
Abstract - High speed synchronous digital systems require large
switching currents to facilitate rapid signal transitions. These large
currents create voltage drops on the power distribution network and
necessitate expensive chip packaging with a large number of supply
pins. In this paper we propose a novel technique to reduce the
dynamic transient current drawn from the supply pins. Our
approach is based on sub-dividing the synchronous clocking into
multiple sub-clocks with relative skew. This spreads the computa-
tion across the entire clock cycle instead of largely occurring at the
beginning. Timing constraints must also be obeyed, so that no races
or timing errors are introduced. We propose an exact algorithm
based on integer linear programming to solve this problem. We
have used our method in the design of a 5GHz ECL encoder chip to
achieve a factor of two reduction in ground bounce, as shown by
HSPICE simulations. We also obtained order-of-magnitude
improvements in ground bounce on benchmarks laid out in sub-
micron CMOS technology. The approach potentially leads to sig-
nificant reductions in packaging costs.

I. Introduction *

Simultaneous switching noise in a digital system erodes
noise margins of receivers, slows down drivers and adds
noise to quiet lines, potentially causing logic errors [2], [9].
These problems are exacerbated by large gate counts (which
cause large switched currents), higher operating frequencies
(signal rise times decrease) and scaled supply voltages (lead-
ing to smaller noise margins). Power supply level fluctua-
tions are particularly acute at the beginning of the clock
cycle, when many latches and output drivers are simulta-
neously activated. High speed systems, typically, solve this
problem by increasing the number of chip power supply
pins, which raises the packaging costs. The number of sup-
ply pins in a high performance microprocessor is quite large,
e.g., the number of supply pins in the DEC Alpha micropro-
cessor is 140 [4]. The transition from a simple package with
pins on the periphery to an array package is typically neces-
sary when the pin count grows above two hundred, so the
cost savings by reducing the required number of pins can be
tremendous. In this paper, we propose a design technique to
reduce ground bounce. This technique is potentially far
cheaper to implement and does not affect circuit speed, chip
area or average power dissipation. It is based on clock skew
optimization to keep the inrush current within limits.

Clock skew optimization is a well-known technique for
timing optimization. By skewing the clock inputs to the vari-
ous flip-flops, it is possible for paths with longer delay to
borrow time from shorter paths. A linear programming for-
mulation of the skew assignment problem was proposed in
[5]. The timing constraints for the skew between a pair of
flip-flops with combinational logic in between are linear. The

*. This work was supported in part by the Defence Advanced Re-
search Projects Agency under contract DABT63-93-C-0039, the
National Science Foundation under Grant MIP 9419119 and in
part by LSI Logic & Silicon Valley Research through the Califor-
nia MICRO program.

constraints enforce the absence of races and also leave
enough time for the combinational logic to complete the
computation. The objective function in that formulation
could either be the clock period or the worst case timing
margin of the circuit. Ground bounce may be incidentally
reduced, but is not addressed by the technique.

Related work on clock skew optimization in [8] consid-
ers circuits controlled by k-phase clocks with arbitrary duty
cycles. A linear programming formulation for minimum
clock period computation is proposed. This technique also
introduces the potential difficulty of generating and distribut-
ing arbitrary duty-cycle clocks. Graph-based algorithms for
clock skew computation have been proposed in [3], [7], [10]
and [11]. The ground bounce for these solutions cannot be
controlled.

Clock skew optimization to maximize timing margins
tends to group input latches into a skew regime, internal flip-
flops into a second regime and finally output latches into a
third class. This often helps the ground bounce because not
all clocked elements are switching simultaneously. However,
we can do much better by truly spreading computation over
time. In effect, our method takes a synchronous design and
transforms it to make it appear asynchronous as seen from
the input supply pins. Essentially, our method retains the
main advantage of synchronous design - the simplicity due
to the global notion of time, and simultaneously achieves
one of the advantages of asynchronous design - the absence
of large simultaneous switching noise.

The method is practical because it uses a single clock
distribution network to distribute multi-phase clocks of the
same duty cycle to all the clocked elements. This is in con-
trast to multi-phase non-overlapping clocks which require
the routing of multiple clock nets with multiple clock
sources. Our method uses a degree of freedom afforded by
new clock routers - the ability to meet specified skews on
placed clocked elements.Finally, skew addition for ground
bounce reduction was considered by [9], which considers
only skewing output drivers (this might lead to timing prob-
lems), and [1], which uses skew for a particular regular
design. Clearly, neither [1] nor [9] can be used for designs
with many irregular timing constraints.

On-chip decoupling capacitors can be added to reduce
ground bounce [2]. The charge stored in the on-chip decou-
pling capacitor is used to support the switching transient.
However, there are limits to the decoupling capacitor which
can be achieved. Clearly, reducing the current requirement is
still useful. On-chip decoupling also reduces the resonant
frequency of the power distribution network as seen from the
switching elements. If the resonant frequency becomes equal
to the clock frequency, the system can ring, i.e., large oscilla-
tions may build up on the power supply lines. This is a par-
ticularly insidious failure mode, as the best fix is to reduce

Clock Skew Optimization for Ground Bounce Control

Ashok Vittal, Hien Ha, Forrest Brewer and Malgorzata Marek-Sadowska

Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106

ICCAD ’96
1063-6757/96 $5.00 1996 ΙΕΕΕ

the effective pin inductance - a degree of freedom which is
frozen once the package has been decided. With lossy on-
chip capacitors the Q of the resonance can be decreased, but
the magnitude of the excitation at this frequency should still
be limited. Thus, our technique is an optimization method
which complements on-chip decoupling and reduces the
requirements on the decoupling network.

The outline of the paper is as follows: section II
describes a simple example to demonstrate our method. Sec-
tion III proposes our ground bounce minimization roblem
formulation and discusses several issues related to our for-
mulation. Section IV provides an example from a reasonably
large scale design implemented in GaAs heterojunction
bipolar ECL. Section V presents results for sub-micron
CMOS, obtained using commercially available design auto-
mation tools and Section VI concludes.

II. A simple example
Our method is best illustrated by a simple example: an

n-bit shift register, shown in Figure 1. The zero skew design

has master latches of all n flip-flops switching at the same
time when the positive clock edge arrives, and similarly all
slave latches switching on the negative clock edge as shown
in Figure 2. The worst case ground bounce is n times that

due to one flip-flop. Assuming negligible register delay, set-
up and hold-times, there is no safety margin against races.

The skewed design for maximum safety margin in tim-
ing distributes the same clock to all the even-numbered flip-
flops and the opposite phase to the odd-numbered flip-flops,
as shown in Figure 3. The clock period remains the same.

The worst case ground bounce is as bad as before. The safety
margin against races is improved dramatically to half the
clock period. Typically, a safety margin of one-fourth the

. . .

FF1 FF2 FFn-1 FFn

CLK1

CLKn
CLKn-1CLK2

. . .

FFi

CLKi

Figure 1. An n-bit shift register

CLKi

time

Figure 2. Zero skew design for the shift register

I(t)

nIo

Figure 3. Skew for maximum timing margins

CLKi, i odd

CLKi, i even

I(t)

nIo

clock period is considered more than adequate. The skewed
design for ground bounce minimization with T/4 safety mar-
gin distributes n clock phases, each more than 90 degrees
behind phase with the next (but less than 270 degrees
behind), as in Figure 4.The worst case ground bounce is

reduced by a factor of n, the clock period is the same and the
safety margin is one-fourth the clock period. We can geta
factor of n improvement in ground bounce in this way.

The above example shows the tradeoff between ground
bounce and circuit speed. It also leads to a natural figure of
merit for a clock schedule: the clock period - maximum sup-
ply current derivative product. This product has the dimen-
sions of current and must be made as small as possible.

III. Problem formulation
3.1 Integer linear programming formulation

We wish to calculate clock skews to each of m flip-flops
to satisfy timing constraints, while minimizing the ground
bounce. We divide the clock period into a small number of
time bins, say n. The clock skew for every flip-flop is an
integer value and belongs to [0, n-1]. This discretization
reflects the fact that fine grain control is not possible when
there are process variations. We represent the clock skew of
flip-flop i by n binary variables (Si0,..., Sin-1), where Sij is 1 if
and only if the clock skew of flip-flop i is equal to j. Clearly

The circuit graph leads to linear, double-sided timing
constraints, as in [5]. Thus, with combinational logic
between flip-flop i and flip-flop k characterized by minimum
delay Tik min and maximum delay Tik max, we have

Each term in parentheses represents the time at which
the corresponding flip-flop switches. The inequality on the
left guards against a race condition and the inequality on the
right leaves enough time for the new data to propagate from
flip-flop i to flip-flop j.

Using a topological analysis of the circuit graph (given
static timing analysis), we obtain the set of possible switch-
ing instants for each of the gates and latches in the circuit.
For each gate, these times depend linearly on the skew of the

Figure 4. Clocking schemes for ground bounce reduction with

CLK1

CLK2

CLKn

I(t)

...

Io

 safety margin T/4

Sij
j 0=

n 1–

∑ 1=

i, 0 … m 1–, ,= 1()

j Skj⋅
j 0=

n 1–

∑

Tik min,– j Sij⋅
j 0=

n 1–

∑

j Skj⋅
j 0=

n 1–

∑

n Tik max,–+≤ ≤

2()

flip-flops in its fan-in cone, as shown below. Let Ilm be the
maximum possible current derivative for element l at time t.
The total current derivative at time t is then

We wish to minimize the maximum of all Id s. This is
achieved using the constraints

The objective is

The number of binary variables used in the formulation
is O(m*n). There are O(e) constraints, where e is the number
of edges in the circuit graph (a graph with a vertex for each
flip-flop and an edge between 2 vertices if the corresponding
flip-flops communicate directly through combinational
logic).
3.2 Input pattern and timing dependence

The ground bounce clearly depends on the applied input
pattern and the current state of the circuit. Therefore, the
problem of determining the input sequence which maximizes
the ground bounce, for a given clock schedule, is of interest.
For instance, in the sequential ripple carry adder example of
[5], an input pair which causes the input carry to ripple all
the way to the output carry would maximize the number of
elements switching in the clock cycle. In an n-bit shift regis-
ter, 0101... is the worst case input pattern. While the worst
case input pattern is not dependent on the clock skew sched-
ule for these two specific examples, in general it could also
exhibit clock skew dependence.

The times at which gates switch on chip also depend on
the times at which the chip inputs change. For designs where
inputs and outputs are latched, our formulation can also
determine the clocking for the input and output latches. If the
inputs are not latched, clock skew cannot mitigate those
ground bounce problems caused by the fanout cones of
switching inputs.
3.3 Design flow

Our technique is used after placement and global rout-
ing, but prior to detailed routing. Delay estimates are
obtained following global routing for use in the integer linear
program. Following clock schedule optimization, the clock
router must guarantee the required delays. We have modified
the router in [12] for this purpose, in our design flow.
3.4 Lining up input and output latches

The input latches typically have to operate with clocks
of the same phase, so that the data need be available over a
reasonably large time window. If the optimal clock phase
assignment to the input latches spreads the input latch timing
over the entire clock cycle, the time window over which the
data needs to be available becomes very small and process/
temperature variations may result in system malfunction.
This can be avoided by adding delay into the path of data
inputs to late clocks, so that the time window when data
should be ready is big enough. If the layout area or power
dissipation of the buffers added as delay elements is a con-
cern, we can constrain all input latches to operate with

Idt I lt
l∀

∑= 3()

Idt Imax≤ t∀, 4()

Minimize Imax
 5()

clocks of identical phases using the constraints

3.5 Allowing for safety margins in timing
 Timing margin improvement can be achieved using the

same technique as in [5] - an additional slack variable (M) is
added into each of the timing constraints and a constraint is
added to make this slack at least as large as a required con-
stant (C).

3.6 Bounded rotation
The skews introduced for ground bounce minimization

could be quite large. This leads to some difficulty during
manual verification - it becomes unclear on which edge the
data should be ready. Further, very large skews, while
improving ground bounce and maintaining timing margins at
the target frequency, may lead to designs failing at high
clock rates even though the devices could go faster. This is
the case when there are combinational paths running from
the output of a latch to the input of a flip-flop. Our optimiza-
tion is for a fixed clock frequency. Alternatively, if the circuit
is run at a higher frequency, skew might force failure. This
can be avoided to some extent by bounding the skew spread.
This is easily achieved by adding extra constraints to the
integer linear program.
3.7 Interaction with the clock router

The output of the clock skew optimization is the input to
the clock routing phase. The clocked elements should, ide-
ally, be clustered so that elements with close skew phase are
also placed close by and can be driven by the same buffer. In
a hierarchical design system, a node is input a single phase
clock and might distribute different clock phases to its chil-
dren. The procedure of building the clock tree bottom up
works quite well [12].
3.8 Sensitivity to process variations

Statistical process variations cause uncertainty in the
exact time at which a clock edge arrives. These variations
might lead to designs which are not robust - delay variations
could increase the simultaneous switching noise. This is
implicitly handled in our formulation by introducing coarse
granularity in the times at which clock edges arrive. The
arrival time is an interval. Processes which are not mature
would call for a smaller number of time bins (n). On the
other hand, a larger number of time bins allows the integer
linear program to find better solutions.
3.9 Specifying an upper limit on the number of clock regimes

The clock router may impose restrictions on the total
number of clock regimes. It is possible to include extra con-
straints and variables to achieve a specific limit on number
of clock regimes. This is done using n binary variables R0,
R1, ..., Ri, ..., Rn-1 where Ri is 1 if and only if the ith time bin

j Sij⋅
j 0=

n 1–

∑ j Skj⋅
j 0=

n 1–

∑=

inputs i k,()∀, 6()

M Tik min,– j Skj⋅
j 0=

n 1–

∑+ j Sij⋅
j 0=

n 1–

∑ n M– Tik max,– j Skj⋅
j 0=

n 1–

∑+≤ ≤

7()

M C≥ 8()

has been chosen for some clock regime. If Rmax is the

required maximum number of clock regimes, we specify

IV. A 5GHz encoder example
Our method is particularly useful in the design of high

speed systems where ground bounce is a significant problem
and timing margins are important. We, therefore, discuss the
results obtained using our approach for the design of a 5GHz
encoder chip for use in a 40Gbit/s ATM network. In order to
obtain such high speeds, Rockwell’s baseline GaAs-AlGaAs
heterojunction bipolar ECL technology is used. The number
of transistors in the chip is about three thousand. The design
is highly pipelined and consists of nine modules. The chip
design is further described in [6].

The peak-to-peak current swing with zero skew was
42mA. The SPICE simulation results are shown in Figure
5a.The simulated circuit includes layout parasitics extracted

using the commercially available parasitic extraction tool
LPE, from Cadence. If the ground bounce calculated using
these current requirements is to be below 30mV (one tenth
the logic swing), 20 power/ground pin pairs are necessary.
Each of the modules were simulated with their loads and a
separate power supply feeding them with test vectors to
obtain the zero skew characteristic response. This is done
after placement and extraction of layout parasitics for the
interconnections within sub-modules and for global wiring.

m Rj⋅ Sij
i 0=

m 1–

∑≥

j, 0 … n 1–, ,= 9()

Ri
j 0=

n 1–

∑ Rmax≤ 10()

Supply current
without skew

Supply current
with skew

Figure 5. Supply currents a) Zero skew design b) With clock skew

(a)

(b)

The floorplan leaves a small area in the center of the chip for
the global clock distribution network. The current for the
design with clock skew is the convolution of the clock input
and the characteristic response for the linear time-invariant
system. Using these current waveforms and timing con-
straints extracted from the circuit configuration and function-
ality, the linear program was formulated and solved. A clock
distribution network which realized these skews was synthe-
sized and the entire system was simulated with skew. SPICE
simulations showed reduction in current swing to 24mA, as
shown in Figure 5b. The design could now be packaged.

Note that the dependence on input patterns is not large
for both the skewed and non-skewed designs - the variation
during different clock cycles is less than 10%. The circuit
actually has three power supplies and the current waveform
for only the supply with the largest swing is shown. The inte-
ger linear programming formulation is general enough to
handle multiple power supplies also.

V. Sub-micron CMOS results
In this section, we present results for implementations in

sub-micron CMOS using the Cascade Epoch design automa-
tion tools for placement, routing and extraction. We show
ground bounce results for several circuits - a sequential rip-
ple carry adder circuit, the ISCAS 89 benchmark S27 and a
16-bit shift register. We also study timing safety margin -
ground bounce tradeoffs.

We used Cascade Epoch for automatic placement, rout-
ing and extraction with a 0.7 micron CMOS standard cell
library. TACTIC, a static timing analysis tool, is used to
obtain timing constraints. We extract SPICE models for the
design and change the clock network, to obtain a design with
smaller ground bounce.

Table 1 shows the SPICE results for benchmark circuits
implemented in 0.7 micron CMOS. Among our test circuits

are a shift register, where the number of timing constraints
grows linearly with the number of flip-flops and a sequential
ripple carry adder, which exhibits quadratic growth. S27 is
included to represent irregular timing constraints. Note that
the ground bounce for the shift register skewed for timing is
less than half that without skew; this is due to the capaci-
tance of the non-switching elements helping out by sharing
charge.

The input sequences for these (small) circuits were cho-
sen to exercise the state transition which maximized the
number of input & flip-flops switching. The time required
for solving the integer linear program is a few minutes and is
less than the SPICE simulation time in all cases.

The ground bounce is minimized by our integer linear

Table 1: 0.7 micron CMOS ground bounce SPICE results

Benchmark
Clock

period (ns)

Ground bounce (mV/nH)

Zero skew
Skewed for

timing
Skewed
with ILP

S27 10 8.4 8.4 4

SRCA8 10 18 15 8

Shift16 10 17 7 2.8

program. Clearly, timing safety margin - ground bounce
tradeoffs are possible. Figure 6 below shows these tradeoff

curves for the ripple carry adder circuit described in [5],
implemented in 0.7 micron CMOS. We see that significant
gains in ground bounce are possible even for this simple
design. Note that each point on the curve represents a valid
clock skew schedule. The curve is discontinuous for the
adder with input and accumulation registers (sequential rip-
ple carry adder) because there are no valid designs for large
timing margins. It is possible to obtain a 10% safety margin
for a 10% differential(54% to 64%) in normalized ground
bounce. The shift register exhibits very loose timing con-
straints - it is possible to obtain a factor of nT/δt improve-
ment, where T is the clock period andδt is the granularity.
This directly implies timing granularity - ground bounce
tradeoffs. Coarser granularity is required for processes which
are not stable yet and finer granularity leads to improved
results. From the integer linear program, we see that if three
adjacent time bins have the same Id, then a worst case delay
variation equal to the time bin size could line up the three
contributions, increasing the ground bounce by at most a fac-
tor of three. In practice, a choice of time bin size equal to
about a tenth of the clock period should be sufficient to
obtain ground bounce improvements, while maintaining the
robustness of the clock skew schedule.

VI. Discussion and conclusions
The number of supply pins is already quite large for

high performance microprocessors today. We believe that
our work is the first CAD technique which directly addresses
the problem of reducing this requirement. We also believe
that our work will highlight this important problem and will
motivate other methods aimed at alleviating the problems of
supplying power to high performance electronic systems.

Our integer linear programming formulation is prima-
rily intended for system level design, where there are a few
tens of modules. It can, clearly, also be used to adjust skews
on all flip-flops of a design. This would need heuristics
which give sub-optimal results, but have better run times. As
such, branch-and-bound programs for integer linear pro-
gramming are capable of returning intermediate solutions
when stopped before a complete search of the decision tree.
However, heuristics based on other intuition might still be
helpful. It is easy to see that the optimal solution without
timing constraints can be solved using a quadratic time com-
plexity dynamic programming algorithm. A modification to
handle timing constraints using dynamic programming is

Figure 6. Safety margin - ground bounce tradeoff curve

Safety margin

Ground bounce (percentage of zero skew result)

(percentage of
clock period)

50%

0%
100%

SRCA

Shift reg

S27

possible. Graph-based approaches also seem attractive.
Introduction of skew into synchronous designs increases

the spectral content of the required current at higher frequen-
cies. For instance, in the n-bit shift register example the cur-
rent requirement was reduced in amplitude by a factor of
two, but the signal frequency was multiplied by two. Clearly,
the design of the on-chip decoupling capacitor network
should take this into account.

Our ground bounce minimization formulation is valid
for a particular clock period. While it is possible to explore
tradeoffs by running the integer linear program solver for
various clock period values, the problem of implicitly han-
dling clock period minimization is open. The difficulty with
handling variable clock periods is that the characteristic cur-
rent waveforms of the modules change with clock period and
it is not easy to characterize this change without some notion
of the circuit functionality of the module. We believe that
our work will also motivate such research.

Acknowledgments
We would like to thank Dr. Jose Luis Neves and Profes-

sor E.G. Friedman of the University of Rochester for provid-
ing us their clock skew optimization code. We would also
like to acknowledge the use of Dr. Michel Berkelaar’s inte-
ger linear programming package, lp_solve. Finally, we
would also like to thank Steve Beccue, a consultant for
Rockwell, and Professor Stephen I. Long of UCSB for many
useful simulation tips.

References
[1] R. Amerson, R. Carter, W. Culbertson, P. Kuekes, G. Snider,

“Plasma: an FPGA for million gate systems”, Proceedings of
the International Symposium on FPGAs, pp. 10-16, 1996.

[2] H.B. Bakoglu, Circuits, Interconnections and Packaging for
VLSI, Addison-Wesley, 1990.

[3] R.B. Deokar and S. Sapatnekar, “A graph-theoretic approach to
clock skew optimization”, Proceedings of the International
Conference on Circuits and Systems, pp. 407-410, 1994.

[4] D.W. Dobberpuhl et al., “A 200MHz, 64-bit, dual-issue CMOS
microprocessor”, IEEE Journal of Solid-State Circuits, Vol.
27, No. 11, pp. 1555-1566, 1992.

[5] J.P. Fishburn, “Clock skew optimization”, IEEE Transactions on
Computers, Vol. 39, No. 7, pp. 945-951, 1990.

[6] H. Ha and F. Brewer, “Implementation of a 40Gbit/s fiber chan-
nel encoder/decoder”, Custom Integrated Circuits Conference,
1996.

[7] J.L. Neves and E.G. Friedman, “Design methodology for syn-
thesizing clock distribution networks exploiting non-zero
localized clock skew”, IEEE Transactions on VLSI Systems,
to appear, 1996.

[8] K.A. Sakallah, T.N. Mudge, O.A. Olukotun, “CheckTc and
minTc: timing verification and optimal clocking of synchro-
nous digital circuits”, Proceedings of DAC, pp. 111-117, 1990.

[9] R. Senthinathan and J.L. Prince,Simultaneous switching noise
of CMOS devices and systems, Kluwer Academic Publishers,
1994.

[10] N. Shenoy and R.K. Brayton, “Graph algorithms for clock
schedule optimization”, Digest of Technical Papers of the
ICCAD, pp. 132-136, 1992.

[11] T.G. Szymanski, “Computing optimal clock schedules”, Pro-
ceedings of the DAC, pp. 399-404, 1992.

[12] A. Vittal and M. Marek-Sadowska, “Power-optimal buffered
clock tree design”, Proceedings of DAC, pp. 497-502, 1995.

