
CLOCK SCHEDULING AND CLOCKTREE CONSTRUCTION
FOR HIGH PERFORMANCE ASICS

Stephan Held, Bernhard Korte, Jens Maßberg, Matthias Ringe?, Jens Vygen

Research Institute for Discrete Mathematics, University of Bonn
?IBM Deutschland Entwicklung GmbH

Lenńestr. 2, 53113 Bonn, Germany

ABSTRACT

In this paper we present a new method for clock scheduling
and clocktree construction that improves the performance of
high-end ASICs significantly.

First, we compute a clock schedule that yields the optimum
cycle time and the best possible clock distribution with respect
to early and late mode; in particular the number of critical
tests is minimized. Second, individual arrival time intervals
are computed for all endpoints of the clocktree. Finally, we
construct a clocktree that realizes arrival times within these
intervals and exploits positive slacks to save power consump-
tion.

We demonstrate the superiority of our method to previous
approaches by experimental results on industrial ASICs with
up to 194 000 registers and more than 160 clock domains. We
improved the clock frequencies by 5-28% up to 1.033 GHz (in
hardware).

1. INTRODUCTION

Due to increase of clock frequencies and design sizes clocktree
construction has become one of the most challenging problems in
VLSI-design. There is an extensive literature. Most works either
focus on clock scheduling or on clocktree construction without op-
timizing schedules.

A linear programming formulation for cycle time optimization
by clock scheduling can be found [9, 16]. Shortest path approaches
from graph theory were proposed in [6, 17, 18]. Scheduling tech-
niques that optimize not only the cycle time but also less critical
cycles were developed in [1, 14].

Most papers on clocktree construction aim at zero-skew trees
or bounded-skew trees and are based on the deferred-merge-
embedding algorithm [3, 5, 8, 20]. Methods for integrated
buffer/inverter insertion are given in [4, chapter 5], which also
gives an overview on the topic.

Kourtev and Friedman proposed a simultaneous clock schedul-
ing and clocktree synthesis [12]. In [13] they considered a
quadratic programming approach to increase reliability of the
clock schedule. An overview on their work can be found in [14].

Individual skew bounds for each register pair are considered in
[15, 19, 22].

All previous works concerning clock scheduling used a register
graph, consisting of all registers as nodes and having arcs repre-
senting the minimum and maximum delay of data paths between
these registers. However, the size of the register graph, with a

potentially quadratic number of arcs, proves impracticable for de-
signs with several hundred thousand registers.

Instead, we apply clock scheduling based on a slack balance
graph that is based on the timing graph. The size of the slack
balance graph is proportional to the size of the netlist, which is
typically linear in the number of registers. In particular we can
handle very complex chips with many clock domains and compli-
cated timing assertions.

We then apply the minimum balance algorithm [1, 23]. Our
clock schedule computation optimizes slacks below a threshold
and additionally distributes remaining positive slacks to required
clock arrival time intervals. These intervals are used to construct
low-power clocktrees.

Clocktree construction is done by a bottom-up algorithm. We
obtain the necessary skews by varying the number of stages and
the inverter types but not by routing detours. The placement of the
inverters (avoiding blockages) and the choice of the inverter sizes
is done late in the algorithm to save power consumption.

Our experimental results prove that this approach is feasible
even for the most complex ASICs that are designed today. We im-
prove clock frequencies and power consumption simultaneously.

2. STATIC TIMING ANALYSIS

We will now give a short introduction to our static timing analysis
model. This model was basically given in [11]. We have a finite
setM of timing measurement points on our chip. In general these
points correspond to the pins but there can also be other, artificial
or user defined timing points.

Starting at primary inputs and at outputs of signal-triggering
registers we compute delays between consecutive measurement
points and store four arrival times at all points along the combi-
national logic: That are the latest rising (ATr), the earliest rising
(atr), the latest falling (ATf), and the earliest falling (atf) arrival
times of a signal. At the end of the combinatorial paths we test
whether the signals arrive in time. Signals of different origins are
merged by retaining only the most critical signals.

As delays depend significantly on signal slews, we also propa-
gate slew values to compute timing. Using enhanced slew propa-
gation models [2, 21], the effect of strong delay variations due to
discontinuity is weakened. For simplicity slews are omitted here.

As stated before we have a large number of different clock do-
mains with different frequencies on current ASIC chips. A clock
domain identifier is stored with the signals. Signals of different
domains are not merged, but there may be timing constraints be-
tween signals from different domains. For simplicity we restrict

232

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’03, November 11-13, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

our description to the case of a single clock domain. The formula-
tion can be generalized easily to multiple clock domains. We now
describe how signals are merged and tests are performed.

2.1. Propagation Constraints

At primary inputsdpi ∈ M we are given earliest and latest start
times: stx(dpi) andSTx(dpi) (x ∈ {r, f}). The arrival times
used in optimization must fulfill

ATx(dpi) ≥ STx(dpi), x ∈ {r, f} and (1)

atx(dpi) ≤ stx(dpi), x ∈ {r, f}. (2)

To be least pessimistic the inequalities are usually set to equal-
ity. Let a ∈ M and b ∈ M be two consecutive measurement
points, where a signalx ∈ {r, f} in a directly causes a signal
y ∈ {r, f} in b. As the latest/earliest signal arrival time inb is
the maximum/minimum over all latest/earliest signals propagated
from points precedingb, we have following inequalities:

ATx(a) + DELAY(a, b, x, y) ≤ ATy(b) and (3)

atx(a) + delay(a, b, x, y) ≥ aty(b), (4)

wherex, y ∈ {r, f} andDELAY anddelay are the maximum
and minimum delay. Constraints of type (1)–(4) are called pro-
pagation constraints, as the merging of signals during arrival time
propagation is based on them.

2.2. Test Constraints

At the end of logic paths there are tests whether signals arrive in
time. For each signal – described byx ∈ {r, f} – reaching a pri-
mary outputdpo ∈ M there is an earliest and a latest required ar-
rival time defined, namedratx(dpo) andRATx(dpo) . For correct
functioning of the chip, following inequalities must be guaranteed:

ATx(dpo) ≤ RATx(dpo) and (5)

atx(dpo) ≥ ratx(dpo), (6)

wherex ∈ {r, f}. The differences between computed and re-
quired arrival times – calledslacks– are defined as follows:

SLACKx(dpo) := RATx(dpo)−ATx(dpo) and (7)

slackx(dpo) := atx(dpo)− ratx(dpo), (8)

x ∈ {r, f}.
Signals ending at registers are tested against clock signals at the

clock pins. First, there aresetup tests, where data signals arriv-
ing at the input pindin are tested to arrive a small time (setup-
time) before the earliest possible latch closing time in the next cy-
cle atcl(dclock) + adjust. The valueadjust is usually the cycle
time, but can differ. Generally a latest arrival time is required to be
earlier than an earliest arrival time.

ATx(din) + setupx ≤ atcl(dclock) + adjust, (9)

x ∈ {r, f}, wherecl ∈ {r, f} denotes the closing edge of the
latch. The setup test induces a required arrival time and a late
slack for the data phase.

RATx(din) := atcl(dclock) + adjust− setupx, (10)

SLACKx(din) := RATx(din)−ATx(din) (11)

x ∈ {r, f}. Second, there arehold tests, which determine whether
signals arrive too early. Earliest arrival times of data signals are
tested against the latest time that the latch could close in the same
cycle:

atx(din) ≥ ATcl(dclock) + holdx, x ∈ {r, f}. (12)

The earliest required arrival time and an early slack is defined by

ratx(din) := ATcl(dclock) + holdx, (13)

slackx(din) := atx(din)− ratx(din), (14)

x ∈ {r, f}. A chip works correctly if all inequalities are met, or
equivalently all slacks are positive. All direct inequalities between
arrival times on a chip have a common structure:

α + c(α, β) ≥ β. (15)

whereα, β are arrival times andc(α, β) is some sum of delay,
setup time, adjust, etc. Many further timing constraints can be ex-
pressed using such inequalities. An inequality-system of type (15)
is well known from admissible potentials in shortest path theory.

3. COMPUTING AN OPTIMUM CLOCK SCHEDULE

Our main goal is to maximize the worst slack. The next goal is to
maximize the second smallest slack, and so on. More precisely, we
look for arrival times such that the vector of slacks, after sorting in
nondecreasing order, is lexicographically maximum. This problem
can be solved by applying the minimum balance algorithm [1, 23]
to the so-called slack balance graph, to be defined now.

3.1. The Slack Balance Graph

The slack balance graph is a digraphG with weightsc : E(G) →
R. It is defined as follows. Each earliest/latest, rising/falling (tran-
sition) edge at a measurement point is represented by a node in
V (G). Additionally V (G) contains an extra nodẽv that repre-
sents the time origin (zero time). Every arrival time can now be
represented by a node potential. We introduce an arc from node
v ∈ V (G) to w ∈ V (G) if there is some constraint of type
(15) between the represented arrival times. Constraints between
arrival times and constant values can be represented by arcs that
are incident tõv. Costs are chosen according to (15): A constraint
α+c(α, β) ≥ β corresponds to an arc(α, β) with weightc(α, β).

We omit all parts of the graph representing clocktree parts that
precede scheduled register elements. The arising clock nodes with
zero indegree represent the clocktree endpoints.

The clock arrival times of clocktree endpoints are forced to be
within user-defined time intervals by arcs that represent inequali-
ties of type (1), (2), (5) and (6). These feasible interval limits can
be used to limit the spreading of the computed arrival time inter-
vals. Usually their size is 30% – 80% of the cycle-time.

Before an optimum clock schedule of a chip can be computed
in (G, c), some intrinsic conditions for the clock signals must be
added. These conditions are given indirectly by the asserted clock
arrival times. Letc ∈M be a measurement point of a clock signal
at a clocktree endpoint.

First we have to ensure the pulse width of the clock signals; that
is the difference between rising and falling edge:

atr(c) + pulse width(r, f) = atf (c) (16)

233

The same equation must hold for latest arrival times.
Second, we have to ensure that earliest clock arrival times are

smaller than the corresponding latest arrival times.

ATx(c) ≥ atx(c), x ∈ {r, f}. (17)

The conditions (16) and (17) can be expressed by weighted arcs as
above.

To anticipate variations along clocktree paths, e.g. due to ma-
nufacturing tolerances, we can add a positive delay constraint to
the right hand side of (17).

3.2. Clock Scheduling

Our aim is to compute arrival times that satisfy all timing con-
straints and leave as much slack as possible at critical tests. Let
p : E(G) → {0, 1} be an indicator function such that we want to
distribute slack to all arcse with p(e) = 1. Then we consider the
following problem:

M INIMUM BALANCE PROBLEM

Input: A strongly connected weighted digraph(G, c) and
a parameter functionp : E(G) → {0, 1}.
c(W) ≥ 0 for all cyclesW ⊂ G with p(W) = 0

Output: A node-potentialπ : V (E) → R
such that the vector of slacks

(π(v)− π(w) + c(e))e=(v,w)∈E

p(e)=1

is lexicographically maximum
after sorting the entries in nondecreasing order.

[1] shows how to solve this problem by the minimum balance
algorithm – originally developed by [23] for the special casep ≡
1. The worst-case running time isO(nm+n2 log n), wheren :=
|V (G)| andm := |E(G)|. The casep : E(G) → R≥0 and other
generalizations of the problem are discussed in [10].

Iteratively the minimum ratio cycleW , wherep(W) > 0 and
c(W)/p(W) is minimum, is identified. This cycle is contracted
and the algorithm continues on the remaining graph. For details
see [1]. The algorithm can be stopped after any minimum ratio
cycle computaion. As a result, all slacks up to the value of the last
minimum ratio cycle are lexicographically maximum after sorting
in nondecreasing order.

3.2.1. Scheduling Data Slacks

As we build up the slack balance graph, arcs representing test
inequalities are parameterized. Flushing arcs of level-sensitive
latches are parameterized too. Now all cycles either contain a
complete data path or result from combinations of arcs defining
the feasible intervals for clock arrival times, (16) or (17). In the
first case they contain at least one test arc and are therefore para-
meterized. In the second case the cycle must have positive weight.

As tests have different importance we do not parameterize all
test arcs at once. Early mode problems (violations of (2), (4), (6)
and (12)) are usually eliminated after clocktree construction be-
cause the delay variations of the clocktree must be known to iden-
tify the problems. Moreover, early mode problems can be elimi-
nated easily by inserting delay buffers.

Therefore we first optimize the late mode slacks (7) and (11)
by neglecting early mode test arcs (6) and (12) and subgraphs that

are not in the strongly connected component ofG that contains
the late tests (5) and (9). Late mode balancing is performed up
to a late mode threshold (ltarget). Then the achieved late mode
slacks are fixed by subtracting the minimum of the arc slack and
ltarget from the costs for all parameterized arcs and eliminating
the parameterization.

Second, we add the neglected early mode arcs and balance up
to an early threshold (etarget). Again the achieved slack is fixed.
This reduces the number of buffers that need to be inserted in early-
mode padding drastically, while not affecting late mode slacks sig-
nificantly.

3.2.2. Arrival Time Intervals

Finally, after balancing data slacks, we compute clock arrival time
intervals for the clocktree endpoints that preserve all data slacks
below the correspondingltarget or etarget.

Computing intervals is equivalent to the distribution of slacks
to the arcs separating early and late clock arrival times (17). The
problem can again be solved by the minimum balance algorithm
after fixing early mode slacks and parameterizing arcs of type (17).

As only small parts of a chip are really critical we usually reach
clock intervals of satisfactory size after a few thousand cycle con-
tractions. Again we use an threshold (ctarget) to stop the bal-
ancing process. The complete clock scheduling algorithm runs in
three steps:

Algorithm 1: Clock Scheduling

➀ Balance late mode slacks. Tests arcs representing late
slacks are parameterized. All other test arcs are ignored. Late
slacks are balanced up toltarget.

➁ Balance early mode slacks.All late slacks are fixed. Early
test arcs are added. Early mode slacks are balanced up to
etarget.

➂ Compute Clock Intervals. All data tests arcs are fixed and
we parameterize the arcs given by (17). Clock intervals are
computed up toctarget.

Theorem 3.1. The clock scheduling algorithm has a worst-case
running time ofO(nm + n2 log n). The solution is optimum in
the following sense:

Among all possible clock schedules the vectorvlt of late mode
slacks belowltarget is lexicographically maximum after sorting
in nondecreasing order.

Preservingvlt, the vectorvet of all early mode slacks below
etarget is lexicographically maximum after sorting in nondecreas-
ing order.

Preservingvlt andvet, the vectorvct of the clock interval sizes
belowctarget is lexicographically maximum after sorting in non-
decreasing order.

Proof. The theorem follows from the preceding descriptions.2

In practice we observe reasonable running times as the balanc-
ing processes are bounded by the thresholds (see table 1). There
is a tradeoff between quality of result and running time. However,
the worst slacks are always optimum.

234

4. CLOCKTREE DESIGN

Up to now we have shown how to compute optimal arrival time
intervals for the clocktree endpoints. In this section we will present
a method to build a clocktree that can realize these intervals.

In addition to the sinks provided with arrival time interval, po-
sition in the plane and required parity, we are given a source with
its position, starttime, startparity and startslew. As repower cir-
cuits we allow a set of invertersinverterset with timing rules and
bounds on the capacitance they can drive. Moreover, we have a set
of rectangular blockagesblockageset, a slew boundmaxslew,
and a maximum distance between two adjacent vertices (pins in
the same net)maxdist, in order to bound wire delay.

The task is now to build an arborescenceG = (V, E), where
the leaves are the sinks, the root is the source, and the internal ver-
tices are inverters ininverterset. Moreover, the internal vertices
have to be placed whithin the chip area outside the blockages, and
the capacitance limits of the inverters, the slew limit (maxslew)
and the distance limit (maxdist) must be kept. We have to ensure
that a signal starting at the source with the given starttime, start-
slew and startparity reaches each sink within its time interval and
with the required parity. The secondary goal is to minimize power
consumption.

We will generate the clocktree in a bottom-up manner. The ver-
tices will not be placed until they have got a predecessor. For
each vertex we determine an area where we can place it, and an
area where we can possibly place its predecessor. All areas which
appear in the algorithm will be finite unions of octagons, whose
angles are multiples of45◦. By storing an octagon as the intersec-
tion of two rectangles, one axis-parallel and one rotated by45◦, all
necessary operations (e.g. intersection of two areas, etc.) can be
performed efficiently.

The assignment of the internal vertices to the inverters is fixed at
the very end, after the whole tree has been built. While construct-
ing the vertices we will compute a set of ’solution candidates’ for
each newly generated vertex. Each solution candidate consists of
an inverter for the vertex and a pointer to a solution candidate of
each successor. Using these candidates, a time interval for each
internal vertex is computed. The time intervals of the sinks are the
given required arrival time intervals.

We call a vertexactive as long as it does not have a predecessor.

4.1. Main Algorithm

At the beginning, the clocktree just consists of the sinks as leaves
of the tree with their corresponding time intervals and required
parities. They are all active. The active vertices will be stored in
two sets, according to their expected parity.

In each iteration of the main loop a new vertex is generated. The
successors of the new vertex are computed using a greedy cluster-
ing strategy. The first successor is an active vertex with maximum
lower bound of its arrival time interval. In section 4.2 the choice
of the other successors will be described.

In the next step the position of the successors, which have be-
come inactive now, are fixed. Then we compute the areas where
the new vertex and its predecessor can be placed (section 4.3).

Finally we have to specify a set of solution candidates for the
new vertex (section 4.4).

The algorithm terminates the main loop when all remaining ac-
tive vertices can be connected to the source. Now the topology of
the clocktree and its embedding are determined. In the last itera-

tion a set of solution candidates for the source is computed. We
choose the solution candidate that has minimum power consump-
tion among those yielding the best realization of the starttime and
assign the inverters according to this solution.

4.2. Clustering

The clustering determines the successors of a new vertex.
A cluster of successors for a new vertex is feasible if the follow-

ing conditions hold:

1. the new vertex can be placed so that its distance to each suc-
cessor is at mostmaxdist,

2. the intersection of the time intervals of all successors is not
empty,

3. all successors expect the same parity, and

4. there exists an inverter that can drive all successors and the
net connecting them.

We interpret each vertex as a 3-dimensional object, where the
area, in which the predecessor can be placed, lies in the x-y-plane,
and the time interval lies on the z-axis.

The new cluster is the 3-dimensional intersection of all succes-
sors. If and only if this intersection is nonempty, conditions 1 and
2 hold.

Now we use a greedy strategy for clustering. At the beginning
the cluster consists only of one successor: the active vertex with
maximum lower bound of its arrival time interval.

In each subsequent step, we look for an active vertexv expect-
ing the same parity, such that the volume of the intersection of the
cluster andv is nonempty and maximum among all choices ofv. If
there is no such vertex, we close this cluster. Otherwise we check
if there exists an inverter that can drive the cluster andv. If so, we
addv to the cluster, otherwise we will not look atv in this cluster-
ing again. Then we continue with the next active vertexv of the
right parity.

4.3. Placement of the Vertices

If a vertexv is a leaf of the clocktree, it is already placed. Oth-
erwisev has a set of successors. For each successor there is an
admissible area for its predecessor. The vertexv can be placed in
the intersection of these areas.

Therefore, the main problem is to compute the area where we
can place the predecessor of a vertex. For the placement of a vertex
the following conditions have to be kept:

1. the distance between two vertices that are immediate neigh-
bours within the clocktree must not exceedmaxdist,

2. the vertices must not be placed on a blockage, and

3. the vertices have to be ’near’ to the source if the time differ-
ence between the starttime at the source and the time interval
of the vertex is ’small’.

The last point guarantees that the vertices can be connected to
the source when their time intervals reach the starttime of the clock
signal. So the main loop will terminate.

Now we will explain in detail how condition 3 is taken care of.
We construct a special distance graph by partitioning the chip area
by a uniform grid with row and column widthw = maxdist

2+a
, where

a ∈ N is an approximation factor. If theL1-distance between the
midpoints of two grid squaresv1 andv2 not completely covered

235

by blockages isk · w with k ≤ a, then an edge(v1, v2) of weight
k (∈ N) will be inserted. Thus, higher values fora will provide
a better approximation of the blockages but will also increase the
runtime of the algorithm.

Let v(p) denote the grid square containing a pointp. We can
then compute the distanced(v) in this graph from each vertexv
to v(s), wheres is the source, using Dijkstra’s algorithm [7] (see
Fig. 1).

The following can be shown easily:

Theorem 4.1. For each pointp with 0 < d(v(p)) < ∞ there ex-
ists a set of pointsp0, p1, . . . , pn−1, pn ∈ R2\blockageset where
p0 is the source andpn = p, so thatd(v(pi)) < d(v(pi+1)),
‖pi, pi+1‖1 ≤ maxdist for all i ∈ {0, 2, . . . , n − 1} and

n ≤
⌊

label(p)
a+1

⌋
+

⌈
label(p)

a+1

⌉
.

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� �
� �
� �

	 	
	 	
	 	

� �
� �
� �

� �
� �
� �

� � �
� � �
� � �

� � �
� � �
� � �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� � �
� � �
� � �

� �
� �
� �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

! !
! !
! !
! !

" "
" "
" "
" "

#
#
#
#

$ $ $
$ $ $
$ $ $
$ $ $

% % %
% % %
% % %
% % %

& &
& &
& &
& &

' '
' '
' '
' '

((
((
((
((

))
))
))
))

* *
* *
* *
* *

+ +
+ +
+ +
+ +

, , ,
, , ,
, , ,
, , ,

- -
- -
- -
- -

. . .
. . .
. . .
. . .

/ / /
/ / /
/ / /
/ / /

0 0 0
0 0 0
0 0 0
0 0 0

1 1
1 1
1 1
1 1

2 2
2 2
2 2
2 2

3 3
3 3
3 3
3 3

4 4
4 4
4 4

5 5
5 5
5 5

6 6
6 6
6 6

7 7
7 7
7 7

8 8
8 8
8 8

9 9
9 9
9 9

: : :
: : :
: : :

; ;
; ;
; ;

< <
< <
< <

= =
= =
= =

> >
> >
> >
> >

? ?
? ?
? ?
? ?

@ @
@ @
@ @
@ @

A A
A A
A A
A A

B B
B B
B B
B B

C C
C C
C C
C C

D D
D D
D D
D D

E E
E E
E E
E E

F F F
F F F
F F F
F F F

G G
G G
G G
G G

H H H
H H H
H H H
H H H

I I I
I I I
I I I
I I I

J J J
J J J
J J J
J J J

K K
K K
K K
K K

L L
L L
L L
L L

M M
M M
M M
M M

N N
N N
N N

O O
O O
O O

P P
P P
P P
P P

Q Q
Q Q
Q Q
Q Q

R R
R R
R R
R R

S S
S S
S S
S S

T T
T T
T T
T T

U U
U U
U U
U U

V V V
V V V
V V V
V V V

W W
W W
W W
W W

X X X
X X X
X X X

Y Y Y
Y Y Y
Y Y Y

Z Z Z
Z Z Z
Z Z Z
Z Z Z

[[
[[
[[
[[

\ \
\ \
\ \
\ \

]]
]]
]]
]]

^ ^
^ ^
^ ^

_ _
_ _
_ _

` `
` `
` `

a a
a a
a a

b b
b b
b b

c c
c c
c c

d d
d d
d d

e e
e e
e e

f f f
f f f
f f f

g g
g g
g g

h h h
h h h
h h h

i i i
i i i
i i i

j j j
j j j
j j j

k k
k k
k k

l l
l l
l l

m m
m m
m m

n n
n n
n n
n n

o o
o o
o o
o o

p p
p p
p p
p p

q q
q q
q q
q q

r r
r r
r r
r r

s s
s s
s s
s s

t t
t t
t t
t t

u u
u u
u u
u u

v v v
v v v
v v v
v v v

w w
w w
w w
w w

x x x
x x x
x x x
x x x

y y y
y y y
y y y
y y y

z z z
z z z
z z z
z z z

{ {
{ {
{ {
{ {

| |
| |
| |
| |

} }
} }
} }
} }

~ ~
~ ~
~ ~

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� � �
� � �
� � �

� �
� �
� �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� �
� �
� �

� �
� �
� �

� �
� �
� �

01

1

1

12

2

2

2

2

2

3 4

5434

3

3

4

5

3

4 5

4

3

5 6 7 8 9 10 11

6 7 8 9 10 11 12

11

12

13

14

15

16 17

16

15

14

13

12

11109

10 11 12

11

12

13 14

13

12 13

14

15

Figure 1: A grid showing the blockages with appropiate labeling
(a = 2). The source is in the square marked with0.

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

Figure 2: To compute the area where to place the predecessor of a
vertexv, we take the placement area ofv (small octagon), extend
this area bymaxdist (big octagon) and then remove the blockages
and all nonreachable grid squares (here: with distance> 12). The
result is the solid gray area.

For a vertexv we can now compute the area where we can place
its predecessor. First we compute the set of all points which have

distance at mostmaxdist to a point where we can placev. From
this area we remove the points lying on a blockage. In the last step
we have to ensure that condition 3 holds.

Initially we compute the minimum time a signal needs for one
length unit. This yields the maximum distance that can be covered
until reaching the starttime. We remove all points from our area
which have a higher distance label (see Fig. 2).

4.4. Computation of Solution Candidates

A solution candidate of a vertexv is an assignment of all vertices
(except leaves) of the subtree rooted atv to the inverter set. More-
over, we associate a slew and a time interval with each solution
candidate. If the subtree is realized according to the assignment
and a signal starts atv within the time interval and with the given
slew, then all sinks in the subtree are reached in time. To bound the
number of solution candidates, we discretize the range of possible
slews to approximately 20 values.

A solution candidate for a vertexv consists of an inverteri for
v and solution candidates for each immediate successor ofv. The
time interval for the solution candidate is the intersection of the
time intervals of the successors plus an offset due to the delay of
i. This interval may have negative length, meaning that there are
two successors whose intervals do not intersect, and there will be
at least one leaf in the subtree that cannot be reached in time. The
slew of a solution candidate is computed by backward propagation,
assuming that all successors have identical slews.

Each time a new vertex is created, a set of solution candidates
is computed for this vertex.

The number of possible inverter assignments for the vertices of
a subtree is exponential in their number, and most of the combina-
tions have bad (negative length) time intervals we are not interested
in. So we restrict ourselves to solution candidates with maximal
time intervals.

We can easily produce such maximal candidates forv from the
maximal candidates of the successors (with identical slews) using
a sweepline method. To this end, we sort the maximal candidates
for each successor by their time intervals (unique because of their
maximality). Then we move a sweepline step by step to the lower
bounds of the time intervals of all successor candidates (Fig 3). In
each step we choose for each successor the latest candidate whose
lower bound of the time interval is less or equal to the value of the
sweepline. These candidates and a sufficiently strong inverter for
v give us a new maximal solution candidate forv.

The number of maximal solution candidates for a vertexv is
bounded by

(#leaves in subtree)(#slews)|inverterset|depth of subtree.

In practice we have a few thousand solution candidates at each
vertex.

4.5. Additional Remarks

The described algorithm can easily be extended in order to handle
special circuits (e.g. gating circuits or clocksplitters).

In the main algorithm we have two setsS0 andS1 of active ver-
tices, each for one parity. Using special circuits we get additional
sets describing the logical structure of the clocktree. If a vertexv
expects special circuits of the typesT1, T2, . . . , Tn (in this order),
v will be inserted into an additional setSp,Tn,...,T1 , wherep is the
required parity ofv.

236

(3,3)

time

(1,4)
(2,3)

(3,1)

(3,2)

sweepline

(1,1)
(1,2)

(1,3)
(2,1)

(2,2)

Figure 3: Computation of a maximum solution candidate for a ver-
tex. The sweepline moves upwards, stopping at the lower bound
of each interval. In the eighth step shown, candidates(1, 3), (2, 2)
and(3, 3) are chosen.

Now the clocktree construction can be done as described above:
If a new vertex is created, we have to ensure that all successors
belong to the same set, and the new vertex is inserted into its cor-
responding set.

5. EXPERIMENTAL RESULTS

The proposed clock scheduling and clocktree construction al-
gorithms have been implemented in C and tested on four re-
cent ASICs from industry named ’Jens’, ’Matthias’, ’Katrin’ and
’Alex’.

Two of the chips, ’Matthias’ and ’Katrin’, have been produced
using clocktrees designed by two different industrial zero-skew
tools. We compare our results to these trees. ’Jens’ is a logic core.
’Alex’ is the first ASIC that has been designed using exclusively
this approach. We will focus on this chip later.

The timing of the chips was verified by EinsTimer, IBM’s static
timing analysis tool.

Table 1 (first part) shows the technology, image size, number of
circuits, pins and nets, number of clock domains, clocktree sinks,
sinks in the biggest clock domain, and the number of edges in the
slack balance graph for each chip.

The second part of the table gives the main parameters we used
for our algorithm. For better comparison, ’Matthias’ and ’Katrin’
were tested with slew bounds that result in the same average slews
as for the zero-skew trees. A second run was done for ’Katrin’
using a smaller slew bound (400ps). On ’Alex’ critical clocks
were routed on higher layers. Nets on these layers have a lower
wire delay so thatmaxdist can be increased. Moreover, differ-
ent maxslew values were used for the clock domains on ’Alex’
depending on their frequency.

The third part contains the timing results. The fourth line shows
the worst slack we reached after running the clock scheduling algo-
rithm. These slacks, computed before constructing the clocktrees,
take 300ps for variations in clock paths into account. Without this
the slacks would be 300ps greater. The fifth line shows the worst
slack after constructing the clocktrees. This is after wiring, 3D
extraction and a full timing analysis including on-chip variation.
Comparing these values it can be seen that our clocktrees nearly
reach the optimal slack. Only the results in the first run on ’Ka-
trin’ are slightly worse because of the high slew limit. On ’Jens’
and ’Alex’ we got even better results, because the clock variation

between the sinks on the critical paths was better than assumed.
The next line shows the worst slack of the chips with zero-skew
trees. Last the resulting frequencies for both approaches are listed.
We could increase the maximum frequency of the fastest clock do-
mains by up to 28.4%.

On ’Alex’, the worst slack does not occur in the fastest clock
domain, therefore the worst slack of this domain is shown in brack-
ets. For the 900MHz domain we reached the design target, while
a zero/bounded skew strategy would fail. Moreover, in hardware
this domain still runs correctly with a frequency of 1033MHz.

Part 4 of table 1 shows the worst slew, average slew, area con-
sumption by wiring and power consumption. The area consump-
tion by wiring includes the area of each wire and half the minimum
distance to an adjacent wire on each side. Thus we get a fair com-
parison of the consumed routing resources.

The slew bounds were nearly kept. Only on ’Alex’ we got some
worse slews due to placement legalization after constructing the
clocktrees. But only 0.14% of all nets missed the slew bound and
less than 0.02% missed it by more than 10%.

For ’Matthias’ and ’Katrin’ we could compare the power con-
sumption and the area consumption of the zero-skew trees and our
trees. On ’Matthias’ and in the first run on ’Katrin’ we could re-
duce the power consumption significantly. This is because we did
not have to meet time points but time intervals, so we saved bal-
ancing resources. Moreover we could reduce the routing resources
by using different inverter types instead of routing detours for bal-
ancing. In the second test on ’Katrin’ we got a higher power con-
sumption: because of the lower slew bound we need more circuits
and wiring within the clocktree but also get a smaller cycle time.
So we have a tradeoff between lower power consumption and use
of routing resources on the one side and higher frequency and a
lower slew bound on the other side. The different power consump-
tions among the chips follow from the different number of sinks,
technologies, voltages and frequencies.

The runtime results (part five of table 1; hh:mm:ss) have been
obtained on an IBM pSeries 680 Server with a 600 MHz CPU.

Figure 4 shows one clocktree of ’Matthias’.
In the future we will incorporate on-chip variation and track-

ing into our algorithm more directly. This, however, will require
a more advanced timing model. Moreover, there is still room for
improving the power consumption. Finally, we plan to integrate
placement legalization into the clocktree construction. Neverthe-
less, we have demonstrated that our method is a big step forward
in ASIC clock methodology.

6. REFERENCES

[1] C. Albrecht, B. Korte, J. Schietke, and J. Vygen. Cycle time
and slack optimization for VLSI-Chips.Proc. ICCAD, 232–
238, 1999.

[2] D. Blaauw, V. Zolotov, S. Sundareswaran, C. Oh, and
R. Panda. Slope propagation in static timing analysis.Proc.
ICCAD, 338–343, 2000.

[3] T.-H. Chao, Y.-C. Hsu, and J.M. Ho. Zero skew clock net
routing. Proc. DAC, 518–523, 1992.

[4] J. Cong, L. He, C.-K. Koh, and P.H. Madden. Performance
optimization of vlsi interconnect layout.Integration, the
VLSI Journal 21, 1–94, 1996.

237

Figure 4: Clock A of ’Matthias’ with 11 544 sinks. Each net is represented by a star.

[5] J. Cong, A.B. Kahng, C.-K. Koh, and C.-W.A. Tsao.
Bounded-skew clock and steiner routing.ACM Trans. on
Design Automation of Electronic Systems 3, 341–388, 1998.

[6] R. B. Deokar and S. S. Sapatnekar. A graph–theoretic ap-
proach to clock skew optimization.Proc. of the IEEE Int.
Symp. on Circuits and Systems, 407–410, 1995.

[7] E. W. Dijkstra. A note on two problems in connexion with
graphs.Numerische Mathematik, 1, 269–271, 1959.

[8] M. Edahiro. Minimum skew and minimum path length rout-
ing in vlsi layout design. NEC Research and Development,
32(4), 569-575, 1991.

[9] J. P. Fishburn. Clock skew optimization.IEEE Trans. on
Computers 39, 945–951, 1990.

[10] S. Held.Algorithmen f̈ur Potential-Balancierungs-Probleme
und Anwendungen im VLSI-Design. Diploma thesis. Univer-
sity of Bonn, 2001.

[11] R. B. Hitchcock, G. L. Smith, and D. D. Cheng. Timing
analysis of computer hardware.IBM Journal of Research
and Development 26, 100–105, 1982.

[12] I. S. Kourtev and E. G. Friedman. Simultaneous clock
scheduling and buffered clock tree synthesis.Proc. of the
IEEE Int. Symp. on Circuits and Systems, 1812–1815, 1997.

[13] I. S. Kourtev and E. G. Friedman. A quadratic programming
approach to clock skew scheduling for reduced sensitivity to
process parameter variations.Proc. of the IEEE International
ASIC/SOC Conference, 210–215, 1999.

[14] I. S. Kourtev and E. G. Friedman.Timing Optimization
Through Clock Skew Scheduling. Kluwer, Boston, 2000.

[15] M. Saitoh, M. Azuma, and A. Takahashi. Clustering based
fast clock scheduling for light clock-tree.Proc. DATE, 240–
244, 2001.

[16] K. A. Sakallah, T. N. Mudge, and O. A. Olukotun. checktc
and mintc: Timing verification and optimal clocking of digi-
tal circuits.Proc. ICCAD, 552–555, 1990.

[17] N. Shenoy, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli. Graph algorithms for clock schedule optimiza-
tion. Proc. ICCAD, 132–136, 1992.

[18] T. Szymanski. Computing optimal clock schedules.Proc.
DAC, 399–404, 1992.

[19] C-W. A. Tsao and C-K. Koh. UST/DME: A clock tree router
for general skew constraints.Proc. ICCAD, 400–405, 2000.

[20] R.-S. Tsay. An exact zero-skew clock routing algorithm.
IEEE Trans. on Computer-Aided Design of Integrated Cir-
cuits and Systems 12, 242–249, 1993.

[21] J. Vygen. Theory of VLSI Layout. Habilitation thesis. Uni-
versity of Bonn, 2001.

[22] J.G. Xi and W.-M. Dai. Useful-skew clock routing with gate
sizing for low power design.Journal of VLSI Signal Process-
ing 16, 163–179, 1997.

[23] N. E. Young, R. E. Tarjan, and J. B. Orlin. Faster parametric
shortest path and minimum-balance algorithms.Networks,
21, 205–221, 1991.

238

chipname Jens Matthias Katrin Alex
technology SA27E SA27E Cu11 Cu11
Ldrawn (µm) 0.15 0.15 0.10 0.10
voltage (V) 1.8 1.8 1.2 1.5
image size (mm×mm) 2.29×2.00 13.80×13.88 13.80×13.88 9.31×9.38
circuits 73 234 582 713 916 345 1 074 697
pins 260 322 2 493 406 3 179 184 4 018 180
nets 74 032 614 138 839 819 1 042 025
clock domains 1 5 2 164
sinks (registers) 3 805 128 292 137 218 194 208
biggest clock domain 3 805 55 826 137 135 48 667
edges in slack balance graph 652 476 7 217 732 8 335 958 14 207 830
ltarget (ns) 1.00 0.40 1.50 0.30
etarget (ns) 0.00 0.05 0.00 0.05
ctarget (ns) 0.60 0.60 0.55 0.50
maximum allowed skew (ns) 0.60 0.60 0.80 0.20 - 1.20
maxdist (mm) 0.3 0.3 - 0.6 0.7 0.25 - 1.8
maxslew (ns) 0.400 0.400 0.630 / 0.400 0.100 - 0.250
inserted clocksplitters 447 4 473 3 381 / 5 654 22 830
inserted inverters 235 3 548 1 430 / 1 500 21 583
max. time an interval is missed (ns) 0.091 0.006 0.064 / 0.080 0.079
optimal worst slack (ns)1 0.721 0.290 1.233 -0.136
worst slack BC (ns) 0.790 0.272 0.977 / 1.145 -0.028 (-0.001)
worst slack ZS (ns)1 0.490 -0.175 0.310 -0.954 (-0.315)
worst slack ZST (ns) - -0.190 0.345 -
optimal frequency (MHz)1 159.3 269.5 147.8 802
maximum frequency BC (MHz) 161.0 268.2 142.4 / 145.9 900
maximum frequency ZST (MHz)2 153.6 238.7 130.6 701
difference BC / ZST2 +4.8% +12.4% +9.0% / +11.7% +28.4%
worst slew BC (ns) 0.408 0.432 0.643 / 0.438 0.435
worst slew ZST (ns) - 0.700 0.991 -
average slew BC (ns) 0.312 0.344 0.544 / 0.349 0.181
average slew ZST (ns) - 0.362 0.565 -
area consumption by wiring BC (mm×mm) 0.244 1.423 1.928 / 2.376 7.989
area consumption by wiring ZST (mm×mm) - 2.846 2.478 -
power consumption BC (W) 0.081 2.173 0.416 / 0.508 10.833
power consumption ZST (W) - 2.906 0.441 -
difference BC / ZST - -25.2% -5.7% / +15.3% -
runtime late balancing (hh:mm:ss) 00:00:11 00:01:15 00:02:06 01:27:35
runtime early balancing 00:00:06 00:00:40 00:01:12 00:42:16
runtime intervals balancing 00:31:00 00:07:02 00:01:18 05:00:36
total runtime scheduling3 00:33:01 00:24:15 01:01:15 07:38:46
runtime clocktree construction 00:02:57 01:00:58 02:21:06 / 02:01:35 05:48:46
total runtime 00:35:58 01:25:13 03:22:21 / 03:02:50 13:27:32

Table 1: Computational results. BC = our clocktree construction, ZS = ideal zero-skew, ZST = zero-skew clocktree

1assuming 300ps on-chip variation in the clocktree
2for Jens and Alex the ZS results are used
3including pre- and post-optimization timing analysis

239

