
Received December 9, 2020, accepted January 13, 2021, date of publication January 25, 2021, date of current version February 5, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3054164

Clock Synchronization Algorithms Over
PTP-Unaware Networks: Reproducible
Comparison Using an FPGA Testbed

IGOR FREIRE 1, (Member, IEEE), CAMILA NOVAES 1, IGOR ALMEIDA 2, (Member, IEEE),

EDUARDO MEDEIROS 3, MIGUEL BERG 3, (Senior Member, IEEE),

AND ALDEBARO KLAUTAU 1, (Senior Member, IEEE)
1LASSE-5G and IoT Research Group, Federal University of Pará, Belém 66075-750, Brazil
2Ericsson Research, Indaiatuba 13330-300, Brazil
3Ericsson Research, 164 80 Stockholm, Sweden

Corresponding author: Igor Freire (igorfreire@ufpa.br)

This work was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES) under

Grant Finance Code 001, and in part by the Innovation Center, Ericsson Telecomunicações S.A., Brazil.

ABSTRACT This work explores clock synchronization algorithms used to process timestamps from the

IEEE 1588 precision time protocol (PTP). It focuses on the PTP-unaware network scenario, where the

network nodes do not actively contribute to PTP’s operation. This scenario typically imposes a harsh

environment for accurate clock distribution, primarily due to the packet delay variation experienced by PTP

packets. In this context, it is essential to process the noisy PTPmeasurements using algorithms and strategies

that consider the underlying clock and packet delay models. This work surveys some attractive algorithms

and introduces an open-source analysis library that combines several of them for better performance. It also

provides an unprecedented comparison of the algorithms based on datasets acquired from a sophisticated

testbed composed of field-programmable gate arrays (FPGAs). The investigation provides insights regarding

the synchronization performance under various scenarios of background traffic and oscillator stability.

INDEX TERMS Clock synchronization, IEEE 1588, partial timing support, precision time protocol.

I. INTRODUCTION

The need for a global understanding of time among network

elements and devices appears in a vast and growing range of

modern applications. For example, it is essential to telecom-

munications [1], smart grids [2], data centers [3], industrial

automation [4], financial applications [5], time-sensitive net-

works and distributed computing [6], and many more. The

typical approach to provide a global time base to a node is to

rely on the combination of global navigation satellite system

(GNSS) disciplined clocks and packet-based distribution of

synchronization over a network. For the latter, the network

time protocol (NTP) and the IEEE 1588 precision time pro-

tocol (PTP) are the predominant standards.

NTP is prevalent in wide area networks and commonly

used in applications that require relatively coarse syn-

chronization in the order of milliseconds [7]. In contrast,

The associate editor coordinating the review of this manuscript and

approving it for publication was Woorham Bae .

PTP typically relies on more advanced hardware assistance

and controlled network environments, where it achieves time

accuracy in the order of nanoseconds. PTP has achieved

widespread usage primarily since its 2008 revision, with

the so-called PTPv2 [8]. It is continuously evolving and

recently consolidated the IEEE 1588-2019 standard revi-

sion [9], which features, for example, the so-called High

Accuracy profile for sub-nanosecond accuracy [10].

The key for high-accuracy timing transport through PTP

is to rely on network elements that actively support the pro-

tocol, namely PTP-aware nodes. In particular, the so-called

boundary clocks (BCs) and transparent clocks (TCs) [9]. The

switches or routers containingBCor TC functionality provide

special mechanisms to deal with the packet delay variation

(PDV) that PTP messages experience when traversing a net-

work. Thus, when all network components are PTP-aware,

the PDV does not harm the synchronization accuracy. In the

context of telecom networks, this scenario is called full timing

support (FTS), where the PTP nodes operate with parameters

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 20575

https://orcid.org/0000-0003-0229-8210
https://orcid.org/0000-0002-7711-9638
https://orcid.org/0000-0001-9850-4407
https://orcid.org/0000-0002-7225-1111
https://orcid.org/0000-0002-8626-1986
https://orcid.org/0000-0001-7773-2080
https://orcid.org/0000-0002-9274-0182


I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

and protocol attributes (i.e., a PTP profile [9]) defined by

ITU-T Recommendation G.8251.1 [11]. Such FTS networks

also typically transport a reliable frequency reference over the

physical layer (PHY) via synchronous Ethernet (SyncE) [12]

or similar technology.

The opposite scenario is when some or all of the net-

work elements are PTP-unaware, i.e., do not actively support

PTP messages. In this case, the PDV and delay asym-

metry affecting PTP messages can significantly degrade

the synchronization performance. In the context of tele-

com networks, this scenario is called partial timing support

(PTS), whose profile is defined in ITU-T Recommendation

G.8275.2 [13]. It is often an attractive solution as it allows

operators to transport PTP over their existing or third-party

PTP-unaware networks.

There are two main use cases for PTS. The first is the

distribution of PTP as a secondary source of time to back

up GNSS, called assisted partial timing support (APTS).

This is a compelling use case to protect from GNSS vul-

nerabilities to interference (intentional and unintentional)

and weather-related antenna damage [14]. It is especially

convenient when PTP can be distributed towards end appli-

cations that are already co-located with a GNSS-receiver,

such as legacy code-division multiple access (CDMA) base

stations [15].

The second main PTS use case is the distribution of PTP

as the primary source of time in well-controlled networks

with few hops [16]. For example, this is useful for the dis-

tribution of timing over third-party in-building or last-mile

network segments connecting outdoor GNSS-disciplined

clocks (e.g., on the roof) to indoor small cells or radio

units [15].

In terms of performance, PTS is generally challeng-

ing and a less investigated topic. Only recently, the

ITU-T has published Recommendation G.8273.4 [17], which

specifies performance requirements for clocks in a PTS

network.

The typical approach to achieve reasonable performance

levels over a PTP-unaware network is to process the noisy

measurements acquired via PTP timestamps. The timestamps

reflect the PDV experienced by PTP packets and the random

frequency and phase fluctuations experienced by the local

oscillators. Thus, the processing algorithms can consider both

phenomena. Also, in the APTS use case, the PTP process-

ing can incorporate knowledge acquired while the device is

locked to GNSS [14].

In this work, we explore a range of clock synchronization

algorithms that can work well in PTP-unaware networks.

More specifically, we discuss two main groups of estima-

tors, both comprehensively surveyed in Section II. The first

group refers to window-based packet selection and filtering

algorithms, which process windows of metrics derived from

PTP timestamps while focusing on overcoming the PDV. The

second group consists of estimators based on least-squares

(LS) and Kalman filtering (KF), which incorporate the oscil-

lator’s model as part of the estimation. The discussion is

generic and applicable to any synchronization use case that

can benefit from the simple and cost-effective distribution of

timing over existing and well-controlled PTP-unaware net-

works. We provide several insights into the usage and ratio-

nale of the algorithms while expanding on the pre-existing

literature.

Our primary goal is to provide a fair and reproducible com-

parison of the synchronization algorithms based on hardware

acquisitions. The vast majority of the literature relies on sim-

ulation experiments or limited testbed setups. In this work,

we exploit an advanced testbed based on field-programmable

gate arrays (FPGAs), which collects nanosecond-accurate

PTP timestamps from a real network and truth metrics for

analysis. As discussed later, [18] presents a related testbed

for comparison of synchronization algorithms. Our work fol-

lows a similar direction but uses significantly more accurate

hardware meticulously designed for the experiments.

Furthermore, this work introduces the open-source PTP

dataset analysis library (PTP-DAL),1 developed in Python

to process the datasets acquired from our testbed. With this

library, we aim to enable reproducible results and foster

advances in synchronization algorithms. This work describes

PTP-DAL’s processing architecture and particularly how it

combines various algorithms for performance.

Our main contributions in this work include:

1) The survey, open-source implementation, and compari-

son of various PTP processing algorithms with insights

regarding how to tune and combine them in practice,

based on experiments with real hardware. While doing

so, we contribute with the hardware-based evaluation

of algorithms, such as KF, which, to the best of our

knowledge, were previously discussed in the literature

solely based on numerical simulations.

2) A thorough description of our FPGA-based testbed

developed for PTP analysis. We discuss the main hard-

ware components and FPGA design choices for the

acquisition of datasets containing real PTP timestamps

and the associated nanosecond-accurate truth metrics

for reliable offline analysis.

3) A discussion regarding PTP delay distributions

encountered on practical PTS network scenarios and a

corresponding analysis of their impact on synchroniza-

tion performance through testbed-based experiments.

This work is organized as follows. Section II presents a

literature survey. Section III describes the model for time

and frequency processes and measurements. Section IV for-

mulates the algorithms that turn noisy measurements into

more accurate time offset estimations. Section V describes

the processing architecture that we adopt to evaluate and

compare algorithms. Section VI describes the FPGA-based

testbed used for data acquisition. Finally, SectionVII presents

experimental results and Section VIII concludes. For conve-

nience, a list of acronyms and abbreviations follows.

1PTP-DAL is available online at https://github.com/lasseufpa/ptp-dal.

20576 VOLUME 9, 2021



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

ACRONYMS

APTS assisted partial timing support.

AWG arbitrary waveform generator.

BC boundary clock.

BG background.

CBR constant bit rate.

CDF cumulative distribution function.

CDMA code-division multiple access.

EAPF earliest arrival packet filter.

FPGA field-programmable gate array.

FTS full timing support.

GbE gigabit Ethernet.

GM grandmaster.

GMII gigabit media-independent interface.

GNSS global navigation satellite system.

i.i.d independent and identically distributed.

KF Kalman filtering.

LO local oscillator.

LP linear programming.

LS least-squares.

m-to-s master-to-slave.

MAC medium access control layer.

max|TE| maximum absolute time error.

MSE mean square error.

MVU minimum variance unbiased.

NN neural network.

NTP network time protocol.

OCXO oven-controlled crystal oscillator.

PDF probability density function.

PDV packet delay variation.

PHY physical layer.

PLL phase-locked loop.

PPS pulse per second.

PRC primary reference clock.

PTP precision time protocol.

PTP-DAL PTP dataset analysis library.

PTS partial timing support.

RT residence time.

RTC real-time clock.

s-to-m slave-to-master.

SD standard deviation.

SyncE synchronous Ethernet.

TC transparent clock.

TE time error.

ToD time-of-day.

UTC coordinated universal time.

VBR variable bit rate.

VLAN virtual local area network.

XO crystal oscillator.

ZG zero-gap.

II. RELATED WORK

In this section, we survey the literature regarding synchro-

nization algorithms that can be robust to PDV in the context

of PTP-unaware networks. As mentioned earlier, we discuss

two main groups of time offset estimators: window-based

processing and model-based filtering. Moreover, we briefly

discuss the problem of delay asymmetry and some of the

related literature. Lastly, we position this work relative to

other synchronization testbeds.

A. WINDOW-BASED PROCESSING

The technique known as packet selection is an example of

window-based processing, which has been extensively inves-

tigated in the literature. [19] analyzes three packet selec-

tion operators: the earliest arrival packet filter (EAPF), also

known as sample-minimum, which selects packets with min-

imum delays in a window; the sample-mean, which averages

a window of time offset measurements; and the sample-

maximum, which is the opposite of EAPF. The analysis

of [19] is backed by statistical and experimental charac-

terization of the delays experienced by timing messages

under two different network scenarios, referred to as cross-

traffic and in-line traffic. It shows that, under cross-traffic,

the delay is well characterized as an independent and iden-

tically distributed (i.i.d) random variable with Erlang proba-

bility density function (PDF), whose shape parameter relates

to network load. In contrast, under in-line traffic through

store-and-forward switches, the delay is characterized by a

less tractable PDF that resembles a mirrored Erlang. More

importantly, it emphasizes that the optimal selection operator

varies. Under light cross-traffic load, the EAPF yields the

best performance in terms of output noise variance. Under

heavier cross-traffic load, in contrast, the Erlang delay distri-

bution becomes closer to Gaussian, and so the sample-mean

yields the best result. Finally, for in-line traffic, the sample-

maximum operator outperforms the other two.

Based on [19], the work in [20] formulates a mecha-

nism to adapt the packet selection operator in real-time.

The approach concurrently filters the noisy delay measure-

ments (i.e., the difference between arrival and departure

timestamps) with the sample-minimum, sample-mean, and

sample-maximum filters. At any moment, then, it chooses

the output with minimum variance. However, a limitation

of this approach is that it does not perceive the noise bias

that in practice may differ significantly among the selection

operators.

In a similar direction, [21] and [22] propose the

sample-mode filtering technique, which distributes times-

tamp differences (arrival minus departure) collected during

an observation window over bins and selects the mode. Effec-

tively this is a selection operator that adapts to the delay

distribution. However, the referred works do not discuss the

more significant disadvantage of this operator, which is that

performance highly depends on how narrow the distribution

is around its theoretical mode or if a unique mode exists.

More generally, there are a few limitations to packet selec-

tion approaches. First and foremost, the selection operators

only work well if the time offset remains reasonably con-

stant within the observation window. Second, the conclu-

sions in terms of best-performing operators in [19]–[22] are

VOLUME 9, 2021 20577



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

restricted to specific network and delay models. Thus, empir-

ical validation becomes necessary for a given network. Third,

the approaches focus on the reduction of variance but are not

guaranteed to yield unbiased estimates.

B. DELAY ASYMMETRY AND BIAS COMPENSATION

The problem of estimation bias exists in all time offset esti-

mation techniques discussed in this work. Its primary cause

is the asymmetry between the master-to-slave (m-to-s) and

slave-to-master (s-to-m) end-to-end delays experienced by

PTPmessages. This asymmetry creates a bias on the two-way

time offset measurements. Ultimately, it often represents one

of the biggest hurdles to synchronization accuracy when

transporting PTP over timing-unaware networks.

The literature discusses several sources of delay asym-

metry originating from the timestamping implementation,

the PHY hardware, and the delay components, i.e., propaga-

tion, processing, queuing, and transmission (or serialization)

delays. At the hardware level, the transmit and receive paths

of a network interface can impose different latencies from the

point of packet arrival or departure to where timestamps are

taken, as discussed in [23]. For example, this is typical in

gigabit Ethernet (GbE) interfaces (i.e., 1000BASE-T), which

we consider in this work. Unless known and calibrated, this

latency difference leads to PTP delay asymmetry.

On the one hand, the PHY latency asymmetry effect is

alleviated when the clock master and slave devices are paired

with each other, as pointed out in [24]. On the other hand,

over a PTP-unaware network, each switching stage between

the PTP endpoints (master and slave) can also contribute with

their asymmetric PHY latencies. This contribution from the

network is harder to compensate for in practice, as it varies

per-hop and potentially comes from third-party equipment.

At the link level, the propagation delay may be signif-

icantly asymmetric when the m-to-s and s-to-m transmis-

sions occur over distinct wavelengths [25] or asymmetric

transmission lines [24]. Also, the transmission delays of PTP

messages can be asymmetric if the m-to-s and s-to-m link bit

rates are distinct [26], [27], or if the master and slave nodes

negotiate different line speeds with their peers [28].

Meanwhile, queuing delay asymmetry arises when the

PTP traffic shares the network with background (BG) traffic.

In this scenario, the queuing delays are typically asymmetric

for each PTP exchange, and can also be asymmetric on

average. For example, due to distinct BG traffic loads in the

two directions [29], or asymmetric BG packet sizes.

The PTP messages also experience variable processing

delays over the network. Such processing delay variations

come primarily due to the access to shared switch resources

when processing each packet [30]. Consequently, the two

PTP messages of a two-way exchange can experience asym-

metric processing delays. Nevertheless, unlike the queu-

ing delays, the processing delays tend to be symmetric

on average.

Lastly, network-level asymmetry arises when the m-to-s

and s-to-m network paths are distinct [31]. For example, this

is possible when PTP messages are transported over UDP,

as in the case of the PTS PTP profile [13], given that the

m-to-s and s-to-m routes can differ.

Table 1 summarizes the sources of delay asymmetry and

the nature of each phenomenon in terms of whether it is static

for all PTP packets or random. For example, the asymmetry

that arises from propagation delay differences is typically

static, whereas the asymmetry from queuing delays is typi-

cally stochastic. Nevertheless, note that the table shows the

typical nature, which may not hold in all forms of synchro-

nization and deployments. Furthermore, it focuses on the

main asymmetry contribution of each effect. For example,

while the PHY latency asymmetry can be variable, its primary

contribution is usually static.

TABLE 1. Summary of delay asymmetry sources.

The typical approaches for dealing with the delay asymme-

try bias are estimation and calibration techniques. Further-

more, many works propose strategies to avoid asymmetry

instead of correcting it. In terms of how one can achieve

the asymmetry estimation, there are two main categories:

methods that rely on extra probing packets (e.g., [32]), and

methods that estimate the asymmetry based on the ordinary

PTP timestamps (e.g., [29] and [33]).

The method proposed in [29] focuses on the asymmetry

of queuing delays. It estimates the difference between each

packet’s queuing delay and the minimum observed queuing

delay in a window. If the minimum queuing delays are sym-

metric in the m-to-s and s-to-m directions, these estimates

can then be used to infer the queue-induced asymmetry dis-

turbing each two-way PTP message exchange. This approach

requires observationwindows that are large enough to contain

minimally delayed packets. Also, it requires symmetric mini-

mum delays. Any residual static asymmetry on the minimum

delays is left uncorrected.

The method proposed in [33] estimates the average asym-

metry between gamma-distributed delays. Nevertheless, like

packet selection algorithms, it requires that the time offset

remains constant throughout observation windows. Besides,

it relies on a few imperfect mathematical approximations,

and it only works if the delays are indeed close to gamma-

distributed. According to [19], this distribution is typical for

cross-traffic scenarios but not for in-line traffic.

Lastly, an example strategy to avoid the delay asymmetry

instead of estimating it is the so-called controlled departure

method from [34]. The idea is to assign a sufficient gap

between a PTP message and the preceding BG packet trans-

mission, such that the PTP packet does not suffer queuing

20578 VOLUME 9, 2021



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

delay over the network. With this approach, one can avoid

queue-induced asymmetry (and most of the PDV). However,

the method is limited to specific network topologies where

PTP packets do not suffer contention. Although our testbed

supports this technique, as demonstrated in [35], further eval-

uations using it are beyond the scope of this work.

C. MODEL-BASED FILTERING

Unlike packet selection, some estimation techniques incor-

porate models for time and frequency offsets. The two

techniques of interest are the LS and KF algorithms. For

example, [18] uses LS polynomial fitting on timestamp win-

dows to model the slave time as a function of the master

(reference) time. It aims at alleviating the noise from jittery

timestamps taken in software. By using the LS-fitted time

offset estimates, rather than the rawmeasurements, the output

becomes less noisy, and the synchronization performance

improves.

Themodel of [18] represents the slave time as a polynomial

in the indeterminate t , where t is the absolute (reference)

time. It admits a linear model, as well as contributions from

quadratic and cubic terms, showing that the linear model

is almost always the best to avoid overfitting and for less

complexity. Moreover, given that the LS-fitting is applied on

windows of timestamps, the paper analyzes how the window

length impacts performance and particularly how the tem-

perature conditions can affect the optimal window length.

Nevertheless, it does not investigate the impact of the PDV.

A KF approach for clock synchronization is presented

in [36]. Although formulated for an NTP application, it is

equally valid for PTP. This work adopts a scalar-state vector-

measurement KF formulation focusing on the discrepancies

between intervals measured by the slave and the master. The

state of the filter converges to the inter-departure interval of

NTP packets sent from the slave to the master according to

the slave’s time base. By comparing this state to the nominal

(or reference) inter-departure, the slave can infer its frequency

offset. The method assumes a window of N messages during

which the frequency offset remains constant. Also, it deals

with the PDV by incorporating it as measurement noise.

Since its measurement noise corresponds to the difference of

consecutivemessage delays, the noise is a zero-mean process,

but not necessarily Gaussian.

The primary investigation from [36] concerns the KF per-

formance under two scenarios: white Gaussian noise and

correlated noise. The latter represents the case of bursty

BG cross-traffic that introduces self-similar queuing delays

to PTP messages. In particular, it compares KF to a linear

programming (LP) approach and simple moving average fil-

tering. While KF outperformed the two other methods under

Gaussian noise, LP was superior in the experiment with

self-similar noise. Nevertheless, the evaluation is limited,

given that it consists of a simulation where frequency offset

remains constant throughout the experiment.

The LP method investigated in [36] consists of another

model-based filtering alternative for clock synchronization.

Its objective relates to the rationale of EAPF, i.e., selection

of packets with minimum delays. The LP approach produces

time offset estimates related to the minimum delays by mini-

mizing the constraints of an LP problem.

The authors of [37] agree with the LP formulation

from [36] and extend the experiments with more practical

hardware impairments, such as oscillator noise and times-

tamping uncertainty. [37] also contrasts the LP and KF per-

formances under Gaussian and self-similar delays, with the

agreeing conclusions that LP can perform better than KF

under non-Gaussian delay. Nevertheless, one disadvantage

of LP is the relatively high computational cost for solving

a new LP problem on every iteration. Besides, [36] and [37]

consider delays in the order of milliseconds, such that their

performance figures are poor compared to the nanosecond

levels that we target in the remainder of this work.

The more recent work in [38] augments the LP approach

of [37] with the compensation of the slave clock’s frequency

offset variations due to temperature. The goal is to linearize

the slave clock’s time offset before LP computations. Nev-

ertheless, its experiments are based on numerical simulation,

using a model for the relationship between the temperature

and the oscillator’s frequency offset, and assuming perfect

knowledge of the temperature.

Amore realistic KF evaluation is presented in [39]. Despite

also using simulation, this work takes oscillator and times-

tamping uncertainties into account. In particular, it analyzes

the accuracy of clock offset estimations obtained through a

vector-state vector-measurement KF formulation under vary-

ing timestamping uncertainty levels, i.e., from hardware to

software timestamping, and varying levels of oscillator sta-

bility. While neglecting packet delay uncertainties, it shows,

for instance, that KF is helpful under poor (software) times-

tamping, but as the timestamping accuracy increases, the raw

measurements approach the KF performance. Nevertheless,

this conclusion only holds because the work ignores the delay

uncertainty. Under high PDV, the latter becomes the predomi-

nant component of measurement noise, and so a Kalman filter

can provide significantly smoother results than raw measure-

ments, even with precise timestamping. However, [39] does

not discuss this scenario.

One fallacy of KF for clock synchronization is that the

algorithm is only optimal for Gaussianmeasurement and state

noise, whereas in practical systems, this is not the case [40].

Another disadvantage comes from its relatively high com-

putational cost. To this end, [41] proposes a more efficient

KF approach. It considers a vector-state scalar-measurement

formulation that avoids unnecessary Kalman iterations and,

instead, can execute the predict and update steps of the filter-

ing solely when necessary.Moreover, it expands the oscillator

model from [39] and considers the effects of an unbiased

delay compensation uncertainty.

An interesting discussion from [41] concerns the Kalman

filter’s sensitivity to its initialization parameters, particularly

the measurement and process noise covariance matrices. The

work shows how the estimation performance decreases when

VOLUME 9, 2021 20579



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

the state noise covariance is wrongly initialized. In contrast,

other investigations such as [39] evaluate the KF performance

with covariances that match the noise introduced in simu-

lation. In practice, it is difficult to have a priori knowledge

about these covariances, so this becomes a disadvantage for

the practical use of the KF approach.

Another noteworthy model-based estimator is the mini-

max estimator proposed in [42], which minimizes the max-

imum mean square of the normalized error corresponding

to time and frequency offset estimates. This work focuses

on the effects of PDV caused by BG traffic. Its optimal

estimator assumes complete knowledge of the delay statistics

and unlimited computational complexity, with a solution for

imperfect delay knowledge based on [43]. However, it relies

on the unrealistic assumptions that the time offset remains

constant over a block of PTP exchanges (as discussed later,

this requires perfect syntonization) and that the static delay

asymmetry is known a priori. The work does not demonstrate

the method’s performance under real oscillator and network-

ing conditions, as it relies on numerical simulations.

Lastly, another model-based time offset estimation strategy

is the supervised learning approach in [44], which uses a neu-

ral network (NN) to improve the time offset fits obtained via

LS. For each window of timestamps, the algorithm computes

the LS linear regression, normalizes the LS fit, and feeds the

normalized result into theNN. Then, theNNpredicts the error

between the LS fit and the true time offset at an arbitrary

instant past the observation window, such that it canminimize

the mean square error of the LS fit.

Similar to the investigation of [18], [44] evaluates the

performance impact of the observation window length. The

LS performance figures are convex with the window length,

meaning the LS observation window cannot be too short and

neither too large. In contrast, [44] shows that the NN tends

to be more robust to oversized windows. This property may

prove helpful in practice, as it could simplify the search for

an optimal observation window length. However, it is not

clear whether this result applies when the predominant noise

is PDV. In [44] (and [18]), the focus is on the measurement

noise due to temperature fluctuations, rather than PDV.

D. CLOCK SYNCHRONIZATION TESTBEDS

The majority of the literature regarding PTP estimation

algorithms relies on numerical simulations. Inevitably, some

works put significant effort into simulating oscillators and

other uncertainties accurately. However, often such simula-

tions do not entirely capture the real behavior of oscillators,

timestamping, or networking conditions. Such a complete

picture can only be provided by analyzing data from real

hardware. Table 2 categorizes the works referred thus far

in terms of their evaluation environment, whether based on

numerical simulation or data from real hardware.

An essential feature for hardware-based evaluation of PTP

processing algorithms is the ability to assess the accuracy

of estimates. While a simulation environment always holds,

e.g., the true time offset of a clock at any simulation instant,

TABLE 2. Categorization of the referenced literature in terms of their
experimental environment: simulation or hardware.

on a testbed, this requires extra effort. Another challenge

for hardware-based evaluation is the ability to run multiple

algorithms based on the same data so that algorithms can be

compared under the same environmental conditions.

Such pre-requisites have been addressed in [18] and [44].

These works aim at a reliable comparison of algorithms by

using the testbed of [40], which supports the acquisition of

the timestamps exchanged by the synchronization protocol

and the true synchronization error between the slave andmas-

ter devices throughout the experiment. However, the testbed

in [40] relies on relatively limited hardware. In particular,

it uses software-based timestamps and provides accuracy

and precision within the microsecond range. In contrast,

the testbed that we present in this work is based on

nanosecond-accurate and hardware-based timestamps, and

it also addresses the requirements for reliable algorithm

comparison.

Furthermore, to the best of our knowledge, the testbed

from [40] has only been used to evaluate the LS (in [18])

and NN (in [44]) estimators. In this work, we explore a

more extensive range of algorithms, including the strategies

discussed in [20]–[22], [39], [41] and [18].

III. SYSTEM MODEL AND DEFINITIONS

In this section, we discuss the main definitions and models

regarding the time and frequency offset processes. Further-

more, we describe how these processes can be measured

using timestamps from PTP messages.

A. NOTATION

In this work, x and y represent time and frequency offset,

respectively. x[n] expresses the n-th true time offset value,

whereas x̃[n] denotes the n-th measurement of x[n], which

is corrupted by noise and subject to imperfections. More

generally, z̃ represents a noisy measurement of z (a generic

variable), whereas ẑ denotes an elaborate estimate of z.

In terms of indexing, n indexes individual samples in

discrete-time domain. In contrast, index k represents win-

dows (i.e., collections) of samples. For example, x̂[k] denotes

a time offset estimate based on the k-th collection of noisy

measurements. When focusing on windows, we index some

variables based on their position m in the window and the

window index k , such as the version of the time offset x[n]

that is denoted as x[k,m]. The non-windowed and windowed

domains can be reconciled by setting the non-windowed

index n equal to kN + m. This identity holds provided that

the observation windows are non-overlapping and of size N .

20580 VOLUME 9, 2021



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

Lastly, bold lowercase letters such as x represent vectors,

bold uppercase letters such as H represent matrices, and

(.)T denotes the transposition operation.

B. TERMINOLOGY

Before delving into further definitions, it is worth clarifying

the terminology regarding the overused word clock. More

specifically, the distinction between a clock and a clock signal

in this work. The term clock refers to a time counter, such

as a real-time clock (RTC), or a device containing one. For

example, in the IEEE 1588 standard [9], a clock means a

network node that participates in PTP (i.e., exchanges mes-

sages of the protocol) and can measure the passage of time.

In contrast, we use the term clock signal to refer to an analog

periodic signal that drives the actions of the digital circuit that

implements the RTC. This is the analog signal derived from

a local oscillator (LO). The terms clock frequency and clock

cycle refer to the frequency and period of the clock signal.

C. TIME AND FREQUENCY OFFSET PROCESSES

An RTC is a hardware structure capable of measuring real-

time. It often holds a full time-of-day (ToD) count tracing an

internationally-recognized time standard, such as coordinated

universal time (UTC). For example, PTP RTCs typically use

32 bits to store nanoseconds and 48 bits to store seconds

elapsed since January 1st, 1970 [9].

The RTC’s implementation generally consists of a counter

that operates with a nominal clock frequency of fnom. On each

clock cycle, the RTC increments its time count by 1/fnom.

However, in practice, the frequency driving the RTC differs

from nominal, and, as a result, the RTC increments its time

count by an imperfect interval on every clock cycle. In this

process, the RTC continuously accumulates time offset.

As explained in ITU-T Recommendation G.810

[45, Appendix I], the error between the time of a local clock

and the time of a reference clock can be modeled as:

x(t) = x0 + y0t +
D

2
t2 +

φ(t)

2π fnom
, (1)

where x0 is the initial time offset, y0 is the fractional fre-

quency offset relative to the nominal frequency,D is the linear

fractional frequency drift rate, and φ(t) is the phase noise.

In this model, x0, y0, and D are deterministic parameters.

In contrast, φ(t) models the random phase deviations of the

clock signal that drives the RTC and is responsible for all

random variations of x(t).

The corresponding continuous-time frequency offset is the

derivative of the time offset, given by:

y(t) = y0 + Dt +
1

2π fnom

dφ(t)

dt
. (2)

Just like the time offset, the frequency offset changes continu-

ously due to oscillator instabilities modeled by the frequency

drift D and the random phase noise φ(t) [46].

Instead of pursuing the complete evolution of the

continuous-time x(t), many estimation algorithms focus on

sufficiently short observation windows. The primary justifi-

cation for this choice is the simplification of the model. First,

the linear frequency drift D from (1) is generally negligible

in the short-term, as it models long-term frequency deviations

due to oscillator aging. Secondly, the phase noise varies rela-

tively slowly, so that a sufficiently short observation window

may capture a constant phase noise contribution to time and

frequency offsets. In the end, the model becomes a piecewise

linear approximation of (1), as discussed, e.g., in [36], [37].

In discrete-time, the simplified short-term piecewise linear

model for a window of N samples of x(t) is given by:

x[k,m] = x0[k] + y[k]τ [k,m], 0 ≤ m < N , k ≥ 0 (3)

where x0[k] and y[k] are the initial time offset and the nor-

malized (or fractional) frequency offset of the k-th observa-

tion window, respectively, both assumed constant throughout

the window. Also, this model assumes that the time offset

samples are taken at irregular instants, rather than periodi-

cally, and so variable τ [k,m] denotes the true instant of each

sample. For simplicity, this instant is measured relative to the

beginning of the observation interval, such that τ [k, 0] = 0.

D. TIME OFFSET MEASUREMENT

The typical approach for time offset measurement is to exe-

cute a two-way exchange of timestamped messages between

two clocks. For example, the so-called delay request-response

mechanism fromPTP [9], which is illustrated in Fig. 1. On the

n-th iteration, the PTP master clock sends the Sync message,

whose departure timestamp is t1[n] and whose arrival time at

the PTP slave clock is timestamped as t2[n]. The slave replies

with a DelayReq message, which departs at time t3[n] and

arrives back to the master at t4[n].

FIGURE 1. PTP delay request-response exchange with asymmetric
queuing delays over the network.

Timestamps t2[n] and t3[n] are taken at the PTP slave side

and, therefore, are corrupted by the slave’s time offset relative

to the reference time, i.e., the PTP grandmaster (GM) time.

Also, the two messages experience distinct transit delays.

The n-th Sync message experiences the m-to-s delay dms[n],

and the n-th DelayReq experiences the s-to-m delay dsm[n].

VOLUME 9, 2021 20581



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

Consequently, the n-th time offset x[n] can be expressed by:
{

x[n] = t2[n] − (t1[n] + dms[n])

x[n] = t3[n] − (t4[n] − dsm[n]),
(4)

where x[n] is assumed constant throughout the message

exchange. Note that both equations compute the time offset

as the slave time (t2 or t3) minus the master time (t1 or t4),

adjusted by delays. More specifically, they refer to the

instants highlighted by the dashed lines in Fig. 1.

The slave clock only observes the timestamps and does not

know the true one-way delays of each message. In particular,

the slave can compute the following timestamp differences:
{

t21[n] = t2[n] − t1[n] = x[n] + dms[n]

t43[n] = t4[n] − t3[n] = −x[n] + dsm[n],
(5)

which consist of two linearly independent equations with

three unknowns: x[n], dms[n], and dsm[n]. Then, the typical

approach for time offset estimation is to assume symmetric

delays and use the following linear combination of (5):

x̃[n] =
t21[n] − t43[n]

2
. (6)

By substituting (5) in (6), note that (6) in reality yields noisy

time offset measurements due to the delay asymmetry w[n]:

x̃[n] = x[n] + w[n] = x[n] +
dms[n] − dsm[n]

2
. (7)

In practice, even if the forward and reverse one-way delays

were perfectly symmetric, there would still be other uncer-

tainties on the timestamps that wouldmake themeasurements

from (6) noisy. For example, there are uncertainties due to

timestamp quantization and short-term oscillator stability.

Nevertheless, we assume that the delay asymmetry is by far

the predominant measurement noise component.

An alternative linear combination of (5) yields the so-

called two-way delay measurement, namely the average

between the m-to-s and s-to-m one-way delays:

d̃[n] =
t21[n] + t43[n]

2
=
dms[n] + dsm[n]

2
. (8)

Nevertheless, this estimate does not reveal the individual

one-way delays, which are of interest.

The one-way delays are composed of fixed and random

parts, both of which can be asymmetric, as follows:
{

dms[n] = κms + δms[n]

dsm[n] = κsm + δsm[n].
(9)

Thus, the delay asymmetry noise w[n] in (7) has both static

and random asymmetry components, that is:

w[n] =
(κms − κsm)

2
+

(δms[n] − δsm[n])

2
. (10)

In this work, among the asymmetry sources in Table 1, we

assume that the static PHY hardware and the average queuing

delay asymmetry are the phenomena that contribute to the

static asymmetry (κms − κsm)/2. Furthermore, we assume

that the random processing and queuing delays of each PTP

exchange determine the instantaneous asymmetry between

δms[n] and δsm[n], typically with a far more significant con-

tribution from queuing delays. We neglect the other sources

from Table 1 by assuming that bit rates, transmission line

lengths, and network paths are symmetric.

A PTP-aware network overcomes the noise w[n] by either

handling the synchronization on each link with the so-called

BCs or by measuring the full residence time (RT) of a PTP

message over all PTP TCs [9] in the network. For example,

RT measurements (RTms and RTsm) are illustrated in Fig. 1.

In contrast, when PTP runs end-to-end over a PTP-unaware

network, there is no mechanism to overcome the noise w[n],

which then becomes a significant impairment.

In the end, there are two main challenges to be addressed

by synchronization algorithms on the PTP-unaware network

scenario. The first is the measurement noisew[n]. The second

is the ability to trace the true time offset from (1), which

evolves randomly over time.

E. FREQUENCY OFFSET MEASUREMENT

Because time synchronization implies frequency synchro-

nization (i.e., syntonization), if the time offset measurements

are accurate and frequent enough, then frequency offset mea-

surements can be unnecessary in many applications. On the

other hand, when the time offset measurements are not accu-

rate, the frequency offset correction becomes essential to

support the time offset estimation.

In PTP-unaware networks, the syntonization relies onmea-

surements of the frequency offset based on PTP timestamps.

However, one challenge is that frequency offset measure-

ments depend on observation intervals rather than instanta-

neous observations. The usual approach is to consider the

discrete-time approximation of (2), given by:

y[n] ≈
x[n] − x[n− N ]

t1[n] − t1[n− N ]
, (11)

where t1[n]− t1[n−N ] is the time interval between x[n−N ]

and x[n], according to timestamps taken by the master clock,

and N represents the observation window. This approxima-

tion only holds if the frequency offset remains constant during

the observation interval controlled by N .

The typical way to measure the approximated frequency

offset from (11) uses the measurements from (6), as follows:

ỹ[n] =
x̃[n] − x̃[n− N ]

t1[n] − t1[n− N ]
. (12)

Using (7), note this measurement is equivalent to:

ỹ[n] = y[n] +
w[n] − w[n− N ]

t1[n] − t1[n− N ]
, (13)

which, unlike (7), is an unbiased estimate.

Similar unbiased estimators can be derived based on times-

tamps from PTP messages in a single direction. For example,

using only the m-to-s timestamps, one can use:

ỹ[n] =
t21[n] − t21[n− N ]

t1[n] − t1[n− N ]
, (14)

20582 VOLUME 9, 2021



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

which, based on (5), is equivalent to:

ỹ[n] = y[n] +
dms[n] − dms[n− N ]

t1[n] − t1[n− N ]
. (15)

The difference between the two-way computation in (12)

and the one-way computation in (14) is the noise term.

The two-way approach balances the noise contributions from

the PDV in the m-to-s and s-to-m directions. In contrast,

(14) experiences the PDV in the m-to-s direction only.

In (13) and (15), note that the observation window N

determines interval t1[n] − t1[n − N ] and, consequently,

the noise attenuation. Nevertheless, it takes a long interval to

attenuate the expected noise range. For example, if the delay

fluctuations are in the order of microseconds, the interval

t1[n] − t1[n − N ] has to be in the order of 1000 seconds to

reduce the estimation noise to sub-ppb range. The problem is

that the approximation in (11) also assumes that the frequency

offset remains constant over the window of N samples. This

is a conflicting requirement, which requires the observation

window to be short enough.

IV. SYNCHRONIZATION ALGORITHMS

The goal going forward is to combine multiplemeasurements

x̃[n] from (6) to obtain less noisy time offset estimates. For the

methods based on observation windows, we take N observa-

tions and output a single estimate. Also, if each window over-

laps withN−1 samples of the previous window, one estimate

can be obtained for each new x̃[n] measurement. In this case,

the estimator’s output rate is the same as its measurement

input rate despite the window-based approach. However, to

simplify the notation, we assume non-overlapping windows

in the sequel.

A. CONSTANT-OFFSET WINDOW PROCESSING

We start with a class of estimators that relies on the assump-

tion that the time-offset remains constant throughout each

observation window. For example, the estimators referred to

as packet selection in the literature [19]–[22], [47], which

select a pair of PTP messages in a window (one in each

direction), then estimate the time offset using this pair only.

Also, the strategies that do not strictly use selection, but

which process a window of measurements using the constant

time offset assumption. For example, the so-called sample-

average (or sample-mean) and sample-mode approaches.

This class of estimators generally processes the timestamps

differences t21[n] and t43[n] from (5). That is, in the k-th

observation window, they process the vectors:

t21[k] = [t21[k, 0], t21[k, 1], · · · , t21[k,N − 1]]T (16)

t43[k] = [t43[k, 0], t43[k, 1], · · · , t43[k,N − 1]]T , (17)

each containing N timestamp differences.

As discussed in [48], the final estimate is obtained by:

x̂[k] =
ξ {t21[k]} − ξ {t43[k]}

2
, (18)

where ξ{} denotes an arbitrary operator, typically the mini-

mum, maximum, mean, median, or mode2 operator.

Using (5), note that, if the time offset x[kN+m] is constant

over the k-th observation window (for 0 ≤ m < N ), it can be

factored out of the operator, so that (18) becomes:

x̂[k] ≈ x[kN ] +
ξ {dms[k]} − ξ {dsm[k]}

2
, (19)

where x[kN ] denotes the time offset of the k-th window,

constant within the index range [kN , (k+1)N ), while dms[k]

and dsm[k] are vectors given by:

dms[k] = [dms[k, 0], · · · , dms[k,N − 1]]T (20)

dsm[k] = [dsm[k, 0], · · · , dsm[k,N − 1]]T . (21)

From (19), note the goal is to maximize the chances of

having ξ {dms[k]} equal to ξ {dsm[k]} within N measure-

ments, such that these terms can cancel each other. This

approach’s success depends not only on the statistic pursued

by the operator being symmetric (condition 1) but also on

the chances of finding such symmetric realizations within N

measurements (condition 2). For instance, when PTP shares

the network with BG traffic, some PTP messages may still be

lucky enough to traverse the entire network without colliding

with BG packets, i.e., with no queuing delay. In this case, if all

asymmetry sources from Table 1 other than queuing delay are

absent, it is theoretically possible that theminimum t21[n] and

t43[n] in N realizations becomes symmetric. Furthermore,

if the delay distributions are more concentrated around their

minima, the referred lucky realizations are more likely within

N samples, as discussed in [19].

Due to its probabilistic nature, the algorithm’s performance

depends strongly on the window length. By increasing N ,

the chances of finding symmetric realizations can increase.

On the other hand, note that (19) assumes that the time offset

remains constant throughout each observation window. This

is a vital requirement of the method, which effectively limits

the window length. That is, N must be low enough such that

x[n] remains reasonably constant over N samples.

The time offset can only be constant over an observation

window if the slave’s RTC is perfectly syntonized. However,

accurate syntonization is often a challenge in PTP-unaware

networks. The syntonization is handled based on PTP esti-

mates instead of, e.g., a PHY frequency reference. Thus,

the process is prone to PDV-induced estimation errors and

commonly low responsiveness to frequency deviations.

In this scenario, it is useful to apply a further syntoniza-

tion layer within the software-level when executing the

window-based algorithm. The proposed adaptation of (18) is

to precede its computation with a time offset drift compen-

sation step. More specifically, we can correct the values of

t21[n] and t43[n] as follows:














t ′21[k,m] = t21[k,m] −
m
∑

j=0

1̂x[j]

t ′43[k,m] = t43[k,m] +
m
∑

j=0

1̂x[j],

(22)

2Themode operator is typically preceded by the quantization of t21[n] and
t43[n] and succeeded by the dequantization of the operator’s results.

VOLUME 9, 2021 20583



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

where 1̂x[n] represents an estimate of the time offset drift

1x[n] = x[n] − x[n− 1] (discussed in Section IV-D).

The resulting drift-compensated timestamp differences

from (22) can be organized into vectors t′
21
[k] and t′

43
[k], as in

(16) and (17). Then, similarly to (18), these vectors are used

to estimate the time offset as follows:

x̂ ′[k] =
ξ

{

t′
21
[k]

}

− ξ
{

t′
43
[k]

}

2
+

N−1
∑

j=0

1̂x[j]. (23)

where the summation term reintroduces the drift subtracted

from the timestamp difference samples, such that x̂ ′[k] esti-

mates the time offset by the end of the observation window.

The advantage of the estimator implemented by (23) is that

it tolerates time-varying time and frequency offsets over the

observationwindow. In this case, thewindow length is limited

by the accuracy of the drift estimates 1̂x[n], which tends to be

a more relaxed constraint than the requirement of a constant

time offset throughout the observation windows. As a result,

this approach tends to perform well with long observation

windows, as discussed later in Section VII. To the best of our

knowledge, this formulation in (23) has not been discussed

previously in the literature.

B. LEAST-SQUARES ESTIMATOR

Unlike the previous estimator, the LS estimator completely

neglects the statistics of the noise w[n]. Instead, it focuses on

the properties of the time offset process. More specifically,

it assumes that the time offset is piecewise linear, as in the

simplified model of (3). Then, it tries to find the LS fit of the

linear model based on the measurements.

First, let us convert the non-windowed time offset measure-

ments of (7) into windowed notation, as follows:

x̃[k,m] = x[k,m] + w[k,m]. 0 ≤ m < N , k ≥ 0 (24)

Next, using (3), we model the measurements as follows:

x̃[k,m] = x0[k] + y[k]τ [k,m] + w[k,m]. (25)

In vectorized form, we can define:

x̃[k] =
[

x̃[k, 0], x̃[k, 1], · · · , x̃[k,N − 1]
]T

(26)

w[k] = [w[k, 0],w[k, 1], · · · ,w[k,N − 1]]T (27)

θ [k] = [x0[k], y[k]]
T (28)

H[k] =











1 τ [k, 0]

1 τ [k, 1]
...

...

1 τ [k,N − 1]











. (29)

Thus, it follows that:

x̃[k] = H[k]θ [k] + w[k], (30)

where x̃[k] is the observed data vector, H[k] is the so-called

observation matrix, θ [k] is the vector of unknowns, and w[k]

is the noise vector.

If the noise was zero-mean, white and Gaussian-

distributed, it is known that the minimum variance unbiased

(MVU) estimator of θ [k] would be achieved by the LS esti-

mate, which follows:

θ̂ [k] =
(

HT [k]H[k]
)−1

HT [k]x̃[k]. (31)

Nevertheless, since the delays that contribute to w[n] are not

white Gaussian in practice, the LS estimator’s optimality is

not guaranteed. Also, the LS estimates are subject to the

inaccuracies of the piecewise linear model of (3) relative to

the non-linear, stochastic, and continuous-time model of (1).

With the estimate θ̂ [k], it is possible to compute the LS fit

of the time offset as a line with slope ŷ[k] starting from x̂0[k]:

x̂[k,m]
.
= x̂0[k] + ŷ[k]τ [k,m]. 0 ≤ m < N , k ≥ 0 (32)

However, note that τ [k,m] represents the instant of the

m-th observation (or PTP exchange) relative to the begin-

ning of the window. This instant is unknown, but it can be

approximated based on timestamps taken on the GM side

(e.g., timestamp t1). Alternatively, one can assume that the

observations are periodic with period T (the PTP exchange

interval), such that the observation matrix simplifies to:

H[k] =











1 0

1 T
...

...

1 (N − 1)T











. (33)

Accordingly, the LS fit becomes:

x̂[k,m]
.
= x̂0[k] + ŷ[k](mT ). 0 ≤ m < N , k ≥ 0 (34)

In practice, overlapping windows can be used such that

an observation window has a single new measurement and

N − 1 measurements from the previous window. In this case,

the output of the LS estimator can be solely the last fitted

value from (32) or (34), i.e., x̂[k,N − 1], so that there is one

output for every input x̃[n].

Importantly, note that, in contrast to the algorithms from

Section IV-A, the LS estimator does not require constant

time offsets throughout the observation windows. Instead,

it requires the frequency offset to remain constant, such that

the linear time offset model holds. Thus, the LS window

length is limited by the frequency stability. Besides, note that

quadratic, cubic, and other terms could be introduced in the

LS formulation. However, as discussed in [18], the piecewise

linear model tends to produce better results.

C. KALMAN FILTERING

The KF approach departs from window-based strategies and

particularly from the assumption that the unknown time and

frequency offsets are constant (or deterministic) within the

observation windows. Instead, it considers that x[n] and y[n]

are continuously-evolving stochastic processes that compose

a state vector s[n] = [x[n], y[n]]T . The goal of the filter is to

predict the state s[n] with minimummean square error (MSE)

based on past observations and knowledge of the dynamics of

the time and frequency offset processes.

20584 VOLUME 9, 2021



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

In the conventional KF formulation, the state vector s[n]

consists of a first-order Gauss-Markov process [49]. Thus,

we start by establishing recursive models for x[n] and y[n],

such that we can express s[n] based on s[n− 1].

The recursive model of the time offset is given by:

x[n] = x[n− 1] + y[n− 1]1τ [n] + ux[n]. (35)

This model assumes that, from x[n − 1] to x[n], the main

change comes from the linear contribution of the frequency

offset y[n− 1], which acts over the interval 1τ [n] = τ [n] −

τ [n−1]. This part of the model relates to the piecewise linear

model of (3). However, (35) assumes that the frequency offset

is constant only within the short interval 1τ [n], rather than

over a long observation window. Furthermore, (35) acknowl-

edges that the linear term does not capture all the complexity

of the continuous-time model in (1). In particular, it includes

an uncertainty term ux[n], which comes primarily due to the

contribution from the phase noise φ(t) in (1).

Next, the recursive frequency offset model is given by:

y[n] = y[n− 1] + uy[n], (36)

where uy[n] represents the frequency state noise, which is

responsible for time variations of the frequency offset.

Using (35) and (36), and given that s[n] = [x[n], y[n]]T ,

note that the Gauss-Markov state process can be modeled by:

s[n] = As[n− 1] + u[n], n ≥ 0 (37)

where A is the state transition matrix given by:

A =

[

1 T

0 1

]

, (38)

and u[n] =
[

ux[n], uy[n]
]T

is the state noise vector. For

simplicity, as in (33), this transition matrix assumes that the

sample intervals 1τ [n] in (35) are constant with period T .

In the conventional KF formulation, u[n] in (37) consists

of a zero-mean white Gaussian vector with PDF ∼ N (0,Q).

Matrix Q = E
[

u[m]uT [n]
]

is the state noise covariance

matrix, and it is assumed that Q = 0 for m 6= n, namely

that the noise vectors are independent from sample instant to

sample instant. Furthermore, the formulation assumes that the

initial state s[−1] is a random vector independent of u[n] and

whose PDF is∼ N (µs,Cs). Here, we assume also that ux[n]

and uy[n] are uncorrelated so that Q is a diagonal matrix for

all m = n, as assumed in [39], [41].

The statistics assumed for the noise vector u[n] imply that

both time and frequency offsets experience random-walk,

i.e., they continuously accumulate a sequence of i.i.d Gaus-

sian random variables. In terms of frequency stability char-

acterization [46], [50], this model considers white frequency

noise (which causes random-walk in time) and random-walk

frequency noise. As mentioned in [39], these tend to be the

predominant components of phase noise, and the advantage

here is that they lead to the more tractable case of Gaussian

state noise. However, other neglected phase noise sources

(particularly flicker phase, flicker frequency, and white phase

noise) may also be relevant in practice.

Next, we define the measurement model. In this work,

we opt for a vector-state scalar-observation KF configura-

tion [49], similar to [41], where the observations are the time

offset measurements from (6). Hence, the model becomes:

x̃[n] = hT s[n] + w[n], (39)

where h = [1, 0]T is a (2 × 1) vector such that this equation

is equivalent to (7).

Similarly to the state noise, the conventional KF formula-

tion assumes that the scalar measurement noise is zero-mean

Gaussian-distributed with uncorrelated samples, variance σ 2
w,

independent to both the initial state s[−1] and the state

noise vector u[n]. Here, in particular, the Gaussian assump-

tion does not hold, given that the noise in (10) is nearly

always non-Gaussian. Hence, the given Kalman filter is not

guaranteed to be optimal [36], just like the LS estimator of

Section IV-B is not guaranteed to be the MVU estimator.

Nevertheless, both estimators are still of interest. The Kalman

filter is still the optimal linear minimumMSE estimator [49].

Finally, the conventional vector-state scalar-measurement

KF equations can be used (see, e.g., [49]). For the given

model, the sequence of equations from the so-called predic-

tion to correction (or update) steps of the filtering are:

ŝ[n|n− 1] = Aŝ[n− 1|n− 1] (40)

M[n|n− 1] = AM[n− 1|n− 1]AT + Q (41)

k[n] =
M[n|n− 1]h

σ 2
w + hTM[n|n− 1]h

(42)

ŝ[n|n] = ŝ[n|n− 1] + k[n]
(

x̃[n] + hT ŝ[n|n− 1]
)

(43)

M[n|n] =
(

I − k[n]hT
)

M[n|n− 1], (44)

where ŝ[l|p] is the estimate of state s[l] based on the p-th state,

M[l|p] is the corresponding state estimate covariance matrix,

defined as E
[

(

s[l] − ŝ[l|p]
) (

s[l] − ŝ[l|p]
)T

]

, k[n] is the

2 × 1 Kalman gain vector, and I is a 2 × 2 identity matrix.

On initialization, M[−1| − 1] is set to the covariance Cs

of the random initial state s[−1]. Particularly in our imple-

mentation, due to the lack of knowledge about the initial

state, we populate Cs with arbitrarily large values, such that

the filter starts with little confidence in the state. Moreover,

we initialize the state vector s[−1] with the first available

time and frequency offset measurements, from (7) and (14),

respectively, rather than assigning a random realization of

a random vector with PDF ∼ N (µs,Cs). This heuristic

choice is meant to achieve faster convergence, and it is also

motivated by our unawareness of the actual µs and Cs.

We adopt another heuristic approach to define the state

noise covariance matrix Q. As discussed in [39], this matrix

can be determined based on the offline characterization of the

free-running local oscillator, for example, through Allan vari-

ance curves. However, this is a non-scalable approach, as it

requires a manual procedure for each device. An alternative

is to tuneQ with some degree of trial and error. As discussed

in Section V, our implementation in this work tries a range

VOLUME 9, 2021 20585



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

of matrices Q and picks the one that results in the best

performance. Nevertheless, one should note that it is crucial

to capture the statistics of the actual state noise for better

performance. Our inability to do so in a scalable and practical

way can limit the achievable performance.

Meanwhile, the measurement noise variance σ 2
w depends

mostly on the PDV experienced by PTP. Based on (7), and

assuming that the m-to-s and s-to-m delays are independent,

wide-sense stationary, and white discrete-time random pro-

cesses, it follows that:

σ 2
w =

Var {dms[n]} + Var {dsm[n]}

4
, (45)

where Var {} denotes the variance. Advantageously, σ 2
w coin-

cides with the variance of the two-way delay measurement

from (8), which the PTP slave node can compute in practice.

Moreover, note that themeasurement noise variance in (45)

depends solely on the delay variances and not their aver-

ages. Thus, the delay fluctuations due to queuing and

(to a less extent) processing delays determine it, whereas the

static delay asymmetries (see Table 1) do not influence it.

Nevertheless, static asymmetries do harm the KF assump-

tion of zero-mean measurement noise. Secondly, note that,

in contrast to [39], we assume that the PDV determines the

measurement noise in (45) while neglecting other effects such

as the timestamping granularity.

Ultimately, the given KF formulation is limited by three

main factors. The first refers to the state noise model, which

considers only two forms of phase noise, whereas other phase

noise sources may be significant. The second comes from the

non-Gaussian and non-zero-mean measurement noise, which

limits the estimates to sub-optimality. The third refers to the

difficulty of defining the state noise covariance matrixQ and

initial state s[−1] accurately.

D. TIME OFFSET DRIFT ESTIMATION

Section IV-A discusses the approach of (22), which benefits

from time offset drift estimates. In this work, we estimate the

time offset drifts as follows:

1̂x[n] = ŷ[n] (t1[n] − t1[n− 1]) , (46)

where ŷ[n] represents the frequency offset estimate. Further-

more, we obtain ŷ[n] based on the one-way formulation in

(14), instead of (12). This is not a general guideline, but a

choice that leads to better performance in our experiments,

where the m-to-s PTP messages experience less PDV.

To further alleviate the PDV noise, we process t21[n] using

an extra layer of window-based filtering. As illustrated in

Fig. 2, this processing relies on two observation windows

spaced by an interval of N samples, each containing K values

of t21[n]. The front window operates on the most recent K

samples, whereas the back window operates on samples in

the past. Ultimately, the estimate is obtained by:

ŷ[n] =

ξ
0≤j<K

{t21[n− j]} − ξ
0≤j<K

{t21[n−N − j]}

t1[n] − t1[n− N ]
. (47)

FIGURE 2. Window-based filtering strategy used for frequency offset
estimation.

where ξ is an arbitrary operator. In this work, we explore

specifically the minimum and maximum operators in (47).

The same tradeoffs discussed in Section IV-A apply

to (47). While the window length K must be short enough to

capture a constant time offset, it is also helpful to have large

windows to increase the chances of finding, e.g., minimally

or maximally-delayed packets in each window. Nevertheless,

in contrast to (23), where drift correction allows larger win-

dows, (47) does not have any solution for drifts. After all,

(47) is a pre-requisite for estimating the drifts in (46). Hence,

we explore relatively short windows (small K ) in (47).

V. PROCESSING ARCHITECTURE

A major goal in this work is to compare the synchro-

nization algorithms fairly by applying them simultane-

ously on the same data. To do so, we developed the

open-source Python-based PTP dataset analysis library

(PTP-DAL), which implements all processing stages

described thus far, with the architecture illustrated in Fig. 3.

Its analysis tool first reads a dataset containing timestamps

and labels collected by our FPGA-based testbed. Then,

it computes the corresponding time offset measurements

according to (6) and the timestamp difference metrics from

(5), which are fed into the algorithms from Section IV. In the

FIGURE 3. Software architecture implemented on PTP-DAL to process the
timestamps and labels of a dataset acquired from the testbed.

20586 VOLUME 9, 2021



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

FIGURE 4. Picture of the FPGA-based synchronization testbed.

end, the results of each algorithm are compared within the

Analyzer module.

Fig. 3 shows the stack of time offset estimation algorithms

implemented on PTP-DAL. Note that the algorithms from

Section IV-A rely on time offset drift compensation, using

equations (22) and (23). Thus, they receive the estimates

from the drift estimator module discussed in Section IV-D.

Meanwhile, the LS and KF algorithms process the time offset

measurements x̃[n] directly.

The architecture in Fig. 3 includes optional bias correc-

tion stages, which are explored in Section VII. These stages

shift time offset measurements or estimates by fixed values

computed from the dataset labels. For the algorithms from

Section IV-A, which compute the time offset estimates based

on timestamp differences t21[n] and t43[n], the bias correction

module shifts the time offset estimates produced by (23),

i.e., the algorithms’ outputs. In contrast, for the algorithms

that process the time offset measurements x̃[n] directly (LS

and KF), the bias correction stage shifts the algorithm’s input.

Furthermore, the bias correction module applies a dis-

tinct correction to each method from Section IV-A, depend-

ing on the operator ξ{} in (23). The rationale is that ξ{}

governs the asymmetry resulting from approximation (19).

Hence, the bias correction module computes the asymmetry

as follows:

b̂ =
ξ {dms[n]} − ξ {dsm[n]}

2
. (48)

For example, this expression returns the asymmetry between

the minimum m-to-s and s-to-m PTP delays when using

the sample-minimum approach. The remaining algorithms

(LS and KF) experience biases corresponding to the average

noise w[n] from (7), which also affects the sample-average

strategy. Hence, the bias correction module shifts them by the

average delay asymmetry.

PTP-DAL also includes the window length tuner module,

which finds the best observation window length N for the

algorithms from Section IV-A and LS. This module runs

each window-based algorithm for a range of window lengths

and returns the length that yields the best performance in

terms of the maximum absolute time error (max|TE|) [51].

In the end, all window-based algorithms are compared using

their (distinct) best window lengths.

Other modules also have their optimizers, such as the KF

and drift estimator. The Kalman filter’s optimizer sweeps

a range of state noise covariance matrices Q and chooses

the one that yields the lowest max|TE|. Similarly, the drift

estimator’s optimizer sweeps a range of N and K in (47)

until the resulting drift estimates from (46) present minimal

error relative to the true drifts observed on dataset labels.

Ultimately, PTP-DAL allows the comparison of algorithms

based on their best (reasonably optimized) configurations.

VI. TESTBED

Our testbed is composed of three Xilinx Virtex-7 FPGAs.

One of them is the PTP master clock, and the others are the

PTP slave clocks. Fig 4 shows the FPGAs, the switches, and

several measurement instruments that compose the testbed,

some of which are out of scope. The interested reader can

refer to the description of an early version of this testbed

in [52] and a more recent usage regarding radio-frequency

timing alignment experiments in [53].

In this section, we present the FPGA design choices for

the acquisition of timestamp datasets. Next, we describe the

testbed network and the sources of BG traffic used on exper-

iments. Finally, we discuss the PTP delays that are expected

based on the adopted testbed configurations.

A. FPGA DESIGN

The FPGA design of the PTP slave clock supports two

distinct oscillator options to drive the RTCs: an onboard

VOLUME 9, 2021 20587



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

crystal oscillator (XO), available on the adopted Xilinx

VC707 board, and an external oven-controlled crystal oscil-

lator (OCXO). As shown in Fig. 4, each slave clock has an

associatedAnalogDevices AD9548 phase-locked loop (PLL)

board, which, among other tasks (see [52]), supplies a clock

signal synthesized based on an OCXO.

The feature of a configurable oscillator allows the eval-

uation of two classes of RTC stability and accuracy. The

XO presents a frequency stability specification of ±50 ppm,

whereas the OCXO stays within ±5 ppb. In the experimental

section, we analyze results using the two oscillator options.

In contrast, our master clock only takes one driving clock

for its RTC. This reference comes from a high-stability

125MHz differential clock signal synthesized by an arbitrary

waveform generator (AWG), shown in Fig 4. This is meant to

be the primary reference clock (PRC) of the network [45].

Furthermore, each PTP slave clock in the testbed includes

two RTCs in the FPGA fabric. The first is the conventional

PTP-synchronized RTC, which is the source of time for the

timestamping of PTP messages. For brevity, we refer to this

instance as the PTP RTC. The second is a self-developed RTC

that synchronizes to a pulse per second (PPS) reference sig-

nal, referred to as the PPS RTC. This dual-RTC architecture

is illustrated in Fig. 5, and it is typical on devices featuring

primary and backup timing sources, such as in the case of

APTS slave clocks (see Appendix A in [17]).

FIGURE 5. Dual-RTC architecture used on the slave clocks.

As illustrated in Fig. 6, our master clock outputs a PPS

signal to the PTP slaves, which then synchronize their PPS

RTCs to this signal. Ultimately, the slaves synchronize their

PTP and PPS RTCs through entirely independent mecha-

nisms, the former through PTP over the network, and the

latter through the reliable PPS signal. Nevertheless, both the

PTP and the PPS timing references come from the master

clock’s time base. Thus, if the synchronization mechanisms

were ideal, the two RTCs would align perfectly.

A fundamental aspect of the FPGA design is that the

PTP and PPS RTCs are driven by the same clock signal of

fnom = 125 MHz, as shown in Fig. 5. Ultimately, this choice

allows an accurate correspondence between timestamps taken

from the two RTCs. Also, with this frequency of 125 MHz,

by default, the two RTCs increment in steps of 1/fnom = 8 ns.

Correspondingly, the inaccuracy of each PTP timestamp due

to the time quantization ranges from 0 to 8 ns.

To reduce the timestamp granularity, the PPS RTC devel-

oped in-house uses a double flip-flop re-synchronizer circuit

FIGURE 6. PPS connection and the frequency references supplied to the
FPGAs, with XO and OCXO options on the slave clocks.

similar to the approach in [54]. This circuit observes both

rising and falling edges of the RTC’s driving clock, and so

it halves the timestamp granularity. In the end, the PPS RTC

features a timestamping accuracy nominally within ±2 ns.

When receiving the PPS signal from the master, the slaves

continuously measure the time error (TE) between their

local PPS RTCs and the rising edges of the input signal.

With the measured TE, our FPGA’s firmware estimates the

local frequency offset relative to the master and compensates

it by adjusting the increment step of the PPS RTC. This

process happens through a software implementation of a

proportional-integral loop. Once the loop locks, we typically

(99.8% of the time) observe a steady-state synchronization

error within ±4 ns with the OCXO and ±8 ns with the XO.

In addition to the timestamp granularity, a significant

timestamping uncertainty source comes from variable latency

processing stages before the timestamping point. This is not

a concern for PPS synchronization because the timestamps

are taken directly based on the input PPS signal. In contrast,

it is a challenge for PTP because the timestamping usually

happens inside the medium access control layer (MAC) and

is adjusted back to the corresponding time at the physical

medium interface [55]. Thus, the timestamps are subject to

variable latency stages from the PHY [23], [56].

Our clocks implement the Ethernet MAC within the

FPGA fabric and rely on an external PHY chipset (Mar-

vell 88E1111 on the slaves). They timestamp the PTP mes-

sages within the MAC when the start of frame delim-

iter of the PTP frame (carrying the message) is observed

on a plane that lies after MAC stages with fixed and

known latency. Subsequently, each timestamp is adjusted in

software to the corresponding time at the gigabit media-

independent interface (GMII) interface. Thus, the timestamps

are nanosecond-accurate and represent the GMII time. Never-

theless, the timestamps do not represent the time at the phys-

ical medium. Correspondingly, any asymmetry or variable

latency incurred within the master’s or slave’s PHY Tx and

Rx paths contribute to the total path delay. The characteriza-

tion of such PHY effects is beyond the scope of this work.

B. LABELED DATA ACQUISITION

A key feature of the testbed is that it can capture the actual

one-way delay of each PTP message and the true slave

time offset during each message exchange. This is possible

because the slave clocks can take simultaneous snapshots

20588 VOLUME 9, 2021



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

of their PTP and PPS RTCs, and because the PPS RTC is

accurately synchronized to the master time.

For each two-way PTP exchange, the slave collects the

standard set of four timestamps taken by the PTP RTCs

and two additional timestamps from the slave’s PPS RTC.

As shown in Fig. 1, the two timestamps that are normally

taken on the slave side are t2[n] and t3[n]. Correspondingly,

our slave takes timestamps t ′2[n] and t
′
3[n] from the PPS RTC

at the exact clock cycle when it takes t2[n] and t3[n] from the

PTP RTC. In the end, the n-th entry of a dataset acquired from

the testbed contains the information in Table 3.

TABLE 3. Example dataset entry corresponding to a PTP message
exchange.

With the additional timestamps from the PPS RTC, t ′2[n]

and t ′3[n], the truth labels can be computed as follows:

x́[n] = t2[n] − t ′2[n] (49)

d́ms[n] = t ′2[n] − t1[n] (50)

d́sm[n] = t4[n] − t ′3[n], (51)

where x́[n], d́ms[n], and d́sm[n] represent the time offset,

m-to-s delay, and s-to-m delay truth labels, respectively. The

rationale is that the PPS RTC accurately represents the master

time. Thus, for example, t2[n]−t
′
2[n] represents the difference

between the slave time t2[n] upon the arrival of the n-th

PTP message (according to the PTP RTC) and the master

time t ′2[n] (according to the PPS RTC) when the PTP arrival

timestamp is taken. The error associated with such labels

is the PPS synchronization error, which, as mentioned in

Section VI-A, ranges from ±4 ns (OCXO) to ±8 ns (XO).

A noteworthy aspect is that there is no uncertainty on

the matching between a timestamp from the PTP RTC

(e.g., t2[n]) and a timestamp from the PPS RTC (e.g., t ′2[n]).

Our hardware drives the two RTCs using the same clock

signal, as illustrated in Fig. 5. Hence, the two RTCs reside

in the same clock domain, and there is no need for clock

domain crossing between them. This design choice avoids

timing uncertainties and, ultimately, allows the sampling of

the two RTCs precisely at the same clock cycle.

C. TESTBED NETWORK AND BG TRAFFIC SOURCES

As illustrated in Fig. 7, our testbed connects the FPGA

devices through a PTP-unaware GbE network with a config-

urable number of hops. Each network hop is implemented on

an independent port-based virtual local area network (VLAN)

on the PTP-unaware switch (shown in Fig. 4). We explore

from one to four hops in this work, as this range represents

well-controlled PTS networks with few hops [16]. Further-

more, we adopt a tree topology, with the two slave clocks

connected to the same hop. For example, Fig. 7 illustrates the

two slaves connected to the fourth hop.

FIGURE 7. Testbed’s PTP-unaware GbE network with hosts used for the
generation of BG traffic.

The given network carries only two types of traffic: PTP

and BG traffic. The latter, in turn, can be generated in two

forms: constant bit rate (CBR) and variable bit rate (VBR).

The CBR BG traffic is generated directly by the FPGA

devices in hardware with precise configurations in terms

of bit rate and packet inter-departure intervals. In contrast,

the VBR BG traffic is generated with significantly lower

precision using the iperf application on auxiliary Raspberry

Pi Linux hosts, highlighted as the VBR traffic hosts in Fig. 4.

The CBR BG traffic generated by the FPGA devices con-

sists of fixed-length packets with periodic packet departures.

As illustrated in Fig. 8, the master sends two BG packets on

every serving period, one to each slave. In contrast, the slaves

send a single packet to the master every serving period.

FIGURE 8. CBR BG traffic pattern in the slave-to-master and
master-to-slave directions.

Note that the CBR BG packets follow the same path as

the PTP packets (except for the last hop, discussed later).

This configuration is referred to as in-line BG traffic in [20].

In contrast, the VBRBG traffic is generated and consumed by

devices other than the FPGAs. Hence, each VBR stream runs

over an isolated portion of the path between the PTP clocks.

As shown in Fig. 7, each VBR BG traffic host injects

one-way UDP-based VBR BG traffic on the switch and

receives the stream from the previous VBR traffic host. For

example, Host 2 receives the stream from Host 1 and injects

another independent stream towards Host 3. This pattern

is referred to as cross-traffic in [20], [21]. Following the

literature, we configure this traffic according to a model

from ITU-T Recommendation G.8261 [57]. Nevertheless,

unlike [20], [21], we experiment with cross-traffic in both the

m-to-s and s-to-m directions, and we adopt the data-centric

Network Traffic Model 2 instead of the voice-centric

Model 1.

VOLUME 9, 2021 20589



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

D. EXPECTED PTP DELAYS

Next, we define the expectations in terms of PTP delays,

given that they are determinant to the synchronization perfor-

mance. This is more easily attainable for the CBR BG traffic

due to its accurate hardware-based generation and tractable

pattern with periodic transmissions. Hence, we take the CBR

source as an example of BG traffic within a well-controlled

PTS network with predictable delays, which we discuss next.

A key figure for the analysis of delays is the gap between

the start of the PTP message and the end of the preced-

ing BG frame, denominated as the BG-PTP gap in Fig. 8.

As discussed in [35], assuming that the PTP messages are

shorter than the BG messages, the BG-PTP gap reduces after

every store-and-forward switching stage.3 More specifically,

it reduces by (τbg − τptp) on each hop, where τbg and τptp
are the BG and PTP packet transmission (or serialization)

delays, respectively. Eventually, after sufficient hops, the PTP

message approaches the BG packet completely. From this

point on, the PTPmessage has to wait for the full serialization

of the preceding BG packet on every subsequent store-and-

forward stage. Conversely, while the BG-PTP gap is still non-

zero, the PTP message does not experience queuing delays

and can be forwarded immediately after being fully stored.

The starting BG-PTP gap determines how soon the PTP

message experiences queuing delays. The worst-case is when

the PTP message departs with the so-called zero-gap (ZG)

condition, i.e., already immediately after a BG packet. This

scenario leads to the following one-way delay model:

dms,zg[n] = η(τbg) +

η−1
∑

j=0

(γ [j, n] + βms[j]) , (52)

where η is the number of network hops, γ [j, n] is the

n-th random processing delay within the j-th hop, and

βms[j] models the static hardware latency associated with

the j-th hop in the m-to-s direction. For instance, the latter

includes the Ethernet PHY latency on ingress and egress

ports. For simplicity, this model ignores the propagation

delays.

In the model of (52), term η(τbg) includes both the trans-

mission and queuing delays. The PTP message experiences

transmission delay τptp on every hop. By the time the PTP

message is fully stored (after τptp), a wait of (τbg − τptp)

remains until the outbound link finishes the serialization of

the preceding BG packet. Under the ZG condition, the PTP

message experiences a queuing delay of (τbg − τptp) on each

hop. Thus, in total, the two delays compound to η(τbg).

Moreover, the model of (52) holds in the m-to-s direction

when PTP shares the network solely with in-line CBR BG

traffic in the specific tree topology of Fig. 7, and provided

that condition τbg > τptp holds. This is because, in this sce-

nario, the m-to-s PTPmessages do not experience contention.

In contrast, the model does not hold in the s-to-m direction,

where the PTP messages can experience contention.

3In this work, we rely and focus on store-and-forward switching,
as opposed to cut-through switching.

The contention of s-to-m PTP packets occurs on the

switching node where the two slave clocks are connected

(e.g., the fourth node in Fig. 7), referred to as the aggregation

node. The packets from the two slaves compete for the shared

outbound link towards the master. For example, if a PTP

packet from Slave 1 arrives in the aggregation node slightly

after a BG packet from Slave 2, the PTP packet can experi-

ence an extra queuing of τbg. Thus, under the ZG condition,

the worst-case s-to-m delay becomes:

dsm,zg[n] = (η + 1)(τbg) +

η−1
∑

j=0

(γ [j, n] + βsm[j]) , (53)

where βsm[j] models the static hardware latency associated

with the j-th hop in the s-to-m direction.

Equations (52) and (53) define the worst-case (highest)

expected PTP delays. However, the PTPmessages can experi-

ence significantly lower delays when departing with the max-

imum possible BG-PTP gap and in the absence of contention.

Thus, due to the random placement of PTP packets relative to

BG frames, we expect a PDV corresponding to the BG-PTP

gap variations. Also, in both directions, we expect additional

fluctuations up to the order of τbg.

In the s-to-m direction, queuing delay variations in the

order of τbg are expected due to the random contention in the

aggregation node. In contrast, in them-to-s direction, queuing

delay variations in the order of (τbg − τptp) happen because

the CBR BG packets do not necessarily follow the PTP path

in the last hop. For example, a PTP message going towards

slave clock 1 (see Fig. 7) can depart after a unicast-addressed

BG frame sent to slave clock 2. In this case, under the

ZG condition, the PTP message waits for the preceding BG

frame’s serialization in each hop, except the last one. Once the

PTP message is fully stored in the last switching stage, it can

be forwarded immediately (with no queuing delay), while the

BG frame is forwarded through another port (in this example

to slave 2). This event happens randomly due to the random

placement of PTP messages on the wire.

VII. RESULTS

In this section, we compare the synchronization algorithms

discussed in Section IV under various scenarios. First,

we present the results achieved when PTP is the only traffic

in the testbed network, namely without BG traffic. Subse-

quently, we show results under in-line CBR and cross-traffic

VBR BG traffic. In all cases, we consider hour-long datasets

acquired with the two PTP slave clocks running 128 delay

request-response exchanges per second with the XO and

OCXO options. Moreover, we assess the performance in

terms of the max|TE| observed over every minute.

The choice of 128 PTP exchanges per second represents the

maximum packet rate in many PTP profiles, such as the PTS

profile [13]. With this choice, the goal is to evaluate the algo-

rithms under the most favorable conditions for performance.

Meanwhile, the communications load that results from using

20590 VOLUME 9, 2021



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

the highest PTP packet exchange rate is still negligible in

many practical use cases.

Furthermore, our implementation on PTP-DAL computes

all window-based algorithms using overlapping windows,

unlike in the tractable formulation adopted thus far. Hence,

in the experiments that follow, the algorithms output one esti-

mate for every new PTP exchange, except for the initialN−1

exchanges. Furthermore, the experiments explore observation

window lengths ranging fromN = 4 to 65536. With 128 PTP

exchanges per second, this range corresponds to durations

from 31.25 milliseconds up to 512 seconds.

Moreover, although each dataset consists of an hour-long

acquisition, we choose to skip the initial 25% of the results

in each experiment to disregard transients. This choice corre-

sponds to 15 min, namely a duration longer than all observa-

tion windows considered in the experiments. Consequently,

the results that follow show only 45 min.

Lastly, as discussed in Section VI-C, the experiments that

follow explore from one to four network hops. Table 4 sum-

marizes the experimental parameters and scenarios.

TABLE 4. Parameters and configurations adopted in the experiments.

A. PTP WITHOUT BG TRAFFIC

To start, Fig. 9 shows the distributions of the true one-way

PTP packet delays observed in the absence of BG traffic

for all hop configurations (from one to four) and with both

oscillator options. These delays are computed using (50)

and (51), namely based on the dataset labels. Note that the

delay distributions present a similar shape and support. More

specifically, all scenarios have a standard deviation (SD)

of approximately 160 ns and span roughly between 590 to

700 ns. Furthermore, note that each hop adds nearly 3.7

to 4.3 µs of delay. This amount includes the processing

delay, the constant PTP transmission delay τptp (640 ns in

this case), and the hardware latency associated with the hop.

Besides, note that, in the absence of BG traffic, the processing

delay becomes the predominant variable delay component

and determines the shape of the distributions.

Although the distributions in Fig. 9 present similar shapes,

the difference between the average m-to-s and s-to-m delays

varies in each hop configuration. This difference refers to the

static delay asymmetry component modeled in (10), which

varies per hop because each port of the PTP-unaware switch

introduces different static hardware latencies (e.g., Ethernet

PHY latencies). For example, note that the asymmetries

observed with the XO and OCXO match closely on

FIGURE 9. PTP one-way delay distributions in the absence of BG traffic.

each hop configuration (using the same ports). In con-

trast, when comparing datasets with a different num-

ber of hops (different ports), the asymmetries diverge

significantly.

In a practical PTS deployment, such varying asymmetry

contributions are expected. Ordinarily, switches (and espe-

cially PTP-unaware ones) provide no guarantees regarding

the asymmetry between the transmit and receive paths of

each of its ports. Thus, the PTP slave has to live with the

asymmetry. Alternatively, in an APTS deployment, the delay

asymmetry experienced by the PTP messages can be mea-

sured while the slave clock is locked to a GNSS reference.

Then, upon the GNSS signal’s loss, when the APTS slave

clock switches to the PTP (backup) timing reference, it can

use the previously measured PTP delay asymmetry to adjust

the PTP timestamps and the corresponding measurements.

Next, we analyze the synchronization performance

achieved over four hops. Fig. 10 shows the max|TE| perfor-

mance achieved by the processing algorithms discussed in

Section IV, with max|TE| measured over every minute of the

experiment. It contrasts the casewhere the slave does not have

any means to correct the bias to the case where the slave can

calibrate and correct the bias, as in the APTS scenario. In this

comparison, we omit the sample-mode to better visualize the

curves that achieve similar max|TE| values. The sample-mode

performance is significantly worse and unstable because the

delay distributions in Fig. 9 do not present a prominent mode

(the distributions are flat over nearly 400 ns). Similarly,

we omit the max|TE| curve referring to the rawmeasurements

from (6), which lies around 470 nswithout bias correction and

300 ns with bias correction.

In Fig. 10a and 10b, which show the performance with-

out bias correction, note that the sample-maximum approach

using (23) achieves the best performance. Unlike in the eval-

uation of [19], this result is not due to a high network load

(there is no BG traffic in this case). Instead, it is because,

in this experiment, the asymmetry between the maximum

m-to-s and s-to-m delays is lower than the other asymmetries,

VOLUME 9, 2021 20591



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

FIGURE 10. max|TE| results obtained in the experiment without BG traffic over four network hops.

as summarized in Table 5, and because the biases due to the

delay asymmetries are more significant than the estimation

variance presented by all algorithms. Hence, the estimator

experiencing the lowest asymmetry performs best.

In fact, the estimations in Fig. 10 present very low variance,

as is expected in the absence of BG traffic. Thus, in Fig. 10a

and Fig. 10b, the sample-average, sample-min, sample-max,

and sample-median curves converge to values near their cor-

responding asymmetries in Table 5. The LS and KF results

also converge to values near their expected asymmetries,

namely to the average asymmetry (also in Table 5). This con-

vergence is tighter in Fig. 10b, with the OCXO. In contrast,

with the XO (Fig. 10a), the max|TE| curves are slightly worse

(by around 25 ns) because the drift estimates used in (23) and

the estimates produced by LS and KF become less accurate

when the LO is less stable.

Next, Fig. 10c and 10d present the performances when

applying bias correction. In this case, all algorithms achieve

similar max|TE| values, with minor differences. The LS and

KF estimators were slightly superior in both cases. Further-

more, as in the previous scenario, the performance achieved

with the OCXO (Fig. 10d) is superior to the one achievedwith

the XO (Fig. 10c). More generally, both configurations with

bias correction achieve excellent synchronization accuracy,

TABLE 5. Static delay asymmetries over four hops without BG traffic.

despite the network’s lack of PTP support. These results

illustrate the achievable performance when the PTP-unaware

network can be dedicated exclusively to PTP traffic.

The results in Fig. 10 are based on optimized parameters

set for each algorithm. Fig. 11 illustrates specifically the

optimization of the observation window length N used by

the algorithms from Section IV-A and LS, including the

sample-mode approach, which was omitted in Fig. 10. More

precisely, Fig. 11 shows the global max|TE| achieved by each

algorithm for varying power-of-two window lengths ranging

from N = 4 to N = 65536.

In the absence of strong PDV (i.e., without BG traffic),

the max|TE| performance as a function of the window length

often presents a convex shape. That is, it is helpful to increase

the observation window up to a certain point. After that,

longer windows do not bring performance improvements and

can even degrade performance. This convex shape is more

visible for LS, given that, as discussed in Section IV-B, the

20592 VOLUME 9, 2021



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

FIGURE 11. max|TE| performance according to the observation window length on the scenario without BG traffic and with four network hops.

LS estimator requires observation windows where the fre-

quency offset remains constant. Once the observationwindow

becomes too large, this requirement starts to fail, and the

resulting performance degrades. Furthermore, note that this

turning point occurs for a shorter window length when using

the XO, due to the worse frequency stability.

An essential benefit of the drift compensation scheme in

(23) is that it enables long observation windows. Fig. 11

shows that the algorithms using this equation (sample-min,

max, average, median, and mode) tolerate longer windows

than LS. After a certain length covering enough of the delay

statistics, they tend to reach a plateau, but the performance

does not degrade significantly as the window grows further.

This property holds as long as the drift estimates from (46)

do not accumulate significant error over the windows.

B. PTP UNDER CBR BG TRAFFIC

Next, we evaluate the synchronization performance under

the in-line CBR BG traffic described in Section VI-C. More

specifically, we configure the CBR BG traffic with a packet

inter-departure interval of 4.16 µs and each BG packet with

236 bytes at layer-1 (including all the Ethernet framing

bytes). Thus, each BG frame has a transmission delay τbg of

1.888 µs over GbE. When serving two slaves, the two BG

frames sent per period occupy 3.97 µs of the inter-departure

interval (including 96 ns inter-packet gaps). Hence, the idle

interval illustrated in Fig. 8 is roughly 0.2 µs.

Moreover, with two BG packets every 4.16 µs (one to or

from each slave), the total network utilization is around 95%.

Hence, the evaluation that follows illustrates the synchro-

nization performance under very high BG utilization, with

background traffic composed of relatively short packets. The

CBR BG traffic parameters are summarized in Table 6.

TABLE 6. In-line CBR BG traffic parameters.

1) PTP DELAY ANALYSIS

In this scenario, we can anticipate the worst-case PTP delays

using (52) and (53). For simplicity, we can assume a constant

processing delay per hop of γ [j, n] = 3.3 µs and a constant

hardware latency per hop of βms[j] = βsm[j] = 300 ns

(see, e.g., [23]). Using these assumptions, the ZG m-to-s and

s-to-m become as summarized in Table 7.

VOLUME 9, 2021 20593



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

TABLE 7. Expected worst-case (zero-gap) m-to-s and s-to-m one-way PTP
delays under in-line CBR BG traffic from one to four hops.

Fig. 12 shows the actual delay distributions observed

within testbed acquisitions with in-line CBR BG traffic.

Compared to Fig. 9, the PDV is substantially higher in Fig. 12.

Among all acquisitions, the average SD and support in the

m-to-s direction are 518 ns and 1961 ns, respectively. As dis-

cussed in Section VI-D, the delay variations in this direction

include the BG-PTP gap fluctuations (within the idle interval

of 0.2 µ s) and the last-hop delay fluctuation of 1.25 µs

(i.e., τbg − τptp). Furthermore, the PDV includes the inherent

processing delay variations, which, from Section VII-A, are

expected to span up to 700 ns. These three fluctuation com-

ponents totalize to 2.15 µs. Hence, the observed m-to-s delay

variation is within the expected range. Meanwhile, the s-to-m

delays present SDs ranging from 495 ns to 738 ns and average

support of 2.78 µs. These figures also closely follow the

expectations from Section VI-D.

FIGURE 12. PTP one-way delay distributions under in-line CBR BG traffic.

Nevertheless, it must be emphasized that the distributions

in Fig. 12 are not accurately repeatable. Instead, they are

illustrative realizations. The distributions vary per experiment

due to the asynchronous timing relationship between the PTP

and BG packet departures, manifested in two forms. The

first is intra-FPGA and refers to the interval between PTP

packets and the preceding BG packets generated by the same

FPGA, namely the BG-PTP gap discussed in Section VI-D.

The second asynchronous relationship is inter-FPGA and

refers to the relative departure time difference between the

PTP packets of one FPGA and the BG packets of the other.

Both PTP and BG streams consist of periodic packets

accurately generated by the FPGAs. In the given experiment,

with the BG packet departure periodicity of 4.16µs, the slave

clocks send and receive nominally 1875 BG packets in the

course of a PTP exchange interval (of 7.8125 ms). However,

the two streams operate in different clock domains that can

drift over time relative to each other, such that the BG-PTP

timing relationship changes over time. Moreover, the streams

are not enabled simultaneously on the same device and nei-

ther among the group of FPGAs, which yields a random initial

timing relationship between them.

For example, in the s-to-m direction, the initial timing rela-

tionship between the PTP packets of one slave clock and the

BG packets of the other slave determines the initial amount

of contention-induced queuing delays experienced by PTP

packets on the aggregation node (see Section VI-D). When

the clock domains governing the packet generation logic do

not drift significantly over time (typically the case, especially

with the OCXO), this initial timing relationship tends to

last throughout the experiment. As a result, we observe a

more frequent amount of contention determining the peak

of the s-to-m delay distributions, but which varies among

experiments. Meanwhile, in the m-to-s direction, the instant

when BG and PTP packets turn on influences the likelihood

of PTP packets departing after a unicast BG packet addressed

to slave clock 1 or slave 2. As such, it determines whether

the PTP packet experiences an extra queuing delay in the last

hop, as discussed in Section VI-D. With all of these effects,

the distributions in Fig. 12 are not repeatable.

On the other hand, we can observe repeatable patterns in

Fig. 12. Firstly, the m-to-s delays are typically bimodal due

to the last-hop delay fluctuation explained in Section VI-D.

Secondly, in the s-to-m direction, all plots present a specific

amount of contention that is significantly more frequent,

which determines the peak of the distribution. Moreover, all

worst-case delays approach the values predicted in Table 7.

2) SYNCHRONIZATION PERFORMANCE

Next, we evaluate the max|TE| performance achieved under

the given delay distributions. Unlike in Section VII-A,

we avoid drawing a direct comparison between the exper-

iments with the XO and the OCXO. It would be unfair to

compare them directly due to the different delay distributions

between their realizations (show in Fig. 12).

In both experiments discussed in the sequel (with the

XO and OCXO), we adopt the maximum operator in (47)

to obtain drift estimates. We have verified that this choice

leads to better drift estimation performance, given that

maximally-delayed m-to-s packets are more likely than

minimally-delayed in these experiments. This probability dif-

ference is noticeable in the m-to-s delays shown in Fig. 13.

Note there are a few low realizations close to 19.75 µs,

whereas the realizations close to the maximum are very

frequent.

Fig. 14 shows the max|TE| results with the XO over four

hops. For clarity, it omits the raw time offset measurements

from (6), whose max|TE| is mostly above 1200 ns. Similar to

previous results, the static delay asymmetry is the predomi-

nant error component in Fig. 14a (without bias correction).

20594 VOLUME 9, 2021



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

FIGURE 13. m-to-s PTP packet delays and the corresponding PDF on the
experiment with CBR BG traffic over 4 hops using the OCXO.

According to Table 8, the least asymmetric delay metric in

this experiment is observed between the minimum m-to-s

and s-to-m delays. Hence, the sample-minimum approach

achieves the best max|TE| performance in Fig. 14a. Fur-

thermore, the max|TE| curves are reasonably close to their

corresponding static asymmetries in Table 8 (their absolute

values). That is, LS, KF, and sample-average approach the

average asymmetry, sample-maximum is near the maximum

asymmetry, and so on. These results imply that the estimators

are effectively producing low-variance estimates.

TABLE 8. Static delay asymmetry over four hops with CBR BG traffic on
the acquisitions with the XO and the OCXO.

In this experiment, the maximum collision between

the s-to-m packets was mostly stable over 45 min, aside

from around minute 15 of the experiment, where the

collision-induced queuing delays increased by roughly 350 ns,

as shown in Fig. 15. Correspondingly, at this point, the asym-

metry changed by roughly −175 ns. Hence, in reality, the

maximum asymmetry was around −576 ns most of the time,

whereas Table 8 shows the global asymmetries.

In Fig. 14a, it is noteworthy also that the sample-mode

produces more reasonable results than in the absence of BG

traffic, although still with large fluctuations. The reason is

that the delay distributions (top right corner in Fig. 12) present

prominent peaks that are beneficial for sample-mode’s oper-

ation. Furthermore, note that in this experiment there is

no significant advantage to using the model-based LS and

KF approaches. The sample-minimum outperformed them

because it experienced lower asymmetry.

Next, Fig. 14b shows the results with bias correction

based on the values in Table 8. Even with bias correction,

the sample-minimum approach still yields one of the best

FIGURE 14. max|TE| results with CBR BG traffic over 4 hops using the XO.

FIGURE 15. s-to-m PTP packet delays and the corresponding PDF on the
experiment with the XO over four hops.

results. The rationale is that this estimator reduces the vari-

ance very well. The s-to-m delays shown in Fig. 15 present

a stable minimum over the acquisition. Hence, as long as

the observation window lengths are long enough to capture

the moments when the s-to-m collisions are lower (which

happens almost periodically due to the packet generation tim-

ing), the sample-minimum filtering can clean up the variance

successfully.

VOLUME 9, 2021 20595



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

In this experiment, a window of 64 seconds consistently

covers the nearly periodic low values of s-to-m delays. This

is confirmed in Fig. 16, which shows the global max|TE|

of each algorithm for varying window lengths. Note that,

once the window length becomes 213 samples (i.e., 64 secs),

the sample-minimum performance improves significantly.

Furthermore, as the window increases to cover multiple peri-

ods of the delays in Fig. 15, the performance improves further.

FIGURE 16. max|TE| performance for varying observation window lengths
under CBR BG traffic with four network hops using the XO.

In Fig. 14b, the sample-minimum’s max|TE| remains

mostly around 40 ns with a peak of 80 ns. This accuracy

is comparable to the one achieved without BG traffic, as

demonstrated in Fig. 10c. Moreover, the sample-maximum

strategy has the potential to perform similarly to the sample-

minimum, given that the maximum delays are also stable

over the experiment, as noticeable in Fig. 15. However, our

bias correction module corrects the bias based on the global

asymmetry in Table 8, which deviated from the most fre-

quent asymmetry due to the abnormally high collision around

minute 15. In a more advanced bias correction implementa-

tion, this problem could be avoided, e.g., by detecting and

ignoring delay outliers.

Next, Fig. 17 shows the max|TE| results in the experiment

with the OCXO over four hops while omitting the raw time

offset measurements in Fig. 17b for better visibility. In this

FIGURE 17. max|TE| results with CBR BG traffic over 4 hops using
the OCXO.

experiment, the s-to-m delays (bottom right corner in Fig. 12)

experience peak collisions close to the worst-case delays pre-

dicted by (53). Correspondingly, the static delay asymmetries

(summarized in Table 8) are relatively high, given that they

include the average queuing delays.

Among the asymmetries in Table 8, the minimum metric

is again the least asymmetric. Correspondingly, the sample-

minimum filtering achieves the best max|TE| performance

in Fig. 17a (without bias correction). Furthermore, some

max|TE| curves in Fig. 17 aremore stable around a fixed value

than in Fig 14. For example, the sample-maximum curve

is almost constant both with and without bias correction.

The reason stems from the stability of the delays in this

acquisition. With the OCXO, the timing relationship between

PTP and BG packets generated by the FPGAs and their

corresponding contention patterns become more stable. As a

result, the s-to-m delays (shown in Fig. 18) do not include any

outliers and nearly periodically vary over the same levels.

With such a consistent delay pattern with frequent min-

imum and maximum values, both the sample-minimum

and sample-maximum strategies produce very low-variance

estimates. Hence, the max|TE| is again primarily determined

by the biases. Furthermore, because the contention-free

m-to-s delays (shown in Fig. 13) are also very stable, the drift

20596 VOLUME 9, 2021



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

FIGURE 18. s-to-m PTP packet delays and the corresponding PDF on the
experiment with CBR BG traffic over 4 hops using the OCXO.

estimations using (46) and (47) perform very well. Con-

sequently, the drift-compensation step in (23) allows large

observation windows for packet filtering.

With all these effects combined, the algorithms achieve

excellent max|TE| with bias correction in Fig. 17b. In par-

ticular, the sample-maximum strategy remains consistently

below a remarkably low max|TE| of 20 ns, and the

sample-minimum performs similarly with slightly worse

peak max|TE|. This performance is roughly 60 times better

than the max|TE| derived from the bias-corrected version of

the raw time offset measurements from (6). Also, these accu-

racy levels are close to the ones achieved without BG traffic

(shown in Fig. 10d).

In Fig. 17, there was no significant advantage in using

the model-based LS and KF strategies. In this particular

case, KF does approach the best performance marks, but not

consistently throughout the experiment. The intuition is that,

in this case, the LS and KF approaches provide less effective

mechanisms to overcome the PDV.

Lastly, Fig. 19 shows the global max|TE| for varying

window lengths in the scenario of Fig. 17b, i.e., with bias

correction. Similarly to the experiment with the XO, this

plot reveals that a window length of at least 213 samples (or

64 seconds) is necessary to cover the delay statistics, espe-

cially the full excursion of the nearly periodic s-to-m delays.

This 64-second window was optimal for sample-maximum,

whereas the sample-minimum, sample-median, and sample-

average estimators performed best with the longest evaluated

window of 512 seconds. Besides, note that, unlike in the

results without BG traffic (Fig. 11) and the results of [18], the

LS performance is not a predictable convex-shaped curve as a

function of the window length. The PDV alters this behavior

in a way that is hard to anticipate. The same holds in Fig. 16,

in the experiment with the XO.

C. PTP UNDER VBR BG TRAFFIC

Finally, we analyze the performance under the VBR BG

cross-traffic described in Section VI-C. In this experiment,

FIGURE 19. max|TE| performance for varying window lengths under CBR
BG traffic, with four network hops, using the OCXO, and with bias
correction.

we generate each VBR stream with a peak rate of 75 Mbps

so that each VBR traffic host generates and consumes up to

150 Mbps concurrently. Overall, this leads to a cross-traffic

utilization below 10% over the links shared with PTP traffic,

where each link transports up to 75 Mbps bidirectional BG

traffic. Hence, this evaluation focuses on the PTP perfor-

mance under a PTP-unaware network with light cross-traffic

load. Meanwhile, for brevity, other cross-traffic scenarios

with heavier utilization are left for future investigations.

Moreover, we restrict our analysis to a single acquisition

using the OCXO and with bias correction.

With cross-traffic, both the m-to-s and s-to-m delays can

experience contention. Fig 20 shows the m-to-s delays and

their corresponding cumulative distribution function (CDF).

Compared to the previous experiments with in-line BG

traffic, Fig 20 shows significantly higher delays, primar-

ily from the collisions between PTP packets and the large

BG (1518 bytes) packets that compose Network Traffic

Model 2 [57]. Nevertheless, due to the light network

load, the vast majority of the delays are concentrated at

low values, as confirmed by the CDF. The same holds

in the s-to-m direction, which presents a similar delay

distribution. Hence, similar to the scenarios discussed

in [19], one can expect that the sample-minimum filtering

succeeds in this scenario. Based on this expectation, we adopt

the minimum operator in (47) to obtain time offset drift

estimates in this experiment.

Fig. 21 shows the max|TE| performance in this scenario,

including bias correction. For better visualization, it omits the

sample-maximum curves, which performs poorly (max|TE|

up to nearly 5 µs) due to the sporadic delay peaks that are

evident in Fig. 20. It also omits the sample-mode, whose

max|TE| peaks at nearly 375 ns. Furthermore, it omits the raw

measurements from (6), which peaked at 15 µs. Note that

the sample-minimum and sample-median strategies present

excellent performances, both consistently under a max|TE|

of 20 ns. The sample-average follows closely because most

delay realizations consist of low values, as indicated by the

VOLUME 9, 2021 20597



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

FIGURE 20. m-to-s PTP delays and the corresponding CDF on the
experiment with VBR BG traffic.

FIGURE 21. max|TE| results with VBR BG traffic over 4 hops using
the OCXO.

FIGURE 22. max|TE| performance for varying window lengths under VBR
BG traffic, with four network hops, using the OCXO, and with bias
correction.

CDF in Fig. 20. For the same reason, the LS and KF strategies

perform reasonably well, although slightly worse than the

other algorithms in Fig. 21.

As in previous experiments, the results in Fig. 21 are

based on optimized configurations defined by PTP-DAL. For

instance, Fig 22 shows the global max|TE| as a function

of the observation window length in this experiment. Note

that most algorithms favor relatively long observation win-

dows. More specifically, all algorithms perform better with

windows between 214 and 216 samples, i.e., between 128

and 512 seconds. Besides, even though PTP-DAL optimizes

the window lengths independently for each dataset, we have

observed similar window tuning results by replicating this

experiment under the same conditions. The rationale is that

the PTP delay distributions observed with VBR cross-traffic

are reasonably repeatable from experiment to experiment.

VIII. CONCLUSION

As network-based clock synchronization becomes increas-

ingly pervasive in numerous modern technology domains,

it is often attractive to deploy PTP synchronization over

timing-unaware networks. Nevertheless, such networks com-

monly present a harsh and less understood environment for

synchronization performance. Thus, current high accuracy

applications typically require timing-aware networks.

In this work, we aimed to expand the frontier of under-

standing regarding PTP-based synchronization algorithms for

timing-unaware networks. We presented an in-depth survey

and analysis of two main classes of algorithms: packet fil-

tering strategies that rely on observation windows with con-

stant time offset and estimators that incorporate the oscillator

model (LS and KF). We proposed a window-based filtering

formulation involving time offset drift compensation before

the operators applied on each observation window and dis-

cussed themain aspects of the chosen LS andKF formulation.

We also described relevant frequency offset estimation strate-

gies and, in particular, how the frequency offset estimates are

used to compensate the time offset drift within the filtered

observation windows.

Subsequently, we described the FPGA-based testbed and

the open-source PTP-DAL software developed in-house for

reproducible experiments. For instance, we highlighted how

the time offset drift estimation, bias correction, and time

offset estimation modules are arranged on PTP-DAL’s pro-

cessing architecture. In terms of hardware, we highlighted the

design choices adopted to enable the acquisition of timestamp

datasets containing truth metrics (i.e., labels), such as the

dual-RTC architecture implemented on the slave clocks.

More importantly, this work presented a reliable compar-

ison of synchronization algorithms under varying BG traffic

and oscillator stability scenarios. Unlike the vast majority of

the related literature, this work’s comparison was based on

timestamps acquired from real hardware, with real oscillators

and networking conditions. Furthermore, the experiments

showed delay distributions significantly distinct to the theo-

retical distributions considered and simulated in other works.

In the experimental section, this work demonstrated the

importance of the observation window length used in many

synchronization algorithms. In each experiment, we analyzed

20598 VOLUME 9, 2021



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

the performance over varying window lengths and showed

that the best performing windows were mostly in the order of

a few minutes. In cases with periodic delay patterns, it was

critical to use windows large enough to cover the full delay

periodicity. In this context, the drift compensation processing

proposed for window-based algorithms was essential to allow

their operation with long windows. Furthermore, it was crit-

ical to estimate the time offset drifts accurately despite the

intense PDV-induced noise.

The experiments also highlighted that the delay asymme-

try commonly represents the predominant source of time

synchronization error when the estimators are well-tuned to

produce low-variance estimates. In some cases, this asymme-

try was dominated by the queue-induced asymmetry, which

can be overcome by strategies beyond this work’s scope.

In other cases, it was mainly composed of static hardware

asymmetries, which can be calibrated, for example, in the

discussed APTS scenario. Ultimately, we showed that, when

the bias induced by the delay asymmetry is appropriately

corrected, there are often one or more estimators that produce

high-quality time offset estimates.

Some experiments showed exceptional performance levels.

For example, on a 45 min experiment using an OCXO on the

slave clock on a network with 95% in-line BG traffic load,

the sample-maximum algorithm could maintain the max|TE|

below 20 ns. In another scenario with light cross-traffic

load, the sample-minimum and sample-median algorithms

achieved similar performance levels. Both experiments suc-

ceeded in approaching the performance demonstrated in a

scenario without BG traffic, i.e., with a timing-unaware net-

work dedicated to PTP traffic.

In the experiments without bias correction, the best-

performing algorithms were the ones experiencing lower

static delay asymmetry. Furthermore, in all experiments with

significant PDV due to BG traffic, there was no significant

advantage to using the LS and KF estimators incorporat-

ing the oscillator model. Instead, the window-based filtering

strategies such as sample-minimum and sample-maximum

were more effective in overcoming the PDV noise. Finally,

the results achieved with the OCXO were generally superior

to the results achieved with the XO, as expected.

Future works shall explore schemes for parameter tuning

on practical scenarios where the slave does not know the

residual time synchronization error resulting from each algo-

rithm configuration. In scenarios where PTP is a secondary

timing source, one can explore schemes to tune and select

the more appropriate PTP synchronization algorithms when

the primary timing source is active. Moreover, future works

shall explore the labeled datasets discussed in this work to

analyze other algorithms, such asmachine learning strategies,

as well as more advanced combinations of the investigated

algorithms. Besides, other topics to be addressed in future

works include the comparison of algorithms in terms of com-

putational cost and investigations regarding the performance

levels achieved under other varieties of network topologies

and packet delay characteristics.

REFERENCES

[1] S. Ruffini, S. Rodrigues, M. Lipinski, and J.-C. Lin, ‘‘Synchronization

standards toward 5G,’’ IEEE Commun. Standards Mag., vol. 1, no. 1,

pp. 50–51, Mar. 2017.

[2] N. Moreira, J. Lazaro, U. Bidarte, J. Jimenez, and A. Astarloa, ‘‘On the

utilization of system-on-chip platforms to achieve nanosecond synchro-

nization accuracies in substation automation systems,’’ IEEE Trans. Smart

Grid, vol. 8, no. 4, pp. 1932–1942, Jul. 2017.

[3] T. Ahmed, S. Rahman,M. Tornatore, K. Kim, andB.Mukherjee, ‘‘A survey

on high-precision time synchronization techniques for optical datacenter

networks and a zero-overhead microsecond-accuracy solution,’’ Photonic

Netw. Commun., vol. 36, no. 1, pp. 56–67, Aug. 2018.

[4] Z. Idrees, J. Granados, Y. Sun, S. Latif, L. Gong, Z. Zou, and L. Zheng,

‘‘IEEE 1588 for clock synchronization in industrial IoT and related appli-

cations: A review on contributing technologies, protocols and enhancement

methodologies,’’ IEEE Access, vol. 8, pp. 155660–155678, 2020.

[5] J. Lopez-Jimenez, J. L. Gutierrez-Rivas, E. Marin-Lopez,

M. Rodriguez-Alvarez, and J. Diaz, ‘‘Time as a service based on

white rabbit for finance applications,’’ IEEE Commun. Mag., vol. 58,

no. 4, pp. 60–66, Apr. 2020.

[6] K. B. Stanton, ‘‘Distributing deterministic, accurate time for tightly coor-

dinated network and software applications: IEEE 802.1AS, the TSN pro-

file of PTP,’’ IEEE Commun. Standards Mag., vol. 2, no. 2, pp. 34–40,

Jun. 2018.

[7] M. Levesque and D. Tipper, ‘‘A survey of clock synchronization over

packet-switched networks,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 4,

pp. 2926–2947, 4th Quart., 2016.

[8] IEEE Standard for a Precision Clock Synchronization Protocol for Net-

workedMeasurement andControl Systems, Standard 1588-2008, Jul. 2008,

pp. 1–300.

[9] IEEE Standard for a Precision Clock Synchronization Protocol for Net-

worked Measurement and Control Systems, Standard 1588-2019 (Revision

IEEE Std 1588-2008), 2020, pp. 1–499.

[10] F. Girela-Lopez, J. Lopez-Jimenez, M. Jimenez-Lopez, R. Rodriguez,

E. Ros, and J. Diaz, ‘‘IEEE 1588 high accuracy default profile: Applica-

tions and challenges,’’ IEEE Access, vol. 8, pp. 45211–45220, 2020.

[11] Precision Time Protocol Telecom Profile for Phase/Time Synchronization

With Full Timing Support From the Network, document ITU-T, Rec.

G.8275.1, Mar. 2020.

[12] Timing Characteristics of Synchronous Ethernet Equipment Slave Clock

(EEC), document ITU-T, Rec. G.8262, Nov. 2018.

[13] Precision time Protocol Telecom Profile for Phase/Time Synchronization

With Partial Timing Support From the Network, document ITU-T, Rec.

G.8275.2, Mar. 2020.

[14] T. Pearson and K. Shenoi, ‘‘A case for assisted partial timing support

using precision timing protocol packet synchronization for LTE–A,’’ IEEE

Commun. Mag., vol. 52, no. 8, pp. 136–143, Aug. 2014.

[15] ‘‘What is partial timing support (PTS),’’ Calnex Solutions Ltd.,

Linlithgow, U.K., White Paper CX6006, 2020. [Online]. Available: https://

info.calnexsol.com/acton/attachment/28343/f-f90192cf-d2a7-4685-89d6-

01d94d118694/1/-/-/-/-/CX6006v1.0%20-%20What%20is%20Partial

%20Timing%20Support.pdf

[16] Network Limits for Time Synchronization in Packet Networks With Par-

tial Timing Support From the Network, document ITU-T, Rec. G.8271.2,

Aug. 2017.

[17] Timing Characteristics of Telecom Boundary Clocks and Telecom Time

Slave Clocks for Use With Partial Timing Support From the Network,

document ITU-T, Rec. G.8273.4Mar. 2020.

[18] G. Cena, S. Scanzio, and A. Valenzano, ‘‘Reliable comparison of clock

discipline algorithms for time synchronization protocols,’’ in Proc. IEEE

20th Conf. Emerg. Technol. Factory Autom. (ETFA), Sep. 2015, pp. 1–9.

[19] I. Hadzic and D. R. Morgan, ‘‘On packet selection criteria for clock recov-

ery,’’ in Proc. Int. Symp. Precis. Clock Synchronization Meas., Control

Commun., Oct. 2009, pp. 1–6.

[20] I. Hadzic and D. R. Morgan, ‘‘Adaptive packet selection for clock recov-

ery,’’ in Proc. IEEE Int. Symp. Precis. Clock Synchronization Meas., Con-

trol Commun., Sep. 2010, pp. 42–47.

[21] M. Anyaegbu, C.-X. Wang, and W. Berrie, ‘‘A sample-mode packet delay

variation filter for IEEE 1588 synchronization,’’ in Proc. 12th Int. Conf.

Telecommun., Nov. 2012, pp. 1–6.

[22] M. Anyaegbu, C.-X. Wang, and W. Berrie, ‘‘Dealing with packet delay

variation in IEEE 1588 synchronization using a sample-mode filter,’’ IEEE

Intell. Transp. Syst. Mag., vol. 5, no. 4, pp. 20–27, winter 2013.

VOLUME 9, 2021 20599



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

[23] B. Noseworthy, ‘‘Direct measurement of ingress and egress latency on

1000Base-T gigabit Ethernet links,’’ in Proc. IEEE Int. Symp. Precis.

Clock Synchronization for Meas., Control, Commun. (ISPCS), Sep. 2014,

pp. 53–58.

[24] N. Simanic, R. Exel, P. Loschmidt, T. Bigler, and N. Kero, ‘‘Compensation

of asymmetrical latency for Ethernet clock synchronization,’’ in Proc.

IEEE Int. Symp. Precis. Clock Synchronization Meas., Control Commun.,

Sep. 2011, pp. 19–24.

[25] H. Peek and P. Jansweijer, ‘‘White rabbit absolute calibration,’’ in Proc.

IEEE Int. Symp. Precis. Clock Synchronization for Meas., Control, Com-

mun. (ISPCS), Sep. 2018, pp. 1–5.

[26] S. Lee, ‘‘An enhanced IEEE 1588 time synchronization algorithm for

asymmetric communication link using block burst transmission,’’ IEEE

Commun. Lett., vol. 12, no. 9, pp. 687–689, Sep. 2008.

[27] S. Lee, S. Lee, and C. Hong, ‘‘An accuracy enhanced IEEE 1588 syn-

chronization protocol for dynamically changing and asymmetric wireless

links,’’ IEEE Commun. Lett., vol. 16, no. 2, pp. 190–192, Feb. 2012.

[28] Time and Phase Synchronization Aspects of Telecomunication Networks,

document ITU-T, Rec. G.8271, Aug. 2017.

[29] Z. Chaloupka, N. Alsindi, and J. Aweya, ‘‘Clock synchronization over

communication paths with queue-induced delay asymmetries,’’ IEEE

Commun. Lett., vol. 18, no. 9, pp. 1551–1554, Sep. 2014.

[30] ‘‘Latency in Ethernet switches,’’ Plexxi, Nashua, NH, USA,

White Paper 2016. [Online]. Available: https://networking.report/

Resources/Whitepapers/196c5828-cb30-4664-8269-c524c18b55eb

_Latency-in-Ethernet-Switches.pdf

[31] A. K. Karthik and R. S. Blum, ‘‘Robust clock skew and offset estimation

for IEEE 1588 in the presence of unexpected deterministic path delay

asymmetries,’’ IEEE Trans. Commun., vol. 68, no. 8, pp. 5102–5119,

Aug. 2020.

[32] M. Levesque and D. Tipper, ‘‘Improving the PTP synchronization accuracy

under asymmetric delay conditions,’’ in Proc. IEEE Int. Symp. Precis.

Clock Synchronization Meas., Control, Commun. (ISPCS), Oct. 2015,

pp. 88–93.

[33] M. J. Hajikhani, T. Kunz, and H. Schwartz, ‘‘A recursive method for

clock synchronization in asymmetric packet-based networks,’’ IEEE/ACM

Trans. Netw., vol. 24, no. 4, pp. 2332–2342, Aug. 2016.

[34] B. Mochizuki and I. Hadzic, ‘‘Improving IEEE 1588v2 clock performance

through controlled packet departures,’’ IEEE Commun. Lett., vol. 14, no. 5,

pp. 459–461, May 2010.

[35] I. Freire, I. Sousa, P. Bemerguy, A. Klautau, I. Almeida, C. Lu, and

M. Berg, ‘‘Analysis of controlled packet departure to support Ethernet

fronthaul synchronization via PTP,’’ in Proc. IEEE Int. Symp. Precis. Clock

Synchronization Meas., Control, Commun. (ISPCS), Sep. 2018, pp. 1–6.

[36] A. Bletsas, ‘‘Evaluation of Kalman filtering for network time keep-

ing,’’ IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 52, no. 9,

pp. 1452–1460, Sep. 2005.

[37] H. Puttnies, P. Danielis, and D. Timmermann, ‘‘PTP-LP: Using linear

programming to increase the delay robustness of IEEE 1588 PTP,’’ in Proc.

IEEE Global Commun. Conf. (GLOBECOM), Dec. 2018, pp. 1–7.

[38] H. Puttnies, E. Schweissguth, D. Timmermann, and J. Schacht, ‘‘Clock

synchronization using linear programming, multicasts, and temperature

compensation,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM),

Dec. 2019, pp. 1–6.

[39] G. Giorgi and C. Narduzzi, ‘‘Performance analysis of Kalman-filter-based

clock synchronization in IEEE 1588 networks,’’ IEEE Trans. Instrum.

Meas., vol. 60, no. 8, pp. 2902–2909, Aug. 2011.

[40] G. Cena, S. Scanzio, A. Valenzano, and C. Zunino, ‘‘Implementation and

evaluation of the reference broadcast infrastructure synchronization proto-

col,’’ IEEE Trans. Ind. Informat., vol. 11, no. 3, pp. 801–811, Jun. 2015.

[41] G. Giorgi, ‘‘An event-based Kalman filter for clock synchronization,’’

IEEE Trans. Instrum. Meas., vol. 64, no. 2, pp. 449–457, Feb. 2015.

[42] A. K. Karthik and R. S. Blum, ‘‘Optimum full information, unlimited com-

plexity, invariant, and minimax clock skew and offset estimators for IEEE

1588,’’ IEEE Trans. Commun., vol. 67, no. 5, pp. 3624–3637, May 2019.

[43] A. K. Karthik and R. S. Blum, ‘‘Estimation theory-based robust phase

offset determination in presence of possible path asymmetries,’’ IEEE

Trans. Commun., vol. 66, no. 4, pp. 1624–1635, Apr. 2018.

[44] G. Cena, S. Scanzio, and A. Valenzano, ‘‘A neural network clock discipline

algorithm for the RBIS clock synchronization protocol,’’ in Proc. 14th

IEEE Int. Workshop Factory Commun. Syst. (WFCS), Jun. 2018, pp. 1–10.

[45] Definitions and Terminology for Synchronization Networks, docu-

ment ITU-T, Rec. G.810, Aug. 1996.

[46] D. W. Allan, ‘‘Time and frequency (time-domain) characterization,

estimation, and prediction of precision clocks and oscillators,’’ IEEE

Trans. Ultrason., Ferroelectr., Freq. Control, vol. 34, no. 6, pp. 647–654,

Nov. 1987.

[47] I. Hadvzic, D. R. Morgan, and Z. Sayeed, ‘‘A synchronization algorithm

for packet MANs,’’ IEEE Trans. Commun., vol. 59, no. 4, pp. 1142–1153,

Apr. 2011.

[48] A. Guruswamy, R. S. Blum, S. Kishore, and M. Bordogna, ‘‘Minimax

optimum estimators for phase synchronization in IEEE 1588,’’ IEEE Trans.

Commun., vol. 63, no. 9, pp. 3350–3362, Sep. 2015.

[49] S. M. Kay, Fundamentals of Statistical Signal Processing, Estimation The-

ory, vol. 1, 1st ed. Upper Saddle River, NJ, USA: Prentice-Hall, Apr. 1993.

[50] J. Rutman and F. L. Walls, ‘‘Characterization of frequency stability in

precision frequency sources,’’ Proc. IEEE, vol. 79, no. 7, pp. 952–960,

Jul. 1991.

[51] Definitions and Terminology for Synchronization in Packet Networks, doc-

ument ITU-T, Rec. G.8260, Mar. 2020.

[52] I. Freire, C. Lu, M. Berg, and A. Klautau, ‘‘An FPGA-based design of a

packetized fronthaul testbed with IEEE 1588 clock synchronization,’’ in

Proc. Eur. Wireless, 23th Eur. Wireless Conf., May 2017, pp. 1–6.

[53] I. Freire, I. Almeida, E. Medeiros, M. Berg, C. Lu, E. Trojer, and

A. Klautau, ‘‘Testbed evaluation of distributed radio timing alignment

over Ethernet fronthaul networks,’’ IEEE Access, vol. 8, pp. 87960–87977,

2020.

[54] T. Włostowski, ‘‘Precise time and frequency transfer in a white rabbit

network,’’ Ph.D. dissertation, Dept. Electron. Inf. Technol., Inst. Radio-

electron., Warsaw Univ. Technol., Warsaw, Poland, 2011.

[55] C. Mallela, K. Tholu, and M. Bordogna, ‘‘Timing models for PTP in Eth-

ernet networks,’’ in Proc. IEEE Int. Symp. Precis. Clock Synchronization

Meas., Control, Commun. (ISPCS), Aug. 2017, pp. 1–6.

[56] R. Greenstreet and A. Zepeda, ‘‘Improving IEEE 1588 synchronization

accuracy in 1000BASE-T systems,’’ inProc. IEEE Int. Symp. Precis. Clock

Synchronization Meas., Control, Commun. (ISPCS), Oct. 2015, pp. 58–63.

[57] Timing and Synchronization Aspects in Packet Networks, document ITU-

T, Rec. G.8261, Aug. 2019.

IGOR FREIRE (Member, IEEE) received the B.Sc.

and M.Sc. degrees in electrical engineering from

the Federal University of Pará (UFPA), Belém,

Brazil, in 2013 and 2015, respectively, where he

is currently pursuing the Ph.D. degree in electrical

engineering. Since 2012, he has beenwith LASSE-

5G and IoT Research Group, Belém. His current

research interests include clock synchronization,

fronthaul technologies, wireless communications,

and software-defined radio.

CAMILA NOVAES was born in Pará, Brazil,

in 1998. She is currently pursuing the B.S degree

in computer engineering with the Federal Uni-

versity of Pará (UFPA), Belém, Brazil. Since

2017, she has been with LASSE-5G and IoT

Research Group, Belém. Her current research

interests include clock synchronization and net-

work virtualization.

IGOR ALMEIDA (Member, IEEE) received the

B.Sc. degree in computer engineering and the

M.Sc. degree in electrical engineering from the

Federal University of Pará (UFPA), Belém, Brazil,

in 2010 and 2013, respectively, where he is cur-

rently pursuing the Ph.D. degree in electrical engi-

neering. Since 2016, he has been with Ericsson

Research, involved with topics, such as 5G, fron-

thaul networking, synchronization, and wireless

communications.

20600 VOLUME 9, 2021



I. Freire et al.: Clock Synchronization Algorithms Over PTP-Unaware Networks

EDUARDO MEDEIROS received the M.Sc.

degree in electrical engineering from the Federal

University of Pará, Belém, Brazil, in 2010, and

the Licentiate and Ph.D. degrees from Lund Uni-

versity, Lund, Sweden, in 2015 and 2018, respec-

tively. Since 2011, he holds a Researcher position

with Ericsson Research, Stockholm, Sweden. His

current research interests include signal processing

for broadband communications and fronthaul for

5G systems. He was a co-recipient of two best

paper awards from the IEEE International Conference on Communications

and three best paper awards from the IEEE Communications Society Trans-

mission, Access, and Optical Systems Technical Committee.

MIGUEL BERG (Senior Member, IEEE) received

the B.S. degrees in electrical engineering and

computer science from Mid Sweden University,

Sweden, in 1995, and the Licentiate and Ph.D.

degrees in wireless communication systems from

the Royal Institute of Technology (KTH), Swe-

den, in 1999 and 2002, respectively. From 2002 to

2003, he worked with the development of 2G/3G

base station antennas and tower-mounted ampli-

fiers with Radio Components Sweden AB, and

from 2004 to 2006, he held a Researcher position with KTH, in the area

of wireless access. After joining Ericsson in 2007, he initially worked with

xDSL line testing and G.fast, as a continuation of his work as a Researcher

with Lund University, from 2006 to 2007. Since 2012, he has made sig-

nificant contributions to research and development for the Ericsson Radio

Dot System and targeting indoor small cells. As a Principal Researcher with

Ericsson Research, Stockholm, Sweden, he is currently leading research on

efficient fronthaul and lower layer splits for 4G/5G RAN. He has coauthored

about 35 scientific publications (journal, letters, magazine, and conference)

and 80 filed inventions.

ALDEBARO KLAUTAU (Senior Member, IEEE)

received the bachelor’s degree from the Universi-

dade Federal do Pará (UFPA), in 1990, the M.Sc.

degree from the Universidade Federal de Santa

Catarina (UFSC), in 1993, and the Ph.D. degree

in electrical engineering from the University of

California at San Diego (UCSD), in 2003. He was

a Visiting Scholar with Stockholm University,

UCSD, and The University of Texas at Austin.

He is also a Researcher with the Brazilian National

Council of Scientific and Technological Development (CNPq). Since 1996,

he has been with UFPA, where he is currently a Full Professor, the

ITU-T TIES Focal Point, and directs LASSE. He has supervised more than

50 graduate students. He published more than 150 articles in peer-reviewed

conferences and journals, and has several international patents. His research

interests include machine learning and signal processing for telecommuni-

cations and embedded systems.

VOLUME 9, 2021 20601


