averest) targets software, hardware and verification in different languages
and models. Software can be generated from AIF in a sequential manner for single-threaded
execution. However, software can also be generated for parallel [BaBS10, BaBS10a] and for
distributed [BaBS11b, BaBS12] architectures. Hardware is generated by translating AIF to
Verilog. Thereby, a synchronous hardware description is generated: each clock cycle of
the hardware coincides with one step in the source code. For any target language, the type
system of Quartz also needs to be translated: the data types and the operators have to be
mapped to the target language. This thesis, however, focuses on the general translation of
the computational model and so it goes not into detail in translating the type system. In the
following, code generation for sequential software and for hardware is illustrated.

Hardware

The translation from AIF to hardware is based on synchronous circuits, whereas each clock
cycle of the resulting circuit coincides with one execution step of the original program. This
translation sounds reasonable since synchronous circuits rely on the same computational
model. However, this is not a must and a translation to asynchronous circuits is also possible.
An interesting hardware implementation of Esterel is proposed in [Berr91] using a structural
translation based on the source code: each statement in the source code is translated to a
hardware block and the wires are connected accordingly to the program structure. Those
control wires are similar to the control signals used in the Quartz compiler.

The generated hardware for Quartz is represented by equations which then can be easily
translated to a hardware description language like Verilog. An equation defines either the
value of a wire or the value of a register. The values of wires can be directly computed in the
current clock cycle, and they are represented by an equation of the form

x = τ

meaning that a variable x set to the current value of the expression τ . Registers are updated
during a clock transition at the end of a clock cycle. Thus, they can be used to model the

38 2 Related Work

behavior of delayed assignments. A register is represented by two equations: one defines the
value for the initial clock cycle, and the other one defines the transition to the following clock
cycles:

init (x) = τ1

next (x) = τ2

Since those equations can be easily mapped to a hardware description language such as
Verilog, for further processing, existing tools for these languages can be used.

Control Flow

The control flow is a special case and it is considered first. The actions of the control flow sets
the labels true when their guards hold. Each label can be separately translated to equations.
Assume that the label ℓ is written by the following actions:

γ1 ⇒ next (ℓ) = true

γ2 ⇒ next (ℓ) = true

. . .

γn ⇒ next (ℓ) = true

The label can then be set by these guarded actions for the next step. It will remain active
for only one clock cycle, if it is not set again by a guarded action. Therefore, the actions are
combined to define a register in the following way:

init (ℓ) = false

next (ℓ) = γ1 ∨ γ2 ∨ . . . ∨ γn

This sets the label only when one of the guards was true in the preceding clock cycle. Since
labels are considered as events, they automatically reset by the default reaction when they
are not explicitly set. This is also covered in this definition. Another special case is given by
the implicit start label st which is set to true for the first step and remains false for all other
steps. The register is defined by:

init (st) = true

next (st) = false

It is set initially and reset for the rest of the execution.

Data Flow

The translation of the data flow is more sophisticated because data-flow variables can be
written by delayed and immediate assignments. Since the same variable cannot be used as a
register and a wire, a new one has to be introduced. Assume that a variable x is written by
the following guarded actions:

γi
1 ⇒ x = τ i1

γi
2 ⇒ x = τ i2

. . .

γi
n ⇒ x = τ in

γd
1 ⇒ next (x) = τd1

γd
2 ⇒ next (x) = τd2

. . .

γd
m ⇒ next (x) = τdm

A new identifier xnxt is introduced for the variable x and is used to define a register to store
the values from delayed assignments. The equations can then be defined as follows:

2.2 The Synchronous Language Quartz 39

init (xnxt) = default0 (x)

next (xnxt) =

τd1 , if γd
1

τd2 , if γd
2

...
...

τdm , if γd
m

default+ (x) , else

x =

τ i1 , if γi
1

τ i2 , if γi
2

...
τ im , if γi

m

xnxt , else

Thus, x gets its value from an immediate assignment whenever one of the guards holds.
Otherwise, the value of xnxt is used which is either a value from a delayed assignment of the
preceding step, or the value of the default reaction if no delayed assignment issued a value.
Thus, the value from the default reaction is used when no delayed assignment of the previous
step and no immediate assignment of the current step sets a value.

This translation considers the general translation for sake of completeness. For special
cases, the translation can be much simpler. For example, for event variables which are not
set by delayed assignments, the additional register can be omitted, because

default0 (x) = default+ (x) = default (x)

holds, and the register would hold the value default (x) every time. Thus, xnxt can simply be
substituted by this value.

Example

An example is given by the equations for the variable z from the Quartz program M whose
guarded actions are given in Figure 2.13. The resulting equations for this variable are:

z =

{
3 , if l3

znxt , else
init (znxt) = 0

next (znxt) =

b , if st
b , if l3
z , else

Since z is a memorized variable, default+ (z) = z holds. This is different to the variable o
of the Quartz program ABRO (Figure 2.14) which is declared as an event variable. The
equations for o are:

o =

true , if

wa ∧ a ∧ ¬wb ∨

wb ∧ b ∧ ¬wa ∨

wa ∧ a ∧ wb ∧ b

onxt , else
init (onxt) = false

next (onxt) = false

It also illustrates the already mentioned optimization. The additional register onxt is not
needed, because it would hold the value false every time. Thus, it can be omitted.

40 2 Related Work

Software

The translation of AIF to sequential software is considered in this section. The semantics of
AIF can be given by a fixpoint iteration over all guarded actions to compute the values for a
step. This is reasonable for a hardware translation, because the fixpoint iteration is implicitly
done by the synchronous circuit. However, there are more efficient solutions for a translation
to sequential software. Therefore, the translation tries to order the guarded actions that
only one iteration is needed to compute all values. It is required that all used variables of a
guarded action have been computed before its execution. Thus, if a guarded action writes
the variable x it must be executed before all guarded actions which read variable x.

Basic Scheme

The basic idea of sequential code generation is illustrated by the code stub in Figure 2.16. First,
declaration and initialization of the variables is done. Then, a loop repeats the evaluation of
the guarded actions, where each iteration is the execution of a macro step. At the beginning of
an iteration, all inputs are read from the environment. With the input values, the (immediate)
guarded actions can be evaluated to determine the value of each variable. Thereby, the
actions have to be ordered that all actions reading a variable x are executed after all actions
possibly write x to ensure that x is determined before it is used. After all immediate actions
are executed, the values of all variables of a step are determined and the outputs can be
written to the environment. The following step is then prepared by executing the delayed
guarded actions which are evaluated with the current values but set the variables for the
next step. The delayed actions have to be ordered in the opposite direction here: all actions
reading a variable x must be executed before a delayed assignment sets a new value to x,
because otherwise the value of the next step of x would be read.

// initialize

...

while(1) {

// read all inputs

...

// evaluate all immediate assignments

...

// write all outputs

...

// evaluate all delayed assignments

...

}

Fig. 2.16. Sequential Code Stub

The default values of variables are not yet covered by the presented scheme. Recall that
a default value is assigned to a variable for a macro step, when it is not set by a guarded
action. For event variables, the default value of the according type is assigned, for memorized

2.2 The Synchronous Language Quartz 41

variables the value from the preceding step is used. Since the variables keep their values in
sequential code, for this second case no additional effort is necessary. However, events have
to be reset when they are not explicitly set. Therefore, event variables can be reset at the
beginning of a step and they would be either overwritten by an assignment or the implicit
default value would remain.

Cyclic Dependencies

The above description can generally lead to cycles in the dependencies of guarded actions.
Thereby, it has to be distinguished whether the cycle occurs due to the read-after-write
dependencies between immediate guarded actions or due to the write-after-read dependencies
between delayed guarded actions. Cyclic dependencies between immediate guarded actions
can be the result of a causality problem, then there is no way to handle them. However,
they can be resolved by either eliminating the dependencies when the guards of the actions
exclude each other, or by a deeper analysis. A way to do this can be found in [Edwa03a].

Cyclic dependencies between delayed guarded actions are not a causality problem, because
in the original model they write values for the following step. The dependencies are introduced
by the fact that the same variable is used for the current and the following value in the
implementation. In this case, it is possible to break the cycle by introducing a new (temporary)
variable which serves as a placeholder for the value for the following step. Thus, for a delayed
assignment, instead of writing the variable x, it writes a new variable xnxt and the value of
x is still valid. At the end of the loop iteration, the value have to be written back to x.

EFSM-based Code Generation

The code generation for a set of guarded actions has been considered so far. Thereby, all
guarded actions are evaluated in each loop iteration. However, the number of guarded actions
which are potentially executed within a step can easily be reduced by first considering the
labels. The EFSM which already has been introduced for the Quartz example ABRO in
Figure 2.8 enumerates the reachable label combinations, the states. According to those states,
a partial evaluation of the labels can reduce the number of guarded actions which has to
be considered in each state. The above introduced code generation can now be applied to
each state and an if statement can filter for the state first. This can reduce the number of
guarded actions which are considered within an iteration drastically and the generated code
is very fast. However, since the size of the EFSM is generally exponential w. r. t. the original
program, also the size of the generated code may be unmanageable. On the other hand, this
shows that there is a choice between efficiency and small code.

Example

An example of sequential code for the Quartz program M is given in Figure 2.17. The
generated code is based on the EFSM for M and only the state which relates to the label l1
is shown. The immediate assignments are ordered: the assignment to y is executed before
the assignment to x. The control flow of the EFSM is encoded in the variable __state000
which is assigned by a delayed assignment: the state is updated for the next iteration of the
loop. In the example, the next state depends on the input a.

42 2 Related Work

void M() {

// initialize

...

while(1) {

switch(__state000) {

...

case 0x1: {

// read all inputs

READ_i1(a);

READ_i2(b);

// evaluate all immediate assignments

if(a > 4)

y = b;

x = (y + z);

// write all outputs

WRITE_x(x);

WRITE_y(y);

// evaluate all delayed assignments

if(a > 4)

__state000 = 0x2;

if(! (a > 4))

__state000 = 0x3;

}

break;

...

}

}

}

Fig. 2.17. Sequential C-Code for Quartz Program M

2.2.8 Averest

The complete design flow illustrated in Figure 2.18 for the synchronous languages Quartz is
implemented with the help of the Averest library [AVEREST]. Thereby, the toolchain also
implements modular compilation which is based on a special intermediate format, which is
called AIF Module: each Quartz module is translated to an appropriate AIF, and a linker
composes these to an AIF system. Therefore, AIF modules stores additional information of
calling contexts and called modules, which are used for the linker. AIF systems represent
the intermediate format which has been described in Section 2.2.6. Code generation is then
based on AIF systems where some special transformations have been applied beforehand. For
example, the generation of the EFSM for software or the generation of an equation system
for hardware are implemented as a transformation. Then, backend tools are used to write
the source files in the various target languages.

2.2 The Synchronous Language Quartz 43

Quartz

Quartz

..
.

AIF

Module

AIF

Module

Compilation

Compilation

AIF

System
Linking

Transformation

Trace

SMV

HOL

C

Java

SystemC

VHDL

Verilog

Simulation

Verification

SW Synthesis

HW Synthesis

Fig. 2.18. Quartz Design Flow

Chapter 3

Clock Refinement

The main contribution of this thesis, the clock refinement extension to the imperative
synchronous language Quartz, is informally introduced in this chapter. To this end, some
drawbacks and limitations of the current state of imperative synchronous languages are
pointed out, followed by an introduction of clock refinement with the help of a simple
motivating example. After the basic idea has been explained, the impact of the extension to
the existing Quartz statements and its behavior is discussed. For example, the extended
behavior of abortion, suspension, and delayed assignments are considered in detail. Afterwards,
the discussion about constructivity and logical correctness that was started for Quartz

is also adapted for the extension. In the rest of this thesis, the terms pure Quartz and
single-clock Quartz are used for the original version of Quartz, and the terms extension

and extended Quartz are used for the clock refinement extension. The extension was first
introduced in [GeBS10] and an extended overview can be found in [GeBS13].

3.1 Limitations of Quartz

The synchronous abstraction idealizes the view to systems by reaction instants in which
outputs are immediately produced when inputs arrive. It leads to a simpler system description
and simplifies composition, modelling and analysis of the systems [BeBe91]. As explained
in Section 2.2, this model is implemented by the synchronous language Quartz by pause

statements identifying the end of a reaction: all actions executed until the next pause

statements are reached, contribute to the current reaction. As a consequence, parallel threads
run in lockstep and execute each reaction synchronously based on the common global variable
environment. The fact that variables only have one value per reaction, is a key feature
to make parallel execution and also abortion and suspension deterministic. However, this
abstraction imposes a single time scale: in each reaction all inputs are read and all outputs
are produced. There is no means to express independent execution or more flexibility in
timing. Some limitations imposed by this single abstraction are discussed in the following.

• Currently, Quartz offers module calls as a feature, but they behave in a fully synchronous
manner: each step of the calling module is executed synchronously with a step of the
called module. A common feature offered by many programming languages are functions

taking some input values, performing a computation and providing output values. In

46 3 Clock Refinement

Quartz, only very simple functions can be represented by macros of expressions, but
they cannot represent complex computations. The language Esterel allows to integrate
programs of a host language. However, since the host language is not covered by the
tools, it is not available for simulation, analyses and verification, and also synthesis is no
longer flexibly possible to all target languages. A better solution would be to integrate a
mechanism in the language itself so that functions, or at least modules that can behave
like functions, can be directly implemented in the synchronous language.

• Deterministic concurrency is enforced by the synchronous model as it is implemented in
Quartz, but this imposes restrictions on the modelling possibilities and also on code
generation, since threads synchronize their execution at each pause statement even if
the threads do not communicate with each other. While a static analysis may be able to
detect the dependencies to desynchronize such programs, another possibility is to add an
explicit notion of independence to the language which can be used by the programmer
to express the independence of threads in certain program locations. In this way, the
compiler can create desynchronized code without sophisticated and expensive analyses.

• Having only one temporal abstraction layer can make a system description inflexible with
respect to temporal changes. If a component is exchanged by another implementation
having the same functional behavior but a different number of computation steps, the
behavior of the whole system can be changed. Anyway, it is in general not an insolvable
task to write programs in a way that they are stable for such changes, but a better solution
would be to integrate features in the language allowing the programmer to express this
kind of communication explicitly.

The solution proposed in this thesis to these limitations is a language extension to Quartz

introduced in the following section. However, keep in mind that the extension does not extend
the expressiveness of the language in general, but it allows the programmer to express things
in a more convenient and liberal way which finally also allows the compiler to generate more
flexible code.

3.2 Basic Idea of Clock Refinement

The aim of the extension is to reduce the limitations coming from the single time scale
by introducing hierarchical synchronous layers which by themselves follow the synchronous
abstraction. Practically, Quartz is enriched with the possibility to divide a macro step by
smaller substeps of a lower layer that can be seen as macro steps on their own level. Hence,
the basic notion of steps is kept, but it can be abstracted in the hierarchy. The excessive
need for synchronization which was addressed before can be avoided by substeps which refine
existing steps and do not need to synchronize. In pure Quartz, no explicit clock is given, but
it can be seen as a single-clock model where each step (instant) belongs to a clock tick. In
this interpretation, pause statements are barriers for the next clock tick. Therefore, it seems
to be natural to keep this notion and identify the substeps also with new (local) clocks. This
section explains the introduction of this concept by an example showing the new statements
which are introduced to define new clocks and to use them to define substeps. It also shows
how one of the presented limitations of Quartz, namely the implementation of functions,
are addressed.

3.2 Basic Idea of Clock Refinement 47

The idea is illustrated by the two implementations of the Euclidean Algorithm given
in Figure 3.1. The first variant (given on the left-hand side of the figure) is implemented
in pure Quartz without clock refinement. The module reads its two inputs a and b in
the first step and assigns them to the local variables x and y used in the loop to compute
the Greatest Common Divisor (GCD). The iteration steps of the loop are separated by the
pause statement with label l. Each variable has a unique value in a step, and the delayed
assignments set a new value to the variables for the following step. Finally, the computed
GCD is written to the output variable gcd. The apparent drawback has been discussed
above: the computation needs several steps, and the number of steps required depends on
the input values, and each call to the module has to take care of the time consumption.
Changing the algorithm, e. g. to use the mod operator instead of subtraction, would also
change the time consumption possibly also affecting the behavior of the whole system. An
example execution trace for the computation of the GCD of the numbers 7 and 3 is shown in
Figure 3.2 (a). The computation takes 6 steps and during this computation, the inputs a and
b may change in general. Thus, a calling module has to take care of the computation steps
until the result is available. Please note also that it is not possible to compute the GCD
within one step, because the number of needed iterations depends on the input values, and
the number of actions in a step must be statically bounded.

module GCD1(nat ?a, ?b, !gcd)

{

nat x, y;

x = a;

y = b;

while(x > 0) {

if(x >= y)

next(x) = x-y;

else

next(y) = y-x;

l: pause;

}

gcd = y;

}

module GCD2(nat ?a, ?b, !gcd)

{

clock(C1) {

nat x, y;

x = a;

y = b;

while(x > 0) {

if(x >= y)

next(x) = x-y;

else

next(y) = y-x;

l: pause(C1);

}

gcd = y;

}

}

(a) Single Clock (b) Clock Refinement

Fig. 3.1. Greatest Common Divisor

The second variant using clock refinement is shown on the right hand side of Figure 3.1.
While the overall algorithm remains the same, the GCD computation is now hidden in
the declaration of the local clock C1. The computation steps are separated by the pause

statement with label l now belonging to the clock C1. In contrast to the first variant, the
computation does not hit a pause statement of the outer clock and thus, the computation
steps are not visible to the outside: the computation is done in substeps of a macro step of

48 3 Clock Refinement

the module. As a consequence, each call to this module appears to be completed in a single
step. The local variables x and y are now declared in the local clock block and therefore,
they can change their value for each step of the local clock, which is crucial for the correct
execution of the algorithm in this example. A trace for the computation of the GCD of the
numbers 7 and 3 is shown in Figure 3.2 (b). The computation for this version takes also 6

steps, but these are steps of clock C1, whereas the computation is finished in one step of
the module clock. The variables a, b and gcd, which are declared on the module clock, only
have one value for this base step, while the variables x and y, which are declared on clock
C1, change their value for each step of clock C1. Thus, the inputs remain constant during
the computation, and there is only one value of the output gcd.

The trace shows even more: In the synchronous model, each variable has exactly one
value for each step, and this value is valid from the beginning to the end of the step. The
inputs are given from the outside and thus, they are known for the whole computation. The
output gcd is computed after some substeps, but in the general view, it is valid during the
whole step. This point will be considered later in the context of constructivity.

1 2 3 4 5 6

a 7 7 7 7 7 7

b 3 3 3 3 3 3

st T F F F F F

l F T T T T T

x 7 4 1 1 1 0

y 3 3 3 2 1 1

gcd 0 0 0 0 0 1

1 2 3 4 5 6

a 7

b 3

st T F F F F F

l F T T T T T

x 7 4 1 1 1 0

y 3 3 3 2 1 1

gcd 1

(a) Single Clock (b) Clock Refinement

Fig. 3.2. Greatest Common Divisor Traces

The introduction of the local clock declaration enables the division of a macro step
of a module by smaller steps which are associated to the new clock. In the following,
the clock of the module (which the module steps are based on) is implicitly given by C0.
The pause statements related to this clock do not explicitly need the clock annotation,
i. e. pause ≡ pause(C0). An illustration of the relation of steps and substeps is given in
Figure 3.3. The trace at the upper side shows a sequence of macro steps of a pure Quartz

program. The communication with the environment is done in each reaction. Since the macro
steps are based on logical time, the physical time of the steps may differ. At the lower side
of the figure, an other trace of an extended Quartz program is shown. Thereby, the clock
of the module is refined by the clock C1, which is by itself refined by the clock C2. Thus, a
step of the module can be divided by smaller steps related to clock C1 and those smaller
steps can be divided by even smaller steps of the clock C2. According to the logical time
scale of macro steps, the division of steps into substeps is also logically defined, and there is
not necessarily a fixed number of substeps.

3.2 Basic Idea of Clock Refinement 49

C0

In Out/In Out/In Out/In Out/In

R0 R1 R2 R3

(a) Trace with a Single Clock

C0

C1

C2

In Out/In Out/In Out/In Out/In

R0 R1 R2 R3

(b) Trace with Substeps

Fig. 3.3. Refinement of Steps

Obviously, it is not only possible to arbitrarily nest clock declarations but also to introduce
new clocks in separate scopes. This gives rise to the clock tree of a program, which can be
obtained from the program structure. Figure 3.4 shows an example: the left-hand side shows
the structure of nested clock declarations in source code, and the right-hand side shows
the corresponding clock tree, which can be directly derived from it. The terms higher and
lower are used to classify the order of clocks on a branch of the tree. Hence, the clock C0 is
the highest clock of a module. Furthermore, the terms unrelated and independent are used
for clocks on different branches, e. g. the clocks C4 and C1 are unrelated in the example.
Furthermore, at each position in the source code, only one branch of the clocks is visible,
and unrelated clocks can never be visible at the same point.

module Clocktree(. . .)

{

clock(C1) {

clock(C2) {. . .}

}

clock(C3) {

clock(C4) {. . .}

||

clock(C5) {. . .}

}

}

C0

C3

C4 C5

C1

C2

⇒

(a) Code Structure (b) Clock Tree

Fig. 3.4. Clock Tree of Program

3.2.1 Steps, Variables and Assignments

The advantage that variables can now be declared for refined clocks and change their value
in each substep was already pointed out by the GCD example. The clock of a variable is

50 3 Clock Refinement

thereby implicitly given by the least visible clock at the point of the declaration. Hence, the
variable is only visible when its clock is, and like for clocks, it can never be the case that two
variables with unrelated clocks are visible at the same source code location. The input and
output variables of a module have the clock C0: from the point of view of the environment,
the module is still a synchronous system getting one value for each input and producing one
value for each output. Furthermore, since only related clocks are visible at each position,
expressions like conditions of if statements or assignments can only contain variables that
are related.

Values of variables can be explicitly set by either immediate or delayed assignments
setting the value for the whole step of the variable’s clock. Like for pure Quartz, immediate
assignments set the value of the current step, whereas the value set by delayed assignments
is transferred to next step of the variable’s clock. However, this design decision is not obvious
at the first glance, but nothing but a logical decision, since the value of a variable can only
change with steps of its clock.

module Steps(. . .)

{

bool x;

clock(C1) {

bool x1;

clock(C2) {

bool x2;

l1: pause;

l2: pause(C1);

next(x2) = ...;

next(x1) = ...;

next(x) = ...;

l3: pause(C2);

l4: pause(C1);

l5: pause;

l6: pause;

}

}

}

C0 C1 C2

Fig. 3.5. Steps and Delayed Assignments

Figure 3.5 illustrates how values are set by delayed assignments with a code example
that declares two clocks C1 and C2 in addition to the module clock C0. Thereby, the clock
of variable x is C0, the clock of variable x1 is C1, and the clock of variable x2 is C2. The
lines at the right-hand side of the code indicate the duration of the steps of the clocks. Thus,
the variable x1 has exactly one value between label l2 and l4. Delayed assignments set the
next value of a variable, hence, e. g. the value given to x1 by the delayed assignment is valid
for the step beginning at label l4 and ending at label l5. In general, a pause statement of a

3.2 Basic Idea of Clock Refinement 51

clock also marks the end of the steps of the lower clocks. Hence, the step between the labels
l5 and l6 is a step of all clocks (C0, C1 and C2).

3.2.2 Parallel Execution

In pure Quartz, parallel threads run in lockstep, i. e. each step of one thread is executed
together with one step of the other thread synchronously, and the parallel threads synchronize
on each pause statement, similar to barrier synchronization. In the extension, the threads
synchronize only by steps of a common clock and the thread can execute substeps of unrelated
clocks independently. Furthermore, the variables belonging to the clocks defined in a thread
are not visible to the other thread. Hence, even if they can change independently to the
substeps in the other thread, they cannot be read there. Communication between the threads
can only be established by variables of a common clock and for those variables the values in
each step are uniquely defined.

module Parallel1(. . .)

{

clock(C1) { clock(C2) {

pause(C1);

pause; pause;

pause(C1); pause(C2);

pause(C1);

pause; pause;

pause(C2);

} }

}

module Parallel2(. . .)

{

clock(C1) {

{ {

pause(C1);

pause; pause;

pause(C1); pause(C1);

pause(C1);

pause; pause;

pause(C1);

} }

}

}

(a) Synchronization on one Clock (b) Synchronization on two Clocks

Fig. 3.6. Parallel Execution

The synchronization of parallel execution based on clocks is shown by the examples in
Figure 3.6. Thereby, the threads of the parallel statement {...} || {...} are drawn
beside each other for a better illustration of the synchronization. The first example on the
left-hand side defines two new clocks, one in each thread of the parallel statement. Thus,
one step of the module clock C0 is divided into different substeps in both threads, but
the substeps are not related in any way. A second example for parallel synchronization is
shown on the right-hand side of the figure, where only one refined clock is defined for both
threads. Hence, the threads execute the steps of the module clock C0 and also the steps of
the refined clock C1 together. In terms of synchronization, both threads synchronize on the
pause statements of each common clock, which are C0 and C1 in this example. However,
one step of the module clock is divided by three substeps in the first and by two substeps in
the second thread. Hence, the second thread has to wait until the first thread also finishes

52 3 Clock Refinement

the step of clock C0 and only the first two substeps are executed together. This is similar
to the execution of parallel threads in single-clock Quartz: if one thread is finished but
the other one is not, the first one has to wait until the execution of the second one is also
finished. For refined clocks, this behavior does not only take place at the end of the whole
parallel statement, but also at the end of each step of a common clock.

3.2.3 Abortion and Suspension

Another important feature of imperative synchronous languages are the abortion and suspen-
sion statements, which deterministically preempt the execution. The determinism is based
on the uniquely defined interaction points: either the whole step is stopped or the whole
step is executed. Obviously, the extension should also preserve the determinism as it did so
far. The crucial point is to define the points of time where the preemption takes place. A
preemption statement can be used within the scope of a refined clock and also new clocks
can be declared within the preemption statement itself. The condition for the preemption
can only be defined by variables with a higher clock because variables declared inside the
preemption statement are not visible at this point. When the preemption condition holds, it
will hold for the whole step and cannot be changed in substeps of a clock declared inside:
either the whole step is preempted or not. According to pure Quartz, strong preemption
takes place at the beginning and weak preemption at the end of a step. A more detailed
explanation is given in the following by examples.

clock(C1) {

suspend|abort {

clock(C2) {

l0: pause(C2);

y = true;

l1: pause(C1);

x = true;

l2: pause(C2);

z = true;

l3: pause;

y = false;

}

} when(σ);

}

σ

σ

σ

σ

clock(C1) {

weak suspend|abort {

clock(C2) {

l0: pause(C2);

y = true;

l1: pause(C1);

x = true;

l2: pause(C2);

z = true;

l3: pause;

y = false;

}

} when(σ);

}

σ

σ

σ

(a) Strong Preemption (b) Weak Preemption

Fig. 3.7. Examples: Preemption with Refined Clocks

Figure 3.7 illustrates the weak and strong preemption in the context of refined clocks for
the abortion and suspension statements both given in the same source code.

The strong abortion, which is considered first, stops the data flow and control flow of a
step completely and moves the execution to the end of the abort block. The lowest clock

3.2 Basic Idea of Clock Refinement 53

which is visible for the abort statement is the clock C1, and therefore, abortion operates on
steps of this clock: abortion is possible at pause statements with clock C0 or C1. Thereby,
according to pure Quartz, the abortion can only take place after the control flow is inside

the statement, and the step entering the block is not aborted. In the example, the clock C2

is defined inside of the abort block and the entering step is divided into substeps by the clock
C2. Therefore, both substeps belong to the entering step and abortion can first take place
when the control flow is at label l1. The suspension behaves similarly, it can also take place
from the labels l1 and l3 in the example, but due to the behavior of the suspension, nothing
is executed and the control flow remains at the labels it is until the next step is started.

The figure also illustrates the weak versions of the preemption statements at the right-
hand side. In contrast to the strong counterparts, preemption takes place at the end of
a step. Thus, it can take place just before the label l3 is reached and the execution will
continue after the whole abort statement. This is an interesting case because the step which
is executed is divided into substeps by C2 and right before the end of the step, but after the
substeps, the weak abortion takes place. The suspension also behaves similar: the step is
executed, but the control-flow will remain at the label where the step was started from for
the next step. For example, the step starting from l1 is divided into substeps associated to
C2 and right before label l3 is reached, the execution stops (if σ holds) and remains at label
l1 again where the next step will start from. Again, the substeps are executed, but finally
weak suspension is done with respect to the step of clock C1.

Finally, preemption statements behave in the same way as before, but they have to take
care about locally defined clocks. However, from the logical point of view, the preemption
statements do not see the substeps, they are only aware of the steps related to clocks defined
outside. Thus, they just behave like the original preemption statements with respect to the
visible steps.

3.2.4 Determinism

After having introduced the extension and explained the basic behavior of the characteristic
statements of Quartz, some comments shall be given on the determinism of the extension.
As already said, pure Quartz is deterministic, because of the synchronous abstraction
forcing one value per variable in a step. Based on the steps and variables, parallel threads
are executed in lockstep, and also for preemption, the interaction points are well defined,
since either the whole step is preempted or not. Hence, values and steps are deterministically
defined and do not change due to communication or execution delays of threads.

The introduction of independent substeps in parallel threads could change this behavior
when it would be possible to read a variable’s values in substeps since different values could
be read depending on the considered substep. But, since variables of unrelated clocks as
also the clocks are not visible to the other thread, this behavior cannot occur. It turns out
that whenever a variable is read, its value is uniquely defined and the independent execution
cannot change this.

54 3 Clock Refinement

3.3 Constructivity vs. Logical Correctness

The previous section introduced the general behavior of the extension based on the statements
of Quartz, whereas this section looks more into some details. The difference of constructivity

and logical correctness was already pointed out for Quartz in Section 2.2.3. The abstraction
introduced by synchronous languages combines several assignments, i. e. micro steps, to a
single instant, i. e. a macro step, having each solution, i. e. a valuation of all variables which
are consistent with the assigned values, as a possible behavior. Deterministic systems only
have one possible behavior in a step and are called logical correct, but finding this unique
solution can be hard for arbitrary programs. A subset of the logical correct programs are
the constructive programs defined by operational rules, namely reaction rules, allowing to
compute a solution with reasonable effort. Even more, the programs can be also translated
with reasonable effort to a target language and the rules also define a natural way of execution,
which is more accessible for developers instead of logical correctness. Generally, a constructive
subset needs to be defined in a way that (1) it can be checked with reasonable effort, (2) it
can be efficiently translated to target languages, and (3) it is still a practical and sound
subset of the language. The definition of constructive programs for the extension is motivated
in this section and it is formally completed in Chapter 4. To get an impression of what
should be allowed in a constructive sense, first the original definition of logical correctness is
generalized for the extension and examples are considered. Based on the discussion there,
the notion of constructive programs for the extension is composed.

bool x, y;

clock(C1) {

bool z;

l1: pause;

if(!z);

y = x;

z = false;

l2: pause(C1);

if(z)

x = true;

z = true;

l3: pause;

}

EC0 = {(x, true), (y, true)}

EC1
1 = {(z, false)}

EC1
2 = {(z, true)}

(a) Code Example (b) Environments

Fig. 3.8. Logical Correctness of the Extension

With the introduction of the extension, a step of a program can be divided into smaller
steps of a lower clock considered as micro steps from the point of view of the higher clock.
Logical correct means for pure Quartz that there is exactly one valuation of the variables
that is consistent with the execution, but since variables of lower clocks can change their
values in substeps, this does not hold anymore. A generalization leads to the condition that
for each substep must exist also a unique valuation of the variables of lower clocks. An

3.3 Constructivity vs. Logical Correctness 55

example is given in Figure 3.8. In the code on the left-hand side, a step of the module clock
C0 starts at the pause statement with label l1, and ends at the pause statement with label
l3. It is divided into two substeps of clock C1 separated by the pause statement with label
l2. The variables x and y, which are based on clock C0, have one valid value for the whole
step which is reflected by the environment EC0 on the right-hand side. The value of the
variable z, which is based on the clock C1, can change for the substeps and is therefore
illustrated by the two different environments EC11 and EC12 : it has the value false in the first,
and the value true in the second substep. The presented valuation is the only valid one that
is consistent with an execution of a step, hence the example is logically correct. However,
the question remains if this solution can be constructively determined, and if so, which are
the operational rules to compute it? As already said, the rules are given in a later chapter,
and this section only informally discusses the possibilities. So, the question here is, if this
example should be considered as a constructive program or not?

For the first substep, it is clear that the value of z is set to false by the assignment,
and dependent on this value the assignment y = x is executed. However, it is not clear in
this substep what the value of x is, because it is assigned in the second substep, but the
value has to be the same for the whole step (of clock C0). Hence, the first substep needs the
value of x which is determined by the second one, but the second one can only be executed
after the first one. Since this example is quite simple and one might think of solving the
dependencies for simulation or code generation here, it is obvious that for arbitrary programs
of this type an expensive analysis is needed to transform them to constructive code. Hence,
even if the presented solution is logically correct, it disagrees with the natural execution
order of substeps imposed by their control flow (x is used before it is assigned). Furthermore,
it is also natural for the programmer that the substeps are executed in this order and, since
clock refinement provides several abstraction layers, it seems to be a good choice that each
layer behaves like the original language.

3.3.1 Sequential Execution of Substeps

clock(C1) {

l0: pause;

A1

l1: pause(C1);

A2

l2: pause;

}

Fig. 3.9. Example: Sequential Execution with one Refined Clock

56 3 Clock Refinement

For the following discussion, the assignments in the source code are abstracted to sets of

actions, which can have arbitrary dependencies between the actions. It is only required that
the actions can be evaluated accordingly to constructive rules like the original reaction rules
for Quartz: hence, cyclic dependencies must be able to be resolved with lazy evaluation as
it was explained in Section 2.2.3. The source code of Figure 3.8 can be rewritten with this
abstraction to the source code in Figure 3.9, where the assignments and the if statements
that restrict the execution of the assignments are represented by the abstract sets A1 and
A2. The (constructive) execution and the dependencies are then illustrated as follows:

A1 A2

C0

C1

The actions A1 are evaluated in the first substep and the actions A2 are evaluated in the
second substep. Thereby, each substep must be consistent accordingly to the particular
assignments executed in the substep. The dashed line represents a sequential dependency
based on substeps of clock C1. The solid line represents a dependency based on variables
of clock C0 having their value for the whole step. Hence, a variable of clock C0 can get its
value in the first substep and can be used in the second one, but the other way around is not
possible due to the sequential dependency imposed by clock C1.

The example illustrates the order of sequential execution of substeps where a variable must
be determined before it can be used. In pure Quartz, those dependencies only exist within
such an abstract action set A. This changes for the extension since e. g. variables of clock C0

can be written in a substep, but must have the same value for the whole step. Therefore,
the dependencies of the assignments must also comply with the sequential execution order
imposed by the control flow of the substeps.

3.3.2 Scheduling of Parallel Threads

The general synchronization scheme for the parallel execution of steps and substeps was
explained in Section 3.2.2. The explanation there is sound and independent of any definition of
constructivity. However, if constructivity is considered, there are cases where it is not directly
clear what must be executed together. Unrelated clocks can be defined in different parallel
threads so they can be theoretically executed independently and only have to synchronize
with the pause statements of common clocks. But, even one refined clock in the context of
parallel execution raises some questions which are considered first in this section.

Consider the example code in Figure 3.10 (a) consisting of two parallel threads inside the
declaration of the clock C1. Both threads basically consist of one step of clock C0 starting
from the labels l1 and l4 and ending at the labels l3 and l7. This step is divided into two
substeps in the first thread and into three substeps in the second thread. Accordingly to
the synchronization based on common clocks, the actions A1, A3 are executed in the first
substep, the actions A2, A4 are executed in the second substep, and finally, the actions A5

are executed in the third substep. Hence, the first thread reaches the pause statement of
clock C0 before the second thread and waits for it until it executed the actions A5. Causal
dependencies can be illustrated as follows:

3.3 Constructivity vs. Logical Correctness 57

clock(C1) {

l1: pause;

A1

l2: pause(C1);

A2

l3: pause;

} || {

l4: pause;

A3

l5: pause(C1);

A4

l6: pause(C1);

A5

l7: pause;

}

clock(C1) {

{

l1: pause;

A1

l2: pause(C1);

A2

l3: pause;

} || {

l4: pause;

A3

l5: pause;

}

}

clock(C1) {

l1: pause;

A1

l2: pause(C1);

A2

l3: pause;

} || {

l4: pause;

A3

l5: pause;

}

(a) (b) (c)

Fig. 3.10. Examples: Parallel Execution with one Refined Clock

A1 A2

A3 A4 A5

C1 C1

C0 C0

C0

For example in the first substep, it must be possible to resolve the dependencies between
the actions A1 and A3 by constructive rules. The substeps are executed one after the other
depending on the order given by the control flow. For variables of a higher clock, dependencies
must follow the execution order of the substeps. For example, A2 can use variables of clock
C0 which have been determined in the substep before.

The example code given in Figure 3.10 (b) is quite similar to the one considered before,
but the pause statements of clock C1 are omitted in the second thread, and it only consists
of one step/substep. It is quite obvious that the execution scheme for this example should
not really change the example before and that the actions A1, A3 are executed in the first

58 3 Clock Refinement

substep, and the actions A2 are executed in the second one. The possible dependencies are
then illustrated as:

A1 A2

A3

C1

C0

Hence, even if the second thread does not contain any pause statements of clock C1, the
step is considered as one substep. After the execution of this substep together with the first
thread, it waits for the first thread until it has executed the second substep. This seems to
be an obvious result, but when the third example shown in Figure 3.10 (c) is considered,
it has some consequences. The difference of this third code example is that the clock C1

is now declared in the first thread and therefore not visible in the second one. From the
point of view of logical correctness, the whole step of the clock C0 is executed together with
the substeps in the first thread, but operationally, accordingly to the previous example, it
only makes sense to execute it together with the first substep. The constructivity should not
change for this example, since the only difference is the visibility of the clocks.

The parallel examples considered so far only contain one new clock declaration, but
the following examples shown in Figure 3.11 uses two unrelated clocks defined in different
threads. Thereby, the first two examples define the two unrelated clocks C1 and C2, whereas
the example on the right-hand side only defines C1. Since this third example is equivalent
to the one discussed above in Figure 3.10 (c), the execution should not change to this one.
Furthermore, the example in the middle does also not really change the program, but only
adds the clock C2. So again for this example, the constructive execution should not change,
since it should not depend only on the visibility of a clock. Finally, the example on the
left-hand side of the figure really defines unrelated substeps having to be executed. Based
on the discussion, the actions A1, A3 are executed together even if the substeps belong to
different clocks. After that, the substeps can be executed independently due to the unrelated
substeps. The following dependencies are possible:

A1

A2

A3
A4 A5

C1

C2

C2

Hence, it looks curious that the actions right after a pause statement of clock C0 are executed
synchronously, even if they logically belong to unrelated substeps. But according to the
discussion above, it seems to be the right definition since it does not depend on the visibility
of clocks. Furthermore, this definition will match very well with the definition of the semantics
and the compilation as it is presented in this thesis. But keep in mind that is is only one
possible definition of constructivity that is taken here. One could imagine different ways to
this end.

3.3 Constructivity vs. Logical Correctness 59

clock(C1) {

l1: pause;

A1

l2: pause(C1);

A2

l3: pause;

} || clock(C2) {

l4: pause;

A3

l5: pause(C2);

A4

l6: pause(C2);

A5

l7: pause;

}

clock(C1) {

l1: pause;

A1

l2: pause(C1);

A2

l3: pause;

} || clock(C2) {

l4: pause;

A3

l5: pause;

}

clock(C1) {

l1: pause;

A1

l2: pause(C1);

A2

l3: pause;

} || {

l4: pause;

A3

l5: pause;

}

(a) (b) (c)

Fig. 3.11. Examples: Parallel Execution with Unrelated Clocks

3.3.3 Steps and Instants

Despite of the synonymous usage of the terms step and instant in pure Quartz, only the
term step (of a clock) has been used in the context of the extension so far in this chapter,
but not the term instant. However, both will get now a concrete meaning for the extension
to be used in the following.

Like in pure Quartz, a step (of a clock) ranges from one pause statement to the next
one (of this clock). The extension allows one to divide such a step by substeps of a lower
clock. Consider the illustration in Figure 3.12 showing the steps of the clocks drawn on
the right-hand side. The step of clock C0 ranges from label l1 to label l3, and also from
label l4 to label l5 in the second thread. A step of clock C1 ranges e. g. from label l2 to
label l3. According to the discussion above, the actions A1 and A3 are executed together,
i. e. means in the same instant. Hence, the actions can influence each other (based on the
defined constructivity), but actions executed in different instants can influence each other
only if the dependencies follow the execution order. Instants can be seen as the smallest

execution steps according to the constructive execution. Hence, the boxes summarizing the
abstract action sets in the dependency diagrams above represent the instants of the program
execution.

60 3 Clock Refinement

clock(C1) {

{

l1: pause;

A1

l2: pause(C1);

A2

l3: pause;

} || {

l4: pause;

A3

l5: pause;

}

}

C
0

C
0

C
1

C
1

C
1

Steps

C
0

C
1

C
0

Instants

Fig. 3.12. Comparison of the Steps and Instants

The terms step and instant can be summarized as follows: a step ranges from a pause

statement of a clock to the next pause statement of the same clock, whereas an instant
ranges from a pause statement of a clock to the next pause statement of any clock. Remark,
that the terminology generalizes the one of pure Quartz, because, since there only exist
pause statements of the module clock, each step coincides with an instant. Finally, a second
remark is given related to Esterel. In [Berr97b], Berry described an implicit signal called
tick representing the activation clock (module clock) which holds in each instant and he
introduced pause as an equivalent to the statement await tick, which waits for the next
occurrence of the tick signal. In the context of the extension, this view extends to pause

statements waiting of clock tick of their associated clock. If this clock occurs, the next instant
of this clock is executed. However, the step of this clock is finally finished when the next
pause statement of this clock is reached, and not necessarily after the instant itself. Hence,
this interpretation fits also very well with the view introduced by Berry. Also recall the
fact that the instants of clock C0 are executed synchronously, even if they occur in parallel
threads where unrelated clocks are defined. Interpreting the pause(C0) as an statement
waiting for the next occurrence of the clock C0 does also exactly lead to this above definition.

3.4 Summary

The clock refinement extension to Quartz has been informally introduced in this chapter
based on an example and by discussions about the behavior of characteristic Quartz

statements. The extension allows one to define clocks in addition to the already existing
module clock. Thereby, a macro step of pure Quartz can be split into substeps based on

3.4 Summary 61

the new clocks. The substeps behave like macro steps on their own clock level and variables
defined for them can change their value with each substep, and therefore, multiple times
during a macro step of the module. The new clocks can be arbitrarily nested, and therefore,
arbitrary many abstraction layers based on the clocks can be introduced, where each one
follows the synchronous paradigm. However, the synchronous abstraction introduces the
demand for constructive execution, which was also considered in this chapter by examples.
It was explained which dependencies are allowed between substeps based on lower clocks,
and how the (constructive) execution order is assumed. The following chapter will formally
define the semantics of the extension, and together with that, it also defines a constructive
execution.

Chapter 4

Formal Semantics

The semantics of pure Quartz is formally defined in [Schn09] by means of SOS rules as
already explained in Section 2.2.4. Thereby, the rules define the behavior of each statement
and are then used in an interpreter to define the complete (constructive) execution of a
program. In this chapter, the rules and also the interpreter are reformulated to define the
semantics of the extension, and enhances a first trial of formalizing the semantics presented in
[GeBS10a] by handling local declarations and also by using a more convenient representation
of the notion of instants as presented in the previous chapter.

As for pure Quartz, the SOS rules are also separated into transition rules and reaction

rules. Thereby, the reaction rules determine the values of the variables for an instant, and
the transition rules perform the execution of the instant on the program. In contrast to
pure Quartz, a step of the extension can consist of multiple instants, hence, the execution
of a step is based on multiple applications of transition and reaction rules. Furthermore,
a variable can get its value during substeps of its clock, hence, it is not known from the
beginning of the step. This is also not possible for pure Quartz, since the variables are all
determined in each instant. However, the rules for the extension have to deal with unknown
values to proceed the execution.

Each instant of the extension is based on a certain clock that is chosen before the rules are
applied. Due to data dependencies between unrelated clocks, one choice of a clock could lead
to an invalid execution whereas another choice would lead to a correct execution. Choosing
clocks can be considered as scheduling of the execution and is discussed at the end of the
chapter. The result are restrictions for the definition of constructivity which will ensure
scheduling independent executions.

This chapter is structured as follows: first, some general definitions used by the semantics
are given, which are then followed by the general introduction of transition and reaction
rules. Both sets of rules are defined and explained in detail. Afterwards, the rules are used to
define the complete behavior of the extension by an interpreter. The chapter concludes with
a summary.

4.1 Definitions

The definition of the semantics is based on some formal notations to express e. g. the relation
of clocks, or the value of a variable. Similar definitions can be found in [Schn09], but some

64 4 Formal Semantics

clock-related additions are given here. The following definitions depend on the program, but
since in this thesis only one program is considered at once, the relation is clear from the
context, and the program is not explicitly mentioned. Variables are used in programs to store
values and they are covered by the following definition.

Definition 1 (Variables). A program has a disjoint set of input variables V in, of output

variables Vout, and of local variables V loc. The set of all variables in a program is defined as

(where ∪̇ is the disjoint union of sets):

V := V in ∪̇ Vout ∪̇ V loc

Furthermore, the sets of memorized variables Vmem, and event variables Veve provide a second

classification of all variables.

Thereby, each locally declared variable, even if the declaration is nested in loops, is contained
in V loc. In programs of the extension, variables receive values during a step of their clock
and they keep the value until the end of the step. However, as long as no value is assigned,
the variable is considered as unknown, and if two conflicting values are assigned, the variable
is considered as invalid. The following definition takes care of the values a variable can hold.

Definition 2 (Domain & Extended Domain). Depending on the declaration, each vari-

able x has an associated domain dom (x) containing all values the variable can be assigned

with. The extended domain of a variable x is defined by dom⊥,⊤ (x) := dom (x)∪{⊥,⊤}.

Thereby, the interpretation of the value ⊥ is unknown and the one of ⊤ is invalid. Finally,

the default value of a variable x is denoted by default (x).

A variable x of Boolean type has e. g. the dom (x) = {true, false} and the default value
default (x) = false. Other domains are not explicitly mentioned in this thesis. Environments
are used to assign a value to each variable. However, due to schizophrenia, a local variable can
occur more than once in an instant, hence, all values must be handled by the environment.
Therefore, an environment does not assign a single value to a variable, but a list of values.
Since even for incarnated variables, only one of them is visible at a time, an additional pointer

function stores an index for each variable identifying the value in the list, which has to be
used.

Definition 3 (Environment). An environment E maps each variable x ∈ V to a list of

values of its extended domain dom⊥,⊤ (x), i. e. E (x) = [v0, . . . , vn], with vi ∈ dom⊥,⊤ (x).

The function ~ represents a pointer mapping each variable to an index to access a value of

the list. The access of the value is defined by E~ (x) = vi, with ~ (x) = i. An evaluation of an

expression is defined by JτK
~

E
, where for each variable the value identified by the function ~ is

used. An update of the function ~ for a variable x is defined by:

[~]nx (y) :=
{

n , if x = y

~ (y) , else

Hence, [~]nx changes the index assigned to variable x to n, and keeps the indices for all other

variables.

4.1 Definitions 65

Definition 4 (Lattice of Extended Domain). A lattice of the values of an extended

domain is given by the order ⊳ which is defined as (for Booleans and for arbitrary domains):

⊥

true false

⊤

⊥

d1 . . . dn

⊤

D = { }

The lattice is also extended to lists of values in the following way:

[v0, . . . , vn]⊳[w0, . . . , wk] :⇔

{
vi ⊳wi, 0 ≤ i ≤ n , if n ≤ k

vi ⊳wi, 0 ≤ i ≤ k and vi = ⊥, k < i ≤ n , else

Hence, the lists are virtually extended with ⊥ to the same length.

Definition 5 (Partial Order, Union and Updates of Environments). A partial order

of environments is given by extending the order of value list to environments. Hence, an

environment E1 is smaller than environment E2 (greater resp.), iff the following holds:

E1 ⊑E2 :⇔ ∀x ∈ V. E1 (x)⊳ E2 (x)

The union of environments is used to combine the values of environments into a single one,

thereby it is defined for two environments E1 and E2 by the supremum of the values stored in

the environments:

(E1 ⊔̇ E2) (x) := E1 (x) ⊔̇ E2 (x)

An update of an environment for a variable is defined by:

[E]
v
(x,n) (y) := E ⊔̇{(x, [⊥n−1, v])}

Hence, the value of x at the position n of the value list is updated according to the lattice of

its domain with the value v. All other values are kept.

Especially the last definition for updating an environment is important, since it does not only
change the value, but update it according to the lattice. In this way, the monotonicity of all
operations performed for environments are kept. Practically, this means that if the value of a
variable is ⊥, it is changed to the new value, but if the variable already has a concrete value,
it is changed to ⊤ (if the both values are conflicting). In this way, write conflicts are covered.

Clocks have been introduced to define substeps of an already existing macro step and
they are used to identify the instants which are executed.

Definition 6 (Clocks & Partial Order of Clocks). The set of clocks of a program is

denoted by C including the module clock C0. The clock of a variable x is referred to by

clock (x). A partial order of clocks (C,�) is given by the clock tree and it can be directly

derived from the program. Thereby, c1 � c2, iff the clock c1 is declared in the scope of clock

c2. The relation symbols �,≻,≺ are used accordingly. Additionally, two clocks are said to be

unrelated c1 # c2 iff neither c1 � c2 nor c1 � c2 holds.

66 4 Formal Semantics

Definition 7 (Environment Restriction). A restriction of an environment E with respect

to ⊙c (where ⊙ ∈ {≻,�,≺,�,⊁,�,⊀,�}) is defined as follows:

(E)/CS⊙
c (x) :=

{

E (x) if clock (x)⊙ c

[⊥] otherwise

Thus, (E)/
CS �

c describes the environment where all variables with a clock lower or equal to

c are set to [⊥], the values of all other variables in E are kept.

4.2 Overview

As already explained in Section 2.2.4, the traditional style of Structural Operational Seman-

tics (SOS) [Plot81, Moss06] cannot be directly used for (imperative) synchronous languages,
because the actual execution does not completely follow the program structure. Therefore,
the SOS rules are separated into two sets: The reaction rules determine an environment
for the next instant. After such an environment is discovered, the transition rules follow
the program structure based on this environment and transform the program for the next
instant.

This idea is kept for the extension, and based on the constructivity discussed in Section 3.3,
the semantics is defined based on the instants: applying the transition rules means executing
one instant of a certain clock. Obviously, due to unrelated clocks, different choices for the
clock can exist, and based on the program, this can be a deterministic or non-deterministic
choice. However, even for non-deterministic choices, which means a really unrelated execution,
at the end of the module step the same state will be reached because the whole model is still
deterministic.

Parallel execution of unrelated clocks and also of only refined clocks needs to synchronize
on each pause statement of a common clock. If one thread reaches a pause of a common
clock before the other one does, it has to wait. To represent this behavior with the rules, an
additional statement is introduced to model this barrier.

Additional Statements

The pause statement of Quartz can be interpreted in several ways, which do not differ
in the single clock case, but in the context of refined clocks. In Section 3.3.3, a view to
the pause statement has been developed which coincides with an interpretation originally
introduced by Berry [Berr97b]. Thereby, in the single-clock case of Esterel, a dedicated
clock signal tick is used which holds in every instant, and the pause statement is seen
as a replacement for await tick, which only proceeds when the next trigger signal occurs,
hence in the next instant. This view is emphasized in the following for the definition of the
semantics of extended Quartz. Therefore, the pause statement is renamed to the statement
await clock. Analogous to the original await statement, the transition rules also use an
immediate variant of the statement, which is written immediate await clock. Finally, the
following statements are used instead of the original ones:

pause :≡ await clock(C0)

pause(C) :≡ await clock(C)

4.3 Transition Rules 67

Additionally, the following statement is introduced for the SOS rules:

immediate await clock(C)

Note that the statement immediate await clock has no counterpart in the original set
of statements and thus it can also not be used in (real) source code. But especially this
statement allows to formulate the rules in an easy and accessible way. Therefore, it is also
reasonable to rename the statements here, to emphasize the relationship of await clock

and its immediate counterpart.

4.3 Transition Rules

Transition rules define how the program is transformed during the execution of an instant
resulting to a new program which is considered in the following instant. The rules are defined
on the program structure for each statement, hence, the whole program is considered as a
single statement. For an instant, the values of the variables must be given by an environment,
but, in contrast to pure Quartz, the environment does not need to be defined for all variables,
since either variables of unrelated clocks do not affect the execution or variables of a higher
clock can be set in a following instant. However, the variables needed for the execution of
the instant must be set, and therefore, the value ⊥ does not appear in the transition rules. If
e. g. a condition would be evaluated to ⊥ with the given environment, the transition rules
cannot be applied and the execution fails. This section presents the general form of the
transition rules first, followed by the rules for each statement.

4.3.1 General Form of the Rules

The transition rules for the extension are of the following form:

〈E , ~, CS ,S〉
c
։

〈
~′,S ′,Anxt, C

〉

A rule of this form specifies that the statement S is transformed in an instant of clock c with
the given variable environment E to the statement S ′. Remember that the transition rules
are only applied for a single instant which is possibly just a part of a higher step and that
they are applied according to the Abstract Syntax Tree (AST). The individual symbols are
described in the following.

• Instant Clock c

The currently processed instant is of clock c, and furthermore, the very first instant which
is executed for a program when it is started is of clock C0. Later it is required that at
least one pause statement of the clock has been reached in the instant before, and c

must be one of the smallest reached clocks. Note that there can be only a choice between
unrelated clocks.

• Environment E

The environment E is used for the execution of the current instant. Thereby, E can be
only partially defined due to variables related to higher clocks which are possibly set in a
later instant but still within a step of their clock, and also due to variables which belong
to clocks which are unrelated to the instant clock. However, all variables which are needed

for this step have to be defined by the environment E .

68 4 Formal Semantics

• Incarnation Levels ~ and ~′

The incarnation level function maps each variable to its incarnation level, i. e. the number
of scopes of the variable that have been entered in this instant so far. Thereby, ~ is the
incarnation level before the statement, i. e. it counts all scopes that have been entered
before reaching this statement, and ~′ is the updated incarnation level after the statement,
i. e. it is updated by the scopes additionally entered during processing S.

• Statement Clock CS

The statement clock is the smallest visible clock at the current position in the AST. The
clock is updated whenever a clock declaration is executed, and it is required as a context
for the considered statement, e. g. the abortion statement can abort the execution of
clocks defined outside, but not of clocks defined inside, thus this parameter allows to
separate them. The execution of the program is started with C0 for this parameter, since
the module clock is the only clock defined for the whole program.

• Origin Statement S & Residual Statement S ′

The rule is applied to the statement S to process an instant and it will produce a residual
statement S ′ being processed in the following instant.

• Assignments Anxt

Like the original transition rules, the delayed assignments executed in the instant are
collected in this set. They are used to determine the values which have to be carried over
to the following steps.

• Reached Clocks C

The transition rules for pure Quartz contain a simple flag to indicate whether a pause

statement to complete the instant has been reached or not during the execution. For the
extension, it has to be determined which clock the next instant should be of. Therefore,
the clocks of the pause statements reached in the instant are contained in the set C. The
relation between this original flag t and this set is: t = true ⇔ C = {}.

The transition rules of pure Quartz have the invariant that if no pause statement is reached
during the execution (flag t is true), the residual statement is nothing. In this case, the
statement is completely executed and nothing remains to be done for the next instant. The
same invariant also holds for the extension: C = {} implies that the residual statement is
nothing. The rules are given and explained in the following.

4.3.2 Basic Statements

The definition of the transition rules for some basic statements are shown in the Figures 4.1
and 4.2, they are explained in the following.

• Rules for Assignments

There are two different kinds of assignments: immediate assignments and delayed assign-
ments. In the rules of pure Quartz, the preconditions for the assignments are not needed,
since there the transition rules are only applied with a complete environment. In the
extension, not all variables must be assigned at the beginning of a step, and therefore,
a variable could be unknown. To ensure that all expressions during execution of the
instant are evaluated to real values and not to ⊥ or ⊤, the preconditions are given here.
This also allows to formulate the simulator in a simpler way, since these conditions do

4.3 Transition Rules 69

Assignments

(a1)
JτK~

E
= E~ (x) ∧ E~ (x) 6∈ {⊥,⊤}

〈E , ~, CS ,x = τ 〉
c
։ 〈~, nothing, {}, {}〉

(a2)
JτK~

E
6∈ {⊥,⊤}

〈E , ~, CS , next(x) = τ〉
c
։ 〈~, nothing, {(next(x) = τ , ~)} , {}〉

Time Consuming Statements

(p1) 〈E , ~, CS , await clock(C)〉
c
։

〈

~,

{

immediate

await clock(C)

}

, {}, {C}

〉

(p2)

c = C
〈

E , ~, CS ,

{

immediate

await clock(C)

}〉

c
։ 〈~, nothing, {}, {}〉

(p3)

c 6= C
〈

E , ~, CS ,

{

immediate

await clock(C)

}〉

c
։

〈

~,

{

immediate

await clock(C)

}

, {}, {C}

〉

Clock Definitions

(c1)
C 6= {} ∧ 〈E , ~, C,S〉

c
։ 〈~′,S ′,A, C〉

〈E , ~, CS , clock(C){ S }〉
c
։ 〈~′, clock(C){ S ′

},A, C〉

(c2)
C = {} ∧ 〈E , ~, C,S〉

c
։ 〈~′,S ′,A, C〉

〈E , ~, CS , clock(C){ S }〉
c
։ 〈~′,S ′,A, C〉

Conditional Statements

(i1)
JσK~

E
= true ∧ 〈E , ~, CS ,S1〉

c
։ 〈~′,S ′

1,A1, C1〉

〈E , ~, CS , if(σ) S1 else S2〉
c
։ 〈~′,S ′

1,A1, C1〉

(i2)
JσK

E
= false ∧ 〈E , ~, CS ,S2〉

c
։ 〈~′,S ′

2,A2, C2〉

〈E , ~, CS , if(σ) S1 else S2〉
c
։ 〈~′,S ′

2,A2, C2〉

Fig. 4.1. Transition Rules I (Basic Statements I)

70 4 Formal Semantics

Sequence

(s1)
C1 6= {} ∧ 〈E , ~, CS ,S1〉

c
։ 〈~′,S ′

1,A1, C1〉

〈E , ~, CS ,S1; S2〉
c
։ 〈~′,S ′

1; S2,A1, C1〉

(s2)
C1 = {} ∧ 〈E , ~, CS ,S1〉

c
։ 〈~1,S ′

1,A1, C1〉 ∧ 〈E , ~1, CS ,S2〉
c
։ 〈~2,S ′

2,A2, C2〉

〈E , ~, CS ,S1; S2〉
c
։ 〈~2,S ′

2,A1 ∪ A2, C2〉

Loop

(l)
C 6= {} ∧ 〈E , ~, CS ,S〉

c
։ 〈~′,S ′,A, C〉

〈E , ~, CS , do S while(σ);〉
c
։ 〈~′,S ′

; if(σ) do S while(σ),A, C〉

Parallel Threads

(p)
〈E , ~, CS ,S1〉

c
։ 〈~1,S ′

1,A1, C1〉 ∧ 〈E , ~, CS ,S2〉
c
։ 〈~2,S ′

2,A2, C2〉

〈E , ~, CS ,S1 || S2〉
c
։ 〈Max (~1, ~2) ,S ′

1 || S ′
2,A1 ∪ A2, C1 ∪ C2〉

Local Declaration

(d)

〈

E , [~]~(x)+1
x

, C,S
〉

c
։ 〈~′,S ′,A, C〉

〈E , ~, CS ,{α x; S } 〉
c
։ 〈~′,S ′,A, C〉

Nothing

(n) 〈E , ~, CS , nothing〉
c
։ 〈~, nothing, {}, {}〉

Fig. 4.2. Transition Rules II (Basic Statements II)

not have to be checked there. Both kinds of assignments are derived by the rules to the
residual statement nothing, since they are completely executed in this instant, and no
pause statement is reached. Rule (a1) handles the immediate assignment which is, if
the preconditions are fulfilled, just consumed. The delayed assignments are handled by
Rule (a2), which collects the assignment together with the incarnation function to decide
later which incarnation of x should be assigned.

• Rules for Time Consuming Statements

As already explained, pause is renamed to await clock for the SOS rules, and therefore,
the rule (p1) handles the ordinary pause. As in pure Quartz, the executed instant ends at
each pause statement that is reached, but for the extension the clock of the pause is also
collected in the set C. Additionally, the pause is not just transformed to nothing, but the

4.3 Transition Rules 71

residual statement is immediate await clock. The other both rules (p2) and (p3) handle
the immediate await clock statement with different preconditions. This statement can
be consumed when an instant of the related clock is processed, i. e. c = C holds. Otherwise,
if the clocks do not match, the instant ends and it behaves like the ordinary await clock.
In this way, as long as no instant of its clock is processed, the immediate await clock

behaves like a barrier. In the context of pure Quartz, each instant is executed with
the module clock, and in this case the immediate await clock(C0) is equivalent to
nothing.

• Rules for Local Clock Definitions

When the scope of a local clock declaration is entered, the rules update the statement

clock for the substatement. The rules (c1) and (c2) distinguish the cases where the local
block is completely executed or not, in the latter case, the whole block can be omitted
for the residual statement.

• Rules for Conditional Statements

The conditional if statement just selects one of its branches depending on the evaluation
of the condition. The evaluation of the expression must lead to either true or false,
because otherwise, either the evaluation failed, or not enough variables are known in the
environment.

• Rules for Sequence Statement

The behavior of the sequence of two statements is expressed by the rules (s1) and (s2) in
Figure 4.2. Thereby, the first statement is executed in the context of the whole sequence
and the second one is only executed when the first one terminates in the instant. Therefore,
the distinction can be made by the set C1, which collects the clocks for which a pause

statement is reached in S1. If this set is empty, the whole statement S1 is consumed, and
the second statement S2 is executed in the same instant. Otherwise, the instant reaches
a pause inside S1 (which is derived to S ′

1), and the residual statement is the sequence
S ′
1;S2.

• Rules for Loop

For the do ... while(σ) loop, the body is simply executed, and when the end is reached,
it is checked whether it should be executed again or not. As the residual statement shows
in Rule (l), the body is executed and after that an if condition is added to check the
condition for a possible restart. Note also, that in synchronous languages instantaneous
loops are not allowed and the instant must end inside the loop body, as additionally
required by the precondition of the rule. However, this rule is also of interest for local
variables, because it possibly duplicates declarations. Note that the declarations are put
into a sequence and therefore, the execution of an instant can enter multiple scopes in
one instant (or step), but it cannot be inside more than one declaration at a time.

• Rules for Parallel Statement

One of the interesting statements for the extension is the parallel statement, since it allows
the declaration of unrelated clocks for independent execution. Nevertheless, the transition
rule for the parallel statement is simple, since it applies the context of the instant to
both threads, executes the instants simultaneously and combines the results. The residual
statement is the parallel combination of both residual statements of the threads. However,
one detail is missing here, because if both threads are completely executed, the whole

72 4 Formal Semantics

parallel should also be completely executed and the residual statement should be just
nothing, i. e. implicitly nothing || nothing has to be treated as nothing. Finally, the
the incarnation level of both threads is combined by Max (~1, ~2) taking the maximal
value for each variable: a local variable can be either defined in the one or the other
thread, for each variable the incarnation level can be only increased by one thread.

• Rule for Local Declaration

Rule (d) handles the local declarations by updating the incarnation level for the defined
variable to execute the substatement. Finally, the whole statement is derived to the
residual statement of the substatement. The declaration itself is removed, since the scope
is entered in this instant, hence the following instants are automatically executed inside

this scope.

• Rule for Nothing

Finally, Rule (n) handles the statement nothing straightforwardly, since the statement
has simply no real behavior, but it is given here for completeness.

On the one hand, the introduction of the new statement await clock and especially
immediate await clock looks curious, but it can now be justified with the help of the par-
allel statement. In the rules for pure Quartz, a pause statement is consumed in the instant
it is reached and the following instant will start from this position. The rules for the extension
collects the clocks of the pause statements which are reached and depending on those, the
clock of the next instant can be determined. Due to the expected behavior, parallel threads
needs to synchronize on pause statements of the same clock. When pause statements would
be completely consumed, the information that one thread needs to wait for a higher clock is
lost. A second solution could be to keep the pause of the higher clock, but this decision cannot
be taken locally because it depends on the pause statements reached in the other thread
(and vice versa). Therefore, the introduction of the statement immediate await clock is
an elegant way to define a barrier which can only be got over by an instant of the right
clock. Informally, the threads are marked with the clocks they need to process. Defining the
rules for the statements in this way has the side-effect that also unrelated clocks are handled
properly. This would require more effort otherwise.

To illustrate this, consider the code examples in Figure 4.3. The example only focuses
on the correct execution of the substeps, and data dependencies are not taken into account.
The original program statement is given by S0 in Figure 4.3 (a) consisting of parallel threads
where a refined clock C1 is declared in the first one. The whole program starts with an
instant of clock C0. Both threads should synchronize on the pause statements with labels
l2 and l3. Hence, the actions A1 and A3 are executed together in an instant of clock C0,
the actions A2 are then executed in an instant of clock C1, and finally the actions A4 are
executed in an instant of clock C0. Hence, in the first instant, the following transition is
made based on a previously determined environment:

〈E0, ~,C0,S0〉
C0
։ 〈~′,S1,A1 ∪A3, {C0,C1}〉

The transition also introduces the immediate await clock statements and executes the
actions A1 and A3. Depending on the collected clocks, the second instant is of clock C1 and
is completed by the transition:

〈E1, ~,C0,S1〉
C1
։ 〈~′,S2,A2, {C0}〉

4.3 Transition Rules 73

clock(C1) {

A1

// pause(C1);

l1: await clock(C1);

A2

// pause;

l2: await clock(C0);

} || {

A3

// pause;

l3: await clock(C0);

A4

}

clock(C1) {

l1: immediate await clock(C1);

A2

l2: await clock(C0);

} || {

l3: immediate await clock(C0);

A4

}

(b) Statement S1

clock(C1) {

l2: immediate await clock(C0);

} || {

l3: immediate await clock(C0);

A4

}

(a) Statement S0 (c) Statement S2

Fig. 4.3. Example: Transition Rules for pause Statements

This transition executes the actions A2, because immediate await clock(C1) can be
crossed in the first thread, but the barrier for clock C0 is not crossed in the second one.
Hence, the importance of the clock barrier introduced by the immediate await clock

statement for clock C0 can be seen. Without this barrier, the decision whether also the
actions A4 in the second thread has to be executed or not cannot be taken locally. Again,
this additional statement allows one to encode the formerly reached pause statements in
the residual statements turning out to be an elegant way for defining the transition rules. In
pure Quartz, this could also be introduced but it would not make a difference because there
only the clock C0 exist which holds in each instant: the barriers would be crossed every time.

4.3.3 Strong Preemption

The preemption statements, abort and suspend, influence the execution of their substatements
in each step. Thereby, two versions are distinguished for the (strong) preemption identified
by the keyword immediate. The delayed preemption (without immediate) does not affect
the execution in the step the statement is entered, but only when the control flow rests
inside a preemption block at a label which is associated with the statement’s clock (or any
higher clock). On the other hand, the immediate preemption can take place directly when
the statement is started.

74 4 Formal Semantics

In pure Quartz, this behavior is reflected by the transition rules in the following way:
the first instant is executed for the delayed preemption block and then it is changed to its
immediate counterpart for the residual statement. In this way, no preemption can take place
in the first step, but after the first step it can occur in every step. However, this solution does
not directly apply to the extension, because the first step can consist of multiple instants (of
a lower or unrelated clock). Therefore, the residual statement cannot be changed until all
instances of the first step are executed. The rules are explained in the following.

Strong Abortion

The transition rules for the strong abortion statements are shown in Figure 4.4. The main
difference between the immediate and the delayed abortion is the different treatment of the
first step.

(Strong) Abortion

(a1)
C = {} ∧ 〈E , ~, CS ,S〉

c
։ 〈~′,S ′,A, C〉

〈E , ~, CS , abort S when(σ)〉
c
։ 〈~′, nothing,A, C〉

(a2)
(∃c ∈ C.c≺CS) ∧ C 6= {} ∧ 〈E , ~, CS ,S〉

c
։ 〈~′,S ′,A, C〉

〈E , ~, CS , abort S when(σ)〉
c
։ 〈~′, abort S ′

when(σ),A, C〉

(a3)

(∀c ∈ C.c�CS) ∧ C 6= {} ∧ 〈E , ~, CS ,S〉
c
։ 〈~′,S ′,A, C〉

〈E , ~, CS , abort S when(σ)〉
c
։

〈

~′,

{

immediate await clock(Min (C));

immediate abort S ′
when(σ)

}

,A, C

〉

(a4)
JσK~

E
= true

〈E , ~, CS , immediate abort S when(σ)〉
c
։ 〈~′, nothing, {}, {}〉

(a5)

JσK~
E
= false ∧ C 6= {} ∧ 〈E , ~, CS ,S〉

c
։ 〈~′,S ′,A, C〉

〈

E , ~, CS ,

immediate abort

S

when(σ)

〉

c
։

〈

~′,

immediate abort

S ′

when(σ)

,A, C

〉

(a6)
JσK~

E
= false ∧ C = {} ∧ 〈E , ~, CS ,S〉

c
։ 〈~′,S ′,A, C〉

〈E , ~, CS , immediate abort S when(σ)〉
c
։ 〈~′, nothing,A, C〉

Fig. 4.4. Transition Rules III (Strong Abortion)

First, the delayed abortion is considered, which only has to execute the first step without
considering the abort condition. Rule (a1) covers the case that the substatement is completely

4.3 Transition Rules 75

executed in this instant and no pause statement is reached inside. In this case, the whole
statement is completely finished, and nothing remains for the residual statement. The
precondition of Rule (a2) considers the case that at least one pause statement with a clock
lower than the statement’s clock CS is reached. In this case, there is at least one additional
instant to be executed before the first step entering the abort statement is finished. The
residual statement is again handled as a delayed abort statement. Rule (a3) is the most
interesting rule and considers the case that all clocks of the pause statements reached during
this instant are equal or higher to the statement’s clock CS . In this case, the first step
entering the abort statement is completely executed, and in the next step, the abortion can
possibly take place. Practically, the residual statement could be changed to the immediate
variant. However, despite the step is finished for this statement, it cannot be decided locally
if there is another parallel thread having to execute another instant. For this reason, the
additional immediate await clock ensures that the abortion can only take place in the
next step. Thereby, Min (C) denotes the least clock contained in C which (1) is not empty,
and (2) contains only clocks higher or equal to CS , hence, this minimum is uniquely defined.
The execution of the statement can only proceed when the execution of its substatement can
do so.

Second, the immediate version of the abort statement is considered. Since for this
statement an abortion can occur, it checks for the condition whether to abort or not. If the
condition is evaluated to true handled by the precondition of Rule (a4), the substatement is
aborted, nothing is executed, and the residual statement is nothing. Rule (a5) and Rule (a6)

handle the case that the condition is evaluated to false, the behavior is different, depending
on, whether a pause statement is reached or not. If one is reached, the residual statement is
just kept, otherwise the whole statement is executed and so also the abort statement is.

The difference for the immediate abort variant is that the condition can be checked in
each instant. However, abortion will only take place in the first instant of a step since each
variable occurring in the condition can only be of the statement’s clock or higher, due to
the visibility of clocks. Hence, they have their value for the whole step, and checking the
condition again in each instant does not change the behavior.

To discuss the need for the additional await immediate clock in the residual statement
for the delayed abortion in Rule (a3), consider the code example in Figure 4.5. The starting
point is statement S0 being transformed after an instant is executed to S1:

〈E0, ~,C0,S0〉
C0
։ 〈~′,S1,A1, {C0,C1}〉

The first step of clock C0 is finished in the first thread, but not in the second one, where an
additional instant must be executed. The additional await immediate clock now ensures
that abortion cannot occur for the abort statement because it is not entered until the next
instant of clock C0 is executed, hence, when the next step is started.

Strong Suspension

After having explained the rules for the abortion statement, the rules for the suspension can
be basically assembled in the same way. The delayed suspension does not take place in the
first step, but in each following one, and it is changed to the immediate variant after the first
step. The transition rules are shown in Figure 4.6.

76 4 Formal Semantics

{

abort {

A1

l1: pause;

A2

} when(a);

} || clock(C1) {

l2: pause(C1);

A3

l3: pause;

}

{

immediate await clock(C0);

immediate abort {

immediate await clock(C0);

A2

} when(a);

} || clock(C1) {

A3

l3: pause;

}

(a) Statement S0 (b) Statement S1

Fig. 4.5. Example: Strong Abortion Rules

The rules have the same preconditions as the rules for the abortion statement. Rule (s1)

covers the case that the substatement is completely executed in the instant, and no pause

statement is reached inside. In this case, the whole statement is completely finished, and
nothing remains for the residual statement. The precondition of Rule (s2) considers the
case that at least one pause statement with a clock lower than the statement clock CS

is reached. In this case, there is at least one additional instant to be executed before the
first step entering the suspension statement is finished. Finally, Rule (s3) considers the case
that all clocks of the pause statements reached during this instant are equal or higher than
the statement clock CS . In this case, the first step entering the suspension statement is
completely executed, and in the next step, the suspension can possibly take place. For the
residual statement, the immediate await clock does not need to be added here, because
the execution will not proceed here. Even if the condition would hold, the spirit of suspension
is to execute nothing, and this is exactly what is expected.

In addition, the rules for the immediate version of the suspension statement have the
same preconditions as the abortion rules. If the condition is evaluated to true for Rule (s4),
nothing is executed, and the residual statement is not changed, since the execution is just
postponed and not aborted. If the condition is evaluated to false, the same two cases have to
be distinguished: either a pause statement is reached inside (Rule (s5)), or the whole block
is consumed (Rule (s6)) as well as the suspension statement.

4.3.4 Weak Preemption

In contrast to their strong counterparts, the weak preemption statements execute the current
step when the preemption takes place before the step ends, the execution is either aborted
or suspended. In pure Quartz, the execution is limited to the data-flow of the executed

4.3 Transition Rules 77

(Strong) Suspension

(s1)
C = {} ∧ 〈E , ~, CS ,S〉

c
։ 〈~′,S ′,A, C〉

〈E , ~, CS , suspend S when(σ)〉
c
։ 〈~′, nothing,A, C〉

(s2)
(∃c ∈ C.c≺CS) ∧ C 6= {} ∧ 〈E , ~, CS ,S〉

c
։ 〈~′,S ′,A, C〉

〈E , ~, CS , suspend S when(σ)〉
c
։ 〈~′, suspend S ′

when(σ),A, C〉

(s3)

(∀c ∈ C.c�CS) ∧ C 6= {} ∧ 〈E , ~, CS ,S〉
c
։ 〈~′,S ′,A, C〉

〈E , ~, CS , suspend S when(σ)〉
c
։

〈

~′,

{

immediate

suspend S ′
when(σ)

}

,A, C

〉

(s4)

JσK~
E
= true

〈

E , ~, CS ,

{

immediate

suspend S when(σ)

}〉

c
։

〈

~′,

{

immediate

suspend S when(σ)

}

, {}, {CS}

〉

(s5)

JσK~
E
= false ∧ C 6= {} ∧ 〈E , ~, CS ,S〉

c
։ 〈~′,S ′,A, C〉

〈

E , ~, CS ,

{

immediate

suspend S when(σ)

}〉

c
։

〈

~′,

{

immediate

suspend S ′
when(σ)

}

,A, C

〉

(s6)
JσK~

E
= false ∧ C = {} ∧ 〈E , ~, CS ,S〉

c
։ 〈~′,S ′,A, C〉

〈E , ~, CS , immediate suspend S when(σ)〉
c
։ 〈~′, nothing,A, C〉

Fig. 4.6. Transition Rules IV (Strong Suspension)

step, whereas with refined clocks, the execution can contain steps related to a lower clock.
Therefore, in pure Quartz, the structure of the transition rules perfectly matches this
execution because they consider one step at each time. For refined clocks, the transition rules
only consider the instants, and a step related to a certain clock can contain multiple instants.
Hence, some instants have to be processed until the real preemption takes place. However,
note that the preemption condition (logically) holds for the whole step. For the abortion, the
rules can be formulated in a straightforward way, because the abortion is simply taken at the
end of a step. For the suspension, the rules are more tricky, because the original control-flow
position has to be kept, since when the suspension takes place, the whole step is executed,
but the following step will start at the same control-flow position as of the previous step.
Finally, delayed preemption can be handled in the same way.

Weak Abortion

The transition rules for the weak abortion statements are shown in Figure 4.7. The rules
for the weak abortion are similar to the ones for the strong abortion: after the first step of
the statement clock, the keyword immediate is added. This is handled by the rules (a1),

78 4 Formal Semantics

(Weak) Abortion

(a1)
C = {} ∧ 〈E , ~, CS ,S〉

c
։ 〈~′,S ′,A, C〉

〈E , ~, CS ,weak abort S when(σ)〉
c
։ 〈~′, nothing,A, C〉

(a2)
(∃c ∈ C.c≺CS) ∧ C 6= {} ∧ 〈E , ~, CS ,S〉

c
։ 〈~′,S ′,A, C〉

〈E , ~, CS ,weak abort S when(σ)〉
c
։ 〈~′,weak abort S ′

when(σ),A, C〉

(a3)
(∀c ∈ C.c�CS) ∧ C 6= {} ∧ 〈E , ~, CS ,S〉

c
։ 〈~′,S ′,A, C〉

〈E , ~, CS ,weak abort S when(σ)〉
c
։ 〈~′,weak immediate abort S ′

when(σ),A, C〉

(a4)
JσK~

E
= true ∧ (∀c ∈ C.c�CS) ∧ C 6= {} ∧ 〈E , ~, CS ,S〉

c
։ 〈~′,S ′,A, C〉

〈E , ~, CS ,weak immediate abort S when(σ)〉
c
։ 〈~′, nothing,A, {}〉

(a5)

(

∃c ∈ C.c≺CS ∨ JσK~
E
= false

)

∧ C 6= {} ∧ 〈E , ~, CS ,S〉
c
։ 〈~′,S ′,A, C〉

〈

E , ~, CS ,

weak immediate

abort

S

when(σ)

〉

c
։

〈

~′,

weak immediate

abort

S ′

when(σ)

,A, C

〉

(a6)
C = {} ∧ 〈E , ~, CS ,S〉

c
։ 〈~′,S ′,A, C〉

〈E , ~, CS ,weak immediate abort S when(σ)〉
c
։ 〈~′, nothing,A, C〉

Fig. 4.7. Transition Rules V (Weak Abortion)

(a2) and (a3). The remaining rules take care of real abortion. Therefore, also three cases are
distinguished which are not the same as for the strong variant.

In pure Quartz, the SOS rules for weak and strong abortion differ in the way the data
flow, i. e. the executed assignments, are handled, but both versions abort the control flow.
The difference for refined clocks is that for the weak abortion, not only the data flow is kept
but also the control flow related to lower clocks, i. e. each instant which belongs to a smaller
clock than the statement clock of the abort statement. Hence, in a similar way as the delayed
abortion is extended with the immediate keyword at the right instant, the SOS rules for the
weak abortion also needs to stop the execution at the right instant. The following cases are
distinguished by the rules:

• The weak abort statement aborts the execution in the last instant which belongs to the
step of the statement’s clock. Rule (a4) identifies the last instant by the pause statements
which are reached: If all clocks are higher or equal to the clock, no smaller instants are
executed for this step. If also the abort condition holds in this instant, the execution
is aborted. Note that similar to pure Quartz, the actions A are also executed in this
instant.

4.3 Transition Rules 79

• The Rule (a5) covers the case where the execution can simply proceed. This is the case
if either the abort condition is evaluated to false or an instant where the abortion does
not take place is executed. Note that in the second case, it is not needed to evaluate the
abortion condition. For the weak version of the abortion, it is only needed to know the
condition in the last instant of a step.

• Finally, Rule (a6) covers the case where the body of the abortion statement is consumed.
Furthermore, this case does not care about the abortion condition, since in both cases
the actions A would be executed, as it is defined by the rule.

To sum up, the rules abort the execution of a step related to its statement clock in the last
instant of such a step. Thereby, the actions of such an instant are also executed. In this way,
the whole data flow of the step and the control flow related to smaller clocks are executed.
From the preconditions of the rules, it can be seen that the evaluation of the abort condition
to true or false is only needed in the case where the precondition

(∀c ∈ C.c�CS) ∧ C 6= {} ∧ 〈E , ~, CS ,S〉
c
։ 〈~,S ′,A, C〉

holds. If in this case, the abortion condition is evaluated to true, the Rule (a4) is used, and if
it is evaluated to false, the Rule (a5) is used. More important is that the condition expresses
that only pause statements of a clock which are higher or equal to the current statement
clock are reached. Hence, the last instant of a step of CS is executed. Thus, the evaluation
of the condition σ is only needed in this last instant. Since the expression σ can only be
composed of variables with a clock higher or equal to CS , from the logical point of view, this
expression holds the whole step. However, from the view of causality, the variables used in
the expression can be set within the step and they only need to be known in the last instant.

Weak Suspension

The definition of the SOS rules for weak suspension is more complex. Like the weak abortion,
the weak suspension executes all substeps of the affected step, but afterwards the control-flow
is reset. In pure Quartz, this is simply handled by executing the data flow and not touching
the control flow. However, for refined clocks, the control flow related to smaller clocks needs
to be executed. Therefore, the control flow of the lower clocks has to be executed and when
the whole step is finished, the initial position needs to be restored. The transition rules for
the weak suspension are shown in Figure 4.8. The first rules consider the delayed suspension
statement which just execute the first step according to the statement’s clock and then adds
the immediate keyword to the statement.

A hypothetical definition of the rules for the immediate version of the weak suspension is
discussed now. Basically, for a step of the statement’s clock, there are two possibilities: (1) the
suspension condition holds or (2) the suspension condition does not hold. Both possibilities
can be easily expressed by rules. Therefore, if the suspension condition does not hold, the
execution can proceed without any special treatment. However, if the suspension condition
holds, one step should be executed and afterwards the same situation should be present than
before. In this case, the statement can be substituted with:

80 4 Formal Semantics

(Weak) Suspension

(s1)
C = {} ∧ 〈E , ~, CS ,S〉

c
։ 〈~′,S ′,A, C〉

〈E , ~, CS ,weak suspend S when(σ)〉
c
։ 〈~′, nothing,A, C〉

(s2)
(∃c ∈ C.c≺CS) ∧ C 6= {} ∧ 〈E , ~, CS ,S〉

c
։ 〈~′,S ′,A, C〉

〈E , ~, CS ,weak suspend S when(σ)〉
c
։ 〈~′,weak suspend S ′

when(σ),A, C〉

(s3)

(∀c ∈ C.c�CS) ∧ C 6= {} ∧ 〈E , ~, CS ,S〉
c
։ 〈~′,S ′,A, C〉

〈E , ~, CS ,weak suspend S when(σ)〉
c
։

〈

~′,

weak immediate suspend

S ′

when(σ)

,A, C

〉

(s4)

JσK~
E
= true ∧ (∀c ∈ C.c�CS) ∧ 〈E , ~, CS ,S〉

c
։ 〈~′,S ′,A, C〉

〈

E , ~, CS ,

weak immediate

suspend

S

when(σ) reset SR

〉

c
։

〈

~′,

weak immediate

suspend

SR

when(σ) reset SR

,A, C

〉

(s5)

(

∃c ∈ C.c≺CS ∨ JσK~
E
= false

)

∧ C 6= {} ∧ 〈E , ~, CS ,S〉
c
։ 〈~′,S ′,A, C〉

〈

E , ~, CS ,

weak immediate

suspend

S

when(σ) reset SR

〉

c
։

〈

~′,

weak immediate

suspend

S ′

when(σ) reset S

,A, C

〉

(s6)
JσK~

E
= false ∧ C = {} ∧ 〈E , ~, CS ,S〉

c
։ 〈~′,S ′,A, C〉

〈E , ~, CS ,weak immediate suspend S when(σ) reset SR〉
c
։ 〈~′, nothing,A, C〉

Fig. 4.8. Transition Rules VI (Weak Suspension)

weak suspend

weak immediate abort

S

when(true);

pause(CS);

S

when(σ);

Hence, the first step of S related to clock CS is executed. Then, the abortion takes place and
the control flow will end at the pause statement. After one step of the suspension statement
is executed, it is also changed back to the immediate version. Finally, after one step, the same
situation as before will hold. This behavior can also be expressed by SOS rules. However,

4.3 Transition Rules 81

there is a drawback of this version: the evaluation of the suspension condition σ needs to be
done in the first instant of a step of clock CS . As already explained for the rules for weak
abortion, one advantage of the rules is that the condition is only needed at the end of the
step to decide where to proceed. This is similar to the rules for pure Quartz and should
also be possible in this extension. Therefore, this solution would be feasible if only logical
correctness would be intended, but for reflecting a causal execution, another solution should
be chosen. A second solution would be possible, if the statement S could be split into S1;S2

where S1 is exactly the first step according to the clock CS . In this case, the rules could
simply handle the statement:

weak suspend

S1

if(σ)

S

else

S2

when(σ);

Thereby, the first step is executed for sure. Afterwards, depending on σ either the remaining
S2 is executed in the suspension block, or the whole statement S is considered again. Note
that the condition σ needs to be evaluated at the end of the step of clock CS . However, since
splitting a statement into steps is not trivial, this possibility is not a solution because the
definition of semantics should be close to the source code. However, these solutions show that
sometimes the statement needs to executed more than once (when the suspension condition
holds), and therefore when the decision should be taken at the end of the step, the initial
statement needs to be kept.

For the transition rules, the suspension statement is extended in that it is able to store
the last statement when a step of the statement’s clock began. Therefore, the following
statement and equality is introduced:

weak immediate suspend

S
when(σ) reset S

:≡

weak immediate suspend

S
when(σ)

The rules are defined for the new introduced statement:

• The weak suspension statement stops the execution in the last instant which belongs
to the step of the statement’s clock. Rule (s4) identifies the last instant by the pause

statements which are reached: If all clocks are higher or equal to the clock, no smaller
instants are executed for this step. If also the suspension condition holds in this instant,
the execution is stopped and the statement is reset to SR which is the initial statement
before the current step. Note that also the case is covered that the block is completely
consumed but the suspension condition holds.

• Rule (s5) covers the case where the execution can simply proceed. This is the case if
either the suspension condition is evaluated to false or an instant where the suspension
does not take place is executed. Note that the statement SR is exchanged by the current
one. This indicates the initial statement of the current step. If a suspension later takes
place for this step, the control flow position can be reset by this statement.

82 4 Formal Semantics

• Finally, Rule (s6) covers the case where the body of the suspension statement is consumed,
and the suspension condition does not hold. In this case, the whole suspension block is
also consumed.

Finally, rewriting the suspension statement in a way that it stores its own entry point
allows one to define the transition rules for this statement. The rewriting is also possible
with other solutions, but those require either some information at the beginning of a step,
or a deeper analysis of the statements. Thereby, this first solution would not fit with the
intended causality, which should be reflected by the semantics. The second solution needs
more complex computations, and it cannot be decided locally without taking care of the
substatements.

4.4 Reaction Rules

The transition rules are based on a given environment, and they determine the transformation
of the source code for the next instant. Furthermore, they determine the clocks of reached
pause statements. The purpose of the reaction rules is to determine the environment for
the execution of an instant. Thereby, the reaction rules start with very low information,
which is given by a partial environment containing e. g. values of input variables and values
given by delayed assignments of a previous step. Based on this information, the reaction
rules determine the assignments being definitely executed, as well as the possibly executed
assignments. Based on these assignments, the environment can be updated to get more values
known for the variables. The rules are then applied again to gather even more known values.
This iteration stops when the environment does not change anymore, hence, when as much as
possible values are known. This approach is equivalent to the reaction rules of pure Quartz,
but the rules differ. In the following, the general form of the rules is explained first, before
all rules are given and explained for all statements.

4.4.1 General Form of the Rules

Like for pure Quartz, the reaction rules also define a fixpoint computation: they are applied
multiple times and each time the environment is updated based on the actions which are
collected for execution. Thereby, the reaction rules of the extension are of the following form:

〈E , ~, CS ,S〉
c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

The rule specifies that during execution of an instant of clock c of the statement S given
the variable environment E , the actions Amust are executed and the pause statements of the
clocks Cmust are reached. The actions Acan are possibly executed and pause statements with
the clocks Ccan are possibly reached. The meaning of the individual symbols are described in
the following.

• Instant Clock c

As for the transition rules, the clock of the currently processed instant is c.

4.4 Reaction Rules 83

• Environment E

E represents the environment containing the values known so far for this instant. Thereby, E
may only be partially defined, because the values of some variables are not yet determined,
or the values will be defined in a later instant.

• Incarnation Levels ~ and ~′

Both symbols for the incarnation level are used here in the same way as for the transition
rules. Thereby, ~ is the incarnation level before the statement, i. e. it counts all scopes
entered while reaching this statement, and ~′ is the updated incarnation level after the
statement, i. e. it is updated by the scopes additionally entered during processing S.

• Statement Clock CS

Like for the transition rules, the least clock being visible at the current position in the
program is given by CS . The clock is updated, whenever a clock declaration is entered.

• Possibly Executed Actions Acan

The set Acan contains the actions which are possibly executed in the considered instant
based on the (partial) environment.

• Definitely Executed Actions Amust

The set Amust contains the actions which are definitely executed in the considered instant
based on the (partial) environment.

• Possibly Reached Clocks Actions Ccan

The set Ccan contains the clocks of the pause statements which are possibly reached by
an execution of the considered instant based on the so far known environment.

• Definitely Reached Clocks Actions Cmust

The set Cmust contains the clocks of the pause statements which are definitely reached by
an execution of the considered instant based on the so far known environment.

The reaction rules for pure Quartz encode the information about the possibly and definitely
reached pause statement in two flags, because there, it is only of interest whether a pause

statement is reached or not. For the extension, the clocks of the pause statements are of
interest and therefore, they are collected here. The actions are collected in the same way as
for pure Quartz, the sets have the relation Amust ⊆ Acan, since each action that must be
executed can also be executed. The same holds for the clocks: Cmust ⊆ Ccan. The clock CS

and also the sets Ccan and Cmust are only of interest for the rules and are not used later, in
contrast to the actions being used for updating the environment. Furthermore, for most of
the reaction rules, it is sufficient to know whether the sets Ccan and Cmust are empty or not,
which is the same information as encoded by the flags in pure Quartz. The clocks contained
in these sets are used for the weak preemption statements.

4.4.2 Basic Statements

The definitions of the reaction rules for some basic statements are shown in Figures 4.9 and
4.10, and are explained in the following.

• Rules for Assignments

The immediate assignments are handled by Rule (a1) collecting the assignment in both
action sets. The incarnation function is also collected to use the right variables to evaluate

84 4 Formal Semantics

Assignments

(a1) 〈E , ~, CS ,x = τ 〉
c
〈~, {(x = τ , ~)} , {(x = τ , ~)} , {}, {}〉

(a2) 〈E , ~, CS , next(x) = τ〉
c
〈~, {}, {}, {}, {}〉

Time Consuming Statements

(p1) 〈E , ~, CS , await clock(C)〉
c
〈~, {}, {}, {C} , {C}〉

(p2)

c = C
〈

E , ~, CS ,

{

immediate

await clock(C)

}〉

c
〈~, {}, {}, {}, {}〉

(p3)

c 6= C
〈

E , ~, CS ,

{

immediate

await clock(C)

}〉

c
〈~, {}, {}, {C} , {C}〉

Clock Definitions

(c)
〈E , ~, C,S〉

c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

〈E , ~, CS , clock(C){ S }〉
c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

Conditional Statements

(i1)
JσK~

E
= true ∧ 〈E , ~, CS ,S1〉

c
#

〈
~′,Acan

1 ,Amust
1 , Ccan

1 , Cmust
1

〉

〈E , ~, CS , if(σ) S1 else S2〉
c
#

〈
~′,Acan

1 ,Amust
1 , Ccan

1 , Cmust
1

〉

(i2)
JσK~

E
= false ∧ 〈E , ~, CS ,S2〉

c
#

〈
~′,Acan

2 ,Amust
2 , Ccan

2 , Cmust
2

〉

〈E , ~, CS , if(σ) S1 else S2〉
c
#

〈
~′,Acan

2 ,Amust
2 , Ccan

2 , Cmust
2

〉

(i3)

(

JσK~
E
= ⊥ ∧

~′ = Max (~1, ~2)

)

∧

(

〈E , ~, CS ,S1〉
c
#

〈
~1,Acan

1 ,Amust
1 , Ccan

1 , Cmust
1

〉
∧

〈E , ~, CS ,S2〉
c
#

〈
~2,Acan

2 ,Amust
2 , Ccan

2 , Cmust
2

〉

)

〈E , ~, CS , if(σ) S1 else S2〉
c
#

〈
~′,Acan

1 ∪Acan
2 , {}, Ccan

1 ∪Ccan
2 , Cmust

1 ∩Cmust
2

〉

Fig. 4.9. Reaction Rules I (Basic Statements I)

4.4 Reaction Rules 85

Sequence

(s1)
Cmust
1 6= {} ∧ 〈E , ~, CS ,S1〉

c
#

〈
~′,Acan

1 ,Amust
1 , Ccan

1 , Cmust
1

〉

〈E , ~, CS ,S1; S2〉
c
#

〈
~′,Acan

1 ,Amust
1 , Ccan

1 , Cmust
1

〉

(s2)

(

Cmust
1 = {} ∧

Ccan
1 6= {}

)

∧

(

〈E , ~, CS ,S1〉
c
#

〈
~1,Acan

1 ,Amust
1 , Ccan

1 , Cmust
1

〉
∧

〈E , ~1, CS ,S2〉
c
#

〈
~2,Acan

2 ,Amust
2 , Ccan

2 , Cmust
2

〉

)

〈E , ~, CS ,S1; S2〉
c
#

〈
~2,Acan

1 ∪Acan
2 ,Amust

1 , Ccan
1 ∪Ccan

2 , Cmust
1

〉

(s3)

(

Cmust
1 = {} ∧

Ccan
1 = {}

)

∧

(

〈E , ~, CS ,S1〉
c
#

〈
~1,Acan

1 ,Amust
1 , Ccan

1 , Cmust
1

〉
∧

〈E , ~1, CS ,S2〉
c
#

〈
~2,Acan

2 ,Amust
2 , Ccan

2 , Cmust
2

〉

)

〈E , ~, CS ,S1; S2〉
c
#

〈
~2,Acan

1 ∪Acan
2 ,Amust

1 ∪Amust
2 , Ccan

2 , Cmust
2

〉

Loop

(l)
〈E , ~, CS ,S〉

c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

〈E , ~, CS , do S while(σ);〉
c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

Parallel Threads

(p)

(

〈E , ~, CS ,S1〉
c
#

〈
~1,Acan

1 ,Amust
1 , Ccan

1 , Cmust
1

〉
∧

〈E , ~, CS ,S2〉
c
#

〈
~2,Acan

2 ,Amust
2 , Ccan

2 , Cmust
2

〉

)

∧

(

~′ = Max (~1, ~2) ∧

Acan = Acan
1 ∪Acan

2

)

〈E , ~, CS ,S1 || S2〉
c
#

〈
~′,Acan,Amust

1 ∪Amust
2 , Ccan

1 ∪Ccan
2 , Cmust

1 ∪Cmust
2

〉

Local Declaration

(d)

〈

E , [~]~(x)+1
x

, CS ,S
〉

c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

〈E , ~, CS ,{αx; S } 〉
c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

Nothing

(n) 〈E , ~, CS , nothing〉
c
〈~, {}, {}, {}, {}〉

Fig. 4.10. Reaction Rules II (Basic Statements II)

86 4 Formal Semantics

the expression later, and to assign the right incarnation of variable x. Since no pause

statement is reached, the clock sets remain empty. Delayed assignments do not affect the
current instant and therefore, they are simply ignored by Rule (a2).

• Rules for Time Consuming Statements

Instead of the assignments, the time consuming statements affect only the clock sets. An
instant ends during the execution when either a pause statement is reached, or when
an immediate await clock statement is reached with a different clock as the one the
statement expects. Both of these cases are handled by Rule (p1) and Rule (p3), whereas
Rule (p2) handles the case where the barrier is crossed with the right clock.

• Rules for Local Clock Definitions

The local clock scopes are handled by Rule (c) applying the reaction rules to the sub-
statement with an updated statement clock.

• Rules for Conditional Statements

The rules for the conditional if statement illustrate very well the meaning of the action
and clock sets. If the condition is evaluated to true or false, the rules (i1) or (i2) just select
the whole derivation by the result of applying the reaction rules to one of the branches.
However, if the condition is evaluated to ⊥ meaning that not enough information is
contained in the environment for selecting one branch, the common information of both
branches are combined. Thereby, Rule (i3) takes the union of the sets Acan

1 and Acan
2 and

of the sets Ccan and Ccan.

• Rules for Sequence Statements

In a sequence, the first statement is executed and when it also terminates in this instant,
the second one is also executed. Rule (s1) handles the case that the instant terminates in
S1, and Rule (s3) handles the case that S1 is completely executed in this instant. Like
for the conditional statement, there is also the case that it cannot be decided yet whether
S1 is completely executed in this instant or not. Rule (s2) therefore combines only the
information from both statements that is sure.

• Rules for Loop

In synchronous languages, instantaneous loops are not allowed, and an instant must end
inside the loop body. Hence, the Rule (l) does not need to care about the loop condition
and can simply execute the first instant of the loop body.

• Rules for Parallel Statement

The reaction rules for the parallel statement are simple. Since both threads are entered in
the instant, and the parallel only terminates when both threads terminate, the information
obtained by the reaction rules applied to each thread separately can be simply combined.

• Rule for Local Declaration

Rule (d) handles the local declarations by updating the incarnation level for the defined
variable to execute the substatement. The result of the substatement is provided as result
of the whole rule.

• Rule for Nothing

Finally, Rule (n) handles the statement nothing. Thereby, the rule is defined in a
straightforward way.

4.4 Reaction Rules 87

Besides the new statements for handling pause statements of a certain clock, and for handling
clock declarations, there is not much difference in the basic rules compared to pure Quartz.
The constructivity for an instant is very similar to the one for pure Quartz and therefore,
there is no reason to handle things differently here. Even the check whether the first part of
a sequence ends or not is just enhanced to the clock sets, but basically, the same condition is
tested. However, the preemption statements, which are considered in the following sections,
depend on the actual clocks and there are more differences to the rules of pure Quartz.

4.4.3 Strong Preemption

(Strong) Abortion

(a1)
〈E , ~, CS ,S〉

c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

〈E , ~, CS , abort S when(σ)〉
c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

(a2)
JσK~

E
= true

〈E , ~, CS , immediate abort S when(σ)〉
c
〈~, {}, {}, {}, {}〉

(a3)
JσK~

E
= false ∧ 〈E , ~, CS ,S〉

c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

〈E , ~, CS , immediate abort S when(σ)〉
c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

(a4)
JσK~

E
= ⊥ ∧ 〈E , ~, CS ,S〉

c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

〈E , ~, CS , immediate abort S when(σ)〉
c
〈~′,Acan, {}, Ccan, {}〉

Fig. 4.11. Reaction Rules III (Strong Abortion)

Again, the difference between the immediate and the delayed preemptions is the treatment
of the first step. The rules for abortion and suspension are shown in Figures 4.11 and 4.12.
The reaction rules only need to consider the next instant, and the delayed preemption
statements only influence the execution after the first step. Therefore, the rules (a1) and
(s1) for abortion and suspension do not consider the evaluation of the condition and do only
consider the execution of the next instant. The immediate version of the preemption are
more sophisticated. However, based on the macro definitions introduced in Section 2.2.2, the
rules can be directly derived from the definition of the other statements. The rules for the
immediate abortion considers the condition in the same way as the if statement does. If
the condition is evaluated to true or false, the rules (a2) or (a3) select either the behavior of
the substatement or simply ignore the substatement. Finally, the Rule (a4) considers the
case the condition cannot be evaluated yet. Like for the if condition, the result is combined
from both possibilities. The suspension is handled in the same way: the rules (s2) or (s3)

consider the cases where the further execution is defined by the evaluation of the condition,
and Rule (s4) cannot determine any execution for sure. Remark: the clock CS added by

88 4 Formal Semantics

Rule (s4) to Ccan is needed because in case of a suspension, the execution just rests until the
next step.

(Strong) Suspension

(s1)
〈E , ~, CS ,S〉

c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

〈E , ~, CS , suspend S when(σ)〉
c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

(s2)
JσK~

E
= true

〈E , ~, CS , immediate suspend S when(σ)〉
c
〈~, {}, {}, {CS} , {CS}〉

(s3)
JσK~

E
= false ∧ 〈E , ~, CS ,S〉

c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

〈E , ~, CS , immediate suspend S when(σ)〉
c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

(s4)
JσK~

E
= ⊥ ∧ 〈E , ~, CS ,S〉

c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

〈E , ~, CS , immediate suspend S when(σ)〉
c
〈~′,Acan, {}, Ccan ∪{CS} , {}〉

Fig. 4.12. Reaction Rules IV (Strong Suspension)

4.4.4 Weak Preemption

The difference between strong and weak preemption is that the strong preemption takes place
at the beginning of a step, whereas the weak preemption takes place at the end. This means
for pure Quartz that for the weak version, the data flow is executed before the preemption
takes place. However, in the extension, the weak preemption takes place after the last instant
of a step of clock CS , since steps of the clocks defined inside the preemption block are not
considered. The reactions rules only consider the next instant and therefore have to decide if
a step of clock CS ends or not. This can be expressed by the following conditions:

1. The step of clock CS ends for sure in the substatement, hence, a pause statement of
clock CS , or lower is reached in this instant:

∃c ∈ Cmust.c≺CS

2. The step of clock CS ends for sure, hence, no pause statement of clock CS , or lower can
be reached anymore in this instant:

∀c ∈ Ccan.c�CS

3. The step of clock CS possibly ends, hence, it cannot be decided whether a pause statement
of clock CS , or lower can be reached or not in this instant:

(∃c ∈ Ccan.c≺CS) ∧
(
∀c ∈ Cmust.c�CS

)

4.5 Program Execution 89

Note that the case that the whole block is finished, hence Ccan = {} holds, is covered by the
first case, since this case is handled for the weak suspension like a finished step. This point is
discussed with the rules below. Together with the three-valued evaluation of the preemption
condition, the following cases are possible:

1. not ended 2. ended 3. possibly ended

JσK
~

E
= ⊥ no preemption possibly preempt possibly preempt

JσK
~

E
= true no preemption preempt possibly preempt

JσK
~

E
= false no preemption no preemption no preemption

These are the cases handled by the reaction rules for the weak preemption statements. The
rules for the abortion are shown in Figure 4.13. The delayed abortion is handled by Rule (a1)

which behaves like the rule for strong abortion since it does not influence the first step. The
Rule (a2) handles the case when abortion takes place: the data flow is executed for the last
instant but the control flow is aborted. In case the condition can be evaluated to false, no
abortion takes place as it is handled by Rule (a3), where the instant is just executed. Finally,
rules (a4) and (a5) handle the case where it is not sure whether the execution is aborted
or not. For sake of simplicity, this case is split into two rules, but the preconditions cover
the cases discussed above. Note that the case in which the whole substatement is finished
(Ccan = {}) is handled by Rule (a2) and (a4), but they behave as the whole statement is
completely executed.

After having discussed the rules for the weak abortion, the weak suspension follow exactly
the same conditions and the rules are shown in Figure 4.14. Rule (s1) covers again the simple
case of the first step where no suspension is considered. The rules (s2) and (s3) handle the
cases in which the suspension takes place and finally, the rules (s4) and (s5) handle the
cases in which it is not yet sure if the suspension takes place. The suspension moves the
control flow back to a label where the step started from inside the block. Therefore, the clock
CS must be added to the clock sets. Note also that in case that the whole substatement is
finished (Ccan = {}), suspension can take place as it is handled by Rule (a2) and Rule (a4).

4.5 Program Execution

The definition of the semantics is now completed following the approach of pure Quartz by
describing an interpreter for executing programs based on the SOS rules.

4.5.1 Interpreter

The general scheme of the interpreter to execute a step is as follows: (1) the step is prepared,
i. e. inputs are read and the delayed assignments of the last step are executed, (2) the fixpoint
based on the reaction rules is determined, i. e. the reaction rules are applied to compute the
sets Acan and Amust to update the environment, and (3) the transition rules determine the
residual statement and the delayed assignments for the next step. The execution of the step
fails, if the fixpoint iteration cannot determine the values of all variables, or if a write conflict

90 4 Formal Semantics

(Weak) Abortion

(a1)
〈E , ~, CS ,S〉

c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

〈E , ~, CS ,weak abort S when(σ)〉
c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

(a2)
JσK~

E
= true ∧ (∀c ∈ Ccan.c�CS) ∧ 〈E , ~, CS ,S〉

c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

〈E , ~, CS ,weak immediate abort S when(σ)〉
c
#

〈
~′,Acan,Amust, {}, {}

〉

(a3)

(

JσK~
E
= false ∨

∃c ∈ Cmust.c≺CS

)

∧ 〈E , ~, CS ,S〉
c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

〈E , ~, CS ,weak immediate abort S when(σ)〉
c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

(a4)

(

JσK~
E
= ⊥ ∧

¬
(
∃c ∈ Cmust.c≺CS

)

)

∧ 〈E , ~, CS ,S〉
c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

〈E , ~, CS ,weak immediate abort S when(σ)〉
c
〈~′,Acan, {}, Ccan, {}〉

(a5)

JσK~
E
= true ∧

∃c ∈ Ccan.c≺CS ∧

∀c ∈ Cmust.c�CS

 ∧ 〈E , ~, CS ,S〉

c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

〈E , ~, CS ,weak immediate abort S when(σ)〉
c
〈~′,Acan, {}, Ccan, {}〉

Fig. 4.13. Reaction Rules V (Weak Abortion)

occurs, i. e. a variable is assigned twice with different values. The simulator for the extension
works in the same way for each instant, but it has to take care of variables of different clocks
and of the clocks itself.

Before the simulator for the extension is explained, consider Figure 4.15 showing a
simulation trace with respect to a variable x. Thereby, the big dots are instants of the clock
of x, and the small dots represent instances of a lower clock which is not further specified.
According to the definition of steps, a step of clock (x) starts with an instant of this clock
and ends in the last instant before clock (x) holds again. For a step, the variable x can get a
value in three different ways: (1) x can e. g. get a value assigned by an immediate assignment
in one of the instants, hence, in a substep. In the instances before the immediate assignment
is executed, the value of x is ⊥ (unknown), and it changes to the actual value with the
assignment, hence, x is known for the remaining step. (2) x can also get a value by a delayed
assignment specifying the value for the next step (and not for the next instant), hence, this
assigned value must be kept until the next step of clock of x starts, i. e. in the next instant
of clock of x, and the variable is then known for the whole step. Finally, (3) x can get its
default value if it is not explicitly set by an assignment. In this case the value of x from the
last step is used if x is a memorized variable, or the default value is used if x is an event.
The description about when this default reaction sets a value to x is postponed here, and
is discussed later. Accordingly to this description, a variable can get its value during the

4.5 Program Execution 91

(Weak) Suspension

(a1)
〈E , ~, CS ,S〉

c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

〈E , ~, CS ,weak suspend S when(σ)〉
c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

(a2)
JσK~

E
= true ∧ (∀c ∈ Ccan.c�CS) ∧ 〈E , ~, CS ,S〉

c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

〈E , ~, CS ,weak immediate suspend S when(σ)〉
c
#

〈
~′,Acan,Amust, {CS} , {CS}

〉

(a3)

(

JσK~
E
= false ∨

∃c ∈ Cmust.c≺CS

)

∧ 〈E , ~, CS ,S〉
c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

〈E , ~, CS ,weak immediate suspend S when(σ)〉
c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

(a4)

(

JσK~
E
= ⊥ ∧

¬
(
∃c ∈ Cmust.c≺CS

)

)

∧ 〈E , ~, CS ,S〉
c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

〈

E , ~, CS ,

weak immediate suspend

S ′

when(σ)

〉

c
〈~′,Acan, {}, Ccan ∪{CS} , {}〉

(a5)

JσK~
E
= true ∧

∃c ∈ Ccan.c≺CS ∧

∀c ∈ Cmust.c�CS

 ∧ 〈E , ~, CS ,S〉

c
#

〈
~′,Acan,Amust, Ccan, Cmust

〉

〈

E , ~, CS ,

weak immediate suspend

S ′

when(σ)

〉

c
〈~′,Acan, {}, Ccan ∪{CS} , {}〉

Fig. 4.14. Reaction Rules VI (Weak Suspension)

clock (x) clock (x) clock (x)

next (x) = τ2

x = τ1

x = ⊥ x known

step of clock (x)

x known

Fig. 4.15. Execution Trace for x

92 4 Formal Semantics

step but not necessarily in the first instant, and therefore, it cannot be required that the
simulator determines each value in each instant, but the value of a variable must be known
until the end of a step is reached. Furthermore, not all values can be reset to ⊥ when a
new instant is simulated, because the value should be kept until the step of the clock of the
variable is ended.

The simulator of the extension is also given by a function simulating an instant at each
call. Thereby, it gets three environments as inputs and produces three environments as
outputs:

• Values of the last step Eprv
The environment contains the value of each variable from the last step of its clock, and it
is used for the default reaction for memorized variables keeping the old values when no
new one is assigned.

• Values of the current step Ecur
This environment contains for each variable the value of its current step. It stores ⊥ when
the value is not yet known for the step and get updates by immediate assignments being
executed for each variable.

• Values of the next step Enxt
The values which are assigned to variables by a delayed assignment are stored until the
next step of the variable clock starts. Then, the value is transferred to Ecur. The value
of x in the simulation trace is e. g. set by a delayed assignment in an instant, but it is
updated with the start of the next step, i. e. in the next instant of clock (x).

The interpreter is given in Figure 4.16, and it gets a set of clocks C, and a statement S

as inputs in addition to the already mentioned environments. Thereby, the set C contains
the clocks of the pause statements reached in the previous instant, and S is the statement
the next instant is executed with. For the execution of an instant, the following steps are
performed:

1. Based on the clocks contained in the set C, a clock c for executing the next instant is
chosen by the function ChooseClock with the property:

∀c′ ∈ C. c′ � c

One of the lowest clocks contained in C is used because threads synchronize on common
pause statements and as long as a lower clock is contained in the set, a pause statement
of this clock has been reached in the instant before, which means that this substep must
be executed before the higher step ends. There can be a choice between unrelated clocks
contained in C. If the chosen clock is the module clock C0, a new step of the module
starts and new inputs can be given. In this case, the function ReadInputs determines
a new environment with the input values for the next step.

2. Based on the chosen clock, a new step starts with the executed instant of clock c. For
a new step of clock c, all variables with a clock lower or equal to c have to be reset to
unknown (except that there is a delayed assignment from the previous step). The values
in Ecur of those variables are therefore transferred to Eprv, since they are now the values
of the previous step. Also, the values in Ecur are updated for those variables: if a value
can be obtained from a delayed assignment, it is taken, and otherwise the variable is

4.5 Program Execution 93

function Instant(Eprv, Ecur, Enxt, C, S)

begin

c := ChooseClock(C)

if c = C0 then Ein := ReadInputs() else Ein := E⊥

Eprv := (Eprv)/
c�

⊔̇ (Ecur)/c�

Ecur := (Ecur)/
c�

⊔̇ (Enxt)/c�
⊔̇ Ein

Enxt := (Enxt)/
c�

~init := {(x, 0) | x ∈ V}

do # fixpoint iteration

Eold := Ecur
〈
~new,Acan,Amust, Ccan, Cmust

〉
:

c
" 〈E , ~init, ,S〉

foreach x ∈ V loc ∪Vout
do

H := {~ (x) | (x = τ, ~) ∈ Acan}

foreach i in 0 .. ~ (x) do

if i 6∈ H ∧ E~

cur (x) = ⊥ then

if i 6= ~ (x) or DoDefault(x) do

Ecur := defaultUpdate (Eprv, Ecur, i, x)

end

end

foreach (x = τ, ~) ∈ Amust
do

Ecur := [Ecur]
JτK~Ecur

(x,~)

end

while(Eold 6= Ecur)

〈S ′, ~new,A, C〉:
c
և 〈E , ~init, CS ,S〉

C := C ∪ C0

if ∃x ∈ V. (∄c ∈ C. c≺ clock (x)) ∧ ∃0 ≤ i ≤ ~new (x) . Ei
cur (x) ∈ {⊥,⊤}

then Fail()

foreach (next (x) = τ, ~) ∈ A do Enxt := [Enxt]
JτK~Ecur

(x,~) end

Ecur :=

{

(x, [E
~new(x)
cur (x)]) | x ∈ V

}

Enxt :=

{

(x, [E
~new(x)
nxt (x)]) | x ∈ V

}

write outputs

if C = {C0} then WriteOutputs(Ecur)

return (Eprv, Ecur, Enxt, C, S ′
)

end

(1)

(2)

(3)

(6)

(7)

(8)

(4)

(5)

Fig. 4.16. Interpreter

94 4 Formal Semantics

set to ⊥. Furthermore, the new input environment is also added defining new values if
c = C0, and the values of the delayed assignments which have been transferred to the
current environment, are removed from Enxt. Finally, the function ~init is defined and set
to 0 for each variable.

3. Having the environments and incarnation levels prepared, the fixpoint iteration is now
started to complete the environment Ecur as much as possible. The iteration terminates if
no changes occur anymore for the environment. Therefore, the environment is copied to
Eold so that the loop can decide at the end of the iteration if any new change occurred. The
reaction rules are then applied to the given statement with Ecur to determine the possibly
executed actions. The statement’s clock for the rules is C0 since this is the outermost
(implicitly) defined clock. The incarnation level is also ~init, since the execution starts
from outside of any local variable declaration; it is only updated during the application
of the rules whenever a new declaration is entered. It results in ~new containing for each
variable the number of the new declaration blocks entered during this instant. Based on
the obtained information, the environment is then updated.

4. The variables which are not explicitly set in a step, should get their default values by
the default reaction. In pure Quartz, this is done when no action for writing a variable
is contained in the set Acan. However, this cannot be only decided for the extension by
the set Acan, since instants and steps do not coincide. The variable could be written in
a later instant of the same step. Hence, it must be determined that a variable (1) is
not written in this instant, and (2) it is not written until the end of the step. The first
concern can be decided by the set Acan, whereas the second one can be only decided by
looking ahead of the currently simulated instant. The reaction rules also determine the
resulting incarnation level ~new counting for each variable how often its scope is entered
in the instant. If ~new (x) = 0 holds for a variable x, then no scope was entered for the
variable. This is e. g. the case for all input and output variables. For local variables,
whose scope was entered one or more times, ~new (x) > 0 holds. Practically, there are
some values E0

cur (x) , . . . , E
~new(x)
cur (x) of the variable x used in this instant, where E0

cur (x)

is the value of the variable whose scope was just left, E i
cur (x) with i = 1, . . . , ~new (x)− 1

are the values of the variables whose scope was entered and left, and finally E
~new(x)
cur (x)

is the value of the variable whose scope was just entered.
The implementation works as follows. For each variable x, the set H is determined
containing the incarnation levels of x, whose assignments are contained in Acan. The
next loop iterates through all incarnation levels of x and considers those which are not
contained in H, but with the value ⊥ assigned by Ecur. Note that these are exactly the
preconditions of the default action of pure Quartz so far. Now it can be distinguished
between the variables whose scope was left and the others. If the scope was left, it is sure
that no action will set them in a later instant. Hence, the default reaction can assign a
value for them. These are the variables with the levels 0, . . . , ~new (x)− 1. The remaining
incarnation level, ~new (x) represents the variable whose scope was either entered, or it is
an output variable. The variable is kept and can be possibly set by an assignment in a
later instant. This decision, whether it will be set until the end of this step is left to the
function DoDefault which discussed below. If this function tells the simulator that the
variable is not set in this step, the default reaction can be executed for the variable, and
it is defined as follows:

4.5 Program Execution 95

defaultUpdate (Eprv, Ecur, i, x) =

default (x) , if x is event
default (x) , if i > 0

Eprv (x) , else

If the default reaction is executed for an event, it is reset to its default value. Otherwise,
it is executed for a memorized variable, and there, two cases have to be distinguished:
(1) the scope of a new variable was entered, and in this case the variable is reset to its
default values, (2) otherwise, the old value from the previous step is taken. Note again,
that incarnation level 0 means that this variable was also present in the last step, and an
incarnation level > 0 means that the scope of this incarnation is entered in this instant.

5. The actions contained in Amust are definitely executed, hence, the values they define for
a variable are added to the environment. Note that the actions are evaluated with the
incarnation function collected during the reaction rules, because it describes the variables
which are visible at this point in the source code.

6. After the values for the current instant are determined, the next instant can be prepared.
Therefore, the transition rules are applied to determine the residual statement, the clocks
for the next instant, and also the delayed assignments. The module clock C0 is also
explicitly added to the clocks for the next instant for two reasons: (1) usually a Quartz

system does not terminate and it will proceed stuttering when its end is reached, and (2)
it simplifies the following a little bit when at least one clock is in this set. However, besides
the stuttering behavior, this does not change the behavior of the program, since smaller
clocks are (according to the semantics) preferred by ChooseClock. Furthermore, the
transition rules also check that all variables needed to evaluate control-flow conditions,
and to evaluate the assignments, are known and have real values. However, at the end of
a step of a clock, it must be ensured that all variables of this (or any lower) clock are
known. This is ensured by the check, which forces the simulation to fail if this is not the
case.

7. The following instant can now be prepared by updating the environment with the delayed
assignments collected by the transition rules. And finally, the values of the incarnations
are transferred, but this needs explanation. Entering a scope means also that the scope
of another incarnation of the same variable is left, hence, the next instant will be only in
the scope of the new variable. According to the incarnation levels, the value for the new
variable is the last one in the list stored by the environments. Therefore, the value list of
the environments are reduced to only hold the last value. The delayed assignments are
handled here in the same way as the immediate assignments, because delayed assignments
are also collected during several instants until the next step of the variable starts.

8. Finally, if a step of the module clock was finished with the simulated instant, the output
values are provided to the environment. Then, the interpreter returns the result of the
simulated instant. This result can be directly given to the interpreter to simulate the
next instant. The module clock was explicitly added to C, which is consistent with the
stuttering behavior when the end of the program is reached. If one wants to check whether
the program was finished, he or she can do this by the residual statement S ′, which must
be nothing for termination.

Finally, an instant of clock c is completed, and the next instant can be executed by calling
the interpreter again with the result from the previous call.

96 4 Formal Semantics

4.5.2 Constructive Execution

There are two open discussions left for the interpreter, the function ChooseClock, and the
function DoDefault, both discussed in the following.

Consider first the non-deterministic choice of the clock of the next instant, which is
done by the function ChooseClock selecting one of the smallest clocks from C. If there
are several choices, taking the wrong one can lead to an error in the simulation, whereas
the other one leads to a valid execution. As an example, consider the program shown in
Figure 4.17 with the unrelated clocks C1 and C2, and the variable x defined on clock C0.
Assume that the first instant (of clock C0) was executed, and the next one (starting from
labels l1 and l3) is now considered by the interpreter. Hence, the set of clocks given to the
interpreter is C = {C0,C1,C2}, and the interpreter can either choose C1 or C2. Obviously,
the value of x is ⊥ before this instant, and if the interpreter chooses C2, the execution will
fail, since the assignment cannot be evaluated. However, if it chooses C1, the execution will
work. Hence, the execution based on the clocks of instances must be scheduled to get the
desired behavior. However, even if the wrong choice was made, and the interpreter fails, it
could also try another choice, but trying out is not in the spirit of constructive execution.
However, by also defining the default reaction, the intention is to keep the scheduling as
simple as possible.

Consider now the estimation of the function DoDefault to determine whether a variable
is set in the further execution of the step of its clock or not. Obviously, to know exactly
whether a variable will be set in the following execution of the step or not, requires to look
ahead. This can be done by a simple analysis, or by trying out each possibility for execution.
However, two interesting over-approximations for this function are defined in the following,
both leading to practical results:

• The first approximation of the function can be described with: a variable x can only be

immediately written in an instant of clock (x). Hence, the variable can only be written
in the first instant of its step, but not later. The question, whether the variable will be
written in the remaining step is therefore answered with no, and the function can be
defined as:

DoDefault(x) = true

Hence, the default reaction will, if necessary, define the value of a variable in the first
instant of its step. Note that this does not influence, when and how variables are read,
and it also does not forbid to write the variable with a delayed assignment from a lower
instant. Obviously, this restriction does not impose any scheduling dependencies, since
the semantics forces synchronization by the clocks when values of variables are exchanged.
This restriction also leads to a behavior which is very similar to oversampling in Signal,
and the relation will be discussed in Section 7.2.3.

• The second approximation is similar to the first one, but it forces the restriction only for
variables which are used for the communication between unrelated clocks. Hence, if a
variable x is read in instances of a clock c, with clock (x)≺ c, then it is not (immediately)
written in instance of a clock c′ with c# c′. Note that delayed assignments are allowed
and communication between unrelated clocks is synchronized by the pause statements of
common clocks.

4.6 Summary 97

int x;

clock(C1) {

l1: pause(C1);

x = 5;

l2: pause;

} || clock(C2) {

l3: pause(C2);

o = x;

l4: pause;

}

Fig. 4.17. Example: Parallel Causality with Unrelated Clocks

The first definition can be checked rather simple by a syntactical test on the source code.
However, the second version is harder to check [GeBS11a], but, in the same way constructivity
can be approximated by e. g. checking for cycles, a check is presented in the next chapter
which can be applied after compilation to determine the constructive programs. Also this
check is only an abstraction of the exact definition, but since checking the exact causality is
very inefficient, it is a practical solution.

Furthermore, the constructivity defined has to look into the future to decide whether a
variable will be written in a step or not. However, if the program is proved to be constructive,
the synthesis can handle this very efficiently, since in the real target language, the value
⊥ is not modeled. Instead, it is ensured by the translation that a variable is written to its
value before the value is used. Therefore, the synthesis can simply keep the old value (for
memorized variables) or the default value (for events) at the beginning of a step. The analysis
ensures that the right value is used.

4.6 Summary

This chapter defined the semantics of refined clocks with two sets of SOS rules like the
semantics definition of pure Quartz in [Schn09]. Besides many similarities in the rules,
the main difference is that the original semantics only considers instances of a single clock,
whereas the extension has to deal with different clocks. Those clocks control the point of time
when conditions are checked, abortions take place, and also when variables can get a new
value. The clocks are also responsible for independent execution, which is not present in this
way in pure Quartz. A simulation procedure was also defined to execute an instant of the
extension using the SOS rules. Thereby, this function is again similar to its counterpart of
pure Quartz, but it also has some differences. First, a clock for an instant must be chosen,
and second the execution of the default reaction must be determined. Two solutions have
been proposed, whereas both are scheduling independent, i. e. the success of the simulation
does not depend on the clock the simulator chooses. Furthermore, the first one is very simple
to check, but the second one is more convenient for programming and some abstractions can
be also checked in a simple way. This is completely in the mood of checking the constructivity
of pure Quartz, where it is hard to ensure it for a general program, in most cases a simple

98 4 Formal Semantics

check can also do the job. However, if the program is checked to be constructive, the synthesis
can produce nice code for execution.

Chapter 5

Compilation

The original compilation algorithm for Quartz translates programs to the intermediate
format AIF, which provides a reasonable abstraction from the source language and which
serves as a starting point for synthesis and analysis tools. In this way, the computational model
and the program behavior is kept but the complex interaction of control-flow statements
is removed. This leads to simpler synthesis tools, which only need to focus on their target
language. The compile algorithm for Quartz was already mentioned in Section 2.2.6 and it
is explained in detail in [Schn09]. Even though this is just one way to translate synchronous
programs to a target language, the intermediate format has proved to be a useful abstraction
and this approach is also kept for the extension considered in this thesis. However, AIF needs
to be extended to cover programs with refined clocks.

The intention of this chapter is to present a compilation algorithm together with a new
extended intermediate format, which is much simpler than the source language and which
can be translated to target languages such as hardware description languages with reasonable
effort. To achieve this goal, the presented compilation algorithm will only work on a subset of
extended Quartz programs, but these restrictions will be clearly motivated. The evaluation
of some examples in Chapter 7 will later also show that these restrictions do not have a
significant negative impact on practicability. Preliminary versions of the algorithm have been
discussed in [GeBS10b, GeBS11].

The chapter is structured as follows. The extension of AIF is first motivated by small
programs represented by the intermediate format. Then, the idea of the translation of more
complex statements is discussed, before the actual compilation algorithm is defined. Finally,
based on the intermediate format, a simple method to check the abstraction of constructivity
for dependencies across instants is presented.

5.1 Extended Intermediate Format

The extended intermediate format, which is used as target for the compile algorithm is
presented in this section. The explanation focuses on the differences to the original format
and does not consider implementation details.

100 5 Compilation

5.1.1 General Idea

The section sketches the representation of simple programs by the intermediate format
which is still based on guarded actions representing the data flow and the control flow.
Each data-flow assignment in the source code is translated to a guarded action where the
guard describes when the action is executed. Hence, the guard expresses the condition under
which the assignment is reached during program execution. Reaching a certain point during
execution is based on the control flow whose states are encoded by the pause statements. As
already mentioned in Section 2.2, in the original intermediate format, the labels of pause
statements are used as Boolean signals to identify the control-flow locations in the source code.
The labels are active for the steps starting from the related pause statements, and they must
be explicitly set for the steps where they should hold because they are automatically false in
the other instants. Technically, they are considered as Boolean events in the intermediate
format. The guarded actions obtained from the original compiler have the invariant that at
least one label has a positive occurrence in the guards. Those labels identify the control-flow
locations where the actual action can be reached from in an instant where the label is active.
As an example, consider the following short program on the left-hand side together with the
guarded actions on the right-hand side obtained by the original compile algorithm:

l1: pause;

if(γ)

x = τ;

l2: pause;

γ ∧ l1 ⇒ x = τ

l1 ⇒ next (l2) = true

The assignment to the variable x can be reached in an instant where the control flow is at
label l1 (the previous step ended at the related pause statement) and where the condition
of the if statement is true: thus, the guard of the assignment is γ ∧ l1. In the same instant,
the control flow moves from label l1 to label l2, hence l2 will hold in the next instant, this
is expressed by the other guarded action representing the control flow. Since l1 is not set
again for the next step, it is automatically reset. Consider now a variation of the example
where an await statement is used instead of the pause:

l1: await(α);

if(γ)

x = τ;

l2: pause;

γ ∧ α ∧ l1 ⇒ x = τ

¬α ∧ l1 ⇒ next (l1) = true

α ∧ l1 ⇒ next (l2) = true

With this change, the further processing of the instant is also based on the condition of
the await statement. Clearly, the label l1 is only left when the condition α holds. Since
labels are considered as events, they have to be set in each instant they should hold and an
additional control-flow action ensures that the label l1 is set again as long as α does not
hold. The assignment to x is then only executed when the await statement is left and the
first branch of the if statement is taken.

Having the semantics as introduced in Chapter 4 for the await clock(c) statements in
mind, the pause(c) statement waits for the occurrence of a certain clock signal to execute
the next instant (of the clock c). Hence, the assignments which are reached from a pause

5.1 Extended Intermediate Format 101

statement are executed when (1) the label holds and (2) the related clock ticks. The pause

statements can be translated to guarded actions similar to the ordinary await statements.
Consider the following example with refined clocks:

l1: pause;

if(γ) {

x = τ1;

l2: pause(C1);

y = τ2;

}

l3: pause;

γ ∧ l1 ∧ C0 ⇒ x = τ1

l2 ∧ C1 ⇒ y = τ2

γ ∧ l1 ∧ C0 ⇒ next (l2) = true

¬γ ∧ l1 ∧ C0 ⇒ next (l3) = true

l2 ∧ C1 ⇒ next (l3) = true

l1 ∧ ¬C0 ⇒ next (l1) = true

l2 ∧ ¬C1 ⇒ next (l2) = true

The assignment to x is executed when the control-flow is at label l1, an instant of clock C0

is executed, and additionally the if condition holds. Thereby, the signal C0 represents the
instant clock and l1 holds as long as the control-flow is at the related pause statement. In
contrast to the translation of the ordinary await statement waiting for the occurrence of
a certain condition, no control-flow action is explicitly added which keeps the label when
the related clock does not occur (the last two guarded actions are omitted). The behavior
there is encoded in the semantics of the label: a label is only disabled (reset to false) after an
instant of its clock. In this way, the behavior is partially encoded in the model instead of
explicit actions. However, each backend tool has to take care of it. Also, this translation is
compatible with the original AIF in the way that a normal AIF can be translated to the
refined clocks representation by simply adding the clock C0, which is the clock of all labels
in pure Quartz, to the guard of each guarded action.

5.1.2 Labels and Clocks

In the way labels are introduced in the intermediate format above, they only hold for an
instant of the according clock and not for the whole step. The clocks are also only active for
one instant. But there is a difference between both. Labels can be set active before the actual
instant is executed and they are reset after the instant, whereas clocks only hold during
this instant. Hence, labels represent the positions in control flow which have been reached
and the clocks are events to proceed the execution. This is similar to the definition of the
semantics in Chapter 4 where the immediate await clock marks the positions which have
been reached before, but the execution only proceeds when the clock is also active.

5.1.3 Local Declarations

Local variable declarations are a fundamental feature in many programming languages and
they are also present in Quartz. The lifetime of a variable is usually bound to the scope
where the variable is visible. The intermediate format AIF abstracts from the control-flow
statements and also from the scopes of variables: each variable is globally defined. The
lifetime of the variables is the same as the lifetime of the whole system. There is no dynamic
variable creation or deletion, which is not desired since also a translation to hardware is

102 5 Compilation

of interest. The compilation procedure must map the original behavior of scopes of local
variables to the intermediate format. Hence, the entrance and exit of a variable’s scope must
be imitated somehow.

A particular characteristic for local declarations in synchronous languages was already
mentioned in Section 2.2.3. Schizophrenia problems occur when the scope of a local variable
is left and re-entered in the same macro step. The consequence for the compilation of
refined clocks is discussed later, whereas the introduction here covers only the basic case to
imitate the entrance of a variable’s scope in the intermediate format. As already explained
in Section 2.2.5, the original AIF uses the so-called default reaction for this purpose. It is
defined as an expression whose value is used for the variable if it does not explicitly get a
value by an assignment in the macro step. Thereby, the value of the expression is determined
in the previous macro step: it transfers a value from the last step to the current one. The
default reactions can be used to solve the problems for Quartz but they will not work for
the extension. The reason for this is that the expression needed to define the default reaction
would use variables of lower clocks resulting in possibly several values from the previous step.
For transferring the value from the last step to the current one, it cannot be decided which
value to take. Also this point is considered later.

The intermediate format introduced here uses a new construct to imitate the entrance of
a variable’s scope. Therefore, instead of using a default expression to transfer values from
the last step, a special reset condition

reset (x) = τ

is used for a local variable x to define the instant when it should be potentially reset to its
default value. This defines the start conditions of the control-flow for the entry of the scope
of x. The condition is of Boolean type and has the additional property that it only holds in
an instant of the clock of x, i. e.

reset (x) → clock (x) .

Hence, it can only hold in the first instant of a step of clock of x. This makes the information
about the scope entrance available for the whole step and the variable can be reset if it is
needed. The advantage of this expression over the original default reaction is that there is no
value needed from the previous step, but it is only specified when the default value should
be set.

Another property of the reset expression and its impact on the semantics of the inter-
mediate format is that it gains priority over delayed assignments. Hence, when the reset
conditions tells to reset a variable then is is done without respect of delayed assignments of
the previous step. A value of a variable for a step is consistent to the following evaluation:

x :=

τ , if action γ ⇒ x = τ is executed in this step
default (x) , if reset (x) holds in first instant of step

τ , if action γ ⇒ next (x) = τ was executed in previous step
default+ (x) , else

Note that the definition does not invalidate write conflicts which occur when two different
values are set to a variable within one step. Write conflicts have to be checked and omitted.

5.1 Extended Intermediate Format 103

If none occurs during execution, the above evaluation determines the value. The definition of
the value of a variable x seems to be arbitrarily, but it is not. If the reset condition holds
in the first instant, it is clear that the scope of a variable is entered in this step. A delayed
assignment from a previous step cannot assign this variable, because it has not been visible
in the last step. The only assignment the variable can get a value from is an immediate
assignment of the current step. In this way, this definition will help to imitate the behavior
of the variable’s scope for compilation. The second advantage of this definition is that it
translates very well to target languages as it will be shown later.

5.1.4 Complete Structure

module P(int ?i, int !o)

{

loop {

clock(C1) {

int x;

l1: pause(C1);

x = i;

l2: pause(C1);

o = x;

next(x) = o + 1;

}

l0: pause;

}

}

C0 ∧ st ⇒ next (l1) = true

C1 ∧ l1 ⇒ next (l2) = true

C1 ∧ l2 ⇒ next (l0) = true

C0 ∧ l0 ⇒ next (l1) = true

Control-Flow Actions

C1 ∧ l1 ⇒ x = i

C1 ∧ l2 ⇒ o = x

C1 ∧ l2 ⇒ next (x) = o+ 1

Data-Flow Actions

reset (x) = C0 ∧ l0

Reset Conditions

(a) Code Example (b) Intermediate Format

Fig. 5.1. Example: Extended Intermediate Format

An example of a program represented by the guarded actions in the intermediate format
is shown in Figure 5.1. As already mentioned, in the data structure also the variable’s
declarations, types and the clock tree are stored. The following description focuses on the
guarded actions obtained from the compilation procedure. The guarded actions for the labels
and assignments are determined as described above, and the reset condition expresses in
which instant the scope of the variable x is entered. However, the initial instant (st ∧ C0) is
not explicitly added because variables have their default value when the module is started.
Note that the property that the scope is entered in an instant of clock C0 or higher is fulfilled.
The delayed assignment to x will never set a value to x because it is executed after the scope
of x is left. The reset condition with the above definition ensures that in this case the value
of the new x is reset.

104 5 Compilation

5.2 Surface and Depth

The original compilation algorithm is based on the distinction between surface and depth of
each statement. The surface are all guarded actions which are possibly executed in the step
when the statement is started and the depth contains all guarded actions which are executed
in later steps, when the control-flow is inside the statement. Since, with the introduction of
refined clocks, steps are now related to a certain clock, the definition of surface and depth is
also extended: they also refer to a certain clock.

Action
pause(C1)

pause

x = ...;

if(...) {

y = ...;

l1: pause;

x = ...;

} else {

y = ...;

l2: pause(C1);

}

l3: pause(C1);

z = ...;

l4: pause;

...

Surface C0

Depth C0

Surface C1

Depth C1

Fig. 5.2. Surface and Depth of Statements

An illustration of surface and depth related to different clocks is given in Figure 5.2. The
two clocks C0 and C1 are considered in the example. The surface of clock C0, i. e. the first
step of this clock, ends at one of the pause statements with label l1 or l4. The depth of
clock C0 starts from those labels. On the other hand, the surface of clock C1, i. e. the first
step of clock C1, ends at either the label l1 or l2. The depth of clock C1 starts from these
labels. Two things can be seen in this example. First, the surface of clock C1 can also end
at a label related to clock C0 since at this pause statement the step of clock C1 also ends.
Second, in the same way an assignment can belong to the surface and the depth in pure
Quartz, the control-flow, hence the pause statements, of a lower clock can belong to the
surface and the depth of a higher clock. In this way, the control flow of clock C1 based on
the labels l2 and l3 belongs to the surface of clock C0. The label l3 also belongs to the
depth of clock C0.

The original behavior of some statements such as loops or preemption is based on the
surface and the depth. For refined clocks, this behavior is extended to steps of certain clocks
to preserve the abstraction. Therefore, the definitions of surface and depth which are based
on certain clocks are important for the translation of Quartz with refined clocks to guarded
actions.

5.3 Translation of Certain Statements 105

Instant Surface and Instant Depth

In addition to the surface and depth of a certain clock, the instant surface and depth surface

of a statement are introduced. The instant surface are the guarded actions which are executed
in the first instant of the statement, and the instant depth are the guarded actions which are
executed in each instant when the control flow already is inside the statement. The instant
surface and depth in the example in Figure 5.2 are equivalent to the surface and depth of
clock C1. The instant surface ends when the first pause statement of any clock is reached.
However, the instant surface must not be equal to the surface of a certain clock when new
clock declarations or parallel threads are entered. In pure Quartz, surface and depth of
clock C0 are equal to the instant surface and depth. In this case, there exists no other clock.
Finally, if the surface or depth of a certain clock is addressed, the clock is explicitly given,
whereas the instant surface and depth is also just referred to with just surface and depth.

5.3 Translation of Certain Statements

This section discusses the translation of several programs using more complicated statements
to the intermediate format. It discusses how the programs can be represented by the
intermediate format including various options. This will help to understand the actual
compile algorithm, which it is presented later.

5.3.1 Control-Flow Graph

Several approaches to represent programs in a more convenient way for automatic analysis
than the syntax tree have been published in the past. Control-flow graphs [Alle70] connect so-
called basic blocks and focus on their control dependence, whereas program dependence graphs
also take data dependencies into account [OtOt84, FeOW87]. In contrast to those approaches
focusing on sequential threads, Petri nets [Ager79, Petr80a] allow to represent concurrent
control-flow and also forking and synchronization of threads. The following considerations
are illustrated by another graph showing the conditions for labels to be reached in an instant.
Each vertex of the graph simply represents a label in the source code. An edge from a
vertex to another one represents a possible transition under a certain condition in an instant
from one label to another. The transitions are represented in the intermediate format by
control-flow guarded actions. Hence, without completely formalizing the graph representation,
it is an illustration of the encoded control flow and will show the effects the compilation will
have for several statements.

An example is given in Figure 5.3 showing the source code, the according guarded actions,
and the control-flow graph. The edges are only labeled with the conditions which move the
control flow from a label to another one. In the expressions, the labels and the clocks are
omitted since they are determined by the vertex, e. g. the vertex from l0 to l1 is only labeled
by γ1 instead of C0 ∧ l0 ∧ γ1, since the first part of the guard is already determined. In
general, because of the parallel statement it is possible that more than one label can be active
at the same point of time. This behavior is also reflected by the control-flow graph. Hence,
each label is represented by an own node in contrast to the EFSM, where all combinations of
reachable labels are combined to a state. The control-flow graphs are used in the following

106 5 Compilation

C0 ∧ l0 ∧ γ1 ⇒ next (l1) = true

C0 ∧ l0 ∧ ¬γ1 ⇒ next (l3) = true

C1 ∧ l1 ∧ γ2 ⇒ next (l2) = true

C1 ∧ l1 ∧ ¬γ2 ⇒ next (l3) = true

C1 ∧ l2 ⇒ next (l3) = true

C1 ∧ l3 ⇒ next (l4) = true

C1 ∧ l1 ⇒ y = τ1
C1 ∧ l1 ∧ ¬γ2 ⇒ z = τ2

C1 ∧ l2 ⇒ z = τ2
C1 ∧ l3 ⇒ x = τ3

l0

l1

l2

l3

l4

γ1

¬γ1 γ2

¬γ2

l0: pause;

if(γ1) {

l1: pause(C1);

y = τ1
if(γ2)

l2: pause(C1);

z = τ2
}

l3: pause(C1);

x = τ3;

l4: pause;

(a) Guarded Actions (b) Control-Flow Graph (c) Code Example

Fig. 5.3. Examples: Control-Flow Graph

as an illustration for the control flow encoded by guarded actions. With their help, the effect
of statements during compilation of the control flow can be shown more intuitively.

5.3.2 Parallel Threads

The parallel statement defines simultaneously executed threads, which are started together
in the same instant and which will be synchronized at the end. Hence, other statements after
the parallel statement are only executed when both threads terminated. Additionally, the
threads synchronize on pause statements of common clocks (but they do not synchronize on
pause statements of clocks which are locally declared).

Consider the example given in Figure 5.4 having one refined clock, which is locally defined
in the first thread of the parallel statement. Both threads are started in the same instant
from label l0, and the label l6 is reached in the instant where the last thread terminates
(or where both terminate together). The control flow of both threads during their execution
is independent of each other, but they will synchronize on pause statements of common
clocks (which is only C0 in the example). The synchronization of common clocks is done
by the semantics of the intermediate format: steps of the same clock are executed together.
Therefore, the threads can be generally translated independently to the intermediate format.
However, there is still the question how fork and join are represented by guarded actions. The
fork is simple since both threads are started together in the instant the parallel statement is
started: they just get the same start condition (l0 ∧ C0 in the example). More of interest is
the join, because it has to take care of different situations options. Therefore, consider the
termination condition of the parallel statement S1||S2 in pure Quartz:

termS1
∧ termS2

︸ ︷︷ ︸

(a)

∨ termS1
∧ ¬insdS2

︸ ︷︷ ︸

(b)

∨ termS2
∧ ¬insdS1

︸ ︷︷ ︸

(c)

5.3 Translation of Certain Statements 107

l0: pause;

{ // Thread 1

clock(C1) {

l1: pause;

if(γ)

l2: pause(C1);

else

l3: pause;

}

}

||

{ // Thread 2

l4: pause;

if(α)

l5: pause;

}

l6: pause;

l0

l1

l2 l3

l4

l5

l6

γ ¬γ α

¬α

fork

join

(a) Code Example (b) Control-Flow Graph

Fig. 5.4. Examples: Parallel Execution with Refined Clocks

This condition holds when both threads terminate in the same step (a), or when one thread
terminates, and the other one has been already terminated (b, c). The condition insdS of a
statement S is a disjunction of all labels which occur in S. The same condition can also be
used for clock refinement and the guarded actions look as follows:

l0 ∧ C0 ⇒ next (l1) = true

l0 ∧ C0 ⇒ next (l4) = true

γ ∧ l1 ∧ C0 ⇒ next (l2) = true

¬γ ∧ l1 ∧ C0 ⇒ next (l3) = true

α ∧ l1 ∧ C0 ⇒ next (l5) = true

(l2 ∧ C1 ∨ l3 ∧ C0) ∧ (¬α ∧ l4 ∧ C0 ∨ l5 ∧ C0)
︸ ︷︷ ︸

(a)

⇒ next (l6) = true

(l2 ∧ C1 ∨ l3 ∧ C0) ∧ ¬ (l4 ∨ l5)
︸ ︷︷ ︸

(b)

⇒ next (l6) = true

¬ (l1 ∨ l2 ∨ l3) ∧ (¬α ∧ l4 ∧ C0 ∨ l5 ∧ C0)
︸ ︷︷ ︸

(c)

⇒ next (l6) = true

Thereby, the action with guard (a) describes the case when both threads terminate together.
The guarded action with guard (b) describes the termination when the first thread terminates
and the second one has already terminated before. Finally, the third guarded action with
guard (c) describes the termination when the second thread terminates and the first one has
already terminated before.

108 5 Compilation

5.3.3 Loops and Local Declarations

As already explained, there are no means of dynamic variable creation or deletion in the
intermediate format, and variables have the same lifetime as the whole system. For this reason,
entering the scope of a variable, which means that the variable is possibly reset according
to the semantics, must be handled by the intermediate format, or by the compilation to
it, respectively. Furthermore, the issue of schizophrenia has been already introduced in
Section 2.2.3, and it is now analyzed in more detail to explain the solution taken for the
extension. The main problem here is that the scope of a variable is entered and left in the
same step, which can only occur with loops, but due to weak abortion statements, the number
of entered scopes depends on the number of nested loops. A solution that was introduced for
Esterel [Berr97a] transforms a loop statement (the general case in Quartz syntax is used
here)

while(σ) { S }

before compilation by duplicating the body, i. e. the scope of the local variable, to

while(σ) { S; if(σ) { S } }.

Due to renaming of different local variables which are represented by the same variable
name, technically, two local variables are now present. The replacement ensures that the
scope of one local variable cannot be left and entered in the same step. Instead, the scope
of one variable is left, and the scope of the other one is entered. In this way, the compiler
needs only to consider the entrance of a scope but not the overlapping in the same step.
The disadvantage of this approach is that it leads to an exponential blow-up of the code
for nested loops. Even worse, the duplication is not enough for Quartz, because a delayed
assignment can set a value of the local variable when its scope is left. This assignment can
affect the value of the local variable because the scope may be entered again one step after.
This problem is not present in Esterel because delayed assignments are not available there.
For Quartz, it is not only needed to ensure that the scope of the same variable is not
re-entered in the same step, but also not in the following one. Therefore, a third copy of the
loop body can be used, which obviously leads to an even bigger blow-up:

while(σ) { S; if(σ) { S } if(σ) { S } }

The Quartz compiler solves this smartly by two approaches: First, delayed assignments which
are executed when the scope of a variable is left are disabled by an additional condition for
their guards. This basically ensures that the third copy is not needed. Second, it duplicates
only the first step and not the whole loop body. Hence, only the code of the scope is
duplicated which can overlap during execution. Anyway, a copy of the local variable needs to
be introduced, which is called an incarnation of the variable. The copy is used to represent
the behavior of the new scope of x: the surface of the scope is duplicated and a renaming of
x in the surface ensures that the incarnation is used instead of the original variable. Delayed
assignments to x in the surface are not affected by the renaming, since the original x is used
in the following step. Due to nested loops and weak abortion, more than one incarnation of
a local variable is also possible in pure Quartz.

Summarizing the above, during execution based on the source code, the scope of a
local variable can be left and entered. Technically, each time the scope is entered, a new

5.3 Translation of Certain Statements 109

loop {

bool x;

...

l0: pause;

clock(C1) {

next(x) = ...;

...

while(γ) {

...

l1: pause(C1);

}

if(α)

l2: pause;

}

}

Fig. 5.5. Example: Reachability of Loop Exit

variable is created, and when the scope is left, the variable is not needed anymore. Since
dynamic creation and deletion is not possible in AIF (and also not desired for hardware or
for predictable code generation), an upper bound of coexisting variables is determined and
translated to AIF. The whole behavior of the original code is then represented based on
these variables.

An interesting case, which was already mentioned, is given by delayed assignments to
local variables which are executed in the step in which the scope of the variable is left. Hence,
the value is assigned to the variable at a point of time where the execution is no longer inside
their scope, and technically, the variable does not exist anymore. This can be considered in
two different ways from the semantical point of view:

1. Since the variable does not exist anymore in the step where it should get the value, the
assignments can be considered as invalid.

2. Since the variable does technically no longer exist, it should be safe to assign any value
to it, because it cannot be read anymore. The delayed assignment can be executed, but
it will not have an effect.

The Quartz semantics and also the semantics of the extension choose the second interpre-
tation, hence it is save to assign a variable with a delayed assignment whose scope is left.
However, the solution of the Quartz compiler for delayed assignments is to disable them
when the scope of the variable is left. In pure Quartz, the reachability of each position in
source code can be expressed by a Boolean condition holding the whole step. Therefore, the
condition for leaving a loop body (resp. a variable scope) can be identified and each delayed
assignment in the loop body can be additionally guarded by this condition so that it is not
executed in case of leaving the scope. This condition cannot be expressed for the extension
as it is shown in the example in Figure 5.5. The (outer) loop body can be left by a step of
clock C0 from the labels l0 and l2. If the loop body is left from label l0 depends on the
condition α of the if statement. The condition is computed in the inner loop during some

110 5 Compilation

substeps. Hence, when the if condition is reached, the expression α can be evaluated and it
can be decided whether the (outer) loop body is left or not. This decision cannot be taken
when the delayed assignment to x right after the label l0 is executed. But, to disable delayed
assignments it would be needed to be decided at this point. However, as also mentioned
above, the reset (x) condition introduced for a variable x has priority to delayed assignments.
Hence, the solution for the delayed assignments taken for the extension is to evaluate them,
but decide later if the value from the delayed assignment is taken or the default value is set.

The second issue, the entrance of the new scope in the same step, is handled by the
Quartz compiler by duplicating the surface of the loop. This means for the extension that
the surface according to the loop’s clock must be duplicated, which means that possibly
control-flow labels of lower clocks must be also duplicated.

5.3.4 Strong Preemption

The simpler statements basically influence substatements at their start or end point, but not
during the execution itself. For instance, the conditional statement only strengthens the start
condition of its branches. More complicated statements such as the preemption statements
influences the substatements also during their execution by either suspending or aborting
them. Thereby, the preemption only takes place at instances of a certain clock: the clock
the preemption statement is defined on. An example program is shown in Figure 5.6, which
contains the same code for abortion and suspension. The left-hand side shows the program
code, whereas the right-hand side shows the structure of the control flow.

Consider the version with the abort first. The clock of the abort statement is C1 since
it is the surrounding clock declaration meaning that the abortion takes place after pause

statements of this clock. Hence, abortion can occur at the labels l2 and l4 in an instant of
clock C1. The other labels of clock C2 defined inside the preemption block are not influenced.
The black part of the diagram on the right-hand side of the figure illustrates the control
flow as it would be executed without preemption. It is extended by the abortion block in a
way that now the execution can jump from inside the block to its end when the condition
σ holds: the execution of the block is aborted. Please note that the condition σ can only
contain variables which are declared on clock C1 or higher. Therefore, σ must also hold for
the whole step and cannot change during substeps of clock C2.

Second, consider the version with the suspend statement in Figure 5.6. Again, the clock
of the suspension statement is C1 as for the abortion. Suspension does not force the control
flow to jump outside, but just to stay where it is. Hence, when the control flow is at the
labels l2 or l4 and the condition σ holds, it just stays there. Those control-flow changes
can be illustrated in the diagram on the right-hand side by self-loops to the labels. Common
for both preemption variants is the behavior when condition σ does not hold. In both cases
the normal execution proceeds, as it is e. g. illustrated from label l2 to l3.

In contrast to the delayed strong preemption statements where the preemption can only
take place when the control flow is already inside the statement, the immediate variants can
also be aborted or suspended when the statement is reached. However, both variants here
can be expressed as a macro of the delayed ones (Section 2.2.2), and they are therefore not
considered here.

5.3 Translation of Certain Statements 111

l0: pause;

clock(C1) {

suspend|abort {

clock(C2) {

l1: pause(C2);

y = true;

l2: pause(C1);

x = true;

l3: pause(C2);

z = true;

l4: pause;

y = false;

}

} when(σ);

}

l5: pause;

σ

σ

σ

σ

l0

l1

l2

l3

l4

l5

¬σ

¬σ

σ

σ

σ

σ

(a) Code Example (b) Control-Flow Graph

Fig. 5.6. Examples: Preemption with Refined Clocks

5.3.5 Weak Preemption

The weak preemption statements have already proved to by very difficult in the semantics
in Chapter 4. The following description illustrates the problems that have to be solved for
compiling these statements to the intermediate format. However, the practical relevance of
the statements and the complexity that is also introduced here, should justify the decision
that the weak preemption statements are not handled by the compile algorithm presented
below.

Consider the weak suspension statement and recall that the suspension takes place at
the end of a step; Hence, before the next label of the statement clock (or higher) is reached.
The control flow must move back from the current label to the label at which the step was
started. Consider the example code in Figure 5.7, where the weak versions of the suspension
statement are given. For this statement, the suspension can only take place after the first
step that entered the statement. This means in the example, just before either the label l5
is reached (this is only possible from label l4), or if the end of the substatement is reached
(this is only possible from label l5). However, if the suspension takes place in the last instant
starting from label l4, this is only allowed if the first step already entered the substatement
(hence the step started from l2 or l3), and the control flow must move back to either l2 or
l3. This decision cannot be taken locally without any further information, since when the
control flow is at label l4, it is no longer known where it came from. The transition rules in
Section 4.3.3 solved this problem by storing the old statement where the step started from.
Here, there are two options: (1) store the information by duplicating the control-flow, or
(2) store the information by another variable. The second option is illustrated here, and a

112 5 Compilation

l0: pause;

clock(C1) {

ls: weak

immediate suspend|

weak suspend {

clock(C2) {

l1: pause(C2);

y = true;

if(α)

l2: pause(C1);

if(β)

l3: pause;

x = true;

l4: pause(C2);

z = true;

l5: pause;

y = false;

}

} when(σ);

}

l6: pause;

l0

l1

l2l3

l4

l5

l6

α¬α ∧ β

¬
α
∧
¬
β

¬σ ∧ ¬(s2 ∨ s3)

¬σ

σ ∧ s3 σ ∧ s2

σ

l0

ls

l1

l2l3

l4

l5

l6

α¬α ∧ β

¬
α
∧
¬
β

¬σ ∧ ¬(s2 ∨ s3)

¬σ

σ ∧ s3 σ ∧ s2

σ

σ ∧ ss

(a) Code Example (b) Weak Suspension (c) Weak Immediate Suspension

Fig. 5.7. Example: Translation of Weak Suspension

new event variable is introduced for each label a step can start from. The variable is then
set, when the step starts. In the example, for l2 the event variable s2 of clock C1 (the
clock of the suspend statement) is introduced, and for l3 respectively. The events are set by
additional actions:

C1 ∧ l2 ⇒ s2 = true

C0 ∧ l3 ⇒ s3 = true

They are used in the guards of the additional control-flow actions to decide where the control
flow has to move. The additional variable is not needed for label l5, since there is just
one label where the control flow can move to. Furthermore, for the immediate variant of
the suspension statement, the additional label ls is introduced at the beginning, because
suspension can take place directly when the statement is entered. Therefore, with this label
ls an another event ss is also introduced that is set accordingly and used to take the control
flow back to the start of the statement. Note that in contrast to the strong counterparts of
these statements, the data-flow actions have to be left untouched.

For the weak abortion statement, consider the example in Figure 5.8. For the weak
suspension, it seems to be sufficient to just enable the labels from which the step started.
The weak abortion, has to abort the step at the end, but it has to ensure that really the end
of the step is reached. This is complicated for the parallel statement in combination with
the extension. Even if one thread reaches a pause statement of the level the abortion should
take place, the step can proceed in the other thread (threads synchronize on common pause

5.4 Compilation Algorithm 113

l0: pause;

clock(C1) {

weak abort {

clock(C2) {

l1: pause;

{

l2: pause(C2);

l3: pause;

} || {

l4: pause(C2);

l5: pause(C2);

l6: pause(C1);

}

l7: pause;

}

} when(σ);

}

l8: pause;

l1

l2

l3

l4

l5

l6

l0

l7

l8

¬σ

¬σ

¬σ

σ

σ

σ

fork

join

(a) Code Example (b) Weak Abortion

Fig. 5.8. Example: Translation of Weak Abortion

statements). Hence, the thread has to wait, until both threads are in the last instant, and
then the abortion can take place. The condition is similar to the one for thread termination,
and has to be determined to ensure the correct synchronization when abortion takes place. In
the example, when the first thread executes the instant between label l2 and l3, termination
cannot take place, since the second thread only moves to label l5. Hence, (weak) abortion
can only take place at label l5. However, the illustration shows the general case, where the
abortion has also to be synchronized by the join of the both threads.

In principle, an implementation of this method is possible, but due to the shown complexity
and the lack of practical relevance of the statements, it is not considered in the compile
algorithm below.

5.4 Compilation Algorithm

After having pointed out the basic idea of the intermediate format and how some statements
are translated to the format, the actual compile algorithm is presented in this section.
The compilation procedure for pure Quartz is basically separated into two functions, one
handles the surface and the other one the depth of a statement. This distinction is an
elegant way for solving some issues during compilation like abortion, suspension and also
schizophrenia [Schn09]. The algorithm for the extension is changed, but this general structure
is kept for some reasons: (1) the algorithm is very complex and therefore it is better to

114 5 Compilation

rely on a version which has been proven correct [ScBS06], (2) even if some issues can be
also solved in another way, the distinction makes it more easy, and (3) keeping the same
structure makes the differences more clear. However, the original algorithm computes some
control-flow predicates which define the interaction of statements, e. g. the term condition
identifies the instants in which a statement terminates and is used for the compilation of the
sequence of statements: the following statement is started when the previous one terminates.
Most of these predicates are computed for each statement, but they are only used at very
few places. Furthermore, e. g. insdS defines when the control flow is inside of the considered
statement and thereby the condition is a disjunction of all labels contained in the statement.
The condition is used for the compilation of the parallel statement, as it was explained above,
and it is also used for the compilation of the abortion statements in pure Quartz, because
a statement can be aborted when the control flow is inside of the statement. As explained
above, strong abortion for the extension takes place only at several labels and also only if the
according clock holds. Hence, the condition needed here is different and depends on the clock.
However, a short remark should be given that those different conditions are fully compatible

with the original one and they are equivalent if only one clock is used.
It is obviously more efficient to do the computation of the predicates in one recursion.

However, in order to not complicate the compile algorithm with different predicates and
parameters and their complex interaction, they are computed when they are needed. The
presentation and explanation focuses on translating the behavior of the statement as it
was explained above. However, three predicates and parameters are taken from the original
algorithm.

• strtS

The start condition is given as a parameter to the compile function for the surface and
identifies the instant when the execution is started. Its purpose can be illustrated very
well for the compilation of an assignment: the assignment is translated to a guarded
actions with the start condition as guard.

• inst

The condition inst identifies when a considered statement is instantaneous, hence it
is completely executed within one instant. This condition is computed in the compile
function for the surface, and it is mainly used to compile a sequence of statements, because
thereby a successive statement is started if the preceding one is instantaneous (and it is
started).

• term

The termination of a statement in an instant is expressed by the condition term. It
requires that the control flow is inside the statement and it terminates. It is also mainly
used to compile a sequence of statements, but it starts the successive statement, when
the preceding one terminates.

The original algorithm also provides the abortion and suspension conditions into the recursion
and use them at the specific points. The solution that is taken here follows the approach shown
above, the compilation of the substatement is done without considering the abort context, and
afterwards the obtained guarded actions are modified according to the abort statement. The
result is the same, but this approach illustrates the application of the discussion made before.
Early versions of the Quartz compiler handled the compilation in the same way [ScWe01].

5.4 Compilation Algorithm 115

The remaining section is structured as follows. First, some functions are defined which
are used later in the compilation of special statements. The functions are e. g. to compute
resp. to prepare the special variants of the original insd condition. Afterwards, the compilation
procedures for surface and depth are explained in detail. The compilation algorithm does not
handle the weak preemption statements for the reasons given above.

5.4.1 Definitions

In the way the expressions are composed by the original compile algorithm, each guarded
action depends on at least one label having a positive occurrence in its guard (it is assumed
that the initial instant is started with the special label st). As it was explained for the
intermediate format in Section 5.1.1, the label condition for the extension is additionally
extended with the clock signal of the pause statement the label belongs to. The pair of
label and clock identify the instants when execution proceeds from this point and they are
considered as control-flow states in the following. Hence, a pair (ℓ, C) where ℓ is a label and
C is a clock is called a state.

function StatesOfExpression(expr)

begin

switch expr

case [ℓ ∧ C]: # expression consists of clock and label

case [C ∧ ℓ]:

return {(ℓ, C)}

case [expr1 ∧ expr2]: # other conjunction

case [expr1 ∨ expr2]: # disjunction

S1 = StatesOfExpression(expr1)

S2 = StatesOfExpression(expr2)

return S1 ∪S2

case [_]: # every other expression

return {}

end

Fig. 5.9. Pseudo Code of Function StatesOfExpression

The function StatesOfExpression given in pseudo code in Figure 5.9 determines
exactly those pairs for a given expression. The function recursively decomposes the structure
of the expression to find conjunctions of label and clock. For correctness, this function requires
that the structure of the Boolean expression is kept as it is constructed. This is assumed for
the compile algorithm. Consider the following example:

StatesOfExpression(ℓ0∧C0∧α ∨ ℓ1∧C1∧¬ℓ2) −→ {(ℓ0,C0), (ℓ1,C1)}

The label ℓ2 is not contained in the result since it has no positive occurrence and there
is also no clock. Those sub-expressions can be constructed by the compilation of parallel

116 5 Compilation

function StrengthenStateExpr(expr, c, σ)

begin

switch expr

case [ℓ ∧ C]: # expression consists of clock and label

case [C ∧ ℓ]:

return (if C � c then (ℓ ∧ C) ∧ σ else (ℓ ∧ C))

case [expr1 ∧ expr2]: # other conjunction

expr′1 = StrengthenStateExpr(expr1, c, σ)

expr′2 = StrengthenStateExpr(expr2, c, σ)

return (expr1 ∧ expr2)

case [expr1 ∨ expr2]: # disjunction

expr′1 = StrengthenStateExpr(expr1, c, σ)

expr′2 = StrengthenStateExpr(expr2, c, σ)

return (expr1 ∨ expr2)

case [_]: # every other expression

return (expr)

end

function StrengthenGuards(A, c, σ)

begin

return {StrengthenStateExpr(γ, c, σ) ⇒ A | γ ⇒ A ∈ A}

end

Fig. 5.10. Pseudo Code of Functions StrengthenStateExpr and StrengthenGuards

statements. Otherwise, labels only occur together with a clock, because the expressions are
only constructed in this way by the compile algorithm.

Other functions which are used in the compile algorithm are given in Figure 5.10. The
function StrengthenStateExpr decomposes a given expression expr to the states and
strengthens some of them with the given condition σ. The states which are considered have
a clock equal or higher to the given clock c. The function’s purpose is to e. g. additionally
guard the actions which are possibly aborted by adding the abort condition to the states
(clock and label) where the abortion takes place. The function is only given in pseudo code
but it also requires that the structure of the expressions built by the other functions is kept.
It can then traverse the expression’s structure to find conjunctions consisting of a clock and
a label, because those are the labels the action can be executed from. Note again that at
least one of these pairs occur in each guard of each action. The expression σ is then added
(as conjunction) to each occurrence of those label-clock pairs having a clock greater or equal
to the given one. So, for example the following expressions are changed in the following way:

StrengthenStateExpr(ℓ0∧C0∧α ∨ ℓ1∧C1, C1, σ) −→ ℓ0 ∧ C0 ∧ α ∨ ℓ1 ∧ C1 ∧ σ

StrengthenStateExpr(ℓ0∧C0∧α ∨ ℓ1∧C1, C0, σ) −→ ℓ0 ∧ C0∧σ ∧ α ∨ ℓ1 ∧ C1∧σ

The results are shown under the assumption that the clock C1 is smaller than clock C0.
The exact use of this function is discussed later. The function StrengthenGuards also

5.4 Compilation Algorithm 117

shown in the figure applies the former function to the guards of a set of guarded actions. In
addition to the functions given in pseudo code, the following ones are much simpler and only
explained in the following:

• LabelsOf(S)

The function returns a set of labels contained in the statement S. The only statements
having labels are pause statements and the immediate versions of the suspension statement.
All other statements carrying labels are given as macros.

• StatesOf(S,C)

The function returns a set of states contained in the statement S, but with the restrictions
that the clock of the states is at least the given clock, hence:

∀(ℓ, c) ∈ StatesOf(S,C) . c�C

• StateCondOf(S,C)

The function determines the states in the same way as the former function, but builds a
condition out of them:

StateCondOf(S,C) =
∨

{ℓ ∧ C | (ℓ, C) ∈ StatesOf(S,C)}

Hence, it builds the disjunction of all states with a clock higher or equal to the given clock.
These are e. g. exactly the states where an abortion can take place, and the condition is
the extended version of the insd of pure Quartz.

With the help of these functions, the compile algorithm can be defined in the following. Note
that the results of the functions can be also computed directly in the recursion of the compile
algorithm, but to keep it simple, the functions are separated here.

5.4.2 Compile Functions

The actual algorithm follows the approach of the pure Quartz and computes the surface
and depth related to instants of each statement. The function CompileSurface is shown
in Figure 5.11, and it expects as inputs the statement’s clock c, the start condition strtS and
the statement S to compile. The start condition identifies the instant when the statement is
started and the statement clock is the lowest visible clock. The function returns the predicate
inst, a set of guarded actions for the surface and the depth, and a set of reset conditions for
local variables. The predicate inst expresses when the statement is completely executed in an
instant. The compilation of the different statements is explained in the following.

• The immediate and delayed assignments are executed when the statement is started.
Hence, the start condition is considered as the guard for the assignments. Since both
variants are instantaneously executed, the condition inst is true. The statement nothing
is handled in the same way, but obviously, no guarded action is added for it.

• When a pause statement is started, its label should hold in the next instant. Therefore,
the appropriate guarded action is added to the control flow. The predicate inst is obviously
false, since the instant ends at the statement. Note that the clock of the pause statement
is not of interest for reaching the statement, but it has an impact on leaving the label,
which is handled during the compilation of the depth.

118 5 Compilation

function CompileSurface(c, strtS, S)

begin

switch S

case [nothing]:

return (true, {}, {}, {})

case [x = τ]: # immediate actions

return (true, {strtS ⇒ x = τ}, {}, {})

case [next(x) = τ]: # delayed actions

return (true, {strtS ⇒ next (x) = τ}, {}, {})

case [ℓ: pause(C)]: # pause

return (false, {}, {strtS ⇒ next (ℓ) = true}, {})

case [if (γ) { S1 } else { S2 }]: # conditional

(inst1, Adata
1 , Actrl

1 , R1) := CompileSurface(c, strtS ∧ γ, S1)

(inst2, Adata
2 , Actrl

2 , R2) := CompileSurface(c, strtS ∧ ¬γ, S2)

inst := inst1 ∧ γ ∨ inst2 ∧ ¬γ ∨ inst1 ∧ inst2

return (inst, Adata
1 ∪Adata

2 , Actrl
1 ∪Actrl

2 , R1 ∪R2)

case [S1; S2]: # sequence

(inst1, Adata
1 , Actrl

1 , R1) := CompileSurface(c, strtS, S1)

(inst2, Adata
2 , Actrl

2 , R2) := CompileSurface(c, strtS ∧ inst1, S2)

return (inst1 ∧ inst2, Adata
1 ∪Adata

2 , Actrl
1 ∪Actrl

2 , R1 ∪R2)

case [S1 || S2]: # parallel threads

(inst1, Adata
1 , Actrl

1 , R1) := CompileSurface(c, strtS, S1)

(inst2, Adata
2 , Actrl

2 , R2) := CompileSurface(c, strtS, S2)

return (inst1 ∧ inst2, Adata
1 ∪Adata

2 , Actrl
1 ∪Actrl

2 , R1 ∪R2)

case [do { S ′
} while(γ)]:

return CompileSurface(c, strtS, S ′
)

case [abort { S ′
} when(γ)]:

return CompileSurface(c, strtS, S ′
)

case [suspend { S ′
} when(γ)]:

return CompileSurface(c, strtS, S ′
)

case [clock (C) { S ′
}]: # clock declaration

return CompileSurface(C, strtS, S ′
)

case [{α x; S ′
}]: # variable declaration

S = StatesOfExpression(strtS)

L = LabelsOf(S ′
)

if ∃(c′, ℓ) ∈ S. (ℓ ∈ L) ∨ ¬(c� c′) then Error()

(inst, Adata
, Actrl

, R) = CompileSurface(C, strtS, S ′
)

R′
:= R∪{(x, strtS)}

return (inst, Adata
, Actrl

, R′
)

end

Fig. 5.11. Pseudo Code of Function CompileSurface

5.4 Compilation Algorithm 119

• The if statement strengthens the start condition for the branches and combines the
guarded actions obtained from the compilation of both. The condition inst is also combined
in the same way as for pure Quartz.

• The sequence of statements is compiled as follows: when the whole sequence is started,
then the first statement is, hence, it has the same start condition. The second part of
the sequence is started in the same instant only if the first one is instantaneous (and the
whole sequence is started). The resulting guarded actions are combined, and the sequence
can only be instantaneous, when each part of the sequence is so.

• When the parallel statement is started, also both threads are started. Hence, they also get
the same start condition. The resulting guarded actions are combined, and the parallel
execution is only instantaneous, when both threads are so.

• The abortion statement influences the execution only when the control flow is inside and
not when the statement is started. Therefore, the result for the whole statement is the
result obtained from the substatement.

• Like for abortion, the suspension also does not influence the first instant (even not the
first step). Therefore, the result for the whole statement is the result obtained from the
substatement.

• A clock declaration only defines a new clock for a substatement, and therefore, the clock
for compiling the substatement is updated. It does not have any other impact on the
execution and therefore it simply returns the result obtained from the substatement.

• For entering the scope of a variable, it has to be ensured that the variable is reset when it
is needed. The start condition is added as reset condition for this variable. However, the
intermediate format has the restriction that the reset condition only holds in an instant
of the clock of the variable. Furthermore, to ensure that the scope of the same variable is
not entered in the same step, it ensures that the states occurring in the start condition
are not contained in the scope. If this is the case, the compilation can simply forward the
result from the substatement.

The function CompileDepth is shown in Figure 5.12. It expects as inputs the statement’s
clock c and the statement to compile S. The function returns the predicate term, a set of
guarded actions for surface and depth, and a set of reset conditions for local variables. The
predicate term expresses when the statement terminates in an instant also requiring that
the control flow is inside the statement, hence at least one label of the statement holds. The
compilation of the various statements is explained in the following.

• The immediate and delayed assignments are executed when the statement is started as it
is handled in the surface. Since they do not have any behavior in the depth, they have a
simple result. The statement nothing is handled in the same way.

• The pause statement of clock C is left when its label and its clock holds. Therefore, the
term condition is composed of both. There are no actions to execute.

• The conditional if statement simply combines the results obtained from both branches.
Note that starting the statement is handled by the surface. The statement terminates
when one of its branches terminate.

• The compilation of the depth of the sequence S1;S2 requires to use the compilation of
the surface. Thereby, the depth is composed of the depth of S1, the surface of S2, and the
depth of S2. The start condition for the surface of the second statement is the termination

120 5 Compilation

condition of the first one. The results are then simply combined. The whole statement
terminates when either the first one terminates and the second one is instantaneous, or
when just the second one terminates.

• For the compilation of the depth of the parallel statement, simply both threads have to
be considered. Like for the conditional if statement, the results can be simply combined,
since the depth presumes that the statement was already started. However, the termination
needs more effort, since the threads need to synchronize their termination. As explained
above, the termination condition is composed in the same way as for pure Quartz, hence,
either both threads terminate in the same instant, or one terminates and the other one
already had terminated.

• The issues for compiling the abort statement have been discussed above, the strong
abortion is possible at each label with a clock higher or equal to the statement clock. The
abortion is covered by the termination condition: in case the control flow is at a label with
a clock higher or equal to the statement clock, and the condition holds, the statement
terminates. Additionally, the execution inside the substatement must be stopped, and
therefore, the guards of the actions having the right label and clock combination are
strengthened with the negation of the abortion condition.

• The depth of the strong suspension behaves similar to the abortion statement: the original
behavior has to be prevented at labels of the statement’s clock or a higher clock. Therefore,
the guards are strengthened in the same way. However, the execution is not aborted, but
only stopped. Therefore, additional guarded actions are needed which keep the control
flow at the labels where it currently is, in case of suspension. Furthermore, the termination
condition needs to be adjusted, but only for the labels where also abortion could take
place. Hence, it is strengthened in the same way as the guards.

• Like for the compilation of the surface, the clock declaration statement simply updates
the statement clock for compiling the depth of the substatement.

• The declaration of local variables is mostly handled by the surface; there is nothing to
do for the depth. Hence, the result from the substatement is the result of the whole
statement.

Finally, the result of the compilation is then obtained by the function Compile shown in
Figure 5.13 by composing the sequence of surface and depth of the whole program. Thereby,
the surface is started when the whole program is started which is expressed by the condition
st ∧ C0. The result only consists of the guarded actions and reset conditions obtained from
both functions, and the additional computed predicates are only used during compilation.

5.5 Checking Constructive Abstractions

In Section 4.5, an interpreter based on the SOS rules was given to define the semantics of
programs. Thereby, the constructivity for each instant was, like for pure Quartz, defined by
the reaction rules, but the constructivity across several instants depends on the choice of the
clocks and on the execution of the default reaction. Two abstractions where given ensuring
that a correct execution can be scheduling independent. Furthermore, checking whether a
program is constructive or not is hard [ScBr08]. Therefore, a common solution is to use
abstractions that can be easily and fast checked to determine if a program is constructive. For

5.5 Checking Constructive Abstractions 121

function CompileDepth(c, S)

begin

switch S

case [nothing]:

case [x = τ]: # immediate actions

case [next(x) = τ]: # delayed actions

return (false, {}, {})

case [ℓ: pause(C)]: # pause

return (ℓ ∧ C, {}, {}) #{ℓ ∧ C ∧ suspS (C) ⇒ next (ℓ) = true})

case [if (γ) { S1 } else { S2 }]: # conditional

(term1, Adata
1 , Actrl

1) := CompileDepth(c, S1)

(term2, Adata
2 , Actrl

2) := CompileDepth(c, S2)

return (term1 ∨ term2, Adata
1 ∪Adata

2 , Actrl
1 ∪Actrl

2)

case [S1; S2]: # sequence

(term1, Adata
1 , Actrl

1 , R1) := CompileDepth(c, S1)

(inst2, Adata
2 , Actrl

2 , R2) := CompileSurface(c, term1, S2)

(term2, Adata
3 , Actrl

3 , R3) := CompileDepth(c, S2)

term := term1 ∧ inst2 ∨ term2

return (term, Adata
1 ∪Adata

2 ∪Adata
3 , Actrl

1 ∪Actrl
2 ∪Actrl

3 , R1 ∪R2 ∪R3)

case [S1 || S2]: # parallel threads

(term1, Adata
1 , Actrl

1 , R1) := CompileDepth(c, S1)

(term2, Adata
2 , Actrl

2 , R2) := CompileDepth(c, S2)

insd1 :=
∨

LabelsOf(S1)

insd2 :=
∨

LabelsOf(S2)

term := term1 ∧ term2 ∨ term1 ∧ ¬insd2 ∨ term2 ∧ ¬insd1
return (term, Adata

1 ∪Adata
2 , Actrl

1 ∪Actrl
2 , R1 ∪R2)

case [abort { S ′
} when(σ)]:

(term, Adata
, Actrl

, R) := CompileDepth(c, S ′
)

insdc :=
∨
{ℓ ∧ c | (ℓ, c) ∈StatesOf(S ′

, c)∧C � c}

Adata
:= StrGuards(Adata

, c, ¬σ)

Actrl
:= StrGuards(Actrl

, c, ¬σ)

term := StrengthenStateExpr(term, c, σ) ∨insdc ∧ σ

return (term, Adata
, Actrl

, R)

case [suspend { S ′
} when(σ)]:

(term, Adata
, Actrl

, R) := CompileDepth(c, S ′
)

Actrl
S := {ℓ ∧ C ∧ σ ⇒ next (ℓ) = true | (ℓ, C) ∈StatesOf(S ′

, c)∧C � c}

Adata
:= StrGuards(Adata

, c, ¬σ)

Actrl
:= StrGuards(Actrl

, c, ¬σ)

term′
:= StrengthenStateExpr(term, c, σ)

return (term′
, Adata

, Actrl ∪Actrl
S , R)

case [clock (C) { S ′
}]: return CompileDepth(C, S ′

)

case [{α x; S ′
}]: return CompileDepth(c, S ′

)

end

Fig. 5.12. Pseudo Code of Function CompileDepth

122 5 Compilation

function Compile(S)

begin

(inst, Adata
1 , Actrl

1 , R1) := CompileSurface(C0, st∧C0, S)

(term, Adata
2 , Actrl

2 , R2) := CompileDepth(C0, S)

return (Adata
1 ∪Adata

2 , Actrl
1 ∪Actrl

2 , R1 ∪R2)

end

Fig. 5.13. Pseudo Code of Function Compile

example, as already pointed out in Section 2.2.7, for the synthesis of Quartz to sequential
software, the guarded actions must be ordered in a sequence to be scheduled correctly. Also
for hardware synthesis, even if the hardware circuit generated for constructive programs will
stabilize, most backend tools for generation tools cannot deal with cycles. Therefore, checking
for acyclic dependencies is a common approach to ensure that a program is constructive.

However, the constructivity in an instant as it is defined by the reaction rules can be
handled in the same way as for pure Quartz. Here, it is focused on the dependencies between
instants of different or also of the same clock based on the abstractions defined with the
interpreter. Thereby, it must be ensured that a variable is not written after it was read.

A fast check can therefore be defined based on the guarded actions obtained from the
compiler. As explained above, the whole program can be represented by a control-flow graph.
At this graph it is needed to be checked that for each variable written in an instant of a
lower clock it is not read before that instant.

5.6 Summary

The compilation to an intermediate format abstracting from issues present in the source
language proved to be useful to simplify the synthesis tools: the effort for handling all aspects
of the source language has only to be done once. The same approach is kept for the extension,
but the original intermediate format could obviously not be kept, since it does not handle
multiple clocks. The extension of the intermediate format was motivated in this chapter,
before the translation of several statements to this format has been discussed. Finally, the
whole compilation algorithm was presented, which is quite similar to the algorithm for pure
Quartz, except for some special cases which were explained. Especially for a common
problem of synchronous languages, namely schizophrenia, a solution for the compilation was
proposed that handles simple cases very efficiently.

Chapter 6

Hardware Synthesis

The synthesis of the original intermediate format AIF to synchronous hardware circuits was
presented in Section 2.2.7. Each macro step of the original Quartz program was translated
to one clock cycle of the hardware clock. Communication of inputs and outputs between the
module and the environment happens in each clock cycle. Even though this is not the only
possible way to generate hardware, it is nevertheless an obvious representation relying on the
fact that a finite number of micro steps are executed in a macro step. This changes when the
extension is considered, since now an arbitrary number of substeps can be executed within
a step of the module’s clock. The following two options come to mind for translating the
extended intermediate format to synchronous hardware:

• The first option is to follow the original Quartz approach and translate each step of the
module clock to one hardware clock cycle. This translation would keep the same interface
as the original translation, and communication between the module and its environment
happens in each clock cycle. However, since a step consists of several substeps, those must
be all executed within this single cycle. A costly analysis is needed to unroll potential
loops and to chain explicitly all states reachable during the execution of one macro step.
Nevertheless, concurrent execution of independent clocks could be perfectly parallelized.

• The second option is to translate each instant of the system to one hardware clock cycle.
Then, the execution of a step of the module needs several hardware clock cycles and the
interface to the environment must be changed: the environment must know when a step
is finished to get the output values and provide new input values. Independent execution
of unrelated clocks can be represented by clock inputs triggering the execution of the
instants and following the restrictions given by the control flow of the program. The clock
inputs can be set by a scheduler to trigger the computation.

The first option needs an expensive analysis for unrolling the steps and determining all
possible reachable states within a macro step. The critical path would be increased and
the hardware-clock frequency will be reduced. This first option is mentioned to show that
there are different solutions, but the second choice is taken in this work, because it provides
a straightforward translation of instants to hardware clock cycles without needing further
analysis. However, the real execution time of a step of the module depends on the number
of substeps and will be dynamic, but the instants are much smaller and the frequency can
be increased. Additionally, to elaborate different possibly execution schemes, the hardware

124 6 Hardware Synthesis

circuit is constructed of two parts. The first one represents the functional part describing
the actual behavior of the program with the independence of unrelated clocks. The second
part represents the scheduler triggering the actual computation by activating the clocks for
execution of an instant. The constructivity of programs that was defined in Chapter 4 is
scheduling independent, hence, each scheduler fulfilling some basic requirements lead to a
correct execution of the system. An advantage of the separation is that if another notion of
constructivity would be considered, the scheduler needs to be changed, but the functional
part of the translation can be the same.

Note also that the presented translation is based on constructive programs, hence, a
behavior of the program that cannot be constructively determined cannot be computed by
the system obtained by this translation. Furthermore, also programs with write conflicts
(these are also not constructive), are not represented correctly, since the result of write
conflicts is undefined. Hence, the starting point for the code generation are programs that
are constructive and free of write conflicts.

The remaining chapter is structured as follows. First, the overall structure of the generated
hardware with separation into a functional part and a scheduler is described. Then, the
actual translation of the functional part is explained, and finally, the synthesis of one possible
scheduling independent scheduler is explained.

6.1 Overall Structure

As introduced above, the goal is to translate programs from the extended intermediate format
to synchronous hardware where in each hardware clock cycle one instant of the original
program is executed. Independent execution of unrelated clocks is modeled by an additional
scheduler which can take one possible clock choice to execute the next instant, however, since
the instants of different clocks are also unrelated, the scheduler can also select more than one
clock to execute the independent instants at once. The clear distinction allows to separate
the functional behavior from the chosen execution.

Functional

Part
Scheduler

Environment

state

clocks

hardware
clock

hardware
clock

outputs,
C0

inputs

Fig. 6.1. Overall Structure of Generated Hardware

The structure of the generated hardware is illustrated by Figure 6.1. Both, the functional
part and the scheduler, are driven by a dedicated hardware clock. Note that the clocks

6.2 Functional Part 125

defined in Quartz are used to define substeps in the description language, and that these
clocks are not equal to the hardware clock that is only used to trigger the execution of the
instants. The environment sets the input values for the functional part and reads the output
values from it, but the environment needs to be notified about the start of a new step to
provide new input values. Therefore, the signal C0 representing the module clock is provided
in addition to the other outputs to the environment. The scheduler triggers the computation
by selecting one or more (Quartz) clocks based on the given state of the system. Thereby,
the scheduler has to select the clocks according to the interpreter (defining the semantics):
virtually, the set of clocks from the transition rules has to be determined and some of the
smallest ones have to be chosen. The signals representing the state of the system can vary
depending on the complexity of the scheduler, therefore, it is not further specified here. The
scheduler presented below will e. g. only use the labels of the systems.

6.2 Functional Part

This section explains the translation of the functional part to hardware. It first recalls the
hardware representation introduced in Section 2.2.7 which is an equation system being
evaluated in each clock cycle. Afterwards, a general representation of control flow and
data flow by equation systems is given. In the case of data flow, this representation can
be optimized if certain conditions hold for the intermediate format. The conditions are
introduced and the optimizations are explained based on the most general representation.
Finally, the optimizations are summarized and their relation to the original hardware synthesis
are highlighted.

6.2.1 Representation of Hardware

Synchronous hardware circuits can be described by equation systems which, given a library for
all operators in Quartz, can be syntactically translated to hardware description languages
such as Verilog or VHDL. The equation system is represented by three different kinds of
equations. The first type represents wires which are directly connected to logic gates so that
the computed value is immediately available in the same clock cycle. Such an immediate
equation has the form

x = τ

for a variable x set to the current value of the expression τ . State elements such as registers

are represented by the remaining equations. Each register is defined by two equations, one
for the initial clock cycle and one for subsequent transitions:

init (x) = τ1

next (x) = τ2

The registers are updated by a clock transition of the hardware clock with the value of the
expression τ2 evaluated in the last clock cycle, and init (x) defines a value for the first clock
cycle. Note that the expression next (x) does not correspond to a delayed assignment in
extended Quartz, because the register is updated in the next clock cycle of the hardware
clock, and not with the beginning of a new step of a clock defined in Quartz.

126 6 Hardware Synthesis

6.2.2 Translation of Control Flow

Like for pure Quartz, the translation of the control flow to equation systems is done for each
label separately, but setting and resetting the label is different. A label ℓ is written by some
delayed guarded actions (note that the control flow does not contain immediate actions):

γ1 ⇒ next (ℓ) = true

γ2 ⇒ next (ℓ) = true

. . .

γn ⇒ next (ℓ) = true

All labels are set to false for the initial instant, except the special start label st separately
considered below. When a label is activated by a delayed assignment, this assignment does
not depend on the clock of the label but sets the label active for the next instant. The
behavior is different to delayed assignments to normal variables in extended Quartz, but it
can be easily translated to registers that are set for the next clock cycle. The label ℓ is only
deactivated if an instant of the clock of ℓ is executed (cf. await semantics). This leads to the
following representation of the label by a register:

init (ℓ) = false

next (ℓ) = γ1 ∨ γ2 ∨ . . . ∨ γn
︸ ︷︷ ︸

guards

∨ (ℓ ∧ ¬clock (ℓ))
︸ ︷︷ ︸

default

The first part of the expression to define the next value of the label is constructed by the
guards of the guarded actions, because the value will be set to true when at least one guard is
evaluated to true. The second part of the expression defines the default value taken when no
delayed guarded action sets a value to ensure that the label is kept active as long as its clock
does not hold: when an instant of the label’s clock is executed, the label will be reset for the
next instant, if it is not activated again by a delayed guarded action. There are no guarded
actions defined for the special start label st and therefore it is translated to a register as
follows:

init (st) = true

next (st) = st ∧ ¬clock (st)

Whereas clock (st) is the module’s clock C0 and the start label is set from the beginning and
it is reset after the first instant is executed.

6.2.3 Translation of Data Flow

The translation of the data flow is more sophisticated and the general case is presented in
this section. In contrast to control-flow label, variables can be written by immediate and

delayed assignments. Thereby, the delayed assignments assign a value for the next step of
the variable’s clock and not, like for labels, for the next executed instant. The value of
the delayed assignments must be stored until the following step starts. Furthermore, reset
conditions defining when a variable needs to be reset must be handled. In the general case,
three registers are needed for each variable: one carries the value of the current step, and
the other collect and store the value of a delayed assignment until the next step of the

6.2 Functional Part 127

variable’s clock begins. However, three registers for one variable in Quartz sounds like an
overhead, but the general case is described first, before some special cases are introduced
with optimizations where the number of registers can be reduced. Like for the control flow,
each variable can be translated separately. For the translation, assume a variable x that is
written by the following guarded actions:

γi
1 ⇒ x = τ i1

γi
2 ⇒ x = τ i2

. . .

γi
n ⇒ x = τ in

γd
1 ⇒ next (x) = τd1

γd
2 ⇒ next (x) = τd2

. . .

γd
m ⇒ next (x) = τdm

For the variable x, one wire also having the name x, and the three registers with the following
names are used:

• xnxt

The register stores the value of a delayed assignment executed during a step of the clock
of x (note that due to the absence write conflicts, there can be at most one delayed
assignment setting a value for the next step) and carries the value until the next step
starts.

• xnas

This Boolean register stores the information whether a delayed assignment was executed
in the last step or not. It is required to determine at the beginning of a new step if the
value of xnxt must be assigned or not.

• xprv

A step of the clock of x can consist of instants of a smaller clock and the value of x

must be kept for the instants. Therefore, the register xprv stores the value of x from the
previous instant.

clock (x) clock (x) clock (x)

γd
k1

⇒ next (x) = τ i
k1

xnxt, xnas

γd
k2

⇒ x = τ i
k2

x known x known

Fig. 6.2. Execution Trace for x

To explain the idea of the translation, consider the illustration of an execution trace for the
variable x in Figure 6.2. Each dot on the timeline represents an instant (a clock cycle of
the hardware clock). The instants are distinguished by their clocks, where the big dots are
instants of clock (x) (or higher) and the small ones are instants of a lower or unrelated clock.
The distinction is made in this way, because smaller instants are micro steps from the view
of x and greater ones are the instants a step of clock (x) starts (or ends). Remember, a step
of clock (x) starts with an instant of clock (x) and ends before the next instant of clock (x).

128 6 Hardware Synthesis

During this step, the variable x has logically one value which may not be known from the
beginning, but can only be used as soon as it was assigned. Hence, the variable can get its
value from an immediate assignment in an instant and will then be known for the remaining
step and the register xprv is used to store this value. A delayed assignment that takes places
during a step is assigned to xnxt (and xnas is set to true), and carried until the next step
starts (instant of clock (x)) where xnas is used to decide whether the value of xnxt is used or
not.

The semantics extended the values a variable can hold with the symbol ⊥ to show that the
value for the current step has not been determined yet. This value is not explicitly modeled
in the synthesis, but since the translation relies on constructive programs, it is ensured that
a variable is not written after it was read. Therefore, the default reaction can be executed
in the first instant of a step independent of an assignment would overwrite the value again.
Hence, the value is either changed by an assignment, or the default value is used. Finally,
the guarded actions for the variable x are translated to the following equations:

init (xnxt) = default (x)

next (xnxt) =

τd1 : γd
1

τd2 : γd
2

...
...

τdm : γd
m

trani (x) : clock (x)

xnxt : default

init (xnas) = false

next (xnas) =
γd
1 ∨ γd

2 ∨ . . . ∨ γd
m∨

(xnas ∧ ¬clock (x))

init (xprv) = default (x)

next (xprv) = x

x =

τ i1 : γi
1

τ i2 : γi
2

...
...

τ im : γi
n

default (x) : reset (x)

xnxt : clock (x) ∧ xnas

trans (x) : clock (x)

xprv : default

Register Definitions Wire Definition

(E1)

(a)

(b)

(c)

(d)

(e)

The register xprv is defined by Equation E1 to have the value of x from the previous clock
cycle and is initialized with the default value for x. The register xnxt and xnas stores value
and occurrence of delayed assignments during a step: if a delayed assignment is executed
in a step, xnxt gets its value and keeps it until the next step starts. The register xnas is a
Boolean flag and just stores whether a delayed assignment occurred or not. Therefore, it
is set to true when one of the guards hold and the value is kept until the next instant of
clock (x). The translation for this register is similar to the translation of labels.

As covered in the definition by the cases (a), the value of x is determined by an immediate
action when its guard holds. The next Case (b) which can be taken resets the variable x

to its default value when the reset condition holds, i. e. its scope is entered in the source
code. This happens before the delayed assignments are checked, because delayed assignments
executed in the previous step cannot refer to the variable in the new scope. However, delayed
assignments from the previous step are assigned to x when a new step is started and a delayed

6.2 Functional Part 129

assignment occurred as covered by Case (c). Case (d) takes care of the default reaction which
is executed at the beginning of a new step: events are reset to default (x) and memorized
variables keep the last value. In this way, it is ensured that x has the default value for the
whole step when no assignment will change it. Finally, the Case (e) just keeps the value from
the last instant which is only activated in instants of smaller or unrelated clocks (the small
dots in the picture). The expression trans (x) executes the default reaction depending on
the storage type of the variable x:

trans (x) :=

{
default (x) : x is event variable

xprv : x is memorized variable

Event variables are reset to their default value and memorized variables store the value from
the previous step. The case where clock (x) holds is used in the definition of xnxt, but was
not explained so far. Currently, the value of xnxt is only used when xnas holds, and this is
reset when clock (x) holds, hence, the value assigned in this case is never used. However, it is
defined as trani (x) with:

trani (x) :=

{
default (x) : x is event variable

x : x is memorized variable

The value of xnxt is initialized for a new step with the value of x in the first instant (for
memorized variables), or the default value of x (for event variables). This definition will allow
some simplifications in the following, but it does not make any difference in this general case.

6.2.4 Optimizations for Data-Flow

This section discusses simplifications of the generated equations based on special cases
of the intermediate format. According to the separate translation of each variable, these
optimizations can be also done individually. Optimizations for pure Quartz can e. g. be
done, when an event variable is not written by delayed assignments, then the register can
be omitted. The extension provides more capability for simplification based on the instants
in which variables are read and written. Some of them are discussed in the following by
defining a certain property of a variable x first, and simplifying the above general translation
afterwards. Finally, all cases are compared.

Events

The general representation of the data flow for a variable has been given above for both,
event variables and memorized variables. Even though this is a good starting point for both,
it is now simplified for event variables. Thereby, event variables are reset to their default
value when a new step of their clock is started, whereas memorized variables are set to their
value of the last step. The definition given above also sets the register storing the values of
delayed assignment to the default value for events. Hence, if there are no delayed assignments
executed in a step, the register xnxt still has the default value and for defining x, it has not
to be distinguished whether to set it to the default value or to xnxt.
For a more precise discussion, consider Figure 6.3 illustrating an execution trace from the
view of the event variable x. The considered step starts in the instant of clock (x) at the point

130 6 Hardware Synthesis

ti ti+1 tj−1 tj

clock (x) clock (x) clock (x)

xnxt = default (x)

xnas = false

only without
delayed assignments
being executed

Fig. 6.3. Execution Trace for x (Event)

of time ti and ends before the next instant of clock (x) at the point of time tj . The value of
x in the instant tk is referred to by xk in the following to distinguish the different values.
Assume that there is no delayed assignment fired in the considered step and γd

1 , γ
d
2 , . . . , γ

d
m

are evaluated to false in the instants ti, ti+1, . . . , tj−1, then the value of xnxt behaves as
follows:

default (x) = xnxti+1 = xnxti+2 = . . . = xnxtj .

Hence, it keeps constantly the default value of the event variable x in this step. However, the
same holds for xnas being constantly false for those instants, because the assumption is that
no delayed assignment is executed. The crucial point here is that xnxtj = default (x) and that
xnasj = false. Considering the original definition of Equation E1, the following cases can be
rewritten as

...
...

xnxt : clock (x) ∧ xnas

trans (x) : clock (x)
...

...

=⇒

...
...

xnxt : clock (x) ∧ xnas

trans (x) : clock (x) ∧ ¬xnas

...
...

making more clear that the second case is only reached when xnas is false (in an instant of
clock (x)). But in this case xnxt is equal to default (x) and both cases can be combined:

...
...

xnxt : clock (x) ∧ xnas

trans (x) : clock (x) ∧ ¬xnas

...
...

=⇒

...
...

xnxt : clock (x)
...

...

As a result, the register xnas is no longer used and can be completely omitted and the
following complete definition is obtained:

6.2 Functional Part 131

init (xnxt) = default (x)

next (xnxt) =

τd1 : γd
1

τd2 : γd
2

...
...

τdm : γd
m

trani (x) : clock (x)

xnxt : default

init (xprv) = default (x)

next (xprv) = x

x =

τ i1 : γi
1

τ i2 : γi
2

...
...

τ im : γi
n

default (x) : reset (x)

xnxt : clock (x)

xprv : default

Register Definitions Wire Definition

(E2)

Variable x only used in Instants of clock (x)

The reason for having three registers for one memorized variable x comes from the fact that
the value of x must be available in the smaller instants during a step of clock (x). However,
this is e. g. not required for variables defined on one of the smallest clocks (leafs of the clock
tree), since there are no smaller instants which could use (reading or writing) the variable.

ti ti+1 tj−1 tj

clock (x) clock (x) clock (x)

x constant

xprv constant

xnxt constant

xnas = false

only without
delayed assignments
being executed

Fig. 6.4. Execution Trace for x (Only Read in Instants clock (x))

Consider first the assumption that the variable x is only written in instances of clock of
x. Since this assumption is automatically fulfilled by delayed assignments setting the value
in the first instant of the next step of the clock of x, the real requirement is only given for
immediate assignments:

writei (x) =⇒ clock (x) . (P1)

Note that the property can be easily checked by the states occurring in all guarded actions
that immediately assign the variable x. To elaborate the effects of this property, consider
the illustration in Figure 6.4 showing an execution from the view of variable x with the two
points of time ti and tj representing instances of clock (x) (with i < j). The instances in
between are of a lower or unrelated clock such that the considered step of clock (x) consists
of the instances ti, . . . , tj−1. Due to the above property, γi

1, γ
i
2, . . . , γ

i
n and also the reset

132 6 Hardware Synthesis

condition reset (x) can only hold in ti or tj , but not in between. Hence, for the instances
ti+1, . . . , tj−1, the signal x gets the value of the register xprv assigned, the default case of
the above definition. Thereby, xprv has in each instant the value of x from the last instant:

xi = xprvi+1 = xi+1 = xprvi+2 = xi+2 = . . . = xj−1 = xprvj

That means that in the instant tj , the value of xprv is the value that has been assigned
to x in ti. Consider now the delayed assignments and assume the case that no delayed
assignment fired for the considered step, hence γd

1 , γ
d
2 , . . . , γ

d
m are evaluated to false in the

instants ti, ti+1, . . . , tj−1. In this case, the value of xnxt behaves as follows:

xi = xnxti+1 = xnxti+2 = . . . = xnxtj .

The value of x from the instant ti is assigned to xnxt for ti+1 and is not changed for the
remaining step. In the same way, xnas is set to false and it is not changed in the step. However,
this is exactly the behavior encoded by xnas: if no delayed assignment is executed, it must
be false. The crucial point here is that if no delayed assignment is executed in a step, the
value of xnxt and xprv are the same, because both hold the value of x from the last step:

xi = xnxtj = xprvj .

With this equivalence, the cases in the definition of the variable x can be joined in the same
way as it was done for event variables:

...
...

xnxt : clock (x) ∧ xnas

trans (x) : clock (x)
...

...

=⇒

...
...

xnxt : clock (x)
...

...

As in the case of the events, the register xnas can be omitted and the resulting definition is
equal to one given for events in E2 (with the general definition of trani (x)).

In addition to the above Property P1, consider also a second one where the variable x is
only read in instants of clock (x). Hence, it is not read in instants of a lower clock and of
course also not in instants of an unrelated clock:

readi (x) =⇒ clock (x) . (P2)

Hence, x is only used in instants in which clock (x) holds. Note that the property can be also
easily checked by the states occurring in the guarded actions and reset conditions that read
the variable x. Looking at the definition of Equation E2 above shows that if clock (x) holds,
the value of x is defined by the first cases, but never by the last one assigning xprv. Since
this value is not read, any value can be assigned in this case and the register xprv can be
completely omitted which results in the following equation:

6.2 Functional Part 133

init (xnxt) = default (x)

next (xnxt) =

τd1 : γd
1

τd2 : γd
2

...
...

τdm : γd
m

trani (x) : clock (x)

xnxt : default

x =

τ i1 : γi
1

τ i2 : γi
2

...
...

τ im : γi
n

default (x) : reset (x)

xnxt : default

Register Definitions Wire Definition

(E3)

The last case is omitted and the second to last case is made the default one. Finally, the
properties allow to reduce the complexity of the translation a lot. The first one allows to
remove the Boolean flag counting the delayed assignments for memorized variables. The
second property allows to also reduce the additional register used to store the value during
substeps.

Note again that these properties are not artificial. They hold e. g. for variables of the
lowest clocks, i. e. the leafs of the clock tree, and they also hold for variables which are not
used together with refined clocks, but even if they are, if the communication happens in the
right instants, the optimizations shown above can be applied. As an example reconsider the
variables a and b in the GCD2 example in Figure 3.1 which are both only read in the first
instant and then not used (read or written) in the substeps. Hence, the above optimizations
can be applied to them.

Variable x is not written by Delayed Assignments

If the variable is not set by delayed assignments (m = 0), next (xnas) is only assigned in
Equation E1 by itself and is initialized with false. Hence, xnas can be substituted by false:

init (xprv) = default (x)

next (xprv) = x
x =

τ i1 : γi
1

τ i2 : γi
2

...
...

τ im : γi
n

default (x) : reset (x)

trans (x) : clock (x)

xprv : default

Register Definitions Wire Definition

(E4)

Hence, if there are no delayed assignments, the two registers taking care of the delayed
assignments can be omitted, since simply xnas will never hold. More of interest is the case
when there are no delayed assignments for an event variable in addition to the above shown
Properties P1 and P2. In this case, the register occurring in Equation E4 can also be omitted,
since the value is not read in instances where clock (x) does not hold, and the following
equation is obtained:

134 6 Hardware Synthesis

x =

τ i1 : γi
1

τ i2 : γi
2

...
...

τ im : γi
n

default (x) : default

Wire Definition

(E5)

Hence, the event variable can be represented by a single wire whose value is computed in
each instant based on the guarded actions which possibly set a value, or it is reset to its
default value otherwise.

Summary

After having discussed some simplifications of the general hardware translation of the data
flow, the properties and optimizations are now summarized. Therefore, the following table
shows which equation can be used for a variable with the according property.

Event Memorized

Properties Equation # Register Equation # Register

With Delayed
Assignments

– (E2) 2 (E1) 2 + 1

(P1) (E2) 2 (E2) 2

(P1) and (P2) (E3) 1 (E3) 1

Without Delayed
Assignments

– (E4) 1 (E4) 1

(P1) and (P2) (E5) 0 (E4) 1

The table also shows the number of the registers needed to represent a variable with a certain
property in hardware. The most general case, Equation (E1), requires 3 registers where two
are of the same type as the variable itself and the third one is of Boolean type for xnas.
However, this third register is only needed for this equation. Of interest are the cases with
the properties (P1) and (P2), because these properties hold for pure Quartz, hence for
the single clock case, and the number of registers needed in this case is the same than for
the original hardware synthesis. Furthermore, the properties also hold for variables of the
lowest clocks (since there are no lower clocks which could read or write the variable), and for
variables that are not simply used in the communication with variables of lower clocks. The
overhead of the extension in terms of registers of the hardware translation is only present for
variables that are really used in instances of lower clocks. If the communication does only
take place in the right instances, there is no overhead (in terms of registers).

6.3 Scheduler

The scheduler triggers the execution of the actual system by setting the clock signals
accordingly to a valid execution of the program. The constructivity that is considered in this

6.4 Summary 135

thesis is scheduling independent, hence each clock can be set accordingly to the control-flow
locations. However, it is only allowed to set a clock, when a pause statement with the clock
has been reached in the instant before, and no smaller clock can be also set. A clock that
can be set according to the control-flow is called enabled and the condition for a clock C is
defined as follows:

enabled (C) :=
∨

ℓ∈L,clock(ℓ)=C

ℓ

A clock is only allowed to tick when a label with the clock is active, hence at least one of the
related pause statements was reached in the instant before. The relation to the definition
of the semantics is that each clock contained in the set C of the interpreter, is evaluated to
true by this definition. Additionally, one of the smallest clocks must be chosen from this set,
hence, the execution must synchronize at pause statements of a common clock. Therefore,
the sets of all lower and all higher clocks of C are defined by:

lower (C) := {c ∈ C | c≺C}

higher (C) := {c ∈ C | c≻C}

With these definitions, the equation for a clock can be defined as follows:

C = enabled (C) ∧
∧

c∈lower(C)

¬enabled (c)

︸ ︷︷ ︸

tick by its own

∨
∨

c∈higher(C)

c

︸ ︷︷ ︸

tick forced by higher clock

A clock is set, when it either can tick by its own (it is one of the least enabled clocks), or
when a higher clock ticks. This scheduler executes each instant as soon as possible (ASAP),
and instances of unrelated clocks are also triggered in parallel. This is just one possible
scheduler, but one that works for scheduling independent programs, hence, the scheduling
restrictions considered come only from the control flow, but not from the data flow. Other
schedulers could be thought of to target low power execution or resource sharing.

6.4 Summary

This chapter presented the translation of extended Quartz programs to synchronous hard-
ware circuits represented by equations for wires and registers. The overall structure of the
translation separates the functional part encoding the data flow and the control flow of
the program from the scheduler triggering the actual execution by setting the clock signals.
Thereby, the clock signals are logical signals obtained from the Quartz clocks and do not
have any relation to the actual hardware clock of the synchronous circuit. The functional part
was first developed as a general translation that can handle every variable in the intermediate
format, which was then simplified for special cases based on the variables. The simplification
is based on properties that hold e. g. for variables which are used like variables in pure
Quartz and the complexity (in terms of used registers) was reduced to the same as for a
hardware translation of pure Quartz. Hence, only variables used in complex interactions
of clock bounds introduce more effort. The scheduler that was presented in this chapter is

136 6 Hardware Synthesis

rather simple, since the constructivity is scheduling independent, the scheduler can simply
trigger the clocks as soon as possible. However, other execution schemes are imaginable, but
the one presented turns out to be a valid one.

Chapter 7

Evaluation

After having explained extended Quartz with refined clocks, this chapter evaluates the
achievements of the extension by addressing the applications and the relation to related work.
Some example implementations using refined clocks are explained and compared to their
pure Quartz counterparts. Afterwards, the related work already introduced in Section 2.1 is
reconsidered and is now compared to the extension.

7.1 Examples

There are different motivations addressed by the extension. The first one is that computations
that usually need more than one step can be hidden in a single step. The second one is that
communication can now be implemented in a more flexible way and modules or threads
only have to synchronize when data is exchanged. Furthermore, the extension also allows
to hide the computation from the communication, and later changes of the timing does not
change the behavior of the whole system. A JPEG decoder is introduced in the following to
illustrate this motivations in a practical application.

7.1.1 JPEG Example

JPEG [Wall91, RoSa08a, SaMo10] was developed by the Joint Photographic Experts Group
as a compression standard for digital image data and it is used in this work as a case study
to illustrate the usage of refined clocks in the design of a decoding module. An overview of
the compression method is given first, before the actual implementation is discussed. The
JFIF file format [JFIF] is usually used to store the encoded image data, but it is only focused
on the actual bit stream and the decoding here.

The JPEG standard defines several modes of operation for image encoding: sequential,
progressive, lossless and hierarchical. The first two, sequential and progressive, are the
practical relevant lossy compression methods based on the Discrete Cosine Transformation
(DCT) [AhNR74, LoLM89]. Both differ in the way the encoded data is aligned in the binary
data stream: for the sequential mode, the data belonging to the same image region is stored
together, whereas for the progressive mode the data belonging to a certain image quality is
stored together. Based on slow communication channels, it allows to decode a first (blurry)
image from the received data and to enhance the quality when more data arrives. The

138 7 Evaluation

remaining two modes, lossless and hierarchical, did not gain much acceptance in practical
applications. The lossless mode defines a different encoding allowing to reconstruct the exact

image data from the encoded image, and the hierarchical mode allows to successively increase
the resolution of the image, similar to the progressive mode. The lossy compression modes
encode the actual image data by either Huffman encoding [Huff52] or by an arithmetic
encoding, where also the second one is practically not relevant due to patents for this method.

Before the example implementations in pure Quartz and in extended Quartz for
decoding an image based on the sequential mode are presented in the following, an overview
of this encoding and decoding mode is given first. The decoding is easier to understand if
the encoding is known, and therefore it is introduced first. The actual implementations are
then explained without clock refinement, and then it is explained how the clocks can be used
in the modeling of this example. Thereby, the explanation is as detailed as it is needed to
understand the basic concepts of how clocks are used in this implementation, but not as
detailed as it would be needed to understand the real encoding of each single bit.

Encoding

The sequential mode of image encoding as defined in the JPEG standard is explained in
this section. The actual image data is usually given as an RGB image where each pixel is
represented by three values for its red, green and blue channel. Since encoding is based on
the YCbCr color space representing a pixel by three values for the luminance (brightness),
the red difference and the green difference, the image must be converted to this color space.
The three channels of YCbCr are then encoded separately.

Binary
Encoding

ZigZagQuantizationDCT

Quantization
Table(s)

Huffman
Table(s)

bit sequencevalue sequence8x8 matrix8x8 matrix
8x8 matrix

(MCU)

Fig. 7.1. JPEG Encoding Chain

Each channel of the image is divided into a list of 8x8-blocks called Minimum Coded
Units (MCUs) being encoded separately. An MCU does not necessarily represent a block of
8x8 pixels, because subsampling can introduce a scaling of the actual pixels to these blocks.
However, this case is not considered here, but it could be achieved by an additional clock at
the beginning of the presented encoding chain. There is also a virtual extension of the actual
image defined, if its boundaries do not exactly fit into the grid of 8x8-blocks. However, the
presented encoding starts with the sequence of MCUs which have to be extracted from the
actual image before in either way.

7.1 Examples 139

The encoding chain for the MCUs is shown in Figure 7.1. It starts, as explained, with
a sequence of 8x8 matrices representing MCUs. A matrix is transformed by the (two-
dimensional) DCT to the frequency domain resulting in another 8x8 matrix. The matrix
does no longer contain pixel values, but coefficients of frequencies that can be used to rebuilt
the pixels by using the Inverse Discrete Cosine Transformation (IDCT). The first value of
a matrix in the upper left corner is called the DC (direct current) value representing an
average of all pixels. The other 63 values are the AC (alternating current) values with the
real frequencies. The more the value is in the lower right, the higher the frequency for this
coefficient is. The two-dimensional DCT for a matrix M can be mathematically described as
two matrix multiplications C ×M × CT with a matrix C containing constants.

The second step of the encoding is the quantization where the coefficients obtained from
the DCT are scaled down by a certain factor. The result is another 8x8 matrix of the same
size, but with smaller values. At the first view, it seems that there is no information lost
during these first two steps, since both can be exactly inverted. But this is only the case
if they are performed on real numbers. So, dependent on the implementation, the DCT is
performed on integers or on floating point numbers, but right after the quantization the values
are converted to integers to be encoded in the following. So, scaling down loses information,
but having small values, or at least often the same values, leads to a good compression of
the data. Also, a lot of coefficients obtained from DCT are near to 0, thus scaling down sets
them to 0 which is a small change that is usually not visible in the resulting image.

Fig. 7.2. ZigZag Ordering

After having the 8x8 matrix scaled down, it is converted to a stream of values. The
sequence of the values in the matrix is given by the ZigZag module ordering the entries
as shown in Figure 7.2. The ordering is also useful for a good compression since it aligns
coefficients of similar frequencies next together which will produce sequences of 0s which are
encoded very efficiently.

In the last step, the sequence of 64 values is encoded into a bit sequence. The values
are grouped in the sequence accordingly to preceding 0, and the actual non-zero values
are length-dependently encoded. Such a group consists of three values ((l, s), b), where l is
the number of leading 0s and s is the number of bits needed to encode the actual value
represented by the bit sequence b. For example, consider the following sequence:

140 7 Evaluation

6,
︸︷︷︸

((3),110)

0, 0, 0, 0, 3,
︸ ︷︷ ︸

((4,2),11)

0,−5,
︸ ︷︷ ︸

((1,3),010)

. . . −→ ((3), 110), ((4, 2), 11), ((1, 3), 010), . . .

The DC value is handled differently, because it is the first value in the sequence and has no
leading 0s. The value 3 in the sequence has 4 leading zeros and the value itself is encoded
according to the JPEG standard to the bit sequence 11. For the encoding, the pair (l, s) is
encoded by the Huffman encoding and the bit sequence is used directly.

The quantization tables and the Huffman tables for encoding and decoding are contained
in the image metadata and stored in the JFIF file. Some tables are predefined in the JPEG

standard, but any other table can be used and they are usually given in the file. The
quantization table is responsible for the compression rate and also for the loss of information.

Decoding

Technically, the image decoding works the other way around, but the understanding is easier
when it is known how the bit sequence is produced. The decoding chain is illustrated in
Figure 7.3, but for the implementation the order of dequantization and DeZigZag module
was changed, since each decoded value can be scaled by its own before it is arranged in the
matrix.

Binary
Decoding

De-
Quantization

DeZigZag IDCT

Quantization
Table(s)

Huffman
Table(s)

bit sequence value sequence value sequence 8x8 matrix
8x8 matrix

(MCU)

Fig. 7.3. JPEG Decoding Chain

The binary decoder reads the binary image data by first decoding a pair containing the
number of leading 0s and the number of bits for the actual value with the given Huffman
table. Based on these values, the actual data is decoded from the stream and the sequence
of 0s followed by the actual value is produced. Afterwards, the next pair is decoded by the
Huffman decoder. The DeZigZag module reorders the value sequence to an 8x8 matrix where
each value has already been scaled-up by the dequantization module. Afterwards, the IDCT
converts the coefficients back to the MCU. The IDCT is defined for a matrix M by the
multiplication CT ×M ×C with the same matrix C used for the DCT. Finally, the resulting
MCU is obtained.

7.1 Examples 141

Implementation in Pure Quartz

This section explains the implementation of the JPEG decoder in Quartz covering the
above introduced decoding chain. It decodes the actual binary image data into MCUs and
requires the Huffman and dequantization tables as parameters. The tables can be extracted
from a JFIF file, or they can be fixed for a certain application, e. g. for decoding an image
stream from a camera which uses the same tables for encoding every time.

Recall the fact that a strictly synchronous system as it is described by a Quartz program
gets one value per input and produces one value per output in each step and that there is no
notion of presence or absence. Hence, data-flow applications, with different input and output
rates cannot be directly described. As an example, consider the binary decoding which is
the first module in the chain. It decodes one byte from the input bit-stream containing the
number of leading zeros and a number of bits for decoding the actual value. Depending on
those values, from 1 to 16 values (leading zeros + actual value) are produced and given to
the next stage. Since the Huffman encoding is of variable length, the binary decoding module
has no input/output relation in the form 1 : n or m : 1, but it has the relation m : n. The
other modules are simpler, the dequantization reads one value and produces one, and the
DeZigZag reads 64 values in sequence and produces one 8x8 matrix. Finally, the IDCT reads
one matrix and produces one.

Since Quartz does currently not have any constructs to model the data-flow-style
communication between the modules,the communication is made explicit. Therefore, the
availability of new data for the successive module is notified by additional ready signals. In
the following, the implementation of each module is explained.

Binary Decoder

Technically, the binary decoder consists of two modules, the Huffman decoder and the value
decoder. The first one decodes one byte from the binary input stream based on the given
Huffman table. The byte is then interpreted as a pair of values by the value decoder. Based
on the first entry a (possible empty) sequence of leading zeros is produced which is followed
by the (real) value being read from the input stream based on the second entry of the pair.
The composition of the binary decoder and its data flow is illustrated in Figure 7.4 where
also example values are shown. Assume that the first bits 0, 1, 0 from the input are decoded
by the Huffman decoder to the pair (3, 2) represented in one byte. The actual result of the
decoding here depends on the given Huffman table. Based on the first entry of the pair, the
value decoder produces 3 leading 0s for the output. Afterwards, it reads 2 bits from the
input stream based on the second entry of the pair being then decoded to the value −2. The
decoding is defined in the JPEG standard and does not depend on any other information.
For the first value of each block, the DC value, no leading zeros are processed.

Both modules, the Huffman decoder and the value decoder, need to read bitwise from
the input stream, since especially for the Huffman decoder the length of the encoded data
depends on the data itself. In the implementation, a Quartz module readBit provides
access to the next bit of the stream and handles the communication. Its interface is given
by the code in Figure 7.5. The module readBit reads bytewise from the input stream and
provides the request for the next byte by the signal byte_request. The byte itself is cached
until all bits have been read. However, reading a bit requires one step since the internal state

142 7 Evaluation

Binary Decoding

Huffman
Decoder

Value
Decoder

. . . ,

value
︷︸︸︷

1, 0,

pair
︷ ︸︸ ︷

0, 1, 0, . . .

0, 1, 0 (3, 2)

. . . , 0, 0, 0,−2, . . .

1, 0

Fig. 7.4. Binary Decoding

of the module must be updated and potentially a new byte must be requested. The module
binDecode has the interface that is shown by the code in Figure 7.6. Hence, the tables
are passed through to the Huffman decoder and the interface needed for readBit is also.
When a value was decoded, it is provided through the variable value and value_ready

indicates that a new value is available.

module readBit (

// input interface

event ! byte_request,

bv{8} ? byte,

// cache

nat{8} bit_index,

// provide data bit

bool ! bit

) {

. . .

}

Fig. 7.5. Module readBit

Dequantization and DeZigZag

The next two stages are quite similar and implemented by the Quartz modules deQuant
and deZigZag. Both wait for the occurrence of an input value and when it arrives it is
processed. The deQuant module can directly provide the scaled output value, whereas the
module deZigZag waits for 64 values until the whole block is provided. The structure is
illustrated by the code stub in Figure 7.7 for the module deZigZag.

Inverse Discrete Cosine Transformation (IDCT)

The last module in the considered decoding chain is the module idct2d transforming a given
matrix. A simple implementation for the IDCT algorithm is by two matrix multiplications,
but due to the structure of the matrix a lot of optimizations have been developed in the
past [FeWi92, DiWa04]. The version used here is based on a 1-dimensional IDCT similar to

7.1 Examples 143

module binDecode (

// the huffman tables for dc and ac values

([16]nat{256} * [256]bv{8}) ? huffman_table_dc,

([16]nat{256} * [256]bv{8}) ? huffman_table_ac,

// interface to read binary data from

event ! byte_request,

bv{8} ? byte, // current byte

nat{8} bit_index,

// output the decoded value

int{32768} ! value,

event value_ready

) {

. . .

}

Fig. 7.6. Module binDecode

module deZigZag (

// input interface

int{32768} ? in_value,

event ? in_value_ready,

// output interface

[8][8]int{32768} ! out_block,

event

! out_block_ready

) {

. . .

loop {

await(in_value_ready);

. . .

if(index == 63) {

emit next(out_block_ready);

. . .

}

}

}

Fig. 7.7. Module deZigZag

144 7 Evaluation

the one published in [LoLM89] and requiring 11 multiplications that is applied to the rows
and the columns of the matrix. Hence, (8 + 8) ∗ 11 = 176 multiplications are needed. The
basic structure of the module is illustrated by the code in Figure 7.8. The module idct2d
applies the 1-dimensional IDCT to each row and each column, where one step is needed per
row and per column.

module idct2d([8][8]int{S} ?mi, [8][8]int{256} mo)

{

. . .

// transform rows

while (row < 8) {

next(row) = row + 1;

idct1dRow(mi, mo_tmp, sat{8}(row));

}

// transform columns

while (col < 8) {

next(col) = col + 1;

idct1dCol(mo_tmp, mo, sat{8}(col));

}

}

Fig. 7.8. Module idct2d

Everything Together

Finally, the modules are put together in parallel to decode a sequence of MCUs for the whole
JPEG image. The code for this is shown in Figure 7.9.

binDecode(. . .);

||

deQuant(. . .);

||

deZigZag(. . .);

||

loop {

await(block_ready);

idct2d(. . .);

emit(mcu_ready);

}

Fig. 7.9. Code of JPEG Decoding Chain

7.1 Examples 145

Implementation with Refined Clocks

After having explained a possible implementation in pure Quartz of the JPEG decoding
chain, this section introduces the structure of an implementation in extended Quartz.
Recall that, the extension was introduced to (1) hide internal computations and (2) avoid
unnecessary synchronization, but it still keeps the synchronous model at each abstraction
level. With these premises, it is explained in the following how this concepts can be used in
the modeling of the JPEG decoding chain. Thereby, clocks are used to synchronize modules
when data is exchanged, but also to do computation steps independently. Please note that the
design flow of first writing a pure Quartz program and then translating it to the extension
is not the usual development flow that should be taken. It is only used here for comparison,
while the usual process should rather use the features of the extension from the beginning.

The module deZigZag collects 64 values which are then organized in a matrix to the
idct2d module. Hence, synchronization between this module is only needed when a whole
block is completed. The other modules only communicate single values, hence, they only
need to synchronize when a value is available. Finally, the modules binaryDecoder and
idct2d do computations which are not finished in one step, hence, additional clocks are
used to hide their computations.

Cbit

Cvalue

Cvec

C0 = Cblock

Binary
Decoding

De-
Quantization

DeZigZag IDCT

Quantization
Table(s)

Huffman
Table(s)

Fig. 7.10. Clock Boundaries for JPEG Decoder

The structure of introduced clocks and the modules are shown in Figure 7.10. The clock
Cblock is used for the communication of 8x8 blocks and synchronizes the modules whenever
a block is exchanged. It is also the outermost clock for this example, and therefore it is set
to the module clock C0. The module idct2d computes the IDCT when a new block arrived
and it does not need to synchronize until it finished its computation. The clock Cvec is used
inside the module for the independent computation and it processes a vector (row or column)
in each step of the clock. Dependent on the used algorithm for IDCT or another granularity
of the description, other partitions are possible. The communication of single values between
the modules binDecode, deQuant, and deZigZag is synchronized by the clock Cvalue,
hence in each step of the clock, a value is communicated. Finally, the clock Cbit in the
module binDecode is used to read bitwise from the binary input data and to decode the
data values.

However, the extension introduces several abstraction layers into the synchronous model,
but keeps this model at each level. Therefore, communication with the environment is only

146 7 Evaluation

possible with variables of the module clock, which means that all data that is processed
during substeps must be available for the whole step. The module readBit that is used
inside of the binary reader cannot request a new byte from the environment each time its
needs one, since the hierarchical structure of the clocks does not allow this communication.
Instead, the whole data that is possibly needed to decode a whole block must be provided to
the module. Consider first an upper bound of encoded data for a block (of images with 8 bit
precision):

64 ∗ 16 bit
︸ ︷︷ ︸

Huffman encoded

+ 1 ∗ 13 bit
︸ ︷︷ ︸

DC data value

+ 63 ∗ 12 bit
︸ ︷︷ ︸

AC data values

= 1793 bit ≈ 224 byte < 256 byte

A block consists of 64 values which are in the worst case not 0, and each value is Huffman
encoded with an improper Huffman table by at most 16 bits. Based on the Huffman decoded
value for each one of the AC values, 12 additional bits and for the DC value 13 additional
bits are read. Hence, an upper bound is given by 256 bytes which can be considered as a
reasonable cache size. Note that the final MCU only contains data of 64 bytes, hence, this
worst case encoding will probably not occur in any real applications. The interface of the
module readBit is changed as it is shown in Figure 7.11 and it requests new bytes instead
of just a single one. The received bytes are cached and the index of the byte and of the bit
which should be read next is stored. Since the module is called at two places in the binary
reader, this state must be handled by the binary reader itself and is provided for each call.
Finally, the whole computation can be put together by the code given in Figure 7.12. The
local clocks Cbit and Cvec are defined in the modules and are not shown in this complete
structure, whereas the clock Cvalue is defined here for the communication of single values.
The clock C0 used for synchronizing the communication of blocks is the module clock and is
defined implicitly. Finally, the ready signals that notified the availability of new data are
no longer needed, since the clocks are utilized for this synchronization. After a translation
to hardware (or software), these clocks behave very similar to the ready signals, but the
difference is that the communication is now made explicit and when no communication
happens, the modules can run independently.

Comparison

The JPEG example also shows a disadvantage of the extension so far: the data that is
required for processing in substeps must be completely available at the beginning. Hence,
for decoding a whole block in one step at a certain clock level, the decoded data must
be completely given, and for computing the IDCT of a matrix, the whole matrix must be
available. When the abstraction level is raised to e. g. decode the whole image within a step,
the whole decoded image data must be given at once. Furthermore, the example also shows
that new clocks are rarely used for the implementation.

Two more remarks should be given on the actual implementation. First, for the pure
Quartz version, an additional array between the module DeZigZag and IDCT is needed to
buffer a decoded block. When a block is produced, the IDCT starts, but the decoding also
proceeds with the next block and overwrites the values in the array. To ensure that the values
are not changed until the IDCT module reads them, it must be copied. This error did not
occur in the first implementation, but after changing the IDCT to use more steps to shorten

7.1 Examples 147

module readBit<Cbit> (

// input interface

event ! byte_request,

[256]bv{8} ? bytes,

// cache

[256]bv{8} cache,

nat{256} byte_index,

nat{8} bit_index,

// read bit

bool ! bit

) {

. . .

}

Fig. 7.11. Module readBit with Refined Clocks

clock(Cvalue) {

. . .

binDecode{Cvalue}(. . ., byte_request, bytes, value);

||

deQuant{Cvalue}(dq_table, value, qvalue);

||

deZigZag{Cvalue}(qvalue, out_block);

}

||

loop {

pause;

idct2d(block, mcu);

}

Fig. 7.12. Code of JPEG Decoding Chain with Refined Clocks

the critical path in the hardware implementation as it will be explained in the next section,
the results became wrong because the DeZigZag module overwrites the values to fast. The
additional array ensures this, but the interesting thing is that this array is automatically
created by the synthesis for the extended Quartz version because delayed assignments are
here buffered until the next step of the clock starts, which is the next synchronization when
the next block is exchanged in the example. A second remark refers to the constructivity
definitions given in Section 4.5, where the restriction is that a variable is only immediately
written in an instant of its clock. The JPEG example naturally follows this approach, even
without spending too much effort to achieve this. Furthermore, also the restrictions defined
for the loops that can be compiled without duplicating the loop body (Section 5.3.3) are
no problem: the example also obeys this restrictions. Hence, the restrictions and definitions
turn out to be usable for programming, since for real-world programs a very structural way

148 7 Evaluation

of description is usually used. The rare use of new clock definitions (4, respectively 6 as they
are used for the experiments in the next section) emphasizes this.

7.1.2 Experimental Results

The experimental results obtained from some programs including the JPEG examples are
presented in the table in Figure 7.13. First of all, note that the extension was introduced
to provide more flexibility in the source language for writing programs. Furthermore, pure
Quartz programs and extended Quartz programs are compared based on the translation
to hardware which relies on the equation system shown in Chapter 6. Since such an equation
system represents a synchronous hardware circuit and as such it can be also directly translated
to pure Quartz, the obtained hardware could be also written in Quartz. However, indepen-
dence and synchronization must be explicitly programmed and cannot be left for the compiler
like for the extension. Hence, the obtained hardware from an extended Quartz program is
not expected to be faster or smaller, but it is more flexible in the source language and also
in execution (e. g. by using different schedulers). Furthermore, the aim of the examples is to
show the difference between pure Quartz and the extension, and not to provide an optimal
implementation of an algorithm.

Quartz Equations Circuit

Example # Clocks # LoC # Reg. # Wire # Reg. # LUTs Delay

JPEG
single 1

∼ 1K
307 + 31 180 9, 132 9, 049 20.2ns

ext. 6 374 + 29 191 11, 208 11, 812 26.0ns

IDCT2

single (1) 1

∼ 350

130 + 4 184 3, 995 4, 047 25.7ns

single (2) 1 148 + 18 144 4, 973 6, 780 11.4ns

ext. (1) 2 130 + 4 188 4, 018 4, 052 25.9ns

ext. (2) 4 150 + 18 152 4, 606 6, 233 12.9ns

GCD
single 1 15 3 + 2 3 33 104 3.9ns

ext. 2 17 3 + 2 7 33 78 3.7ns

TRACE
single 1

∼ 100
10 + 11 26 57 121 5.8ns

ext. 3 17 + 14 32 76 180 6.5ns

Fig. 7.13. Experimental Results

The table compares implementations in pure Quartz with implementations in extended
Quartz. Thereby, basically three areas are considered. The first one shows the statistics
of the source code in (pure and extended) Quartz to get an impression of the size of the
example. The second one shows the statistics of the equations based on the translation
presented in Chapter 6. The number of registers consists of the number of arbitrary scalar

(an array consists of multiple scalar registers) registers and the number of Boolean registers
(the second number). Furthermore, the number of wire definitions is shown. Based on the

7.1 Examples 149

equation systems, Verilog code is generated which is then synthesized to an FPGA leading
to the statistics for the final circuit: the number of the required 1-bit registers, the number
of the Lookup-Tables (LUT), and the minimum clock delay are shown. For the translation
to Verilog, some adaption is needed. First, Verilog does not support multi-dimensional
arrays and therefore the 2-dimensional arrays are first translated to 1-dimensional arrays.
Second, the translation of the type system causes some overhead due to the adjustment and
representation of the operators and types. However, since the extension is compared with
pure Quartz, the same overhead is produced here for both.

The synthesis tool was used to optimize the speed of the resulting circuit. The program
GCD is the example that was used to introduce the extension in Section 3.2. The extended
versions needs two wires more than the pure Quartz version dues to the clock definitions.
However, the resulting hardware does not produce more overhead. Instead, the resulting
clock delays are pretty close and the examples require less than 1% of the FPGA. Hence,
this result can be justified by the unpredictability of the synthesis algorithm.

The TRACE example is of interest, because it tests variables which are read and written at
arbitrary clocks levels. Hence, it tests the translation of all cases explained in Section 6.2. The
single-clock version of the module is basically not really useful, because it cannot represent
the behavior, but it is provided here to show the overhead that comes from the usage of
variables at different clock levels. Besides the data variables, the example contains 11 labels
resulting in Boolean registers. Without taking the labels into account, the overhead is around
100% for the equations. However, the example is used as a test case and uses all arbitrary
accesses of variables. The overhead in terms of the circuit is not as big, but optimizations
due to the actual used bits can reduce the number of registers here. The clock delay leads to
the expected result that due to the increased overhead also more time for the computation is
required.

The IDCT2 module is compared based on two versions. The first version computes the
1-dimensional IDCT in one step for a row or column of the matrix. This leads to a huge
critical path containing several multiplications and requiring a long clock delay. The second
version adds more substeps of new defined clocks, one for the rows and one for the columns,
for computing the result. In this way, the multiplications are separated leading to a shorter
critical path. The same change is also done for the pure Quartz version, but there are real
macro steps added to separate the multiplications: the behavior of the module is changed.
A multiplication requires with the used bitwidth around 3ns to 4ns, which is still far away
from the clock delay, but as already said, some overhead is caused by the translation of
the type system. The examples show that the pure Quartz version is slightly faster than
the extended version, and that they are close in terms of required resources. However, the
synthesis algorithm produces some more overhead for the second version for pure Quartz.

The JPEG example requires a total amount of 6 clocks in the extended Quartz version
because the second version of the IDCT2 is used. The difference in the registers and the wires
for the equations comes basically from the module readBit which needs to buffer bytes in
contrast to the pure Quartz implementation where a new byte can be requested every time.
The critical path of both implementations is the same data path, but for the extension it is
more complex due to the more control signals (e. g. clock wires). The example shows that an
overhead of around 20% to 30% is a realistic assumption for the resulting hardware.

150 7 Evaluation

Finally, the examples show that there is some overhead introduced by the extension in
terms of the hardware translation. The additional control wires for clocks and labels seem
to not significantly influence the hardware size, but some more logic is needed. When the
overhead is explicitly provoked like in the TRACE example, it is there, but in the other
examples, it seems that it is amortized by the other logic. However, the effects could be
different, if the type system would be translated in a more efficient way.

7.2 Comparison with Related Work

The clock refinement extension to Quartz was introduced to provide more flexibility (espe-
cially in timing) for writing programs in an imperative synchronous language. Additionally,
the extension was designed to keep the synchronous abstraction at each layer: each step of a
clock behaves like a macro step of a module on this level. The hierarchy of clocks does only
allow structural refinement and synchronization. On the one hand, this extension is the first
one of this kind to synchronous languages, but on the other hand, there are other concepts
and models of parallel compilation that behave similarly. These are discussed in this section
with respect to the extension.

7.2.1 Esterel

The first language that is compared to the extension is Esterel (Section 2.1.1) because it is
also an imperative synchronous language, and it has a feature which Quartz does not have.
The variables in Esterel can be assigned multiple times in a macro step, and reading them
results in the last written value. To guarantee determinism, it must be ensured that read
and write accesses to each variable are totally ordered. This is ensured in Esterel [Berr00]
by forbidding reading and writing of variables in different threads: if one thread writes a
variable, this variable is only allowed to be used in this thread. However, a variable can be
set before, and it can be used in read-only mode in parallel threads. In this way, read and
write operations are limited to a sequential execution which also orders the accesses (note
that multiple read accesses as they can occur in parallel threads do not have to be ordered).

There are similarities between Esterel variables and variables of refined clocks in
Quartz: both can have multiple values during a macro step, respectively in a step of the
higher clock. However, since loops with an instantaneous loop body are (for good reasons)
forbidden in Esterel (and also in Quartz), there can be only a finite number of values
of a variable in Esterel, and the number is determined by an upper bound based on the
assignments occurring in the source code. To be fair, there is also a well-defined upper bound
for values of a variable in the extension, since it must be ensured that each macro step
of the module clock terminates (to ensure reactivity), and since data types of infinite size
are not considered for designing real systems. However, the Esterel variables provide one
abstraction level, but due to the clock declarations, the extension can provide arbitrarily
many of them. Thereby, the variables can be also used in parallel threads where the pause

statements related to lower clocks ensure the total order of read and write accesses.

7.2 Comparison with Related Work 151

7.2.2 Multiclock Esterel

The multiclock extension to Esterel (Section 2.1.1) has been introduced to model Esterel

processes that do not run synchronously, i. e. they do not synchronize each macro step, but
each one is triggered by its own clock. The interesting part of this extension is that even
if processes run on different clocks, they can be nested by module calls. Hence, a module
can call another one running on a different clock, and communication is established by well-
defined communication devices basically transferring the values across the clock boundaries.
A structural hardware translation of Esterel [BeHH92, Berr92] where each statement is
separately translated and connected by control-flow signals similar to the predicates used in
the Quartz compiler (Section 2.2.6). These signals also start submodules and submodules
tell when they are terminated. In this way, the multiclock extension can be seen as a separate
translation of the individual modules, where also the control signals are transmitted by the
communication devices across clock boundaries. This results in individual modules running
on their own clocks like it was illustrated in Section 2.1.1. The clocks triggering the module
execution are thereby external signals which can be periodic hardware clocks.

Hence, the modules can run at their own speed which can be either determined by clocks
triggering the executions for example in hardware, or by just running as fast as possible when
they are for example translated to software. In fact, the modules can wait until a value that is
written by another module changes, but there is no means to implement any synchronization
by dedicated constructs. In contrast, the clocks of the presented clock-refinement extension
are not coming from the outside of the system to trigger the computation at arbitrary speed.
They are used to refine already existing computation steps to determine synchronization
points and when values of variables change. Thereby, they keep the synchronous model at
each abstraction level and also called modules behave like synchronous models according to
their own clock.

7.2.3 Signal

The polychronous language Signal (Section 2.1.1) allows to specify the behavior of systems
in a data-flow manner. Since the language is used for specifying the behavior, the compiler
has to translate the system to (operational) executable code.

An interesting feature of the language Signal is oversampling which allows to run one
computation faster than the other one. For this purpose consider the GCD example for
Signal, which is given in Figure 7.14, and which is very similar to the Counter that has
been shown in Section 2.1.1. In the first instant, the process gets the values for a and b, and
the operator init transfers them to x and y for the next instant of their clock. The signals x
and y are defined so that they compute the GCD by the usual Euclidean scheme: due to the
init operator, the next value of x is based on the condition x>=y either defined by x-y, or
the value of x is kept. Finally, when the GCD is computed, i. e. either x or y is less or equal
to 0, then the computed value is written to the signal gcd. The additional clock constraint
ensures that input values for a and b are only accepted when the computation is finished
(or the whole process starts). An outer process using this computation can only synchronize
with the GCD module when inputs are given, and when the output is computed. Thereby,
the outer module does generally not know how much instants of the clock of x and y are
needed for computing the GCD, but the synchronization ensures that it will not miss the

152 7 Evaluation

process GCD =

(? integer a, b;

! integer gcd;)

(| x := (a default ((x-y) when (x>=y))

default x) $ init 0

| y := (b default ((y-x) when (x<y))

default y) $ init 0

| gcd := y when (x<=0) default

x when (y<=0)

| a ^= b ^= (when (x<=0))^+(when (y<=0))

|)

where

integer x, y;

end;

1 2 3 4 5 6 7

a 7 4

b 3 2

x 0 7 4 1 1 1 0

y 0 3 3 3 2 1 1

gcd 0 1

(a) Code (b) Trace

Fig. 7.14. Signal Example: GCD

result. The trace shows a sample execution of the process, where the values 7 and 3 are given
as inputs, and the computation is processed while the values of a and b are absent. When
the computation is finished, the output is provided and new inputs can be given.

The example looks very similar to the introductory example used to explain the clock
refinement extension in Section 3.2. After the input values are provided, the computation
can run independently and then provides the result. Thereby, the model specifies when the
result is given. For the Signal example, this is the next instant when communication with
the process takes place. For the extension, the GCD computation is finished in one step
independent of the actual number of substeps it takes. This example shows also the difference
here, where the extension can provide the result in the same step, Signal provides the
result in the next synchronized instant. In Section 4.5, a special abstraction for checking the
constructivity of programs with refined clocks were introduced, which restricts the program
that variables of clock c can be only written by immediate assignments in an instant of clock
c, but they can be written by delayed assignments in between. With this restriction, the
GCD example for the extension cannot provide the result in the same step, but only in the
following one. Hence, the notion of constructivity coincides with the Signal example, where
the result is given in the next synchronized instant.

However, even if Signal is less expressive in this sense (oversampling result is available
in next instant), it also has advantages over the extension. The synchronization in terms of
common clocks is not structural like in the extension and therefore, each variable can be
synchronized with each other. Therefore, it is possible that three processes communicate
(each one with each other one) based on three independent clocks. A situation that is not
possible in the extension. Remember also the Counter example from Section 2.1.1, which
produces for each given input a sequence of outputs. Hence, the outputs can be produced
faster than the inputs (also the other way around is possible). Obviously, also the m : n

relation of inputs and outputs can be achieved. This freedom, as it was also explained for the

7.3 Summary 153

JPEG in Section 7.1.1 is not possible for Quartz and also not for the extension at module
boundaries.

Furthermore, in Signal, the clock of a signal identifies the instants in which it has a value,
and in all other instants, the signal is absent: it cannot be read or written. Thereby, the clock
of a signal can be defined by its definition (x :=. . .), by its use in expressions (. . .+ x),
or by additional clock constraints (x ^=. . .). Reading a signal in an instant forces it to
be present, and then a value must be given. By additional macros, which can be rewritten
with the Signal primitive statements, a variable can be also read when it is not present:
var x init c. The macro creates an explicit register to memorize the last value of x,
and initializes it with c. However, this is similar to the additional registers needed for the
hardware translation of the extension when a variable is read in instants of a lower clock
(cf. Section 6.2.4), but with the difference that the register is automatically created for the
extension if it is needed. Compare it again with the given restriction for the extension that a
variable of clock c is only written in instants of clock of c. In this case, both languages are
again similar: The value of a variable can only change when its clock holds, but it can be read
in all other instants (either by var x init c in Signal, or with just x in the extension)
leading to the value that has been finally assigned.

Besides some similarities, the languages also have some differences: in the extension the
clocks are determined by the control flow of the program and not by the data flow of the
variables. Due to this fact, it would be not wise to forbid reading a variable when its clock
does not hold, and the synthesis cares about storing the value if it is needed. In Signal, a
clock notifies about the presence, whereas in the extension it generally identifies two instants
between which the value of the variable does not change (resp. is set once). The differences
here came from the different approaches: control-flow and data-flow driven execution.

7.2.4 Lustre

The synchronous data-flow language Lustre looks similar to Signal, but there are some
differences. The main difference is that in Lustre, the clock of a signal is completely
determined by its definition, and not by its use. Hence, there is no possibility to add
additional clock constraints, and the clock is also not determined by the usage of a variable in
expressions (. . .+ x). Instead, in such functional expressions, only signals of the same clock
can be combined. The clock of a signal can be derived from the values of existing signals
with the when operator. Since the clock is only derived by already existing clocks, the clocks
can be arranged in a tree where the root clock must be in the interface of a Lustre node:
each computation is triggered by inputs. Thereby, oversampling where local clocks run faster,
is not possible. However, arbitrary clocks at the interface are possible, as long as they can be
determined by other input signals.

7.3 Summary

This chapter evaluated the achievements of the extension by considering the modeling of a
JPEG. Furthermore, results from the hardware synthesis were presented to see the overhead
of the extension. Finally, the related work was compared to the extension.

Chapter 8

Conclusion

This thesis introduced clock refinement as an extension to imperative synchronous languages.
It came from the simple idea to divide existing macro steps into smaller substeps which
by themselves behave like macro steps. The Euclidean algorithm to compute the GCD of
numbers was used to illustrate the extension based on the imperative synchronous language
Quartz. Even though the idea is rather simple, it has some impacts on the whole language
because the synchronous assumption is kept also for the substeps, and therefore, the changed
behavior of the statements of Quartz were discussed. The synchronous assumption comes
along with the discussion of causality and constructivity. Since all actions are logically
executed in a single point of time, the dependencies between them have to be considered to
get a practical notion of executing programs (in contrast to logical correct where all solutions
are allowed). This discussion was extended to the extension and a informal view on the
execution of substeps was developed.

The semantics of the extension was defined in the same way as for pure Quartz with
two sets of SOS rules: the transition rules and the reaction rules. In contrast to the original
rules, these rules are defined to handle various clocks, and especially the transition rules
also have to be defined for partial environments since values might be not known at the
beginning of a step, or they belong to variables of an unrelated clock. Furthermore, variables
can only change for steps of their clocks, and also abortion and suspension are bound to
the clock level the statements are defined on. The interpreter that combines the rules to an
executing machine deals with two additional issues: first, it must select a clock to execute
the next instant, and second, it must decide when the default reaction for a variable can
be executed. The first issue arises with unrelated clocks which are defined in threads of the
parallel statement, and the threads can execute unrelated steps. However, each choice that
leads to valid execution does also lead to the unique behavior of the program with respect
to the environment. Furthermore, it turned out that the choice of the clock cannot lead to
an invalid execution if no immediate data dependency exist between the unrelated clocks
(scheduling independence). The second issue arises with immediate assignments of variables
in a substep of a lower clock. Since the variables have one unique value for a whole step of
their own clock, it cannot necessarily decided what the value is known at the beginning of the
step. Two notions of constructive executions have been defined. The first one does not allow
to immediately assign variables in substeps of a lower clock, and the second one just requires
the natural order: the variable must be assigned before it is used. Even though, the second

156 8 Conclusion

one is given in a declarative way for the interpreter, under the assumption that the property
is given, it can be implemented efficiently as it was shown in the hardware translation.

The compilation algorithm translates programs to an intermediate format. Thereby, it
also has to deal with schizophrenia problems arising with local declaration in imperative
synchronous languages. An intermediate format was given and it was discussed that the
original solutions used for the translation of pure Quartz to an intermediate format are not
applicable for the extension. Therefore, a solution based on a special case was presented that
allows an efficient translation. Other cases can still be handled by the approach to duplicate
the body of the loop in the source code. Furthermore, like one can abstract the notion of
constructivity in pure Quartz (or other synchronous languages) by checking for acyclic
dependencies between the variables, the same can be done in the extension based on the
intermediate format: the control flow has to be also considered to decide which actions can be
possibly reached in a steps, but as long as no write action for a variable can be reached after
a read action in the control-flow graph, the program is constructive and can be implemented.

Furthermore, a hardware translation based on the intermediate format was presented.
Thereby, each variable is translated separately to equations which can then be translated to
a hardware description language. The equations were first presented for an arbitrary case
and then some special cases were introduced. These cases occur e. g. when a variable is
not immediately written in substeps. The properties allow to reduce the complexity of the
resulting equation system, and they apply to variables which are not used in the data flow
of substeps. Furthermore, the properties also hold for pure Quartz and it turned out that
in this case the translation to hardware is mostly the same. Hence, there is some overhead
produced in the hardware translation, but it is only existent when a variable is used in
substeps. In addition to this functional translation of the variables, the clocks have to be set
to trigger the execution. Thereby, the way the clocks can be set is restricted by the original
control flow of the program, and by the clock tree. A scheduler was introduced which gets
this information from the functional part of the translation and sets the clocks accordingly.

Finally, the extension was evaluated based on some examples. Thereby, as a bigger example,
it was explained how a JPEG decoder can be implemented in pure Quartz and how the
extension can be used to describe it. The several parts of the decoder can be implemented
independently based on unrelated clocks, and the parts only synchronize when data is
exchanged. Even though, this seems like a classical data-flow application, the imperative
synchronous language showed its advantage in using control flow to describe the actual
algorithms for IDCT and Huffman decoding. Furthermore, this example also implements the
first notion of constructivity: variables are not immediately written in substeps. Hence, even
this simplified case of constructivity turned out to be practically usable. In addition, the
hardware translation was compared based on the resulting circuits.

References

[Ager79] T. Agerwala. Putting Petri nets to work. IEEE Computer, 12(12):85–94,
December 1979.

[AhNR74] N. Ahmed, T. Natarajan, and K.R. Rao. Discrete cosine transfom. IEEE

Transactions on Computers, 23(1):90–93, January 1974.

[Alle70] F.E. Allen. Control flow analysis. ACM SIGPLAN Notices, 5(7):1–19, 1970.

[AmBG94] T. Amagbegnon, L. Besnard, and P. Le Guernic. Arborescent canonical

form of boolean expressions. Internal Report 826, Institut Recherche en
Informatique et Systeme Aleatoire (IRISA), Rennes, France, 1994.

[Andr03] C. André. Computing SynCharts reactions. Electronic Notes in Theoret-

ical Computer Science (ENTCS), 88:3–19, 2003. Workshop on Synchronous
Languages, Applications, and Programming (SLAP).

[Andr95] C. André. SyncCharts: A visual representation of reactive behaviors.
Research Report tr95-52, University of Nice, Sophia Antipolis, France, 1995.

[Arvi03] Arvind. Bluespec: A language for hardware design, simulation, syn-

thesis and verification invited talk. In Formal Methods and Models for

Codesign (MEMOCODE), pages 249–254, Mont Saint-Michel, France, 2003.
IEEE Computer Society.

[AVEREST] The Averest system. http://www.averest.org/. Accessed: 2013-04-16.

[BaBS10] D. Baudisch, J. Brandt, and K. Schneider. Multithreaded code from syn-

chronous programs: Extracting independent threads for OpenMP.
In Design, Automation and Test in Europe (DATE), pages 949–952, Dresden,
Germany, 2010. EDA Consortium.

[BaBS10a] D. Baudisch, J. Brandt, and K. Schneider. Multithreaded code from syn-

chronous programs: Generating software pipelines for OpenMP. In
M. Dietrich, editor, Methoden und Beschreibungssprachen zur Modellierung und

Verifikation von Schaltungen und Systemen (MBMV), pages 11–20, Dresden,
Germany, 2010. Fraunhofer Verlag.

http://www.averest.org/

158 References

[BaBS11b] D. Baudisch, J. Brandt, and K. Schneider. Translating synchronous sys-

tems to data-flow process networks. In S.-S. Yeo, B. Vaidya, and G.A.
Papadopoulos, editors, Parallel and Distributed Computing, Applications and

Technologies (PDCAT), pages 354–361, Gwangju, Korea, 2011. IEEE Computer
Society.

[BaBS12] D. Baudisch, J. Brandt, and K. Schneider. Out-of-order execution of

synchronous data-flow networks. In J. McAllister and S. Bhattacharyya,
editors, International Conference on Embedded Computer Systems: Architec-

tures, Modeling, and Simulation (ICSAMOS), pages 168–175, Samos, Greece,
2012. IEEE Computer Society.

[BCEH03] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. de
Simone. The synchronous languages twelve years later. Proceedings of

the IEEE, 91(1):64–83, 2003.

[BeBe91] A. Benveniste and G. Berry. The synchronous approach to reactive real-

time systems. Proceedings of the IEEE, 79(9):1270–1282, 1991.

[BeCo85] G. Berry and L. Cosserat. The Esterel synchronous programming lan-

guage and its mathematical semantics. In S.D. Brookes, A.W. Roscoe,
and G. Winskel, editors, Seminar on Concurrency (CONCUR), volume 197 of
LNCS, pages 389–448, Pittsburgh, Pennsylvania, USA, 1985. Springer.

[BeHH92] G. Berry, C.A.R. Hoare, and W.A. Hunt. Esterel on hardware. Philosophical

Transactions of the Royal Society of London, 339(1652):87–104, April 1992.

[BeKi00] G. Berry and M. Kishinevsky. Hardware Esterel language extension

proposal, 2000. Research Proposal.

[Berr00] G. Berry. The Esterel v5 language primer, July 2000.

[Berr89] G. Berry. Real-time programming: General purpose or special-

purpose languages. Information Processing, pages 11–17, 1989.

[Berr91] G. Berry. A hardware implementation of pure Esterel. In Formal Methods

in VLSI Design, Miami, Florida, USA, 1991.

[Berr92] G. Berry. A hardware implementation of pure Esterel. Sadhana, 17(1):95–
130, March 1992.

[Berr97a] G. Berry. The Esterel v5 language primer.
http://www.inria.fr/meije/esterel/, April 1997.

[Berr97b] G. Berry. A quick guide to Esterel, February 1997.

[Berr99] G. Berry. The constructive semantics of pure Esterel, July 1999.

[BeSe01] G. Berry and E. Sentovich. Multiclock Esterel. In T. Margaria and T.F. Mel-
ham, editors, Correct Hardware Design and Verification Methods (CHARME),
volume 2144 of LNCS, pages 110–125, Livingston, Scotland, UK, 2001. Springer.

References 159

[BGSS11] J. Brandt, M. Gemünde, K. Schneider, S. Shukla, and J.-P. Talpin. Integrat-

ing system descriptions by clocked guarded actions. In A. Morawiec,
J. Hinderscheit, and O. Ghenassia, editors, Forum on Specification and Design

Languages (FDL), pages 1–8, Oldenburg, Germany, 2011. IEEE Computer
Society.

[BGSS12] J. Brandt, M. Gemünde, K. Schneider, S.K. Shukla, and J.-P. Talpin. Represen-

tation of synchronous, asynchronous, and polychronous components

by clocked guarded actions. Design Automation for Embedded Systems

(DAEM), July 2012. DOI 10.1007/s10617-012-9087-9.

[BGSS13] J. Brandt, M. Gemünde, K. Schneider, S.K. Shukla, and J.-P. Talpin. Em-

bedding polychrony into synchrony. IEEE Transactions on Software

Engineering (TSE), 2013.

[Bous98] F. Boussinot. SugarCubes implementation of causality. Research Re-
port 3487, Institut National de Recherche en Informatique et en Automatique
(INRIA), Sophia Antipolis, France, September 1998.

[BrGS09] J. Brandt, M. Gemünde, and K. Schneider. Desynchronizing synchronous

programs by modes. In S. Edwards, R. Lorenz, and W. Vogler, editors,
Application of Concurrency to System Design (ACSD), pages 32–41, Augsburg,
Germany, 2009. IEEE Computer Society.

[BrGS10] J. Brandt, M. Gemünde, and K. Schneider. From synchronous guarded

actions to SystemC. In M. Dietrich, editor, Methoden und Beschrei-

bungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen

(MBMV), pages 187–196, Dresden, Germany, 2010. Fraunhofer Verlag.

[BrSc09] J. Brandt and K. Schneider. Separate compilation for synchronous pro-

grams. In H. Falk, editor, Software and Compilers for Embedded Systems

(SCOPES), volume 320 of ACM International Conference Proceeding Series,
pages 1–10, Nice, France, 2009. ACM.

[BrSc11a] J. Brandt and K. Schneider. Separate translation of synchronous pro-

grams to guarded actions. Internal Report 382/11, Department of Computer
Science, University of Kaiserslautern, Kaiserslautern, Germany, March 2011.

[BrSe95] J.A. Brzozowski and C.-J.H. Seger. Asynchronous Circuits. Springer, 1995.

[CaLa08] C.G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems.
Springer, 2 edition, 2008.

[CHPP87] P. Caspi, N. Halbwachs, D. Pilaud, and J.A. Plaice. LUSTRE: A declar-

ative language for programming synchronous systems. In Principles

of Programming Languages (POPL), pages 178–188, Munich, Germany, 1987.
ACM.

[DiWa04] V. Dimitrov and K. Wahid. Multiplierless DCT algorithm for image

compression applications. International Journal on Information Theory

160 References

and Applications (IJ ITA), 11:162–169, 2004.

[EdTa05] S.A. Edwards and O. Tardieu. SHIM: a deterministic model for het-

erogeneous embedded systems. In W. Wolf, editor, Embedded Software

(EMSOFT), pages 264–272, Jersey City, New Jersey, USA, 2005. ACM.

[Edwa00] S.A. Edwards. Compiling Esterel into sequential code. In Design Au-

tomation Conference (DAC), pages 322–327, Los Angeles, California, USA,
2000. ACM.

[Edwa03a] S.A. Edwards. Making cyclic circuits acyclic. In Design Automation

Conference (DAC), pages 159–162, Anaheim, California, USA, 2003. ACM.

[Edwa05b] S.A. Edwards. SHIM: A language for hardware/software integration.
In Synchronous Languages, Applications, and Programming (SLAP), Edinburgh,
Scotland, UK, 2005.

[FeOW87] J. Ferrante, K.J. Ottenstein, and J.D. Warren. The program dependence

graph and its use in optimization. ACM Transactions on Programming

Languages and Systems (TOPLAS), 9(3):319–349, July 1987.

[FeWi92] E. Feig and S. Winograd. Fast algorithm for the discrete cosine trans-

form. IEEE Transactions on Signal Processing, 40(9):2174–2193, September
1992.

[GaGB87] T. Gautier, P. Le Guernic, and L. Besnard. SIGNAL, a declarative lan-

guage for synchronous programming of real-time systems. In G. Kahn,
editor, Functional Programming Languages and Computer Architecture, volume
274 of LNCS, pages 257–277, Portland, Oregon, USA, 1987. Springer.

[Gama10] A. Gamatie. Designing Embedded Systems with the SIGNAL Programming

Language. Springer, 2010.

[GeBS10] M. Gemünde, J. Brandt, and K. Schneider. Clock refinement in imperative

synchronous languages. In A. Benveniste, S.A. Edwards, E. Lee, K. Schnei-
der, and R. von Hanxleden, editors, SYNCHRON’09: Abstracts Collection of

Dagstuhl Seminar 09481, Dagstuhl Seminar Proceedings, pages 3–21, Dagstuhl,
Germany, 2010. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany.
ISSN 1862-4405, http://www.dagstuhl.de/09481.

[GeBS10a] M. Gemünde, J. Brandt, and K. Schneider. A formal semantics of

clock refinement in imperative synchronous languages. In L. Gomes,
V. Khomenko, and J.M. Fernandes, editors, Application of Concurrency to

System Design (ACSD), pages 157–168, Braga, Portugal, 2010. IEEE Computer
Society.

[GeBS10b] M. Gemünde, J. Brandt, and K. Schneider. Compilation of imperative

synchronous programs with refined clocks. In L. Carloni and B. Jobst-
mann, editors, Formal Methods and Models for Codesign (MEMOCODE), pages
209–218, Grenoble, France, 2010. IEEE Computer Society.

References 161

[GeBS11] M. Gemünde, J. Brandt, and K. Schneider. Schizophrenia and causality

in the context of refined clocks. In A. Morawiec, J. Hinderscheit, and
O. Ghenassia, editors, Forum on Specification and Design Languages (FDL),
pages 1–8, Oldenburg, Germany, 2011. IEEE Computer Society.

[GeBS11a] M. Gemünde, J. Brandt, and K. Schneider. Causality analysis of syn-

chronous programs with refined clocks. In High Level Design Validation

and Test Workshop (HLDVT), pages 25–32, Napa, California, USA, 2011. IEEE
Computer Society.

[GeBS13] M. Gemünde, J. Brandt, and K. Schneider. Clock refinement in imperative

synchronous languages. EURASIP Journal on Embedded Systems, 2013.

[GGBM91] P. Le Guernic, T. Gauthier, M. Le Borgne, and C. Le Maire. Programming

real-time applications with SIGNAL. Proceedings of the IEEE, 79(9):1321–
1336, 1991.

[GiLL99] A. Girault, B. Lee, and E.A. Lee. Hierarchical finite state machines with

multiple concurrency models. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems (T-CAD), 18(6):742–760, June 1999.

[GiNi03] A. Girault and X. Nicollin. Clock-driven automatic distribution of Lustre

programs. In R. Alur and I. Lee, editors, Embedded Software (EMSOFT),
volume 2855 of LNCS, pages 206–222, Philadelphia, Pennsylvania, USA, 2003.
Springer.

[GuTL03] P. Le Guernic, J.-P. Talpin, and J.-C. Le Lann. Polychrony for system

design. Journal of Circuits, Systems, and Computers (JCSC), 12(3):261–304,
June 2003.

[Halb93] N. Halbwachs. Synchronous programming of reactive systems. Kluwer, 1993.

[HaMa95] N. Halbwachs and F. Maraninchi. On the symbolic analysis of combi-

national loops in circuits and synchronous programs. In Euromicro

Conference, Como, Italy, 1995. IEEE Computer Society.

[HaPn85] D. Harel and A. Pnueli. On the development of reactive systems. In K.R.
Apt, editor, Logic and Models of Concurrent Systems, pages 477–498. Springer,
1985.

[Hare87] D. Harel. Statecharts: A visual formulation for complex systems. Sci-

ence of Computer Programming, 8(3):231–274, 1987.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous

dataflow programming language LUSTRE. Proceedings of the IEEE,
79(9):1305–1320, September 1991.

[HMAD13] R. von Hanxleden, M. Mendler, J. Aguado, B. Duderstadt, I. Fuhrmann,
C. Motika, S. Mercer, and O. O’Brien. Sequentially constructive con-

currency: a conservative extension of the synchronous model of com-

162 References

putation. In E. Macii, editor, Design, Automation and Test in Europe (DATE),
pages 581–586, Grenoble, France, 2013. EDA Consortium/ACM.

[Hoar78] C.A.R. Hoare. Communicating sequential processes. Communications of

the ACM (CACM), 21(8):666–677, 1978.

[Hoar83] C.A.R. Hoare. Communicating sequential processes. Communications of

the ACM (CACM), 26(1):100–106, January 1983.

[HoAr99] J.C. Hoe and Arvind. Hardware synthesis from term rewriting sys-

tems. Technical Report CSG-MEMO 421-a, Computer Science and Artificial
Intelligence Laboratory, Cambridge, Massachusetts, USA, 1999.

[Huff52] D.A. Huffman. A method for the construction of minimum-redundancy

codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[IEEE05] IEEE. IEEE Standard SystemC Language Reference Manual. New York, New
York, USA, December 2005. IEEE Std. 1666-2005.

[IEEE05a] IEEE. IEEE Standard Hardware Description Language Based on the Verilog

Hardware Description Language, 2005. IEEE Std. 1394-2005.

[IEEE08] IEEE. IEEE Standard VHDL Language Reference Manual, 2008. IEEE Std.
1076-2008.

[Jant04] A. Jantsch. Modeling Embedded Systems and SoCs. Morgan Kaufmann, 2004.

[JFIF] E. Hamilton. Jpeg file interchange format. http://www.jpeg.org/

public/jfif.pdf, September 1992. Accessed: 2013-04-29.

[JoPS10] B.A. Jose, J. Pribble, and S.K. Shukla. Faster software synthesis using ac-

tor elimination techniques for polychronous formalism. In Application

of Concurrency to System Design (ACSD), pages 147–156, Braga, Portugal,
2010. IEEE Computer Society.

[JoSh10] B.A. Jose and S.K. Shukla. An alternative polychronous model and

synthesis methodology for model-driven embedded software. In Asia

and South Pacific Design Automation Conference (ASP-DAC), pages 13–18,
Taipei, China, 2010. IEEE Computer Society.

[JPSS09] B.A. Jose, J. Pribble, L. Stewart, and S.K. Shukla. EmCodeSyn: A visual

framework for multi-rate data flow specifications and code synthesis

for embedded applications. In Forum on Specification and Design Languages

(FDL), pages 1–6, Sophia Antipolis, France, 2009. IEEE Computer Society.

[Kahn74] G. Kahn. The semantics of a simple language for parallel program-

ming. In J.L. Rosenfeld, editor, Information Processing, pages 471–475, Stock-
holm, Sweden, 1974. North-Holland.

[Lee06] E.A. Lee. The problem with threads. IEEE Computer, 39(5):33–42, 2006.

http://www.jpeg.org/public/jfif.pdf
http://www.jpeg.org/public/jfif.pdf

References 163

[LeMe87] E.A. Lee and D.G. Messerschmitt. Static scheduling of synchronous data

flow programs for digital signal processing. IEEE Transactions on Com-

puters (T-C), 36(1):24–35, January 1987.

[LeMe87a] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proceedings of

the IEEE, 75(9):1235–1245, September 1987.

[LeSa98] E.A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing

models of computation. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems (T-CAD), 17(12):1217–1229, December 1998.

[LLBH05] X. Li, J. Lukoschus, M. Boldt, M. Harder, and R. von Hanxleden. An Esterel

processor with full preemption support and its worst case reaction

time analysis. In T.M. Conte, P. Faraboschi, W.H. Mangione-Smith, and
W.A. Najjar, editors, Compilers, Architecture, and Synthesis for Embedded

Systems (CASES), pages 225–236, San Francisco, California, USA, 2005. ACM.

[LoLM89] C. Loeffler, A. Ligtenberg, and G.S. Moschytz. Practical fast 1-D DCT

algorithms with 11 multiplications. In International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), pages 988–991, Glasgow, Scotland,
UK, 1989. IEEE Computer Society.

[LUSv6] The lustre v6 reference manual (draft). http://www-
verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lustre-v6/doc/lv6-ref-
man.pdf, January 2013.

[Mali94] S. Malik. Analysis of cycle combinational circuits. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems (T-CAD), 13(7):950–
956, July 1994.

[MeHT09] M. Mendler, R. von Hanxleden, and C. Traulsen. WCRT algebra and inter-

faces for Esterel-style synchronous processing. In Design, Automation

and Test in Europe (DATE), pages 93–98, Nice, France, 2009. IEEE Computer
Society.

[Moss06] P.D. Mosses. Formal semantics of programming languages. Electronic

Notes in Theoretical Computer Science (ENTCS), 148:41–73, 2006.

[Nebu03] M. Nebut. An overview of the Signal clock calculus. Electronic Notes

in Theoretical Computer Science (ENTCS), 88:39–54, 2003. Workshop on
Synchronous Languages, Applications, and Programming (SLAP).

[OtOt84] K.J. Ottenstein and L.M. Ottenstein. The program dependence graph in a

software development environment. In Software Engineering Symposium

on Practical Software Development Environments, pages 177–184. ACM, 1984.

[Petr80a] C.A. Petri. Introduction to general net theory. In W. Brauer, editor, Net

Theory and Applications, volume 84 of LNCS, pages 1–19, Hamburg, Germany,
1980. Springer.

164 References

[Plot81] G.D. Plotkin. A structural approach to operational semantics. Technical
Report FN-19, DAIMI, Århus, Denmark, 1981.

[PoST05] D. Potop-Butucaru, R. de Simone, and J.-P. Talpin. The synchronous

hypothesis and synchronous languages. In R. Zurawski, editor, Embedded

Systems Handbook, volume 2 of Industrial Information Technology, chapter 8.
CRC Press, 2005.

[PrTH06] S. Prochnow, C. Traulsen, and R. von Hanxleden. Synthesizing safe state

machines from Esterel. In M.J. Irwin and K. De Bosschere, editors, Lan-

guages, Compilers, and Tools for Embedded Systems (LCTES), pages 113–124,
Ottawa, Ontario, Canada, 2006. ACM.

[RaSh00] B. Rajan and R.K. Shyamasundar. Modeling VHDL in multiclock ES-

TEREL. In VLSI Design (VLSID), pages 76–83, Calcutta, India, 2000. IEEE
Computer Society.

[RaSh00a] B. Rajan and R.K. Shyamasundar. Multiclock ESTEREL: A reactive

framework for asynchronous design. In International Parallel and Dis-

tributed Processing Symposium (IPDPS), pages 201–209, Cancún, Quintana
Roo, Mexico, 2000. IEEE Computer Society.

[RaSh00b] B. Rajan and R.K. Shyamasundar. Modeling distributed embedded sys-

tems in multiclock Esterel. In T. Bolognesi and D. Latella, editors, Formal

Description Techniques for Distributed Systems and Communication Protocols

(FORTE/PSTV), pages 301–316, Pisa, Italy, 2000. Kluwer.

[RoSa08a] C. Rousseau and Y. Saint-Aubin. Image compression the jpeg standard.
In Mathematics and Technology, Springer Undergraduate Texts in Mathematics
and Technology, pages 1–33. Springer New York, 2008.

[RSAS07] S.S. Ravi, G. Singh, S. Ahuja, and S.K. Shukla. Complexity of

scheduling in synthesizing hardware from concurrent action ori-

ented specifications. In L. Benini, N. Chang, U. Kremer, and
C.W. Probst, editors, Power-Aware Computing Systems, volume 07041 of
Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2007. Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI) Schloss Dagstuhl.
http://drops.dagstuhl.de/opus/volltexte/2007/1105.

[SaMo10] D. Salomon and G. Motta. Handbook of Data Compression. Springer London,
2010.

[SBST05b] K. Schneider, J. Brandt, T. Schuele, and T. Tuerk. Maximal causality

analysis. In J. Desel and Y. Watanabe, editors, Application of Concurrency

to System Design (ACSD), pages 106–115, Saint-Malo, France, 2005. IEEE
Computer Society.

[ScBr08] K. Schneider and J. Brandt. Performing causality analysis by bounded

model checking. In Application of Concurrency to System Design (ACSD),
pages 78–87, Xi’an, China, 2008. IEEE Computer Society.

References 165

[ScBS04b] K. Schneider, J. Brandt, and T. Schuele. Causality analysis of synchronous

programs with delayed actions. In Compilers, Architecture, and Synthe-

sis for Embedded Systems (CASES), pages 179–189, Washington, District of
Columbia, USA, 2004. ACM.

[ScBS06] K. Schneider, J. Brandt, and T. Schuele. A verified compiler for syn-

chronous programs with local declarations. Electronic Notes in Theoret-

ical Computer Science (ENTCS), 153(4):71–97, 2006.

[Schn00] K. Schneider. A verified hardware synthesis for Esterel. In F.J. Rammig,
editor, Distributed and Parallel Embedded Systems (DIPES), pages 205–214,
Schloß Ehringerfeld, Germany, 2000. Kluwer.

[Schn01a] K. Schneider. Embedding imperative synchronous languages in inter-

active theorem provers. In Application of Concurrency to System Design

(ACSD), pages 143–154, Newcastle Upon Tyne, England, UK, 2001. IEEE
Computer Society.

[Schn09] K. Schneider. The synchronous programming language Quartz. Internal
Report 375, Department of Computer Science, University of Kaiserslautern,
Kaiserslautern, Germany, December 2009.

[ScWe01] K. Schneider and M. Wenz. A new method for compiling schizophrenic

synchronous programs. In Compilers, Architecture, and Synthesis for Em-

bedded Systems (CASES), pages 49–58, Atlanta, Georgia, USA, 2001. ACM.

[ShBT96] T.R. Shiple, G. Berry, and H. Touati. Constructive analysis of cyclic

circuits. In European Design Automation Conference (EDAC), pages 328–333,
Paris, France, 1996. IEEE Computer Society.

[ShTa10] S.K. Shukla and J.-P. Talpin. Synthesis of Embedded Software – Frameworks

and Methodologies for Correctness by Construction. Springer, 2010.

[SiSh07] G. Singh and S.K. Shukla. Algorithms for low power hardware synthesis

from concurrent action oriented specifications CAOS. International

Journal of Embedded Systems (IJES), 3(1/2):83–92, 2007.

[SSBD99] S.A. Seshia, R.K. Shyamasundar, A.K. Bhattacharjee, and S.D. Dhodapkar.
A translation of Statecharts to Esterel. In J.M. Wing, J. Woodcock,
and J. Davies, editors, Formal Methods (FM), volume 1709 of LNCS, pages
983–1007, Toulouse, France, 1999. Springer.

[TaSi04] O. Tardieu and R. de Simone. Curing schizophrenia by program rewriting

in Esterel. In Formal Methods and Models for Codesign (MEMOCODE), pages
39–48, San Diego, California, USA, 2004. IEEE Computer Society.

[TBGS13] J.-P. Talpin, J. Brandt, M. Gemünde, K. Schneider, and S. Shukla. Con-

structive polychronous systems. In S.N. Artëmov and A. Nerode, editors,
Logical Foundations of Computer Science (LFCS), volume 7734 of LNCS, pages
335–349, San Diego, California, USA, 2013. Springer.

166 References

[Tini00] S. Tini. Structural Operational Semantics for Synchronous Languages. PhD
thesis, University of Pisa, Italy, 2000.

[Wall91] G.K. Wallace. The JPEG still picture compression standard. Commu-

nications of the ACM (CACM), 34(4):30–44, April 1991.

[YKSH09] J.-H. Yun, C.-J. Kim, S. Seo, T. Han, and K.-M. Choe. Refining schizophre-

nia via graph reachability in Esterel. In R. Bloem and P. Schaumont,
editors, Formal Methods and Models for Codesign (MEMOCODE), pages 18–27,
Cambridge, Massachusetts, USA, 2009. IEEE Computer Society.

Curriculum Vitae

Persönliche Daten

Name Mike Gemünde

Geburtstag / -ort 26.04.1983 / Bad Kreuznach

Familienstand ledig

Staatsangehörigkeit deutsch

Schulausbildung

1989 – 1993 Grundschule Sprendlingen

1993 – 1999 Realschule Wörrstadt

1999 – 2002 Technisches Gymnasium in Mainz
Abschluss: Abitur

Wehrdienst

10/2002 – 07/2003 Grundwehrdienst, Spezialpionierbataillon 464 Speyer

Hochschulstudium

10/2003 – 07/2008 Technische Universität Kaiserslautern
Fachbereich Informatik
Abschluss: Diplom-Informatiker (Dipl.-Inf.)

Berufserfahrung

09/2008 – 08/2013 Technische Universität Kaiserslautern
Wissenschaftlicher Mitarbeiter, Fachbereich Informatik

seit 09/2013 Continental AG in Frankfurt

	Zusammenfassung
	Abstract
	Introduction
	Motivation
	Contribution
	Outline

	Related Work
	Models of Parallel Computation
	Synchronous Model
	Asynchronous (Untimed) Model
	Discrete Event Model

	The Synchronous Language Quartz
	Introductory Examples
	Statements
	Semantic Issues
	Formal Semantics
	Intermediate Representation
	Compilation
	Code Generation
	Averest

	Clock Refinement
	Limitations of Quartz
	Basic Idea of Clock Refinement
	Steps, Variables and Assignments
	Parallel Execution
	Abortion and Suspension
	Determinism

	Constructivity vs. Logical Correctness
	Sequential Execution of Substeps
	Scheduling of Parallel Threads
	Steps and Instants

	Summary

	Formal Semantics
	Definitions
	Overview
	Transition Rules
	General Form of the Rules
	Basic Statements
	Strong Preemption
	Weak Preemption

	Reaction Rules
	General Form of the Rules
	Basic Statements
	Strong Preemption
	Weak Preemption

	Program Execution
	Interpreter
	Constructive Execution

	Summary

	Compilation
	Extended Intermediate Format
	General Idea
	Labels and Clocks
	Local Declarations
	Complete Structure

	Surface and Depth
	Translation of Certain Statements
	Control-Flow Graph
	Parallel Threads
	Loops and Local Declarations
	Strong Preemption
	Weak Preemption

	Compilation Algorithm
	Definitions
	Compile Functions

	Checking Constructive Abstractions
	Summary

	Hardware Synthesis
	Overall Structure
	Functional Part
	Representation of Hardware
	Translation of Control Flow
	Translation of Data Flow
	Optimizations for Data-Flow

	Scheduler
	Summary

	Evaluation
	Examples
	JPEG Example
	Experimental Results

	Comparison with Related Work
	Esterel
	Multiclock Esterel
	Signal
	Lustre

	Summary

	Conclusion
	References
	Curriculum Vitae

